- [1] On the existence of Borel points of
meromorphic algebroidal function in unit circle, J. Central
China Normal University, 27(1993), 10--14(in Chinese).

- [2]
Research on a class of partially
self-similar sets, Chin. Ann. of Math., 15A(1994),
681--688(in Chinese).

- [3]
Property of Hausdorff measure of a class of
sets, J. Central China Normal University, 28(1994),
286--288(in Chinse).

- [4]
Box
dimensions of planar generalized recurrent self-affine set (with Q. Qin & C. Wang),
Mathematica Applicata, 8(1995) (supp.), 164--168.

- [5]
Generalized Moran fractals and its
multifractal decompositions, Acta Mathematica Sinica,
38(1995), 553-558(in Chinese).

- [6]
The packing dimensions of the
generalized Moran sets (with S. Hua), Progress in Natural Science,
16(1996), 148--152.

- [7]
Generalized recurrent sets.
Acta Mathematica Sinica, 39(1996), 125--132(in
Chinese).

- [8]
The sufficient and
necessary conditions for a set $F$ with $\dim _HF=\dim _PF$ (with D. Xiao),
Acta Mathematica Scientia, 16(1996), 406--411.

- [9]
The multifractal
decompositions of generalized Moran sets (II) (with F. Su & M. Wu), Journal of
Fudan University, 35(1996), 200--205(in Chinese).

- [10]
The Strategies of Options
and Hedges of DMKStg (with D.F Zhao), Scienc and Technology Progress and
Policy, 1998(supp.), 145--147(in Chinese).

- [11] Hausdorff dimension of a set defined by its address properties,
Journal of Central China Normal University(Nat. Sci.), 32(1998), 145--146.

- [12] A note on generalized
Moran set (with D.Xiao), Acta Mathematica Scientia, 18(1998)(supp.),
88--93.

- [13]
Separation properties for MW-fractals,
Acta
Mathematica Sinica, 14(1998), 113--120(in Chinese).

- [14] Separation properties for MW-fractals, Acta Mathematics Sinica,
14(1998), 487--494.

- [15] The dimensions of self-similar
sets (with D. Xiao), J. Math. Soc. Japan,
50(1998), 789--799.

- [16] Dimension of subsets of a Moran fractal characterized by its location code (with D.Xiao),
Journal of Central China Normal University(Nat. Sci.), 32(1998), 251--254.
88--93.

- [17]
Dimensions of measure on
general Sierpinski carpet (with D. Xiao), Acta Mathematica Scientia,
19(1999), 81--85.

- [18]
Intersection of
translations of Cantor triadic set (with D. Xiao), Acta Mathematica
Scientia, 19(1999), 214--219.

- [19]
Dimensions of subsets of a
class of Cantor-type set(with D. Xiao), Acta Mathematica Sinica
43(2000), 225--232(in Chinese).

- [20] Limit cycles for competitive three dimensional
Lotka - Volterra system (with D. Xiao), J. Differential Equations, 164(2000), 1--15.

- [21] The dimension of subsets of Moran sets determined by the success
run behaviour of their codings (with F.M. Dekking),

- [22] Non-differentiability of devil's staircases and dimensions
of subsets of Moran sets (with D.Xiao and F.M. Dekking),

- [23] Hausdorff dimension of subsets of Moran fractals with prescribed
group frequency of their codings (with F.M. Dekking),

- [24] Stability and Bifurcation in a delayed Ratio-dependent
Predator-Prey System (with D.Xiao ),
Proceedings
of the Edinburgh Mathematical Society,
, 46(2003), 205--220.

- [25] How smooth is a devil's staircase?
(with F. Michel Dekking),

- [26] The dimension of sets determined by their code behaviour,

- [27] Solving Maximum cut problem in the
Adleman-Lipton model(with D. Xiao, Z. Zhang, L. He),

- [28] Procedure for a dynamical system on $\{0,
1\}^n$ with DNA molecules(with D. Xiao, J. Yu, X. Zhang, Z. Zhang, L. He).

- [29] Dynamics in a Ratio-dependent Predator-Prey
Model with predator Harvesting(with D. Xiao, M. Han).

- [30]
Orbit trap rendering method for generating artistic images with cyclic or dihedral symmetry(with Y. Zuo, J. Lu, R. Ye).
Computers & graphics, 30(2006), 471--474.

- [31]
Generation of chair-tilling aperiodic Aesthetic patterns(with Y. Zuo, J. Lu), Journal of Computer-Aided Design & Computer Graphics,
18(2006), 498--501.

- [32] DNA ternary addition(with D. Xiao, L. He).

- [33] A DNA procedure for solving the shortest path problem(with C. Wang, D. Xiao, L. He).

- [34] Non-differentiability points of Cantor functions.

- [35] Hausdorff dimension of fiber-coding sub-Sierpinski
carpets(with Y.X. Gui).

- [36] Points of infinite derivative of Cantor functions.
Real Anal. Exchange, 32 (2006/07), no.1, 87--96.

- [37] Hausdorff dimension
of subsets with proportional
fibre frequencies of the general Sierpinski carpet (with Y.X. Gui). Nonlinearity, 20(2007), 2353--2364.

- [38] A class of
Sierpinski carpets with overlaps (with Y.R. Zou, Y.Y. Yao). J. Math. Anal. Appl., 340(2008), 1422--1432.

- [39] Hausdorff measure of Sierpinski Sponge generated by normal tetrahedron
(with Y.Z. Chen, Y.X. Gui). Journal of ECNU (Natural Science), 137(2008), 37--43.

- [40] A random version of
McMullen-Bedford general Sierpinski carpets and its application
(with Y.X. Gui). Nonlinearity 21 (2008) 1745-1758.

- [41]
The pointwise densities of non-symmetric Cantor sets
(with Yuanyuan Yao). International Journal of Mathematics, 19(2008), 1121--1135.

- [42] A generalized Multifractal spectrum of the general Sierpinski carpets
(with Y.X. Gui), JMAA, 348(2008), 180--192.

- [43] Self-similar structure on the intersection of
middle-$1-2\beta$ Cantor sets with $\beta\in(\frac{1}{3},\frac{1}{2})$, Nonlinearity, 21(2008), 2899--2910.
(with J. Lu and YR. Zou).

- [44]
An equivalent definition of packing dimension for
subsets of Moran fractals and its application, Nonlinear Analysis: Real World Applications, 10(2009), 1618--1626.

- [45] Dimensions of subsets of Moran fractals related to
frequencies of their codings
(with Y.Y. Yao).Nonlinear Analysis: Real World Applications, 10(2009), 3240--3252.

- [46] Hausdorff and packing dimensions of subsets of Moran fractals
with prescribed mixed group frequency of their codings(with L. Olsen, Z.Y. Wen), Aequationes Mathematicae, 77(2009),
171--185.

- [47]
Dimensions of
Non-differentiability points of Cantor functions
(with Yuanyuan Yao, Yunxiu Zhang), Studia Mathematica, 195(2009), 113--125.

- [48] Hausdorff dimension
of a class of subsets of Sierpinski carpet (with Y.X. Gui),
Acta Sci. Math. (Szeged) 75 (2009), no. 1-2, 75--89.

- [49] Subsets of the general Sierpinski carpet with
mixed group frequencies
(with Y.X. Gui), International Journal of Mathematics, 20(2009), 1289--1303.

- [50] Multiscale self-affine Sierpinski carpets
(with Y.X. Gui), Nonlinearity 23 (2010), 495-512.

- [51] The Hausdorff dimension of sets related to the general Sierpinski carpets (with Y.X. Gui).
Acta Mathematica Sinica, 26(2010), 731-742.

- [52] COLORFUL PATTERNS WITH DISCRETE PLANAR SYMMETRIES FROM DYNAMICAL SYSTEMS
(with J. Lu, Y.R. Zou). Fractals, 18(2010), 35-43.

- [53] Dimensions of sets related to affine Sierpinski carpets
(with J. Zhang, D. Kong). Chinese Journal of Contemporary Mathematics, 31(2010), 175--190.

- [54] Intersections of homogeneous Cantor
sets and beta-expansions
(with Derong Kong, F.M. Dekking), Nonlinearity, 23 (2010), 2815-2834. .

- [55]
Self-similar structure on intersection of homogeneous symmetric Cantor sets
(with Yuanyuan Yao, Yunxiu Zhang), Math.
Nach. 284(2011), 298--316.

- [56] Intersecting nonhomogeneous Cantor sets with their translations
(with Yuzu Zou, Caiguang Yan), Nonlinear Analysis-TMA, 74(2011), 4660--4670.

- [57] Regular subsets of a class of self-affine set
(with Y.X. Gui). Acta Mathematica Scientia, Sieries A, 31(2011), 796--804.

- [58] Self-similar structure on intersection of planar Cantor sets
with their translations(with Y.Y. Yao), Monatshefte f¨¹r Mathematik, 166(2012),591--600.

- [59] Unique expansion of points of a class of self-similar sets with overlaps
(with Y.R. Zou, J. Lu), Mathematika, 58(2012), 371--388.

- [60] Colorful symmetric images in three-dimensional space from dynamical systems (with Lu, Jian; Zou, Yuru; Liu, Zeyi). Fractals 20 (2012), no. 1, 53¨C60.

- [61] Lipschitz equivalence of McMullen sets (with B.M. Li, J.J. Miao), Fractals, 2013, no. 3-4.

- [62] Dimensions of non-differentiability points of generalized Cantor functions £¨with In Soo Beak), Acta Mathematica Sinica £¨Chinese series) ,
2014, 57£¨5), 939--946.

- [63] Hausdorff dimension of unique beta expansions (with D.R. Kong), Nonlinearity, 28(2015), no1, 187--209.

- [64] Variational formula related to the self-affine Sierpinski carpets
(with Y.X. Gui, D.M. Xiao), Math.
Nach£¬ 288£¨2015£©£¬ no. 5-6, 593--603.

- [65] A DNA Algorithm for the Maximal Matching Problem
(with E.M. Patrikeev, D.M. Xiao), Automation and Remote Control, 76£¨2015), no. 10, 1797--1802.

- [66] Generating iterated function systems for a class of self-similar sets with complete overlap(with Y.Y. Yao),
Publ. Math. Debrecen, 87/1-2(2015), 23--33.

- [67] On the cardinality of beta-expansions of some numbers. (with Y.R. Zou, J. Lu),
Int. J. Number Theory, 12(2016)1497--1507.

- [68] Assouad dimensions of Moran sets and Cantor-like sets(with W.W. Li, J.J., Miao, L.F. Xi), Front. Math. China, 11(2016),705--722.

- [69] Hausdorff dimensions of sets related to Luroth expansion (with Y.X. Gui), Acta Math.
Hungary, 150(2016), 286--302.

- [70] Generating Iterated Function Systems for the Vicsek Snowlake and the Koch Curve
(with Y.Yao), The American Mathematical Monthly, 123(7)(2016), 716--721.

- [71] Hausdorff dimension of univoque sets and Devil's staircase (with V. Komornik, D.R. Kong),
Adv. in Math. 305(2017), 165--196.

- [72] On small bases which admit points with two expansions
(with D.R. Kong, Y.R. Zou), Journal of Number Theory, 173(2017), 100--128.

- [73] UNIVOQUE BASES AND HAUSDORFF DIMENSIONS (with D.R. Kong, F. Lv and M. de Vries)£¬Monatshefte fur Mathematik, 184(2017), 443--458.

- [74]
Lipschitz equivalence of a class of self-similar sets (with X.Chen, K. Jiang), Annales Academiae Scientiarum Fennicae Mathematica, 42(2017), 585--591.

- [75] Algebraic sums and products of univoque bases (with Karma Dajani, Vilmos Komornik, D.R. Kong), Indag. Math. (N.S) 29(2018),
no. 4, 1087---1104.

- [76] Multiple expansions of real numbers with digits set $\set{0,1,q}$ (with Karma Dajani, K, Jiang, D.R. Kong), Math. Z., 291(3),2019.
1605--1619.

- [1] Packing dimension of a class of sets,
Proceedings of the Third Conference on FRACTAL THEORY AND ITS APPLICATIONS,
Hefei, P.R. China, May 1993, 52--55.

- [2] Dimensions of measure supported
on generalized MW construction (with Feng Su), DIFFERENTIAL EQUATIONS AND
CONTROL THEORY, Wuhan, P.R. China, June 1994, 163--167.
Lecture Notes in Pure and Applied
Mathematics 176, Dekker, New Jork.

- [3]
Multifractal decompositions of MW-like
fractals, DYNAMICAL SYSTEM AND CHAOS, vol.1, Tokyo, Japan,
June 1994, 159--162. World Sci. Publishing, River Edge, NJ.

- [4] On the intersection of translation of middle-$\alpha $
Cantor sets (with D. Xiao), FRACTALS AND
BEYOND--Complexities in the Sciences, Malta, October 1998,
137--148. World Scientific, Singapore.

- ON THE BIFURCATION SET OF UNIQUE EXPANSIONS (with C. Kalle, D.R. Kong and F. Lv)£¬accepted by Acta Arithmetica.

- The ¦Â-transformation with a hole at 0 (with C. Kalle, D.R. Kong and Niels Langeveld)£¬accepted by Ergodic Theory and Dynamical Systems

- Multiple codings for self-similar sets with overlaps (with Karma Dajani, K, Jiang, D.R. Kong)

- Critical base for unique codings of fat Sierpinski gaskets (with D.R. Kong)