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Abstract

For self-similar set F' we prove that dimyg F' = dimpg F' = dimp F using different
method from Fa[4] and give implicitly the dimension value even if the open set
condition isn’t satisfied.

1 Introduction

Let ¢; be similar contraction mappings in R? with ratios ¢; ,1 <14 < n.Hul[5] proved that
there exists unique compact set ' C R? such that

F=JodF). (1)
Further dimpgF' = dimgF = dimpF = s and F' is an s-set where s is such that

¢ =1 (2)
1

n
1=

if ¢;’s satisfy the open set condition, i.e., there is a bounded nonempty open set O such
that

U¢i(0)co (3)
i=1
with the left hand is disjoint union. Recently Sh[10] proved that F' is an s-set here

*,c; =11if and only if ¢;’s satisfy the open condition.
Now for € > 0 write

Qe) = {o € 5" | c; < €and c,(o|-1) > €},

where S* = U2,{1,2,---,n}" and ¢, = Co(1)Co2) - - - Co) for o = (0(1),0(2),---,0(k)) €
S*. And for o € S*, |o| denotes the length of o and olk = (o(1),---,0(k)) for k < |o|.
Let A € R? be a bounded open set with A D F.It is easy to see that cye < ¢, < € for
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any o € Q(e) where ¢y = min;<;<,¢;. We introduce nonnegative real numbers og(A) and
Bo(A) as follows

e My (Useq(e) 90(A))

CYO(A) = Sup{@ | lim,_, s(1—a) = OO}, (4>
ZO’EQ(E) Co
T E_dm (Ua € qu'(A))
Bo(A) = sup{8 | Tim, g e ere0 078 oy (5)
oeQ(e) Co

where ¢o = @1y © Po(2) © -+ © Goiy for o = (0(1),0(2),---,0(k)) € S* and mq(B) is the
Lebesque measure of B C R
In this paper we prove

(i) ap(A) and [y(A) are independent of the choice of A and ay(A) = [y(A).We denote

the common value by «p;

(ii) dimpyF = dimgF = dimpF = «ps; (For self-similar set F' Fal4] has proved that its
Hausdorff dimension,Box dimension and Packing dimension are equal)

e mg (| b (A))

T€Q(e) .
ey < O0;
ZUGQ(E) Co

eidmd(UGEQ(g) Po (A))
s(l—aq)
ZUEQ(E) Co 0

(v) We generalize this dimension results into the cases of MW-construction (Ma & Wi[9])
and recurrent sets (De[2],Be[1] and Wen][11]).

(iii) H**(F) < oo iff lim,_,,

(iv) If H**(F) > 0 then lim,_,q > 0;

2 Demensions of self-similar set
It is easy to get the following

Proposition 2.1
€ mq(Useae) ¢+(A))

ag(A) = inf{a | lim,_,, ORics oy,
EO’EQ(C) Ccr(l )
: e mg(Uy e o (A
Bo(A) = inf {3 | Tim, o Uoen >1_m< ) _ g

oeQ(e) Ci'(
Proposition 2.2 0 < op(A4) < 1;0 < Gy(A) < 1.

Proof Note that 3 ,cqe ¢; = 1. Taking a = 0 then

—d A
e mg(Useqe) zb(,( ) = lim,_oe "ma( |J ¢o(4)) >c
Zaeﬂ(e) cs oe(e)

lim,_,,



for some positive constant ¢. Thus ag(A) > 0. On the other hand, taking o = 1, we have

e 'ma(Ugea(e) 90 (A4)) <.
CardQ(e) -

lim,

for some constant ¢. Thus ag(A) < 1.
0 < Bo(A) <1 can be proved by the same method. QED

Theorem 2.3

(i) ao(A) and Bo(A) are independent of the choice of A and ay(A) = Bo(A),denoting the
common value by ov;

(i) dimy F' = dimgF = dimpF = os;
g, o) ¢0(4)
ZUEQ(E) et

e 'ma(lU, cq) 90 (A)

e—0 s(1—aq)
EJ€Q<€) Co

(iii) Ho*(F) < oo iff lim,

< 00;

> 0.

() If H**(F) > 0 then lim,

Proof (i) For B C R% and € > 0 let
B¢ = {x € R%: there exists y € B such that p(x,y) < ¢}

where p(z,y) is the Euclidean distance between = and y . Since A is a bounded open
set containing set F, there are positive number §; and &, such that F&' Cc A C F%
which means ag(F) < ap(A4) < ao(F%) and By(F) < Bo(A) < Bo(F°2). Thus it
suffices to prove ag(F°) and [By(F?°) are independent of the choice of positive number §
and ag(F°) = By(F°), which follows from the proof of (ii).

(ii) Fixing x € F' and denoting the diameter of A by |A| we choose subfamily Q*(e)
from Q(e) such that

(for any different o, 7 € Q*(¢), p(do(x), p-(x)) > 4| Ale;

(2) if 0 € Q(e) \ Q*(€) there exiets 7 € Q*(¢) such that p(¢, (), o, (x)) < 4| Ale.

Let J(e) = Card2*(e). Thus

U B(#s(2),5l4l) > U B(do(2),1Al) > U ¢.(4)

oeN*(e) o€Q(e) o€Q(e)
where B(z,r) denotes a ball in R? with center at x and radiu . Thus

J(€)maB(do(2),5/Ale) =ma [ ¢q(A).

o€Q(e)

Therefore for any nonnegative real number «

ws - AT ma(Useqe) ¢ (A))
> s(1—a) ’ (6>

2069(6) Co

J(€)e



where ¢ is a positive constant. First we prove dimgy F' > o(A)s. It is clear when op(A) =
0. Suppose ap(A) > 0 and take 0 < o < p(A). Thus by the definition of ap(A) and (6)
we can take €; > 0 such that

J(€1)er® > 2¢y . (7)

Considering any finite open cye;|Al-covering {V;} of ', we have
(a) if there exists some V; such that |V;| > (coer)’|A| then

Z VA > (coer) ™| A (8)

(b) otherwise for each o € Q*(e1) let V, = {Vi : V;N B(¢,(x),€1|A|) # 0}. Then V, is
a covering of ¢,(F) and any different 0,7 € Q*(e1), V, NV, = 0. Take \; € Q*(e;1) such

that
Yo Vi™ = mingeqre) > IVi™

VieVs, ViV,

Therefore by (7) we have

ST > Je) XV 2 2 Y v

VZ‘€V>\1 V'€V>\1
= 2(%06161 ) Z ’¢>\ V|as > 2 Z |¢/\ V‘as- (9)
VEV)\I VEV)\l

Since V), is a covering of ¢y, (F), ¢5' Vi, = {¢5 (Vi) : Vi € V), } is a finite open
co€1|Al-covering of F'. As above we have

(a’) if there exists ¢3! (Vi) € ¢3Vy, such that ¢} (V;)] > (coe1)?|A| then (8) holds
by (9);

(b’) othewise denote gb;llVAl by {U;}. Repeating the above step for the covering {U;}
of F' and noticing that Card{V;} is finite, thus (8) holds after finite steps. Consequently
dimy F' > as which means dimyg F' > ag(A)s.

Now taking §; > 0 we prove that dimgF < dimgF < ap(F?')s. Letting a > ao(F°)
there exists sequence ¢, \, 0 such that

Er_Ldmd(UUEQ(en) ¢0<F51))
EUEQ(Gn) Cf'(lia)

<1

Thus
U ¢J(F51 Z s(l ) < COEn)_Say

ceQ(en) UEQ(En)
(coen)™* > cima( | 6o(F™)) > cma(Fo),
UGQ(EH)
log (ma(F"5)c)
log(co€n)
loglefma(F75)] _—  logfm(F)]
log(co€n) - 0 log(coedy)

which implies dimz F' < sa by the Proposition 3.2 of Fa[3]. Therefore dimgF < s (F°!).

d—sa <

d — sa < lim,_



Repeating the above procedure of proof with (§y(A) instead of ay(A) we can attain
dimy F > Bo(A)s and dimy F < dimgF < (y(F°)s for any given §; > 0. As a result,we
get dimy F' = dimp F = dimp F = ao(F%)s = [y(F°)s for any given §; > 0 which
indicates ag(F°') and By(F°') are independent of the choice of §, > 0 and ag(F%) =
Bo(F). Furthermore ag(A) = By(A) and they are independent of the choice of open set
A by (i).

(iii) Now we prove H**(F') < oo iff lim,_,q
g (o) @0 (A))

ZG‘GQ(G) Ci(liaO)

holds with «a instead of a. For any k € N and for any finite open (coe;)*|A|-covering
{Vi} of F, repeating k — 1 time steps of proof of the above we can get

SV 2 2 Y
i J

E_dmd(UaeQ(e) ¢U(A))
Z s(1—aq)
ceQ(e) Co

= 00. Then we can take €; > 0 such that (7)

Suppose that lim :

where {U;} is a finite open cye;|A|-covering of F. According to the same mahtod of (ii)
after finite steps, saying [ steps, we get

ST > 2 (coer) X0 AI70, DT V500 > 25 (e ) 200%| A7,

J J

which means H**(F') = oo if letting & tends to oo.
Suppose H**(F) = co. Thus for any M > 0 there exists € such that for any ep-
covering {V;} of F’
SO |Vi* > M.

On the other hand, for any € > 0
J(e)(eél)d < const.mg(Useca(e)@o(A)),
since Uyen«(o) B(@s(2), c0€01) C Uyen(e) ¢o(A) where 6y is such that F** C A. Thus

e ‘my(Usea(o ¢o(4))
s(1—aop) ’

> oeq(e) Co

J(€)e*** < const.

Now taking e such that 10¢|A| < ¢y and considering the covering { B(¢,(z),5|Ale), 0 €
2*(e)} of F which is a eyp-covering of F', we have

> (10]A]e)™* = const.J (€)e*** > M.

oc€Q*(e)
Therefore

e my(Useao ¢o(4))

s(1—ao)

ZO’EQ(E) Co
for e < (10| A|) "¢, which indicates
e~ 'my(Useq(e) 9o (4))

ZO‘EQ(G) Cff(liom)

> const. M,

lim,_.g = 00.



¢ ‘m o (A
(iv) Suppose lim, aU,eae) ¢ (4)

= 0. Then for any h > 0 there exist sequence

s(l aq)
ZaEQ(e
€, "\, 0 such that
ema( | @o(A) <h Y eiltmeo) < pogaose aos,
oeQen) o€Q(en)

We consider the covering { B(¢,(x), 5e,|A|), 0 € Q*(e,)} of F. Since

U B@s(@),c0end) C U o0(A)

c€Q* (en) c€Q(en)

where §; is such that F* C A, then

J(en)ma(B(¢s (), coendr)) <ma( |J ¢5(A (10)

O'EQ(En)
J(€,) < const.e,"ma( |J ¢,(4)) < const.he,**
UEQ(ETL)
Therefore we have
Z |B(¢,(x),56,|A)|*° = J(€,)(10]Ale,)*** < const.h,
o€Q*(€n)

E_dmd(Uaeg(e> b (A))

which indicates H**(F') = 0. As aresult we get H**(F") > 0 implies lim,_ > (a0
oceQe) 9

0. QED

>

E_dmd (UUEQ(G) ¢0 (A))
0 s(1—aq)
ZO‘EQ(E) Co

Corollary 2.4 If ¢;’s satisfy the open set condition then dimg F' = dimgF = dimpF = s.

Conjecture: If lim,__,

> 0 then H**(F) > 0.

Proof Let bounded nonempty open set O make ¢;’s satisfy the open set condition.
Taking A = O! thus

ma(Useao 6(0Y) _ " malUpenio 95(0)
Card€(e) - CardQ( )

const. > > const. > 0,

which means oy = 1. Therefore dimy F' = dimgF = dimpF = s by Theorem 2.3. QED

Remark 2.5 If the above Conjecture holds then it is easy to get

E_dmd(UUEQ( ) ¢0'( ))

(a) F is a aps-set iff 0 < lim,_, > si=a0
oceQ(e )

< 00;

eidmd(Ugeg(é) ¢o(A))

(b) ¢;’s satisfy the open set condition iff lim,_,, Card0(9 > 0;

€_dmd(Ug€Q(€> o (A))

(C) HS(F) = 0 iff himf—’o Card(e)

=0.




3 Generalization to MW-construction and general-
ized recurrent set
Let A,xpn = (ai),,, be an irreducible 0 — 1 matrix. {¢;; : a;; = 1} is a family of similar

maps in R? with the ratio ¢;; for ¢;;. Let s be such that the spectral radius of (aiics;)
is 1 where we take a;;cj; = 0 when a;; = 0.Write

nxn

Qu={oc€ H{1,2, ~oon} o= (0(1),0(2), ), aGow),00+1) = 1,1 € N},
1

Oy ={o€ U {1,2,--- ,n}i co=(o(1), -+, 0(k)), aGoyoary = 1,1 <1 <k =1}

i=2
There exist ungiue compact sets Fi, Fy, - - -, F,, which sometimes is called MW-construction
such that
F= J ¢5(F), 1<i<n. (11)
{j:a;;=1}

It is well-known that when {¢;; : a;; = 1} satisfy the open condition, i.e., there is
nonempty bounded open sets O, O, - - -, O, such that

0,02 U ¢;(0;), 1<i<n,

{j:aij=1}
with the right hand being disjoint union,we have
dimyF; = dimgF; = dimpF; =5, 1<1<n,

and F; are all s-set.
Furthermore in Li[6] we prove that

Proposition 3.1 {¢;; : a;; = 1} satisfies the open set condition iff F; is an s-set for
some 1 <1 < n where s is given above. QED

Now for 1 <7 <n let

e %mgq (Ugem(e) ¢0<A0(\0|)))

a; = sup{a : lim,_, 1o = oo}, (12)
ZO’EQi(E) CU( )
— 6_dmd(Ucr Qi(e ¢0(AU o ))
B; = sup{f : lim._ SLO D) (b)) _ oo},

Zaeﬂi(e) Co
where A; D F; are bounded open sets; |o| denotes the lengh of o; Q;(e) = {0 € Q% : 0(1) =
i, ¢¢ < € and Co|(o]-1) > €}; Co = Co(1)o()Co(2)0(3) " Collol-1) (o))} Go = Po(1),0(2) ©
Go(2),0(3) © " © Do(lo|—1),0(lo])- Write co = ming,;—1C;;.

In usual, we always take some bounded open set A with A D (J; F; instead of A;’s in
(12). Similarly it is easy to get



Proposition 3.2 (1) 0 < o; < 3 <1 for 1 <i <mn; (2) When {¢;; : a;j = 1} satisfies
the open set condition ,we have a; = 3; =1 for all1 <i:<n. QED

Similar to Theorem 2.3 we have

Theorem 3.3 (I) All «; and (; are equal, denoting by oy the common value. And
dimg F; = dimgF; = dimpF; = aps for 1 <i < n.

€ Im bo Ao— o
(IT) H*(F;) < oo for some 1 < i <n iff lim,_, d(UUE(Zi(é)S(l,(aO)(‘ )
ZD‘EQ'(E) Co

e ma(, cq, 0 o (Ao(0))

s(l1—aq)
ZoGQi(e) Co

< 00 for some

1 <i<n. Andif H**(F;) > 0 for some 1 < i <n then lim,_,,
forall1 <i<n.

>0

Proof (I)Without loss of generality we suppose that a1 = miny<;<, ;, 61 = minj<i<, i, Bn =

maxj<i<n Bi.

Fix some j, 1 < j < n. First step we prove dimyF; > ays. Taking x; € F; and
writing 0 = max;|F;|. We choose the subfamily Q7 (e) from Q;(€) such that

(1) for any o, 7 € Qi (e) and 0 # T

p(qbo(xo'ﬂo\)), ¢7—<1‘7(|7—D)) > 456,
(2) if o € Qi(e) \ Q2 (€) there exists 7 € f(e) such that

P(Po(To(a))), Or(T(r)))) < 4de.
Let J;(e) = Card2f(e). Thus

U B(¢a($a<\a\>)v55€)2 U B(¢o(To(iop)), 06) 2 |J  do(Aa(op)-
S

g€ (e) 0€Q;(e)

Therefore we have

Ji(€)maB(¢s(To(o))), 50€) > ma( |  @o(Ao(o)));

O'EQ»;(

6_drnol(uaeQ (¢e) Qba(

Ji(€)e*® > ‘UD)( > =) 5 4const. e

-
ZO’EQi(G) Cf’( ® o€Q;(e)
Now let (my, - - -, m,) be the strictly positive right eigenvector responding to the eigen-
value 1. Then
ma mq
(ij 5 )n xn -
mpy My
Therefore
minm,; . {maxml}
c <
[maxml] Z 7 = [ minm;



In addition
1 S <€C;1>as S Caas‘

Therefore d
e mg(Uyeq, () o (A(io))

degi(e) Ci(l—a)

Ji(€)e*® > 6 const. (13)

If aqy =0, it is trival. We assume a; > 0 and take 0 < o < «y. Thus we have
lim,_oJ;(€)e* = oo,

by (13) for 1 < ¢ < n. Take ¢ > 0 such that J;(€)ef*cq® > 2 for all 1 < ¢ < n.
Considering the arbitrary finite open cyei0-covering {V;} of F}, thus
(a) if there exists some V; with |V;| > (coe;)?6 then

Z |‘/i|as 2 (CO€1>2as(5as; (14)
(b) otherwise we have
Z |‘/;|ocs — Etl)zs Z |€1—1‘/;|045'

For each o € (e1), let V, = {V; : ViN B(¢o(To(0))); €10) # (}. Thus V, is a covering
of ¢ (Fy(o)y) and for any o,7 € Qi(e1), 0 # 7, we have V, NV, = (. Take \; € (1)

such that
Vi|** = min V|,

I = min 35 W

Therefore
SVIY = Jle) D Vi* > J(e)er D el Vil* > 2¢5* > e Vil
i VieVy, ViE€Vy, =
— 2(CA1061€I1)05 Z |¢;11‘/i|0£8 Z 2 Z |¢;11‘/;’a3' (15>
Viev}‘l Vz‘€V>\1

Since Vy, is a covering of ¢x, (Fx, (x)), gb;llVAl is a finite open cpe d-covering of Fy (a,))-
Denoting ¢V, by {u;} as above we have

(a’) if there exists u; € ¢3'Vy, such that |u;| > (coe1)?d then (14) holds by (15).

(b’) otherwise repeating the above step and considering Card{V;} finite, thus (14)
holds after finite steps. Therefore dimyF; > as for any 0 < a < «; which means
dimpyF; > as.

Similar to the proof of Theorem 2.3 we also get ;s < dimyF; < dimgF; < o35 and
frs < dimy F; < dimpF; < fis and dimpF; = (,s. Thus we complete the proof. In
addition it is easy to find that all o;’s and 3;’s are equal and independent of the choice of
Ai7 S.

(II) Finally using the same method as those in proof of Theorem 2.3 (III) and (IV)
we can complete the proof of (II). QED



Corollary 3.4 When {¢;; : a;; = 1} satisfies the open set condition, we have for every
0 <1< n,dmyl; =dimgF; =dimpF; =s. QED

Conjecture: if

e’dmd(UgeQ (e) ¢o(A IJI)))
22e—0 <8
ZUEQ‘( ) ca(l :

for some 1 < i <n, then H**(F;) > 0 for all 1 <i <mn.
Remark 3.5 (1) Since the recurrent set (Dekking [2]) and the generalized recurrent set
(Li [8]) are all the special cases of MW-construction (Bedford [1] & Li [7]) the Theorem 3.3
also works there. Thus our Theomem 3.3 actually improves the main results of [11] [12]
which discussed the lower bound of Hausdorff dimension of recurrent sets and self-similar
sets.

(2) If the above conjecture is ture, it is easy to get

(a) F; is an as-set for some 1 < i < n iff for some 1 <i<n

lim >0

E_dmd( Useai( ¢a( a(lo]) ))

s(1—a) ’

O < h7m6—>0
ZO’EQ (e) Co

(b) F;’s satisfy the open set condition iff for some 1 < i <n

E_dmd( UeQ 9250( \U\)))

e Carsz( ) > 0.

lim
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