The Dimensions Of Self-Similar Sets *

Wenxia Li, Dongmei Xiao

Dept. of Math., University of California at Berkeley, CA 94720, USA.

Abstract

For self-similar set F we prove that $\dim_H F = \dim_B F = \dim_P F$ using different method from Fa[4] and give implicitly the dimension value even if the open set condition isn't satisfied.

1 Introduction

Let ϕ_i be similar contraction mappings in \mathbf{R}^d with ratios c_i , $1 \leq i \leq n$.Hu[5] proved that there exists unique compact set $F \subset \mathbf{R}^d$ such that

$$F = \bigcup_{i=1}^{n} \phi_i(F). \tag{1}$$

Further $\dim_H F = \dim_B F = \dim_P F = s$ and F is an s-set where s is such that

$$\sum_{i=1}^{n} c_i^s = 1,$$
(2)

if ϕ_i 's satisfy the open set condition, i.e., there is a bounded nonempty open set O such that

$$\bigcup_{i=1}^{n} \phi_i(O) \subset O \tag{3}$$

with the left hand is disjoint union. Recently Sh[10] proved that F is an s-set here $\sum_{i=1}^{n} c_i^s = 1$ if and only if ϕ_i 's satisfy the open condition.

Now for $\epsilon > 0$ write

$$\Omega(\epsilon) = \{ \sigma \in S^* \mid c_{\sigma} \le \epsilon \text{ and } c_{\sigma|(|\sigma|-1)} > \epsilon \},\$$

where $S^* = \bigcup_{i=1}^{\infty} \{1, 2, \dots, n\}^i$ and $c_{\sigma} = c_{\sigma(1)}c_{\sigma(2)}\cdots c_{\sigma(k)}$ for $\sigma = (\sigma(1), \sigma(2), \dots, \sigma(k)) \in S^*$. And for $\sigma \in S^*$, $|\sigma|$ denotes the length of σ and $\sigma|k = (\sigma(1), \dots, \sigma(k))$ for $k \leq |\sigma|$. Let $A \subset \mathbf{R}^d$ be a bounded open set with $A \supset F$. It is easy to see that $c_0 \epsilon < c_{\sigma} \leq \epsilon$ for

^{*}Partially supported by a grant from the National Science Foundation of China. AMS Subject Classifications: 28A80

any $\sigma \in \Omega(\epsilon)$ where $c_0 = \min_{1 \le i \le n} c_i$. We introduce nonnegative real numbers $\alpha_0(A)$ and $\beta_0(A)$ as follows

$$\alpha_0(A) = \sup\{\alpha \mid \underline{\lim}_{\epsilon \to 0} \frac{\epsilon^{-d} \mathrm{m}_\mathrm{d}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_\sigma(A))}{\sum_{\sigma \in \Omega(\epsilon)} c_\sigma^{s(1-\alpha)}} = \infty\},\tag{4}$$

$$\beta_0(A) = \sup\{\beta \mid \overline{\lim}_{\epsilon \to 0} \frac{\epsilon^{-d} \mathrm{m}_\mathrm{d}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_\sigma(A))}{\sum_{\sigma \in \Omega(\epsilon)} c_\sigma^{s(1-\beta)}} = \infty\},\tag{5}$$

where $\phi_{\sigma} = \phi_{\sigma(1)} \circ \phi_{\sigma(2)} \circ \cdots \circ \phi_{\sigma(k)}$ for $\sigma = (\sigma(1), \sigma(2), \cdots, \sigma(k)) \in S^*$ and $m_d(B)$ is the Lebesque measure of $B \subset \mathbf{R}^d$.

In this paper we prove

- (i) $\alpha_0(A)$ and $\beta_0(A)$ are independent of the choice of A and $\alpha_0(A) = \beta_0(A)$. We denote the common value by α_0 ;
- (ii) $\dim_H F = \dim_B F = \dim_P F = \alpha_0 s$; (For self-similar set F Fa[4] has proved that its Hausdorff dimension, Box dimension and Packing dimension are equal)

(iii)
$$\mathcal{H}^{\alpha_0 s}(F) < \infty$$
 iff $\underline{\lim}_{\epsilon \to 0} \frac{\epsilon^{-d} \mathbf{m}_{\mathbf{d}}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(A))}{\sum_{\sigma \in \Omega(\epsilon)} c_{\sigma}^{s(1-\alpha_0)}} < \infty;$

(iv) If
$$\mathcal{H}^{\alpha_0 s}(F) > 0$$
 then $\underline{\lim}_{\epsilon \to 0} \frac{\epsilon^{-d} \mathrm{m}_{\mathrm{d}}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(A))}{\sum_{\sigma \in \Omega(\epsilon)} c_{\sigma}^{s(1-\alpha_0)}} > 0;$

(v) We generalize this dimension results into the cases of MW-construction (Ma & Wi[9]) and recurrent sets (De[2],Be[1] and Wen[11]).

2 Demensions of self-similar set

It is easy to get the following

Proposition 2.1

$$\alpha_{0}(A) = \inf\{\alpha \mid \underline{\lim}_{\epsilon \to 0} \frac{\epsilon^{-d} \mathrm{m}_{\mathrm{d}}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(A))}{\sum_{\sigma \in \Omega(\epsilon)} c_{\sigma}^{s(1-\alpha)}} = 0\},\$$
$$\beta_{0}(A) = \inf\{\beta \mid \overline{\lim}_{\epsilon \to 0} \frac{\epsilon^{-d} \mathrm{m}_{\mathrm{d}}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(A))}{\sum_{\sigma \in \Omega(\epsilon)} c_{\sigma}^{s(1-\beta)}} = 0\}.$$

Proposition 2.2 $0 \le \alpha_0(A) \le 1; 0 \le \beta_0(A) \le 1.$

Proof Note that $\sum_{\sigma \in \Omega(\epsilon)} c_{\sigma}^s = 1$. Taking $\alpha = 0$ then

$$\underline{\lim}_{\epsilon \to 0} \frac{\epsilon^{-d} \mathbf{m}_{\mathrm{d}}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(A))}{\sum_{\sigma \in \Omega(\epsilon)} c_{\sigma}^{s}} = \underline{\lim}_{\epsilon \to 0} \epsilon^{-d} \mathbf{m}_{\mathrm{d}}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(A)) \ge c$$

for some positive constant c. Thus $\alpha_0(A) \ge 0$. On the other hand, taking $\alpha = 1$, we have

$$\underline{\lim}_{\epsilon \to 0} \frac{\epsilon^{-d} \mathbf{m}_{\mathbf{d}}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(A))}{\operatorname{Card}\Omega(\epsilon)} \le c$$

for some constant c. Thus $\alpha_0(A) \leq 1$.

 $0 \leq \beta_0(A) \leq 1$ can be proved by the same method. **QED**

Theorem 2.3

(i) $\alpha_0(A)$ and $\beta_0(A)$ are independent of the choice of A and $\alpha_0(A) = \beta_0(A)$, denoting the common value by α_0 ;

(*ii*) $\dim_H F = \dim_B F = \dim_P F = \alpha_0 s;$

(*iii*)
$$\mathcal{H}^{\alpha_0 s}(F) < \infty$$
 iff $\underline{\lim}_{\epsilon \to 0} \frac{\epsilon^{-d} \mathbf{m}_{\mathbf{d}}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(A))}{\sum_{\sigma \in \Omega(\epsilon)} c_{\sigma}^{s(1-\alpha_0)}} < \infty$,
(*iii*) If $\mathcal{H}^{\alpha_0 s}(F) > 0$ then $\lim_{\epsilon \to 0} \frac{\epsilon^{-d} \mathbf{m}_{\mathbf{d}}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(A))}{\epsilon^{-d} \mathbf{m}_{\mathbf{d}}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(A))} > 0$

(iv) If $\mathcal{H}^{\alpha_0 s}(F) > 0$ then $\underline{\lim}_{\epsilon \to 0} \frac{e^{-\alpha} \mathrm{m}_{\mathrm{d}}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(A))}{\sum_{\sigma \in \Omega(\epsilon)} c_{\sigma}^{s(1-\alpha_0)}} > 0.$

Proof (i) For $B \subset \mathbf{R}^d$ and $\epsilon > 0$ let

$$B^{\epsilon} = \{x \in \mathbf{R}^d : \text{there exists y} \in B \text{ such that } \rho(\mathbf{x}, \mathbf{y}) < \epsilon\}$$

where $\rho(x, y)$ is the Euclidean distance between x and y. Since A is a bounded open set containing set F, there are positive number δ_1 and δ_2 such that $F^{\delta_1} \subset A \subset F^{\delta_2}$ which means $\alpha_0(F^{\delta_1}) \leq \alpha_0(A) \leq \alpha_0(F^{\delta_2})$ and $\beta_0(F^{\delta_1}) \leq \beta_0(A) \leq \beta_0(F^{\delta_2})$. Thus it suffices to prove $\alpha_0(F^{\delta})$ and $\beta_0(F^{\delta})$ are independent of the choice of positive number δ and $\alpha_0(F^{\delta}) = \beta_0(F^{\delta})$, which follows from the proof of (ii).

(ii) Fixing $x \in F$ and denoting the diameter of A by |A| we choose subfamily $\Omega^*(\epsilon)$ from $\Omega(\epsilon)$ such that

(1) for any different $\sigma, \tau \in \Omega^*(\epsilon)$, $\rho(\phi_{\sigma}(x), \phi_{\tau}(x)) > 4|A|\epsilon$; (2) if $\sigma \in \Omega(\epsilon) \setminus \Omega^*(\epsilon)$ there exists $\tau \in \Omega^*(\epsilon)$ such that $\rho(\phi_{\sigma}(x), \phi_{\tau}(x)) \leq 4|A|\epsilon$. Let $J(\epsilon) = \operatorname{Card}\Omega^*(\epsilon)$. Thus

$$\bigcup_{\sigma \in \Omega^*(\epsilon)} B(\phi_{\sigma}(x), 5|A|\epsilon) \supset \bigcup_{\sigma \in \Omega(\epsilon)} B(\phi_{\sigma}(x), |A|\epsilon) \supset \bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(A)$$

where B(x,r) denotes a ball in \mathbf{R}^d with center at x and radiu r. Thus

$$J(\epsilon)\mathrm{m}_{\mathrm{d}}B(\phi_{\sigma}(x), 5|A|\epsilon) \geq \mathrm{m}_{\mathrm{d}}\bigcup_{\sigma\in\Omega(\epsilon)}\phi_{\sigma}(A).$$

Therefore for any nonnegative real number α

$$J(\epsilon)\epsilon^{\alpha s} \ge \frac{c|A|^{-d}\epsilon^{-d}\mathbf{m}_{\mathbf{d}}(\bigcup_{\sigma\in\Omega(\epsilon)}\phi_{\sigma}(A))}{\sum_{\sigma\in\Omega(\epsilon)}c_{\sigma}^{s(1-\alpha)}},\tag{6}$$

where c is a positive constant. First we prove $\dim_H F \ge \alpha_0(A)s$. It is clear when $\alpha_0(A) = 0$. Suppose $\alpha_0(A) > 0$ and take $0 < \alpha < \alpha_0(A)$. Thus by the definition of $\alpha_0(A)$ and (6) we can take $\epsilon_1 > 0$ such that

$$J(\epsilon_1)\epsilon_1^{\alpha s} \ge 2c_0^{-\alpha s}.\tag{7}$$

Considering any finite open $c_0\epsilon_1|A|$ -covering $\{V_i\}$ of F, we have (a) if there exists some V_i such that $|V_i| \ge (c_0\epsilon_1)^2|A|$ then

$$\sum_{i} |V_i|^{\alpha s} \ge (c_0 \epsilon_1)^{2\alpha s} |A|^{\alpha s}; \tag{8}$$

(b) otherwise for each $\sigma \in \Omega^*(\epsilon_1)$ let $\mathcal{V}_{\sigma} = \{V_i : V_i \cap B(\phi_{\sigma}(x), \epsilon_1|A|) \neq \emptyset\}$. Then \mathcal{V}_{σ} is a covering of $\phi_{\sigma}(F)$ and any different $\sigma, \tau \in \Omega^*(\epsilon_1), \mathcal{V}_{\sigma} \cap \mathcal{V}_{\tau} = \emptyset$. Take $\lambda_1 \in \Omega^*(\epsilon_1)$ such that

$$\sum_{V_i \in \mathcal{V}_{\lambda_1}} |V_i|^{\alpha s} = \min_{\sigma \in \Omega^*(\epsilon_1)} \sum_{V_i \in \mathcal{V}_{\sigma}} |V_i|^{\alpha s}.$$

Therefore by (7) we have

$$\sum_{i} |V_{i}|^{\alpha s} \geq J(\epsilon_{1}) \sum_{V_{i} \in \mathcal{V}_{\lambda_{1}}} |V_{i}|^{\alpha s} \geq 2c_{0}^{-\alpha s} \epsilon_{1}^{-\alpha s} \sum_{V_{i} \in \mathcal{V}_{\lambda_{1}}} |V_{i}|^{\alpha s}$$
$$= 2(c_{\lambda_{1}}c_{0}^{-1}\epsilon_{1}^{-1})^{\alpha s} \sum_{V_{i} \in \mathcal{V}_{\lambda_{1}}} |\phi_{\lambda_{1}}^{-1}V_{i}|^{\alpha s} \geq 2\sum_{V_{i} \in \mathcal{V}_{\lambda_{1}}} |\phi_{\lambda_{1}}^{-1}V_{i}|^{\alpha s}.$$
(9)

Since \mathcal{V}_{λ_1} is a covering of $\phi_{\lambda_1}(F)$, $\phi_{\lambda_1}^{-1}\mathcal{V}_{\lambda_1} = \{\phi_{\lambda_1}^{-1}(V_i) : V_i \in \mathcal{V}_{\lambda_1}\}$ is a finite open $c_0\epsilon_1|A|$ -covering of F. As above we have

(a') if there exists $\phi_{\lambda_1}^{-1}(V_i) \in \phi_{\lambda_1}^{-1}\mathcal{V}_{\lambda_1}$ such that $|\phi_{\lambda_1}^{-1}(V_i)| \ge (c_0\epsilon_1)^2|A|$ then (8) holds by (9);

(b') othewise denote $\phi_{\lambda_1}^{-1} \mathcal{V}_{\lambda_1}$ by $\{U_i\}$. Repeating the above step for the covering $\{U_i\}$ of F and noticing that $\operatorname{Card}\{V_i\}$ is finite, thus (8) holds after finite steps. Consequently $\dim_H F \geq \alpha s$ which means $\dim_H F \geq \alpha_0(A)s$.

Now taking $\delta_1 > 0$ we prove that $\dim_H F \leq \underline{\dim}_B F \leq \alpha_0(F^{\delta_1})s$. Letting $\alpha > \alpha_0(F^{\delta_1})$ there exists sequence $\epsilon_n \searrow 0$ such that

$$\frac{\epsilon_n^{-d} \mathbf{m}_{\mathbf{d}}(\bigcup_{\sigma \in \Omega(\epsilon_n)} \phi_{\sigma}(F^{\delta_1}))}{\sum_{\sigma \in \Omega(\epsilon_n)} c_{\sigma}^{s(1-\alpha)}} \le 1.$$

Thus

$$\begin{aligned} \epsilon_n^{-d} \mathbf{m}_{\mathbf{d}} (\bigcup_{\sigma \in \Omega(\epsilon_n)} \phi_{\sigma}(F^{\delta_1})) &\leq \sum_{\sigma \in \Omega(\epsilon_n)} c_{\sigma}^{s(1-\alpha)} \leq (c_0 \epsilon_n)^{-s\alpha}, \\ (c_0 \epsilon_n)^{d-s\alpha} &\geq c_0^d \mathbf{m}_{\mathbf{d}} (\bigcup_{\sigma \in \Omega(\epsilon_n)} \phi_{\sigma}(F^{\delta_1})) \geq c_0^d \mathbf{m}_{\mathbf{d}}(F^{c_0 \epsilon_n \delta_1}), \\ d-s\alpha &\leq \frac{\log(\mathbf{m}_{\mathbf{d}}(F^{c_0 \epsilon_n \delta_1})c_0^d)}{\log(c_0 \epsilon_n)}, \\ d-s\alpha &\leq \overline{\lim}_{n \to 0} \frac{\log[c_0^d \mathbf{m}_{\mathbf{d}}(F^{c_0 \epsilon_n \delta_1})]}{\log(c_0 \epsilon_n)} \leq \overline{\lim}_{\epsilon \to 0} \frac{\log[\mathbf{m}_{\mathbf{d}}(F^{c_0 \epsilon\delta_1})]}{\log(c_0 \epsilon_1)}, \end{aligned}$$

which implies $\underline{\dim}_B F \leq s\alpha$ by the Proposition 3.2 of Fa[3]. Therefore $\underline{\dim}_B F \leq s\alpha_0(F^{\delta_1})$.

Repeating the above procedure of proof with $\beta_0(A)$ instead of $\alpha_0(A)$ we can attain $\dim_H F \geq \beta_0(A)s$ and $\dim_H F \leq \overline{\dim}_B F \leq \beta_0(F^{\delta_1})s$ for any given $\delta_1 > 0$. As a result, we get $\dim_H F = \dim_P F = \dim_B F = \alpha_0(F^{\delta_1})s = \beta_0(F^{\delta_1})s$ for any given $\delta_1 > 0$ which indicates $\alpha_0(F^{\delta_1})$ and $\beta_0(F^{\delta_1})$ are independent of the choice of $\delta_1 > 0$ and $\alpha_0(F^{\delta_1}) =$ $\beta_0(F^{\delta_1})$. Furthermore $\alpha_0(A) = \beta_0(A)$ and they are independent of the choice of open set *A* by (i).

(iii) Now we prove $\mathcal{H}^{\alpha_0 s}(F) < \infty$ iff $\underline{\lim}_{\epsilon \to 0} \frac{\epsilon^{-d} \mathrm{m}_{\mathrm{d}}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(A))}{\sum_{\sigma \in \Omega(\epsilon)} c_{\sigma}^{s(1-\alpha_0)}} < \infty$. Suppose that $\underline{\lim}_{\epsilon \to 0} \frac{\epsilon^{-d} \mathrm{m}_{\mathrm{d}}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(A))}{\sum_{\sigma \in \Omega(\epsilon)} c_{\sigma}^{s(1-\alpha_0)}} = \infty$. Then we can take $\epsilon_1 > 0$ such that (7)

holds with α_0 instead of α . For any $k \in \mathbf{N}$ and for any finite open $(c_0 \epsilon_1)^k |A|$ -covering $\{V_i\}$ of F, repeating k-1 time steps of proof of the above we can get

$$\sum_{i} |V_i|^{\alpha_0 s} \ge 2^{k-1} \sum_{j} |U_j|^{\alpha_0 s},$$

where $\{U_i\}$ is a finite open $c_0\epsilon_1|A|$ -covering of F. According to the same mathematical (ii) after finite steps, saying l steps, we get

$$\sum_{j} |U_{j}|^{\alpha_{0}s} \ge 2^{l} (c_{0}\epsilon_{1})^{2\alpha_{0}s} |A|^{\alpha_{0}s}, \quad \sum_{j} |V_{j}|^{\alpha_{0}s} \ge 2^{l+k-1} (c_{0}\epsilon_{1})^{2\alpha_{0}s} |A|^{\alpha_{0}s},$$

which means $\mathcal{H}^{\alpha_0 s}(F) = \infty$ if letting k tends to ∞ .

Suppose $\mathcal{H}^{\alpha_0 s}(F) = \infty$. Thus for any M > 0 there exists ϵ_0 such that for any ϵ_0 covering $\{V_i\}$ of F

$$\sum_{i} |V_i|^{\alpha_0 s} > M.$$

On the other hand, for any $\epsilon > 0$

$$J(\epsilon)(\epsilon\delta_1)^d \le \text{const.m}_{\mathbf{d}}(\cup_{\sigma\in\Omega(\epsilon)}\phi_{\sigma}(A)),$$

since $\bigcup_{\sigma \in \Omega^*(\epsilon)} B(\phi_{\sigma}(x), c_0 \epsilon \delta_1) \subset \bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(A)$ where δ_1 is such that $F^{\delta_1} \subset A$. Thus

$$J(\epsilon)\epsilon^{\alpha_0 s} \leq \text{const.} \frac{\epsilon^{-d} \mathbf{m}_{\mathbf{d}}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(A))}{\sum_{\sigma \in \Omega(\epsilon)} c_{\sigma}^{s(1-\alpha_0)}}$$

Now taking ϵ such that $10\epsilon |A| < \epsilon_0$ and considering the covering $\{B(\phi_{\sigma}(x), 5|A|\epsilon), \sigma \in A\}$ $\Omega^*(\epsilon)$ of F which is a ϵ_0 -covering of F, we have

$$\sum_{\sigma \in \Omega^*(\epsilon)} (10|A|\epsilon)^{\alpha_0 s} = \text{const.} J(\epsilon) \epsilon^{\alpha_0 s} \ge M.$$

Therefore

$$\frac{\epsilon^{-d} \mathbf{m}_{\mathbf{d}}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(A))}{\sum_{\sigma \in \Omega(\epsilon)} c_{\sigma}^{s(1-\alpha_{0})}} \ge \text{const.} M,$$

for $\epsilon < (10|A|)^{-1} \epsilon_0$ which indicates

$$\lim_{\epsilon \to 0} \frac{\epsilon^{-d} \mathrm{m}_{\mathrm{d}}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(A))}{\sum_{\sigma \in \Omega(\epsilon)} c_{\sigma}^{s(1-\alpha_0)}} = \infty$$

(iv) Suppose $\underline{\lim}_{\epsilon \to 0} \frac{\epsilon^{-d} \mathbf{m}_{\mathbf{d}}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(A))}{\sum_{\sigma \in \Omega(\epsilon)} c_{\sigma}^{s(1-\alpha_0)}} = 0$. Then for any h > 0 there exist sequence $\epsilon_n \searrow 0$ such that

$$\epsilon_n^{-d} \mathbf{m}_{\mathbf{d}} (\bigcup_{\sigma \in \Omega(\epsilon_n)} \phi_{\sigma}(A)) < h \sum_{\sigma \in \Omega(\epsilon_n)} c_{\sigma}^{s(1-\alpha_0)} \le h c_0^{-\alpha_0 s} \epsilon_n^{-\alpha_0 s}.$$

We consider the covering $\{B(\phi_{\sigma}(x), 5\epsilon_n|A|), \sigma \in \Omega^*(\epsilon_n)\}$ of F. Since

$$\bigcup_{\sigma \in \Omega^*(\epsilon_n)} B(\phi_{\sigma}(x), c_0 \epsilon_n \delta_1) \subset \bigcup_{\sigma \in \Omega(\epsilon_n)} \phi_{\sigma}(A)$$

where δ_1 is such that $F^{\delta_1} \subset A$, then

$$J(\epsilon_n) \mathbf{m}_{\mathrm{d}}(B(\phi_{\sigma}(x), c_0 \epsilon_n \delta_1)) \le \mathbf{m}_{\mathrm{d}}(\bigcup_{\sigma \in \Omega(\epsilon_n)} \phi_{\sigma}(A)), \tag{10}$$

$$J(\epsilon_n) \leq \text{const.}\epsilon_n^{-d} \mathrm{m}_{\mathrm{d}}(\bigcup_{\sigma \in \Omega(\epsilon_n)} \phi_{\sigma}(A)) \leq \text{const.}h\epsilon_n^{-\alpha_0 s}$$

Therefore we have

$$\sum_{\sigma \in \Omega^*(\epsilon_n)} |B(\phi_{\sigma}(x), 5\epsilon_n |A|)|^{\alpha_0 s} = J(\epsilon_n) (10|A|\epsilon_n)^{\alpha_0 s} \le \text{const.}h,$$

which indicates $\mathcal{H}^{\alpha_0 s}(F) = 0$. As a result we get $\mathcal{H}^{\alpha_0 s}(F) > 0$ implies $\underline{\lim}_{\epsilon \to 0} \frac{\epsilon^{-d} \mathrm{m}_{\mathrm{d}}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(A))}{\sum_{\sigma \in \Omega(\epsilon)} c_{\sigma}^{s(1-\alpha_0)}} > 0$. **QED**

Conjecture: If
$$\underline{\lim}_{\epsilon \to 0} \frac{\epsilon^{-d} \mathrm{m}_{\mathrm{d}}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(A))}{\sum_{\sigma \in \Omega(\epsilon)} c_{\sigma}^{s(1-\alpha_0)}} > 0$$
 then $\mathcal{H}^{\alpha_0 s}(F) > 0$.

Corollary 2.4 If ϕ_i 's satisfy the open set condition then $\dim_H F = \dim_B F = \dim_P F = s$.

Proof Let bounded nonempty open set O make ϕ_i 's satisfy the open set condition. Taking $A = O^1$ thus

$$\operatorname{const.} \geq \frac{\epsilon^{-d} \operatorname{m_d}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(O^1))}{\operatorname{Card}\Omega(\epsilon)} \geq \frac{\epsilon^{-d} \operatorname{m_d}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(\overline{O}))}{\operatorname{Card}\Omega(\epsilon)} \geq \operatorname{const.} > 0$$

which means $\alpha_0 = 1$. Therefore $\dim_H F = \dim_B F = \dim_P F = s$ by Theorem 2.3. **QED**

Remark 2.5 If the above Conjecture holds then it is easy to get

(a)
$$F$$
 is a $\alpha_0 s$ -set iff $0 < \underline{\lim}_{\epsilon \to 0} \frac{\epsilon^{-d} \mathrm{m}_{\mathrm{d}}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(A))}{\sum_{\sigma \in \Omega(\epsilon)} c_{\sigma}^{s(1-\alpha_0)}} < \infty;$

(b) ϕ_i 's satisfy the open set condition iff $\underline{\lim}_{\epsilon \to 0} \frac{\epsilon^{-d} \mathrm{m}_{\mathrm{d}}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(A))}{\mathrm{Card}\Omega(\epsilon)} > 0;$

(c)
$$\mathcal{H}^{s}(F) = 0$$
 iff $\underline{\lim}_{\epsilon \to 0} \frac{e^{-d} \mathrm{m}_{\mathrm{d}}(\bigcup_{\sigma \in \Omega(\epsilon)} \phi_{\sigma}(A))}{\mathrm{Card}\Omega(\epsilon)} = 0.$

3 Generalization to MW-construction and generalized recurrent set

Let $A_{n \times n} = (a_{ij})_{n \times n}$ be an irreducible 0 - 1 matrix. $\{\phi_{ij} : a_{ij} = 1\}$ is a family of similar maps in \mathbf{R}^d with the ratio c_{ij} for ϕ_{ij} . Let s be such that the spectral radius of $(a_{ij}c_{ij}^s)_{n \times n}$ is 1 where we take $a_{ij}c_{ij}^s = 0$ when $a_{ij} = 0$. Write

$$\Omega_A = \{ \sigma \in \prod_{1}^{\infty} \{1, 2, \cdots, n\} : \sigma = (\sigma(1), \sigma(2), \cdots), a_{\sigma(l), \sigma(l+1)} = 1, l \in \mathbf{N} \},$$
$$\Omega_A^* = \{ \sigma \in \bigcup_{i=2}^{\infty} \{1, 2, \cdots, n\}^i : \sigma = (\sigma(1), \cdots, \sigma(k)), a_{\sigma(l), \sigma(l+1)} = 1, 1 \le l \le k-1 \}.$$

There exist unque compact sets F_1, F_2, \dots, F_n which sometimes is called MW-construction such that

$$F_i = \bigcup_{\{j:a_{ij}=1\}} \phi_{ij}(F_j), \quad 1 \le i \le n.$$

$$\tag{11}$$

It is well-known that when $\{\phi_{ij} : a_{ij} = 1\}$ satisfy the open condition, i.e., there is nonempty bounded open sets O_1, O_2, \dots, O_n such that

$$O_i \supset \bigcup_{\{j:a_{ij}=1\}} \phi_{ij}(O_j), \quad 1 \le i \le n,$$

with the right hand being disjoint union, we have

$$\dim_H F_i = \dim_B F_i = \dim_P F_i = s, \quad 1 \le i \le n,$$

and F_i are all s-set.

Furthermore in Li[6] we prove that

Proposition 3.1 $\{\phi_{ij} : a_{ij} = 1\}$ satisfies the open set condition iff F_i is an s-set for some $1 \le i \le n$ where s is given above. **QED**

Now for $1 \leq i \leq n$ let

$$\alpha_{i} = \sup\{\alpha : \underline{\lim}_{\epsilon \to 0} \frac{\epsilon^{-d} \mathrm{m}_{\mathrm{d}}(\bigcup_{\sigma \in \Omega_{i}(\epsilon)} \phi_{\sigma}(A_{\sigma(|\sigma|)}))}{\sum_{\sigma \in \Omega_{i}(\epsilon)} c_{\sigma}^{s(1-\alpha)}} = \infty\},\tag{12}$$

$$\beta_i = \sup\{\beta : \overline{\lim}_{\epsilon \to 0} \frac{\epsilon^{-d} \mathrm{m}_{\mathrm{d}}(\bigcup_{\sigma \in \Omega_i(\epsilon)} \phi_{\sigma}(A_{\sigma(|\sigma|)}))}{\sum_{\sigma \in \Omega_i(\epsilon)} c_{\sigma}^{s(1-\beta)}} = \infty\},\$$

where $A_i \supset F_i$ are bounded open sets; $|\sigma|$ denotes the length of σ ; $\Omega_i(\epsilon) = \{\sigma \in \Omega_A^* : \sigma(1) = i, c_\sigma \leq \epsilon \text{ and } c_{\sigma|(|\sigma|-1)} > \epsilon\}; c_\sigma = c_{\sigma(1),\sigma(2)}c_{\sigma(2),\sigma(3)} \cdots c_{\sigma(|\sigma|-1),\sigma(|\sigma|)}; \phi_\sigma = \phi_{\sigma(1),\sigma(2)} \circ \phi_{\sigma(2),\sigma(3)} \circ \cdots \circ \phi_{\sigma(|\sigma|-1),\sigma(|\sigma|)}.$ Write $c_0 = \min_{a_{ij}=1}c_{ij}$.

In usual, we always take some bounded open set A with $A \supset \bigcup_i F_i$ instead of A_i 's in (12). Similarly it is easy to get

Proposition 3.2 (1) $0 \le \alpha_i \le \beta_i \le 1$ for $1 \le i \le n$; (2) When $\{\phi_{ij} : a_{ij} = 1\}$ satisfies the open set condition, we have $\alpha_i = \beta_i = 1$ for all $1 \le i \le n$. **QED**

Similar to Theorem 2.3 we have

Theorem 3.3 (I) All α_i and β_i are equal, denoting by α_0 the common value. And

 $\dim_{H} F_{i} = \dim_{B} F_{i} = \dim_{P} F_{i} = \alpha_{0} s \text{ for } 1 \leq i \leq n.$ $(II) \mathcal{H}^{\alpha_{0}s}(F_{i}) < \infty \text{ for some } 1 \leq i \leq n \text{ iff } \underline{\lim}_{\epsilon \to 0} \frac{\epsilon^{-d} \mathrm{m}_{\mathrm{d}}(\bigcup_{\sigma \in \Omega_{i}(\epsilon)} \phi_{\sigma}(A_{\sigma(|\sigma|)}))}{\sum_{\sigma \in \Omega_{i}(\epsilon)} c_{\sigma}^{s(1-\alpha_{0})}} < \infty \text{ for some } 1 \leq i \leq n.$ $1 \leq i \leq n. \text{ And if } \mathcal{H}^{\alpha_{0}s}(F_{i}) > 0 \text{ for some } 1 \leq i \leq n \text{ then } \underline{\lim}_{\epsilon \to 0} \frac{\epsilon^{-d} \mathrm{m}_{\mathrm{d}}(\bigcup_{\sigma \in \Omega_{i}(\epsilon)} \phi_{\sigma}(A_{\sigma(|\sigma|)}))}{\sum_{\sigma \in \Omega_{i}(\epsilon)} c_{\sigma}^{s(1-\alpha_{0})}} > 0$ for all $1 \leq i \leq n$.

Proof (I) Without loss of generality we suppose that $\alpha_1 = \min_{1 \le i \le n} \alpha_i$, $\beta_1 = \min_{1 \le i \le n} \beta_i$, $\beta_n = \max_{1 \le i \le n$ $\max_{1 \le i \le n} \beta_i$.

Fix some j, $1 \leq j \leq n$. First step we prove $\dim_H F_i \geq \alpha_1 s$. Taking $x_i \in F_i$ and writing $\delta = \max_i |F_i|$. We choose the subfamily $\Omega_i^*(\epsilon)$ from $\Omega_i(\epsilon)$ such that

(1) for any $\sigma, \tau \in \Omega_i^*(\epsilon)$ and $\sigma \neq \tau$

$$\rho(\phi_{\sigma}(x_{\sigma(|\sigma|)}), \phi_{\tau}(x_{\tau(|\tau|)})) > 4\delta\epsilon;$$

(2) if $\sigma \in \Omega_i(\epsilon) \setminus \Omega_i^*(\epsilon)$ there exists $\tau \in \Omega_i^*(\epsilon)$ such that

$$\rho(\phi_{\sigma}(x_{\sigma(|\sigma|)}), \phi_{\tau}(x_{\tau(|\tau|)})) \le 4\delta\epsilon.$$

Let $J_i(\epsilon) = \operatorname{Card}\Omega_i^*(\epsilon)$. Thus

$$\bigcup_{\sigma \in \Omega_i^*(\epsilon)} B(\phi_{\sigma}(x_{\sigma(|\sigma|)}), 5\delta\epsilon) \supseteq \bigcup_{\sigma \in \Omega_i(\epsilon)} B(\phi_{\sigma}(x_{\sigma(|\sigma|)}), \delta\epsilon) \supseteq \bigcup_{\sigma \in \Omega_i(\epsilon)} \phi_{\sigma}(A_{\sigma(|\sigma|)}).$$

Therefore we have

$$J_{i}(\epsilon)\mathrm{m}_{\mathrm{d}}B(\phi_{\sigma}(x_{\sigma(|\sigma|)}), 5\delta\epsilon) \geq \mathrm{m}_{\mathrm{d}}(\bigcup_{\sigma\in\Omega_{i}(\epsilon)}\phi_{\sigma}(A_{\sigma(|\sigma|)})),$$

$$J_i(\epsilon)\epsilon^{\alpha s} \ge \frac{\epsilon^{-d} \mathbf{m}_{\mathbf{d}}(\bigcup_{\sigma \in \Omega_i(\epsilon)} \phi_{\sigma}(A_{\sigma(|\sigma|)}))}{\sum_{\sigma \in \Omega_i(\epsilon)} c_{\sigma}^{s(1-\alpha)}} (\sum_{\sigma \in \Omega_i(\epsilon)} c_{\sigma}^{s(1-\alpha)}) \delta^{-d} \text{const.} \epsilon^{\alpha s}.$$

Now let (m_1, \dots, m_n) be the strictly positive right eigenvector responding to the eigenvalue 1. Then

$$\left(c_{ij}^{s}a_{ij}\right)_{n\times n}\left(\begin{array}{c}m_{1}\\\vdots\\m_{n}\end{array}\right)=\left(\begin{array}{c}m_{1}\\\vdots\\m_{n}\end{array}\right).$$

Therefore

$$\left[\frac{\min m_i}{\max m_i}\right]^2 \le \sum_{\sigma \in \Omega_i(\epsilon)} c_{\sigma}^s \le \left[\frac{\max m_i}{\min m_i}\right]^2.$$

In addition

$$1 \le (\epsilon c_{\sigma}^{-1})^{\alpha s} \le c_0^{-\alpha s}.$$

Therefore

$$J_{i}(\epsilon)\epsilon^{\alpha s} \geq \frac{\epsilon^{-d}m_{d}(\bigcup_{\sigma\in\Omega_{i}(\epsilon)}\phi_{\sigma}(A_{\sigma(|\sigma|)}))}{\sum_{\sigma\in\Omega_{i}(\epsilon)}c_{\sigma}^{s(1-\alpha)}}\delta^{-d}\text{const.}$$
(13)

If $\alpha_1 = 0$, it is trival. We assume $\alpha_1 > 0$ and take $0 < \alpha < \alpha_1$. Thus we have

$$\underline{\lim}_{\epsilon \to 0} J_i(\epsilon) \epsilon^{\alpha s} = \infty,$$

by (13) for $1 \leq i \leq n$. Take $\epsilon_1 > 0$ such that $J_i(\epsilon_1)\epsilon_1^{\alpha_s}c_0^{\alpha_s} \geq 2$ for all $1 \leq i \leq n$. Considering the arbitrary finite open $c_0\epsilon_1\delta$ -covering $\{V_i\}$ of F_j , thus

(a) if there exists some V_i with $|V_i| \ge (c_0 \epsilon_1)^2 \delta$ then

$$\sum_{i} |V_i|^{\alpha s} \ge (c_0 \epsilon_1)^{2\alpha s} \delta^{\alpha s}; \tag{14}$$

(b) otherwise we have

$$\sum_{i} |V_i|^{\alpha s} = \epsilon_1^{\alpha s} \sum_{i} |\epsilon_1^{-1} V_i|^{\alpha s}.$$

For each $\sigma \in \Omega_j^*(\epsilon_1)$, let $\mathcal{V}_{\sigma} = \{V_i : V_i \cap B(\phi_{\sigma}(x_{\sigma(|\sigma|)}), \epsilon_1 \delta) \neq \emptyset\}$. Thus \mathcal{V}_{σ} is a covering of $\phi_{\sigma}(F_{\sigma(|\sigma|)})$ and for any $\sigma, \tau \in \Omega_j^*(\epsilon_1), \sigma \neq \tau$, we have $\mathcal{V}_{\sigma} \cap \mathcal{V}_{\tau} = \emptyset$. Take $\lambda_1 \in \Omega_j^*(\epsilon_1)$ such that

$$\sum_{V_i \in \mathcal{V}_{\lambda_1}} |V_i|^{\alpha s} = \min_{\sigma \in \Omega_j^*(\epsilon_1)} \sum_{V_i \in \mathcal{V}_{\sigma}} |V_i|^{\alpha s}$$

Therefore

$$\sum_{i} |V_{i}|^{\alpha s} \geq J(\epsilon_{1}) \sum_{V_{i} \in \mathcal{V}_{\lambda_{1}}} |V_{i}|^{\alpha s} \geq J(\epsilon_{1}) \epsilon_{1}^{\alpha s} \sum_{V_{i} \in \mathcal{V}_{\lambda_{1}}} |\epsilon_{1}^{-1} V_{i}|^{\alpha s} \geq 2c_{0}^{-\alpha s} \sum_{V_{i} \in \mathcal{V}_{\lambda_{1}}} |\epsilon_{1}^{-1} V_{i}|^{\alpha s}$$
$$= 2(c_{\lambda_{1}}c_{0}^{-1}\epsilon_{1}^{-1})^{\alpha s} \sum_{V_{i} \in \mathcal{V}_{\lambda_{1}}} |\phi_{\lambda_{1}}^{-1} V_{i}|^{\alpha s} \geq 2\sum_{V_{i} \in \mathcal{V}_{\lambda_{1}}} |\phi_{\lambda_{1}}^{-1} V_{i}|^{\alpha s}.$$
(15)

Since \mathcal{V}_{λ_1} is a covering of $\phi_{\lambda_1}(F_{\lambda_1(|\lambda_1|)})$, $\phi_{\lambda_1}^{-1}\mathcal{V}_{\lambda_1}$ is a finite open $c_0\epsilon_1\delta$ -covering of $F_{\lambda_1(|\lambda_1|)}$. Denoting $\phi_{\lambda_1}^{-1}\mathcal{V}_{\lambda_1}$ by $\{u_i\}$ as above we have

(a') if there exists $u_i \in \phi_{\lambda_1}^{-1} \mathcal{V}_{\lambda_1}$ such that $|u_i| \ge (c_0 \epsilon_1)^2 \delta$ then (14) holds by (15).

(b') otherwise repeating the above step and considering $\operatorname{Card}\{V_i\}$ finite, thus (14) holds after finite steps. Therefore $\dim_H F_j \geq \alpha s$ for any $0 < \alpha < \alpha_1$ which means $\dim_H F_j \geq \alpha_1 s$.

Similar to the proof of Theorem 2.3 we also get $\alpha_1 s \leq \dim_H F_j \leq \dim_B F_j \leq \alpha_1 s$ and $\beta_1 s \leq \dim_H F_j \leq \dim_B F_j \leq \beta_1 s$ and $\dim_B F_j = \beta_n s$. Thus we complete the proof. In addition it is easy to find that all α_i 's and β_i 's are equal and independent of the choice of A_i 's.

(II) Finally using the same method as those in proof of Theorem 2.3 (III) and (IV) we can complete the proof of (II). **QED**

Corollary 3.4 When $\{\phi_{ij} : a_{ij} = 1\}$ satisfies the open set condition, we have for every $0 \le i \le n$, $\dim_H F_i = \dim_B F_i = \dim_P F_i = s$. **QED**

Conjecture: if

$$\underline{\lim}_{\epsilon \to 0} \frac{\epsilon^{-d} \mathbf{m}_d(\bigcup_{\sigma \in \Omega_i(\epsilon)} \phi_\sigma(A_{\sigma(|\sigma|)}))}{\sum_{\sigma \in \Omega_i(\epsilon)} c_\sigma^{s(1-\alpha)}} > 0$$

for some $1 \le i \le n$, then $\mathcal{H}^{\alpha s}(F_i) > 0$ for all $1 \le i \le n$.

Remark 3.5 (1) Since the recurrent set (Dekking [2]) and the generalized recurrent set (Li [8]) are all the special cases of MW-construction (Bedford [1] & Li [7]) the Theorem 3.3 also works there. Thus our Theorem 3.3 actually improves the main results of [11] [12] which discussed the lower bound of Hausdorff dimension of recurrent sets and self-similar sets.

(2) If the above conjecture is ture, it is easy to get

(a) F_i is an αs -set for some $1 \le i \le n$ iff for some $1 \le i \le n$

$$0 < \underline{\lim}_{\epsilon \to 0} \frac{\epsilon^{-d} \mathbf{m}_d (\bigcup_{\sigma \in \Omega_i(\epsilon)} \phi_\sigma(A_{\sigma(|\sigma|)}))}{\sum_{\sigma \in \Omega_i(\epsilon)} c_\sigma^{s(1-\alpha)}} < \infty;$$

(b) F_i 's satisfy the open set condition iff for some $1 \le i \le n$

$$\underline{\lim}_{\epsilon \to 0} \frac{\epsilon^{-d} \mathbf{m}_d(\bigcup_{\sigma \in \Omega_i(\epsilon)} \phi_\sigma(A_{\sigma(|\sigma|)}))}{\operatorname{Card}\Omega_i(\epsilon)} > 0.$$

Acknowledgement: The authors thank Prof. M.W.Hirsch for his kind help and support.

References

- Bedford, T., Dimension and dynamics of fractal recurrent set. J. London Math.Soc. ,33 (1986), 89–100.
- [2] Dekking, F.M., *Recurrent sets.* Advances in Math., 44 (1982), 78–104.
- [3] Falconer,K., Fractal geometry Mathematical foundation and applications. Chichester: John Wiley & Sopens Ltd., 1990.
- [4] Falconer, K., Dimensions and measures of quasi self-similar sets. Proc. Amer. Math. Soc., 106(1989), 543–554.
- [5] Hutchinson, J.E., Fractals and self-similarity, Indiana Univ. Math. J., 30(1981), 713– 747.
- [6] Li, W.X., Separation properties for MW-fractals. to appear in Acta Mathematica Sinica, 41(1998).
- [7] Li, W.X., Researches on a class of partially-self-similar sets. Chinese Ann. of Math., 15A(1994), 681–688.

- [8] Li, W.X., Generalized recurrent set. Acta Math. Sinica. 39(1996) 78-88.
- Mauldin, R.D.& William, S.C., Hausdorff dimension in graph directed constructions. Trans. Amer. Math. Soc. 309(1988) 811–829.
- [10] Schief, A., Separation properties for self-similar sets. Proc. Amer. Math. Soc. 122(1994), 111–115.
- [11] Wen, Z.Y., Wu, L.M., Zhong, H.L., A note on recurrent sets. Chin. Ann. of Math. 15B(1994), 321–326.
- [12] Wu, M., The Hausdorff dimensions of several kinds of set. Doctoral dissertation, Wuhan University. China, 1993.