
BioSystems 84 (2006) 207–216

Procedures for a dynamical system on
{0, 1}n with DNA molecules

Dongmei Xiaoa,c, Wenxia Lib,c,∗, Jiang Yua,c, Xiaodong Zhanga,c,
Zhizhou Zhangc, Lin Hec

a Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200030, PR China
b Department of Mathematics, East China Normal University, Shanghai 200062, PR China

c Bio-X DNA Computer Consortium, Shanghai Jiao Tong University, Shanghai 200030, PR China

Received 14 April 2005; received in revised form 9 November 2005; accepted 23 November 2005

Abstract

In this paper, an improved form of DNA representations of elements in {0, 1}n, which was first proposed by Fujiwara et al.
[Fujiwara, A., Matsumoto, K., Chen, W., 2004. Procedures for logic and arithmetic operations with DNA molecules. Int. J. Found.
Comput. Sci. 15, 461–474], is given. Using this improved representations, a procedure for cycling shift is proposed, and this
procedure can be implemented in O(1) lab steps theoretically. Based on the operation for cycling shift, dynamic behavior of an
operator on {0, 1}n is investigated by DNA molecules.
© 2005 Elsevier Ireland Ltd. All rights reserved.

Keywords: DNA representation; DNA computing; Symbolic space; Dynamic behavior

1. Introduction

A deoxyribonucleic acid (DNA) is a polymer, which can be strung together from monomers called deoxyribonu-
cleotides (Pǎun et al., 1998). Distinct nucleotides are detected only with their bases. Those bases are, respectively,
abbreviated as A (adenine), G (guanine), C (cytosine) and T (thymine). Under appropriate conditions two strands of
DNA can form a double strand, if the respective bases are the Watson–Crick complements of each other—A matches
T and C matches G; also the 3′-end matches the 5′-end, e.g., the single strands 5′-ACCTGGATGTAA-3′ and 3′-
TGGACCTACATT-5′ can form a double strand. We also call the strand 3′-TGGACCTACATT-5′ as the complementary
strand of 5′-ACCTGGATGTAA-3′ and simply denote it by ACCTGGATGTAA.

DNA has two important features, which are Watson–Crick complementarity and massive parallelism. As the first
work for DNA computing, Adleman (1994) took advantage of these features to present an idea of solving the Hamil-
tonian path problem (an NP problem) of size n in O(n) steps using DNA molecules. Lipton (1995) demonstrated
that Adleman’s experiment could be used to determine the NP-complete satisfiability (SAT) problem (the first NP-
complete problem). Ouyang et al. (1997) presented a molecule biology-based experimental solution to the maximal
clique NP-complete problem. Each of these works are based on performing some basic operations on DNA strands.

∗ Corresponding author. Tel.: +86 2162233060; fax: +86 2152682621.
E-mail address: wxli@math.ecnu.edu.cn (W. Li)

0303-2647/$ – see front matter © 2005 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.biosystems.2005.11.004

208 D. Xiao et al. / BioSystems 84 (2006) 207–216

A (test) tube is a set of molecules of DNA, i.e., a multi-set of finite strings over the alphabet {A, C, G, T}. Given a
tube, one can perform the following basic operations:

[1] Merge: Given two test tubes T1, T2, Merge(T1, T2) stores the union T1 ∪ T2 in T1.
[2] Copy: Given a test tube T1, Copy(T1, T2) produces a test tube T2 with the same contents as T1.
[3] Detect: Given a test tube T, Detect(T) outputs “yes” if T contains at least one strand, otherwise, Detect(T) outputs

“no”.
[4] Separation: Given a test tube T1 and a set of strings X, Separation(T1, X, T2) removes all single strands containing

a string in X from T1, and produce a test tube T2 with the removed strands.
[5] Discard: Given a tube T, Discard(T) will discard the tube T.
[6] Cleavage: Given a test tube T and a string of two symbols σ0σ1, Cleavage(T, σ0σ1) cuts each double strand containing[

σ0σ1

σ0σ1

]

in T into two double strands as follows:[
α0σ0σ1β0

α1σ0σ1β1

]
=⇒

[
α0σ0

α1σ̄0

]
,

[
σ1β0

σ̄1β1

]
.

[7] Annealing: Given a test tube T, Annealing(T) produces all feasible double strands in T. (The produced double
strands are still stored in T after Annealing.).

[8] Denaturation: Given a test tube T, Denaturation(T) dissociates each double strand in T into two single strands.
[9] Selection: Given a test tube T1 and an integer L, Selection(T1, L, T2) removes all strands, whose length is L, from

T1, and produces a test tube T2 with the removed strands.
[10] Append: Given a tube T and a short DNA single strand Z, Append(T, Z) will append Z onto the end of every strand

in the tube T.
[11] Read: Given a tube T, the operation Read(T) is used to describe a single molecule, which is contained in the tube

T. Even if T contains many different molecules each encoding a different set of bases, the operation can give an
explicit description of exactly one of them.

Since these eleven manipulations are implemented with a constant number of biological steps for DNA strands (Pǎun
et al., 1998), we assume that the complexity of each manipulation is O(1) steps.

In order to apply DNA computing on a wide range of problems, procedures for primitive operations, such as logic
or arithmetic operations, are needed. There are some works for primitive operations in DNA computing (Frisco, 2002;
Guarnieri et al., 1996; Gupta et al., 1997; Hug and Schuler, 2001). As we know, the key to solve a mathematical problem
using DNA molecules is to design appropriate DNA representations according to the problem itself. A canonical DNA
representation for a binary number was introduced by Fujiwara et al. (2004). It deals with DNA representations of m
binary numbers of n bits. A value of the jth bit of the ith binary number is represented by a single strand Si,j such that

Si,j = E1NiBjC0C1Vi,jE0, (1)

where C0, C1, E0, E1, Bj, Vi,j and Ni(1 ≤ i ≤ m, 1 ≤ j ≤ n) all are single strands. Vi,j takes the single strands 0 or
1, representing the real numbers zero or one, respectively. Single strands C0, C1 and E0, E1 are special symbols cut
by Cleavage. For example, the following sets of single strands:

{E1N1B1C0C11E0, E1N1B2C0C11E0, E1N1B3C0C10E0},
and

{E1N2B1C0C11E0, E1N2B2C0C10E0, E1N2B3C0C10E0}
denote 2 (m = 2) binary numbers of 3 (n = 3) bits: 110 and 100, respectively. Based on the representation by (1),
Fujiwara et al. (2004) design a very important operation, denoted by ValueAssinmentV (Tinput, Toutput), which assigns

D. Xiao et al. / BioSystems 84 (2006) 207–216 209

the same value V ∈ {0, 1} to each bit in the input tube Tinput and can be implemented in O(1) biological steps. More
exactly, if

Tinput = {E1NiBjC0C1Vi,jE0 : 1 ≤ i ≤ m, 1 ≤ j ≤ n},
where Vi,j ∈ {0, 1}, then ValueAssignmentV (Tinput, Toutput) gives that

Toutput = {E1NiBjC0C1VE0 : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
By means of the operation of ValueAssignment, Fujiwara et al. (2004) proposed procedures for logic and arithmetic
operations with DNA molecules. Since each element of {0, 1}n can be considered a binary number of n bits, the above
representation and the operation of ValueAssignment can be used for some matters on {0, 1}n, e.g., permutation of the
first two terms of an element, i.e., change (V1, V2, V3, . . . , Vn) into (V2, V1, V3, . . . , Vn) for (V1, V2, V3, . . . , Vn) ∈
{0, 1}n. However, a typical operation, the cycling shift which changes (V1, V2, V3, . . . , Vn) into (V2, V3, V4, . . . , Vn, V1)
for (V1, V2, V3, . . . , Vn) ∈ {0, 1}n, needs to implement the operation of ValueAssignment n − 1 times. To remedy this
shortage, we improve the representation in (1) by setting

Si,j = E1NiAjD0D1BjC0C1Vi,jE0, (2)

i.e., using both single strands Aj and Bj to locate a bit on position j. With this improved DNA representation, all
implementations described in Fujiwara et al. (2004) keep effective and an operation, denoted by CycleShift, can be
designed such that it can carry out the cycling shift in O(1) biological steps. Furthermore, the operation of CycleShift
can be used to consider the dynamic behavior of some operators on {0, 1}n with DNA molecules.

Fix a positive integer n ≥ 2 and let F : {0, 1}n → {0, 1}n by

F (k1, k2, k3, . . . , kn−1, kn) = (k∗, k3, k4, . . . , kn, k1), (3)

where k∗ = k1 + k2 (mod 2). LetN be the set of positive integers. For any α ∈ {0, 1}n the iteration of F is defined in the
usual way, i.e., F0α = α and Fkα = F (Fk−1α) for k ∈ N. To investigate the orbit Fkα, k = 0, 1, 2, . . . of α ∈ {0, 1}n,
it concerns where Fkα can arrive. In other words, for any β ∈ {0, 1}n whether or not there exists a k ∈ N such that
Fkα = β.

Denote γ(k, �) = k + � (mod 2) for k, � ∈ {0, 1}. For (k1, k2, . . . , kn−1, kn) ∈ {0, 1}n, let

F1(k1, k2, k3, . . . , kn−1, kn) = (k2, k3, k4, . . . , kn, k1),

and

F2(k1, k2, k3, . . . , kn−1, kn) = (k1, γ(k1, k2), k3, k4, . . . , kn).

Then F = F1 ◦ F2. So for a (k1, k2, . . . , kn−1, kn) ∈ {0, 1}n, F (k1, k2, . . . , kn−1, kn) can be evaluated by the operations
of ValueAssignment and CycleShift.

This paper is organized as follows. In Section 2, we describe the improved representations of elements in {0, 1}n
and propose a procedure for the operation of CycleShift. In Section 3, a procedure is proposed for investigating the
dynamic behavior of F. Conclusions are summarized in Section 4.

2. Bit representation and cycling transformation

Let Σ be a set of single strands such that

Σ = {A1, A2, . . . , An, B1, B2, . . . , Bn, C0, C1, D0, D1, E0, E1, 1, 0, #, Ā1,

Ā2, . . . , Ān, B̄1, B̄2, . . . , B̄n, C̄0, C̄1, D̄0, D̄1, Ē0, Ē1, 1̄, 0̄, #̄}.
Both Ai and Bi, i = 1, 2, . . . , n are used to denote the ith bit position for an element (or a 0 − 1 sequence) of {0, 1}n.
C0, C1, D0, D1 and E0, E1 are the specified symbols cut by Cleavage, that is, Cleavage(T, C0C1), Cleavage(T, D0D1)

210 D. Xiao et al. / BioSystems 84 (2006) 207–216

and Cleavage(T, E0E1) cut all double strands containing[
C0C1

C0C1

]
,

[
D0D1

D0D1

]
and

[
E0E1

E0E1

]

in a test tube T, respectively. Symbols “0” and “1” are used to denote values of bits, and # is a special symbol for
Separation.

Let (V1, V2, . . . , Vn) ∈ {0, 1}n. Using the above notations, a value of bit at position j is represented by a single
strand Sj , called as a memory strand, such that

Sj = E1AjD0D1BjC0C1VjE0, (4)

where Vj = 0 if a value of the bit is 0, otherwise, Vj = 1. For instance, the representation of (1, 0, 0) ∈ {0, 1}3 is

{E1A1D0D1B1C0C11E0, E1A2D0D1B2C0C10E0, E1A3D0D1B3C0C10E0}.
Compared with that in (2), for simplicity we omit Ni and only use one index j in (4) since we do not consider multiple
elements of {0, 1}n simultaneously.

In the following we show a procedure for the operation CycleShift. It is implemented in O(1) lab steps. Let
(V1, V2, . . . , Vn) ∈ {0, 1}n. The CycleShift transfers (V1, V2, . . . , Vn) into (V2, . . . , Vn, V1). More exactly, if

Tinput = {E1AiD0D1BiC0C1ViE0|1 ≤ i ≤ n},
where Vi ∈ {0, 1}, then after performing CycleShift(Tinput, Toutput) we have

Toutput = {E1AnD0D1BnC0C1V1E0, E1AiD0D1BiC0C1Vi+1E0|1 ≤ i ≤ n − 1}.
Some auxiliary test tubes are given by

TD̄ = {D0D1}, TC̄ = {C0C1}, TĀ = {E1AiD0; E1AiD0D1Bi+1C0, i = 1, . . . , n − 1},
and

TB̄ = {D1BiC0, E1AiD0D1BiC0, i = 1, . . . , n − 1}, Tzero = {C0C1, C10E0}, Tone = {C0C1, C11E0}.
The following CycleShift(Tinput, Toutput) is implemented in five steps. For reader’s convenience, we show the contents
in the tubes after some operations.

Procedure CycleShift(Tinput, Toutput)
Step 1: Shift subscripts of A’s

Separation(Tinput, {A1}, Tfirst)
=⇒ Tfirst = {E1A1D0D1B1C0C1V1E0}.
Separation(Tinput, {An}, Tlast)
=⇒ Tlast = {E1AnD0D1BnC0C1VnE0}.
Copy(Tlast, Ttmp)
Merge(Tinput, Ttmp)
=⇒ Tinput = {E1AiD0D1BiC0C1ViE0, 2 ≤ i ≤ n}.
Copy(TD̄, TD̄∗)
Merge(Tinput, TD̄∗)
=⇒ Tinput = {D0D1, E1AiD0D1BiC0C1ViE0, 2 ≤ i ≤ n}.
Annealing(Tinput)

=⇒ Tinput =
{[

E1AiD0D1BiC0C1ViE0

D0D1

]
, 2 ≤ i ≤ n

}
.

Cleavage(Tinput, D0D1)

=⇒ Tinput =
{[

E1AiD0

D0

]
,

[
D1BiC0C1ViE0

D1

]
, 2 ≤ i ≤ n

}
.

D. Xiao et al. / BioSystems 84 (2006) 207–216 211

Denaturation(Tinput)

=⇒ Tinput = {D̄0, D̄1, E1AiD0, D1BiC0C1ViE0, 2 ≤ i ≤ n}.
Separation(Tinput, {C0C1}, Toutput)

=⇒ Tinput = {D̄0, D̄1, E1AiD0, 2 ≤ i ≤ n}, Toutput = {D1BiC0C1ViE0, 2 ≤ i ≤ n}.
Copy(TĀ, TĀ∗)

Merge(Toutput, TĀ∗)

=⇒ Toutput = {E1Ai−1D0, E1Ai−1D0D1BiC0, D1BiC0C1ViE0, 2 ≤ i ≤ n}.
Annealing(Toutput)

=⇒ Toutput =
{[

E1Ai−1D0D1BiC0C1ViE0

E1Ai−1D0D1BiC0

]
, 2 ≤ i ≤ n

}
.

Denaturation(Toutput)

=⇒ Toutput = {E1Ai−1D0D1BiC0C1ViE0, E1Ai−1D0D1BiC0, 2 ≤ i ≤ n}.
Separation(Toutput, {D0D1}, Ttmp)

=⇒ Toutput = {E1Ai−1D0D1BiC0C1ViE0, 2 ≤ i ≤ n}, Ttmp = {E1Ai−1D0D1BiC0, 2 ≤ i ≤ n}.
Discard(Ttmp)

Separation(Toutput, {0}, T0)

=⇒ T0 = {E1Ai−1D0D1BiC0C1ViE0|Vi = 0, 2 ≤ i ≤ n}.
Separation(Toutput, {1}, T1)

=⇒ T1 = {E1Ai−1D0D1BiC0C1ViE0|Vi = 1, 2 ≤ i ≤ n}.
Step 2: Shift subscripts of B’s for single strands in tube T0

Copy(TC̄, TC̄∗)

Merge(T0, TC̄∗)

=⇒ T0 = {C0C1, E1Ai−1D0D1BiC0C1ViE0|Vi = 0, 2 ≤ i ≤ n}.
Annealing(T0)

=⇒ T0 =
{[

E1Ai−1D0D1BiC0C1ViE0

C0C1

]∣∣∣∣∣ Vi = 0, 2 ≤ i ≤ n

}
.

Cleavage(T0, C0C1)

=⇒ T0 =
{[

E1Ai−1D0D1BiC0

C0

]
,

[
C1ViE0

C1

]∣∣∣∣∣ Vi = 0, 2 ≤ i ≤ n

}
.

Denaturation(T0)

=⇒ T0 = {E1Ai−1D0D1BiC0, C̄0, C1ViE0, C̄1|Vi = 0, 2 ≤ i ≤ n}.
Separation(T0, {C1, C̄0, C̄1}, Ttmp)

=⇒ T0 = {E1Ai−1D0D1BiC0|Vi = 0, 2 ≤ i ≤ n}.
Copy(TD̄, TD̄∗)

Merge(T0, TD̄∗)

=⇒ T0 = {D0D1, E1Ai−1D0D1BiC0|Vi = 0, 2 ≤ i ≤ n}.
Annealing(T0)

=⇒ T0 =
{[

E1Ai−1D0D1BiC0

D0D1

]∣∣∣∣∣ Vi = 0, 2 ≤ i ≤ n

}
.

Cleavage(T0, D0D1)

=⇒ T0 =
{[

E1Ai−1D0

D0

]
,

[
D1BiC0

D1

]∣∣∣∣∣ Vi = 0, 2 ≤ i ≤ n

}
.

Denaturation(T0)

=⇒ T0 = {D̄0, D̄1, E1Ai−1D0, D1BiC0|Vi = 0, 2 ≤ i ≤ n}.

212 D. Xiao et al. / BioSystems 84 (2006) 207–216

Separation(T0, {D̄0, D̄1, C0}, Ttmp)

=⇒ T0 = {E1Ai−1D0|Vi = 0, 2 ≤ i ≤ n}.
Discard(Ttmp)

Copy(TB̄, TB̄∗)

Merge(T0, TB̄∗)

=⇒ T0 = {E1Ai−1D0|Vi = 0, 2 ≤ i ≤ n} ∪ {D1Bi−1C0, E1Ai−1D0D1Bi−1C0|2 ≤ i ≤ n}.
Annealing(T0)

=⇒ T0 =
{[

E1Ai−1D0D1Bi−1C0

E1Ai−1D0D1Bi−1C0

]∣∣∣∣∣ Vi = 0, 2 ≤ i ≤ n

}
,

⋃ {[
D1Bi−1C0

E1Ai−1D0D1Bi−1C0

]∣∣∣∣∣ for some other 2 ≤ i ≤ n

}
.

Denaturation(T0)

=⇒ T0 = {E1Ai−1D0D1Bi−1C0, E1Ai−1D0D1Bi−1C0|Vi = 0, 2 ≤ i ≤ n}
∪ {D1Bi−1C0, E1Ai−1D0D1Bi−1C0| for some other 2 ≤ i ≤ n}.

Separation(T0, {D0D1}, Ttmp)

=⇒ Ttmp = {E1Ai−1D0D1Bi−1C0, |Vi = 0, 2 ≤ i ≤ n}.
Discard(T0)

Merge(T0, Ttmp)

=⇒ T0 = {E1Ai−1D0D1Bi−1C0, |Vi = 0, 2 ≤ i ≤ n}.
Copy(Tzero, Tzero∗)

Merge(T0, Tzero∗)

=⇒ T0 = {C0C1, C10E0, E1Ai−1D0D1Bi−1C0, |Vi = 0, 2 ≤ i ≤ n}.
Annealing(T0)

=⇒ T0 =
{[

E1Ai−1D0D1Bi−1C0C10E0

C0C1

]∣∣∣∣∣ Vi = 0, 2 ≤ i ≤ n

}
.

Denaturation(T0)

=⇒ T0 = {E1Ai−1D0D1Bi−1C0C10E0, C0C1|Vi = 0, 2 ≤ i ≤ n}.
Separation(T0, {C0C1}, TC̄)

=⇒ T0 = {E1Ai−1D0D1Bi−1C0C10E0, |Vi = 0, 2 ≤ i ≤ n}.
Step 3: Shift subscripts of B’s for single strands in tube T1 (by the same manipulations as those in Step 2)

Copy(TC̄, TC̄∗); Merge(T1, TC̄∗); Annealing(T1); Cleavage(T1, C0C1); Denaturation(T1);

Separation(T1, {C1, C̄0, C̄1}, Ttmp); Copy(TD̄, TD̄∗); Merge(T1, TD̄∗); Annealing(T1); Cleavage(T1, D0D1);

Denaturation(T1); Separation(T1, {D̄0, D̄1, C0}, Ttmp); Discard(Ttmp); Copy(TB̄, TB̄∗); Merge(T1, TB̄∗);

Annealing(T1); Denaturation(T1); Separation(T1, {D0D1}, Ttmp); Discard(T1); Merge(T1, Ttmp); Copy(Tone, Tone∗);

Merge(T1, Tone∗); Annealing(T1); Denaturation(T1); Separation(T1, {C0C1}, TC̄).

Step 4: Assign the nth bit with value V1

Separation(Tfirst, {1}, Ttmp)

If Detect(Tfirst) is “yes”, then

ValueAssignment0(Tlast, Tlast∗), else

ValueAssignment1(Tlast, Tlast∗)

=⇒ Tlast = {E1AnD0D1BnC0C1V1E0}.
Step 5: Produce the output Toutput

Merge(T1, T0)

Merge(T1, Tlast)

D. Xiao et al. / BioSystems 84 (2006) 207–216 213

Merge(Toutput, T1)

=⇒ Toutput = {E1AnD0D1BnC0C1V1E0, E1AiD0D1BiC0C1Vi+1E0|1 ≤ i ≤ n − 1}.
Note that the operation ValueAssignment introduced by Fujiwara et al. (2004) is used in Step 4. Although there is

a bit difference for the DNA representations of binary numbers given by (1) and (4), the operation ValueAssignment

is still available for our setting. For readers’ convenience, we give a description of the operation ValueAssignment

as follows. Let

Tinput = {E1AiD0D1BiC0C1ViE0|1 ≤ i ≤ n},

where Vi ∈ {0, 1}. Then the operation ValueAssignmentV (Tinput, Toutput) produces

Toutput = {E1AiD0D1BiC0C1VE0| ≤ i ≤ n},

where V ∈ {0, 1} and all memory strands are set to the same value V. Let TC̄ and TV be two auxiliary test tubes

such that TC̄ = {C0C1}, TV = {C1VE0, C0C1}.

Procedure ValueAssignmentV (Tinput, Toutput)
Step 1: Delete values from memory strands.

Copy(TC̄, TC̄∗)
Merge(Tinput, TC̄∗)
=⇒ Tinput = {C0C1, E1AiD0D1BiC0C1ViE0|1 ≤ i ≤ n}.
Annealing(Tinput)

=⇒ Tinput =
{[

E1AiD0D1BiC0C1ViE0

C0C1

]∣∣∣∣∣ 1 ≤ i ≤ n

}
.

Cleavage(Tinput, C0C1)

=⇒ Tinput =
{[

E1AiD0D1BiC0

C0

]
,

[
C1ViE0

C1

]∣∣∣∣∣ 1 ≤ i ≤ n

}
.

Denaturation(Tinput)
=⇒ Tinput = {C̄0, C̄1, E1AiD0D1BiC0, C1ViE0|1 ≤ i ≤ n}.
Separation(Tinput, {C1, C̄0, C̄1}, Ttmp)
=⇒ Tinput = {E1AiD0D1BiC0|1 ≤ i ≤ n}.

Step 2: Assign values to memory strands.
Merge(Tinput, TV)
=⇒ Tinput = {C1VE0, C0C1, E1AiD0D1BiC0|1 ≤ i ≤ n}.
Annealing(Tinput)

=⇒ Tinput =
{[

E1AiD0D1BiC0C1VE0

C0C1

]
, 1 ≤ i ≤ n

}
.

Denaturation(Tinput)
=⇒ Tinput = {C0C1, E1AiD0D1BiC0C1VE0|1 ≤ i ≤ n}.
Separation(Tinput, {C0C1}, TC̄)
=⇒ Tinput = {E1AiD0D1BiC0C1VE0|1 ≤ i ≤ n}.
Copy(Tinput, Toutput)
=⇒ Toutput = {E1AiD0D1BiC0C1VE0|1 ≤ i ≤ n}.

3. Procedure for F with DNA molecules

Let F be defined by (3). In this section we design a procedure with DNA molecules to check if there exists a k ∈ N
such that Fk(V (0)) = (1, 1, . . . , 1) for any given non-zero sequence V (0) = (V (0)

1 , V
(0)
2 , . . . , V (0)

n) ∈ {0, 1}n. It is also

214 D. Xiao et al. / BioSystems 84 (2006) 207–216

available for the general case Fk(V (0)) = β with β ∈ {0, 1}n after some minor modifications. Let

Tinput = {Si, i = 1, . . . , n} = {E1AiD0D1BiC0C1V
(0)
i E0, i = 1, . . . , n}

and

Tinput∗ = {D1#, E1AiD0D1BiC0C1V
(0)
i E0D1#, i = 1, . . . , n}.

For k ∈ N let V (k) = Fk(V (0)) := (V (k)
1 , V

(k)
2 , . . . , V (k)

n), the kth iteration of F on V (0). The test tubes Thitter and Ttarget
are used to store the first and second bits of a binary number, respectively.

For k = 1 to k = 2n − 1

Step 1: Evaluate V (k) = F (V (k−1)) = Fk(V (0)). Note that V (k) = F (V (k−1)) = F1 ◦ F2(V (k−1)). F2 is evaluated by
the first sub-steps [1-1]–[1-9]. F1 is then evaluated by performing the operation of CycleShift in the sub-step [1-11].

[1-1] Separation(Tinput, {B1}, Thitter)

=⇒ Tinput = {E1AiD0D1BiC0C1V
(k−1)
i E0|2 ≤ i ≤ n}.

[1-2] Separation(Tinput, {B2}, Ttarget)

=⇒ Tinput = {E1AiD0D1BiC0C1V
(k−1)
i E0|3 ≤ i ≤ n}.

[1-3] Copy(Thitter, Ttmp)
[1-4] Merge(Tinput, Ttmp)

=⇒ Tinput = {E1AiD0D1BiC0C1V
(k−1)
i E0|i
= 2, 1 ≤ i ≤ n}.

[1-5] Copy(Ttarget, Ttmp)
[1-6] Merge(Thitter, Ttmp)

=⇒ Thitter = {E1AiD0D1BiC0C1V
(k−1)
i E0|i = 1, 2}.

[1-7] Separation(Thitter, C11E0, Ttmp)
[1-8] if Detect(Thitter) is “no”, then ValueAssignment0(Ttarget, T1); else if Detect(Ttmp) is “no”, then

ValueAssignment0(Ttarget, T1) else ValueAssignment1(Ttarget, T1)

=⇒ T1 = {E1A2D0D1B2C0C1γ(V (k−1)
1 , V

(k−1)
2)E0}.

[1-9] Merge(Tinput, T1)

=⇒ Tinput = {E1A2D0D1B2C0C1γ(V (k−1)
1 , V

(k−1)
2)E0, E1AiD0D1BiC0C1V

(k−1)
i E0, i
= 2, 1 ≤ i ≤ n}.

[1-10] Discard(Thitter), (Ttarget) and (Ttmp)
[1-11] CycleShift(Tinput, Toutput)

=⇒ Toutput = {E1A1D0D1B1C0C1γ(V (k−1)
1 , V

(k−1)
2)E0,

E1AnD0D1BnC0C1V
(k−1)
1 E0, E1Ai−1D0D1Bi−1C0C1V

(k−1)
i E0, 3 ≤ i ≤ n}.

[1-12] Discard(Tinput)
[1-13] Merge(Tinput, Toutput)

=⇒ Tinput = {E1A1D0D1B1C0C1γ(V (k−1)
1 , V

(k−1)
2)E0,

E1AnD0D1BnC0C1V
(k−1)
1 E0, E1Ai−1D0D1Bi−1C0C1V

(k−1)
i E0, 3 ≤ i ≤ n} :=

{E1AiD0D1BiC0C1V
(k)
i E0, 1 ≤ i ≤ n} = V (k) = Fk(V (0)).

Step 2: Check whether or not V (k) = Fk(V (0)) = (1, 1, . . . , 1).

[2-1] Separation(Tinput, {C11E0}, Ttmp)

=⇒ Tinput = {E1AiD0D1BiC0C1V
(k)
i E0|V (k)

i = 0, 1 ≤ i ≤ n}.
[2-2] if Detect(Tinput) is “no”, then end the procedure; else continue the following operations.
[2-3] Merge(Tinput, Ttmp)

=⇒ Tinput = {E1AiD0D1BiC0C1V
(k)
i E0|1 ≤ i ≤ n}.

D. Xiao et al. / BioSystems 84 (2006) 207–216 215

Step 3: Check whether or not V (k) = Fk(V (0)) = V (0). If so, then V (0) is a periodic point of F and so there does not
exist any k ∈ N such that Fk(V (0)) = (1, 1, . . . , 1).

[3-1] Copy(Tinput, Tsk)

=⇒ Tsk = {E1AiD0D1BiC0C1V
(k)
i E0|1 ≤ i ≤ n}

[3-2] Copy(Tinput∗, Ttmp)

=⇒ Ttmp = {D1#, E1AiD0D1BiC0C1V
(0)
i E0D1#|i = 1, . . . , n}.

[3-3] Merge(Tsk, Ttmp)

=⇒ Tsk = {D1#, E1AiD0D1BiC0C1V
(k)
i E0, E1AiD0D1BiC0C1V

(0)
i E0D1#, i = 1, . . . , n}.

[3-4] Annealing(Tsk)

=⇒ Tsk =
{[

E1AiD0D1BiC0C1V
(k)
i E0D1#

E1AiD0D1BiC0C1V
(0)
i E0D1#

]∣∣∣∣∣ V
(0)
i = V

(k)
i , 1 ≤ i ≤ n

}

⋃ {[
D1#

E1AiD0D1BiC0C1V
(0)
i E0D1#

]∣∣∣∣∣ V
(0)
i
= V

(k)
i , 1 ≤ i ≤ n

}
⋃{E1AiD0D1BiC0C1V

(k)
i E0|V (0)

i
= V
(k)
i , 1 ≤ i ≤ n}.

[3-5] Denaturation(Tsk)
[3-6] Separation(Tsk, {#̄}, Tinput∗)

=⇒ Tsk = {E1AiD0D1BiC0C1V
(k)
i E0D1#|V (0)

i = V
(k)
i , 1 ≤ i ≤ n}

∪ {D1#, E1AiD0D1BiC0C1V
(k)
i E0|V (0)

i
= V
(k)
i , 1 ≤ i ≤ n}.

[3-7] Separation(Tsk, {#}, Ttmp)

=⇒ Tsk = {E1AiD0D1BiC0C1V
(k)
i E0|V (0)

i
= V
(k)
i , 1 ≤ i ≤ n}.

[3-8] if Detect(Tsk) is “no”, then end the procedure (V (0) is a periodic point of F and there doesn’t exist any k ∈ N
such that Fk(V (0)) = (1, 1, . . . , 1)), else

[3-9] Discard(Tsk) and (Ttmp)
End For

4. Conclusions

In 1994, Adleman (1994) published a pioneering work to show that DNA can be used to perform mathematical
problems. Since then, lots of papers on DNA computing have been published. They are mainly involved in NP problems
(e.g. Adleman, 1994; Lipton, 1995; Ouyang et al., 1997) and primitive operations, such as logic or arithmetic operations
(e.g. Frisco, 2002; Fujiwara et al., 2004; Guarnieri et al., 1996; Gupta et al., 1997; Hug and Schuler, 2001; Qiu and Lu,
1998). The key to solve a mathematical problem using DNA molecules is to design appropriate DNA representations
according to the problem itself. Fujiwara et al. (2004) designed a canonical DNA representation of a binary number
(or an element in {0, 1}n). Based on this representation they proposed procedures for logic and arithmetic operations
by means of the basic DNA operations listed in Section 1. In this paper, we improve the DNA representation given
by Fujiwara et al. (2004) for a binary number so that it is more able to deal with some mathematical problems.
All implementations described in (Fujiwara et al., 2004) remain effective with this improved DNA representation.
Moreover, this DNA representation can be used to make a procedure which can perform cycling shifts of elements
in {0, 1}n in O(1) biological steps, so that one can study the dynamic behavior of some operators on {0, 1}n using
DNA molecules. Once again it represents an evidence for the ability of DNA-based computing to solve mathematical
problems. All our results in this paper are based on a theoretical model and the proposed procedures can be implemented
practically since every DNA manipulation used in this model has been already realized in a lab.

As we know, there are still some problems currently for DNA computing experiments. One is the time involved
in extracting and recombining DNA. While DNA processes within the test-tube can take place millions of times per
second, extraction processes, whereby individual strands of DNA are manually isolated and spliced, can take several
hours and even days, just for the simplest problems. This has led several researchers (e.g. Amos et al., 1997) to conclude
that the complexity aspects of DNA algorithms will limit their applicability. The other is the error rate in the biological

216 D. Xiao et al. / BioSystems 84 (2006) 207–216

manipulations (e.g. Li et al., 2003). However, we believe that these problems will be overcome as biological technique
will be continually developed in the future.

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments and suggestions that lead to
the improvement of the manuscript. This project is supported by Bio-X DNA Computer Consortium No. 03DZ14025.
The second author is also supported by the National Science Foundation of China #10371043 and Shanghai Priority
Academic Discipline.

References

Adleman, L.M., 1994. Molecular computation of solution to combinatorial problems. Science 266, 1021–1024.
Amos, M., Gibbons, A., Dunne, P.E., 1997. The complexity and viability of DNA computations. In: Lundh, D., Olsson, B., Narayanan, A. (Eds.),

Biocomputing and Emergent Computation. World Scientific Press, pp. 165–173.
Frisco, P., 2002. Parallel arithmetic with splicing. Romanian J. Inform. Sci. Technol. 2, 113–128.
Fujiwara, A., Matsumoto, K., Chen, W., 2004. Procedures for logic and arithmetic operations with DNA molecules. Int. J. Found. Comput. Sci. 15,

461–474.
Guarnieri, F., Fliss, M., Bancroft, C., 1996. Making DNA add. Science 273, 220–223.
Gupta, V., Parthasarathy, S., Zaki, M.J., 1997. Arithmetic and logic operations with DNA. In: Proceedings of the Third DIMACS Workshop on DNA

Based Computers, pp. 212–220.
Hug, H., Schuler, R., 2001. DNA-based parallel computation of simple arithmetic. In: Proceedings of the Seventh International Meeting on DNA

Based Computers, pp. 159–166.
Li, D., Huang, H., Li, X., Li, X., 2003. Hairpin formation in DNA computation presents limits for large NP-complete problems. BioSyatems 72,

203–207.
Lipton, R.J., 1995. DNA solution of HARD computational problems. Science 268, 542–545.
Ouyang, Q., Kaplan, Peter, D., Liu, S., Libchaber, A., 1997. DNA solution of the maximal clique problem. Science 278, 446–449.
Pǎun, G., Rozeberg, G., Salomaa, A., 1998. DNA Computing. Springer-Verlag.
Qiu, Z.F., Lu, M., 1998. Arithmetic and logic operations for DNA computers. In: Proceedings of the Second IASTED International Conference on

Parallel and Distributed Computing and Networks, pp. 481–486.

	Procedures for a dynamical system on 0, 1n with DNA molecules
	Introduction
	Bit representation and cycling transformation
	Procedure for F with DNA molecules
	Conclusions
	Acknowledgements
	References

