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Abstract
In this paper we study a class of subsets of the general Sierpinski carpets
for which the digits in the expansions lie in two specified horizontal fibres
with proportional frequencies. We calculate the Hausdorff dimension of these
subsets and give necessary and sufficient conditions for the corresponding
Hausdorff measure to be positive and finite.
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1. Introduction

Let T be the expanding endomorphism of the 2-torus T
2 = R

2/Z
2 given by the matrix

diag(n, m) where 2 � m < n are integers. The simplest invariant sets for T have the form

K(T , D) =
{ ∞∑

k=1

(
n−1 0
0 m−1

)k

dk : dk ∈ D for all k � 1

}
,

where D ⊆ I × J is a set of digits with I = {0, 1, . . . , n − 1} and J = {0, 1, . . . , m − 1}.
Alternatively, define a map KT : (I × J )N −→ T

2 by

KT (x) =
∞∑

k=1

(
n−1 0
0 m−1

)k

xk, x = (xk)
∞
k=1 ∈ (I × J )N. (1)

Then K(T , D) = KT (DN). So each element of K(T , D) can be represented as an expansion
in base diag(n−1, m−1) with digits in D and x = (xk)

∞
k=1 is called a coding of KT (x).
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Figure 1. (a) A pattern D = {(0, 0), (2, 0), (3, 0), (1, 2), (4, 2), (1, 3), (3, 3), (5, 3)}, where
m = 4, n = 6, L = {b1, b2, b3} = {0, 2, 3}, �1 = {(0, 0), (2, 0), (3, 0)}, �2 = {(1, 2), (4, 2)} and
�3 = {(1, 3), (3, 3), (5, 3)}, n1 = n3 = 3 and n2 = 2. (b) The corresponding Sierpinski carpet
K(T , D).

The set K(T , D), called the general Sierpinski carpet, was first studied by McMullen [9]
and Bedford [2], independently, to determine its Hausdorff and box-counting dimensions.
From then on, some further problems related to the general Sierpinski carpet K(T , D) were
proposed and considered by many authors. Peres [12, 13] studied its packing and Hausdorff
measures. Kenyon and Peres [6, 7] extended the results of McMullen [9] and Bedford [2]
to the compact subsets of the 2-torus corresponding to shifts of the finite type or sofic shifts
and to the Sierpinski sponges. The singular spectrum was studied by King [8] for the general
Sierpinski carpet, and later by Olsen [11] for the Sierpinski sponges. As we know, lots of
interesting results have been established for certain subsets of self-similar sets by way of
multifractal analysis. Some detailed description on this topic and recent developments are
included in [1]. Unfortunately, less analogous results have been revealed for the general self-
affine sets. However, for the general Sierpinski carpet, a special class of self-affine sets, some
analogous results for certain subsets have been established by many authors.

Let σ denote the projection of R
2 onto its second coordinate. Let L = σ(D) :=

{b1, b2, . . . , b�}. Set

�i = {d ∈ D : σ(d) = bi}, i = 1, 2, . . . , �.

Then the �i are the horizontal fibres of D and form a partition � := {�1, . . . , ��} of D,

i.e. D =
�⋃

i=1
�i with disjoint union. Put

ni = #�i, 1 � i � � and α = logn m,

where and throughout this paper we use #A to denote the cardinality of a finite set A. D is
said to have uniform horizontal fibres if ni = nj for all 1 � i, j � �. A pattern D and
corresponding K(T , D) are shown in figure 1 for the readers’ understanding.

For a probability vector p = (pd)d∈D on D, i.e.
∑

d∈D pd = 1 with each pd ∈ (0, 1), let

�p =
{
x = (xi)

∞
i=1 ∈ DN : lim

k→∞
#{1 � j � k : xj = d}

k
= pd, d ∈ D

}
. (2)

Then �p is a subset of DN such that the occurrence of each digit d ∈ D in each of its
elements has a prescribed frequency pd . Thus KT (�p) is a subset of K(T , D) whose elements
have prescribed digit frequencies in their codings. Nielsen [10] gave an overall investigation
on KT (�p), obtaining its box, packing and Hausdorff dimensions as well as sufficient and
necessary conditions for the packing and Hausdorff measures in their dimensions to be positive
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and finite. The approach used in [10] also works for the study of subsets with prescribed
horizontal fibre frequencies. For any x = (xj )

∞
j=1 ∈ DN and 1 � i � �, set

Nk(x, �i) = #{1 � j � k : xj ∈ �i}.
Whenever there exists the limit

ζ(x, �i) := lim
k→∞

Nk(x, �i)

k
, (3)

it is called the frequency of the horizontal fibre �i in the coding of x. When we write the symbols
ζ(x, �i), we are already assuming the existence of the limit in (3). Let c = (c1, c2, · · · , c�) be
a probability vector, i.e.

∑�
j=1 cj = 1 with cj > 0. Let

�(�, c) = {
d = (di)

∞
i=1 ∈ DN : ζ(d, �j ) = cj , j = 1, 2, · · · , �} .

Then �(�, c) is a subset of DN such that the occurrence of digits from each horizontal fibre
�i in each of its elements has a prescribed frequency ci . Thus KT (�(�, c)) is a subset
of K(T , D) whose elements have prescribed horizontal fibre frequencies in their codings.
From the definition of �p defined by (2), it follows that KT (�p) ⊆ KT (�(�, c)) if taking
cj = ∑

d∈�j
pd for 1 � j � �. Each digit d ∈ D is required to occur as an entry of elements

of �p with a prescribed frequency pd , while its occurrence as an entry of elements of �(�, c)
is relatively more free.

For any Borel subset E of R
2, let dimB E, dimP E and dimH E, respectively, denote its

box, packing and Hausdorff dimensions, Pγ (E) and Hγ (E) denote its γ -dimensional packing
and Hausdorff measures. Gui and Li [5] obtained the following results (see [5, theorems 1.1
and 1.2]).

(R1) dimH KT (�(�, c)) = dimP KT (�(�, c)) = ∑�
j=1 cj (logm nα

j − logm cj );

(R2) dimH KT (�(�, c)) = dimH K(T , D) if and only if cj = nα
j∑�

i=1 nα
i

, j = 1, 2, · · · , �;

(R3) dimP KT (�(�, c)) = dimP K(T , D) if and only if ci = cj and ni = nj for all
1 � i, j � �;

(R4) Let γ = dimH KT (�(�, c)) = dimP KT (�(�, c)) = ∑�
j=1 cj (logm nα

j − logm cj ).

(a) 0 < Hγ (KT (�(�, c))) � Pγ (KT (�(�, c))) < ∞ if and only if ci = cj and ni = nj for
all 1 � i, j � �;

(b) If there exist some 1 � i �= j � � such that ci �= cj or ni �= nj , then Hγ (KT (�(�, c))) =
Pγ (KT (�(�, c))) = +∞.

In this paper, we investigate another class of subsets of the general Sierpinski carpet. We assume
that #L = � > 2 in the following discussion. Recall that L = σ(D) where σ is the projection
of R

2 onto its second coordinate. Thus, when #L = � = 2, i.e. D has just two horizontal
fibres, the set �(s, t, β) defined below is identical to �(�, c) for c = ((1 + β)−1, β(1 + β)−1)

which reduces to the case considered in [5]. For any two distinct horizontal fibres �s, �t and
β > 0, we now consider the set

�(s, t, β) = {
x = (xi)

∞
i=1 ∈ DN : ζ(x, �s) = βζ(x, �t ) > 0

}
. (4)

Then �(s, t, β) is a subset of DN such that the frequency of the horizontal fibre �s in x is
proportional to that of �t . And so KT (�(s, t, β)) is the subset of K(T , D) for which the digits
in the expansions of their elements lie in two specified horizontal fibres with proportional
frequencies. Clearly, KT (�(s, t, β)) is T -invariant, dense in K(T , D) but not compact in
general. Thus

dimB KT (�(s, t, β)) = dimB K(T , D) = (1 − α) logm #L + α logm #D,
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where the box dimension of K(T , D) was established by McMullen [9] and Bedford [2],
independently. Let


 =
{

p = (pi)
�
i=1 : pi ∈ (0, 1) and

�∑
i=1

pi = 1 and ps = βpt

}
. (5)

It is easy to see that

KT (�(s, t, β)) ⊃
⋃
p∈


KT (�(�, p)). (6)

We emphasize that the inclusion is proper since KT (�(s, t, β)) contains points for which
ζ(x, �i), i �= s, t are not well defined if #L = � � 4. We define a function on 
 by

f (p) =
�∑

j=1

(pj logm nα
j − pj logm pj ), (7)

where nj = #�j , j = 1, 2, . . . , �. Note that the function f (p) can be continuously extended
to cl(
) (the closure of 
) by interpreting 0 logm 0 as 0. Then f (p) can obtain its maximum
fmax on cl(
). In fact, the maximum fmax cannot be reached on the boundary of cl(
), and
there exists a unique point p∗ = (p∗

i )
�
i=1 ∈ 
 such that f (p∗) = fmax = maxp∈cl(
) f (p) =

maxp∈
 f (p). This fact is shown in the following section as proposition 2.3. Throughout this
paper, the notation p∗ = (p∗

i )
�
i=1 is always assumed to be the unique maximum point of f (p)

whenever it occurs. More precisely, as we can see in proposition 2.3, p∗ = (p∗
i )

�
i=1 is given

by (12) and so by (7)

f (p∗) = logm

(1 + β)
(
β−βnαβ

s nα
t

) 1
1+β +

∑
j∈I

nα
j

 , (8)

where I := {1, 2, . . . , �}\{s, t}. Its verification is left for the readers. Therefore, we can obtain
a lower bound for the Hausdorff dimension of KT (�(s, t, β)):

dimH KT (�(s, t, β))) � logm

(1 + β)
(
β−βnαβ

s nα
t

) 1
1+β +

∑
j∈I

nα
j


by (6), (R1) and (8). However, our main result shows that the opposite inequality also holds.
In this paper, we obtain the following results.

Theorem 1.1. Let α = logn m and nj = #�j , j = 1, 2, . . . , �. Let �(s, t, β) be defined as
(4). Then

dimH KT (�(s, t, β)) = logm

(1 + β)
(
β−βnαβ

s nα
t

) 1
1+β +

∑
j∈I

nα
j

 ,

where I = {1, 2, . . . , �}\ {s, t}. In addition, dimH KT (�(s, t, β)) = dimP KT (�(s, t, β))

when D\(�s ∪ �t) has uniform horizontal fibres, i.e. all nj are equal for j ∈ I.

Theorem 1.2. Let γ = logm

(
(1 + β)

(
β−βn

αβ
s nα

t

) 1
1+β

+
∑

j∈I nα
j

)
where α, nj and I are the

same as in theorem 1.1.

(I) If β �= 1, then Hγ (KT (�(s, t, β))) = Pγ (KT (�(s, t, β))) = +∞;
(II) If β = 1, then
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(a) 0 < Hγ (KT (�(s, t, β))), Pγ (KT (�(s, t, β))) < +∞ when D has uniform horizontal
fibres;

(b) Hγ (KT (�(s, t, β))) = Pγ (KT (�(s, t, β))) = +∞ when D does not have uniform
horizontal fibres.

Example. Take D = I × J = {0, 1, . . . , n − 1} × {0, 1, . . . , m − 1}. Then L = σ(D) =
{b1, b2, . . . , bm} = {0, 1, . . . , m−1} (recall that σ denotes the projection of R

2 onto its second
coordinate) and the horizontal fibres of D are �i = {(0, i − 1), (1, i − 1), . . . , (n − 1, i − 1)}
for i = 1, 2, . . . , � = m (so all nj = n for 1 � j � m). For this case, the general Sierpinski
carpet degenerates to the unit square, i.e. K(T , D) = K(T , I × J ) = [0, 1]2. We denote
by σ1 the projection of R

2 onto its first coordinate. Then, from (1) it follows that for each
x = (xi)

∞
i=1 ∈ (I × J )N

KT (x) =
( ∞∑

k=1

σ1(xk)

nk
,

∞∑
k=1

σ(xk)

mk

)
∈ [0, 1]2,

i.e. KT (x) has its first and second coordinates represented as the n-adic and m-adic expansions,
respectively. Thus, by (4) we have that for 1 � s �= t � m and β > 0

�(s, t, β) = {
x = (xi)

∞
i=1 ∈ (I × J )N : ζ(x, �s) = βζ(x, �t ) > 0

}
=

{
x = (xi)

∞
i=1 ∈ (I × J )N : lim

k→∞
#{1 � j � k : σ(xj ) = s − 1}

k

= β lim
k→∞

#{1 � j � k : σ(xj ) = t − 1}
k

> 0

}
and so

KT (�(s, t, β)) = [0, 1] ×
{ ∞∑

i=1

yi

mi
: (yi)

∞
i=1 ∈ J N satisfying lim

k→∞
#{1 � j � k : yj = s − 1}

k

= β lim
k→∞

#{1 � j � k : yj = t − 1}
k

> 0

}
:= [0, 1] × 	.

Therefore, by theorem 1.1 we have

1 + dimH 	 = dimH KT (�(s, t, β)) = 1 + logm

(
(1 + β)β

− β

1+β + m − 2
)

.

The above equality also shows that

dimH 	 = logm

(
(1 + β)β

− β

1+β + m − 2
)

,

which was previously obtained in [1, theorem 2].
Below we give a more complicated example. Let

V =
{

(x, y) ∈ [0, 1]2 : x =
∞∑

k=1

xk

6k
with xk ∈ {0, 1, 2, 3, 4, 5},

y =
∞∑

k=1

yk

4k
with yk ∈ {0, 1, 2, 3}, lim

k→∞
#{1 � i � k : yi = 1}

k

= β lim
k→∞

#{1 � i � k : yi = 2}
k

> 0 and xk + yk = odd number

}
.



2358 Y Gui and W Li

Figure 2. A pattern D with uniform horizontal fibres for n = 6 and m = 4.

Then, with D illustrated as in figure 2 we have V = KT (�(2, 3, β)) and by theorem 1.1

dimH V = dimP V = log4

(
(1 + β)β

− β

1+β + 2
)

+ log6 3.

In addition, theorem 1.2 shows that the Hausdorff and packing measures of V in its dimension
are positive finite when β = 1, infinite when β �= 1.

The rest of this paper is organized as follows. In section 2, some basic facts and known
results needed in the proof of our theorems are described. Proofs of theorems 1.1 and 1.2 are
arranged in section 3.

2. Preliminaries

As in [9,10,12,13], a class of approximate squares are used to calculate the various dimensions
of the general Sierpinski carpets and its subsets. For each x = (xj )

∞
j=1 ∈ (I × J )N and each

positive integer k, let

Qk(x) = {KT (y) : y = (yj )
∞
j=1 ∈ (I × J )N, yj = xj for 1 � j � [αk]

and σ(yj ) = σ(xj ) for [αk] + 1 � j � k},
where, as usual, [x] with x ∈ R denote the greatest integer function. The sets Qk(x) are
approximate squares in [0, 1]2, whose sizes have length n−[αk] and m−k . Note that the ratio of
the sizes of Qk(x) is at most n, and their diameters diamQk(x) satisfy

√
2m−k � diamQk(x) �

√
2nm−k.

So in the definition of Hausdorff measure, we can restrict attention to covers by such
approximate squares since any set of diameter less than m−k can be covered by a bounded
number of approximate squares Qk(x). The following lemma and related remark appear
in [10] in which the approximate square Qk(x) plays the same role as the ball does in the
classical density theorems. The following lemma 2.1, involved in Hausdorff measure, is just
a reformulation of the Rogers–Taylor density theorem as stated by Peres in section 2 of [13].
The proof for results in remark 2.2, involved in packing measure, is given by Nielsen [10] as
lemma 5 in section 2.
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Lemma 2.1. ([10, lemma 4]) Suppose that δ is a positive number, that µ is a finite Borel
measure on [0, 1]2 and that E is a subset of (I × J )N such that KT (E) is a Borel subset of
[0, 1]2, and µ(KT (E)) > 0, put

A(x) = lim sup
k−→∞

(kδ + logm µ(Qk(x))).

for each point x ∈ E.

(1) If A(x) = −∞ for all x ∈ E, then Hδ(KT (E)) = +∞.
(2) If A(x) = +∞ for all x ∈ E, then Hδ(KT (E)) = 0.
(3) If there are numbers a and b such that a � A(x) � b for all x ∈ E, then

0 < Hδ(KT (E)) < +∞.

Remark 2.2. ([10, lemma 5]) Lemma 2.1 works for Pδ(KT (E)) if the lim sup is replaced by
lim inf in the definition of A(x).

The Borel measures on [0, 1]2 to which the above lemma will be applied are constructed
as follows. Let q = (qd)d∈D be a probability vector on D, i.e.

∑
d∈D qd = 1 with each

qd ∈ (0, 1). Then q determines a unique infinite product Borel probability measure, denoted
by µq, on DN. For any finite sequence (x1, x2, · · · , xk) ∈ Dk

µq(C(x1, x2, · · · , xk)) =
k∏

j=1

qxj
, (9)

where C(x1, x2, · · · , xk) := {d = (dj )
∞
j=1 ∈ DN : dj = xj for 1 � j � k} is a cylinder set of

DN with base (x1, x2, · · · , xk). Let µ̃q be the Borel probability measure on KT (DN) which is
the image measure of µq under KT , i.e. µ̃q(A) = µq(K

−1
T A) for a Borel set A ⊆ R

2. From
the fact that each approximate square Qk(x) is an image of a finite union of cylinder sets under
KT , it follows that for any x = (xj )

∞
j=1 ∈ DN (cf formula (4) in [10], also formula (4.4) in [4])

µ̃q(Qk(x)) =
[αk]∏
j=1

qxj
×

k∏
j=[αk]+1

∑
d∈D,σ(d)=σ(xj )

qd . (10)

From the Kolmogorov strong law of large numbers (cf [3, corollary 2 in section 5.2]) it follows
that µq(�q) = 1 where, for a probability vector q = (qd)d∈D on D, µq and �q are defined by
(9) and (2), respectively. Therefore,

µ̃q(KT (�(s, t, β))) = 1, if
∑
d∈�s

qd = β
∑
d∈�t

qd . (11)

Proposition 2.3. Let f (p) be defined by (7) with p ∈ cl(
) (recall that 
 is defined by (5)).
Then the maximum value maxp∈cl(
) f (p) is uniquely reached at p∗ = (p∗

j )
�
j=1 ∈ 
 where,

with I = {1, 2, . . . , �}\{s, t}
p∗

s = βp∗
t

p∗
j =

(
ββn

−αβ
s n−α

t

) 1
1+β

nα
j p∗

t , j ∈ I

p∗
t =

(
1 + β +

(
ββn

−αβ
s n−α

t

) 1
1+β ∑

j∈I nα
j

)−1

.

(12)

Proof. Clearly, f (p) can obtain its maximum on cl(
) since f (p) is continuous and cl(
) is
compact. We first show that the maximum point is unique. Note that f (p) is a strictly concave
function in p. In fact, the second summand of f (p) is strictly concave and the first is concave.
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On the other hand, cl(
) is convex, the constraint inequalities (i.e. 0 � pi � 1, 1 � i � �)
are both convex and concave and its constraint equalities (i.e.

∑�
i=1 pi = 1 and ps = βpt in

(5)) are all linear. By a well-known property of convex programming, there exists a unique
p∗ ∈ cl(
) such that f (p) attains its maximum at the point p∗.

We now show that the maximum of f (p) is obtained in 
, equivalently, that p∗ ∈ 
.
Suppose p∗ = (p∗

j )
�
j=1 ∈ cl(
) \ 
. Let D1 = {1 � j � � : p∗

j = 0} and
D2 = {1, 2, . . . , �} \D1. Then both D1 and D2 are nonempty (D1 �= ∅ derives from the
fact that (p∗

j )
�
j=1 ∈ cl(
)\
 if and only if p∗

j = 0 for some j . D2 �= ∅ since
∑�

j=1 p∗
j = 1 and

� > 2 .). Take p̃ = (p̃j )
�
j=1 ∈ 
. Let pt = t p̃ + (1 − t)p∗ = (tp̃j + (1 − t)p∗

j )
�
j=1, t ∈ [0, 1].

Then pt ∈ 
 for t ∈ (0, 1] and p0 = p∗. Note that

f ′(pt ) = d

dt
f (pt ) = −

�∑
j=1

(p̃j − p∗
j ) logm(tp̃j + (1 − t)p∗

j ) +
�∑

j=1

(p̃j − p∗
j ) logm nα

j

= −
∑
j∈D1

p̃j logm(tp̃j ) −
∑
j∈D2

(p̃j − p∗
j ) logm(tp̃j + (1 − t)p∗

j ) +
�∑

j=1

(p̃j − p∗
j ) logm nα

j .

Thus we have limt→0+ f ′(pt ) = +∞. Note that limt→0+ f (pt ) = f (p∗). Thus, f (pt ) >

f (p∗) = fmax when t is small enough, leading to a contradiction. Now let

L(p, λ1, λ2) =
�∑

j=1

(pj logm nα
j − pj logm pj ) +

λ1

log m
(ps − βpt) +

λ2

log m

 �∑
j=1

pj − 1

 ,

where, and throughout this paper, log denotes the natural logarithm. Since p∗ = (p∗
j )

�
j=1 ∈ 


is the unique point such that f (p∗) = maxp∈
 f (p) and f (p) is a strictly concave function in
p, p∗ is uniquely solved by the (method of Lagrange multipliers)

∂L

∂pj

= 0, 1 � j � �,

∂L

∂λi

= 0, i = 1, 2,

i.e. 

α log nj − log pj − 1 + λ2 = 0, 1 � j � �, j �= s, t,

α log ns − log ps − 1 + λ1 + λ2 = 0,

α log nt − log pt − 1 − βλ1 + λ2 = 0,

ps − βpt = 0,
�∑

j=1

pj − 1 = 0.

This yields (12). �

3. Proofs

In this section, we give the proofs of theorems 1.1 and 1.2. These will be based on lemma 2.1,
remark 2.2, (R1) and (R4).

Proof of theorem 1.1. It suffices to show that

dimH KT (�(s, t, β)) � logm

(1 + β)
(
β−βnαβ

s nα
t

) 1
1+β +

∑
j∈I

nα
j

 := γ.
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For any x = (xi)
∞
i=1 ∈ �(s, t, β) and any positive integer k, denote

Sk(x) =
∑
j∈I

Nk(x, �j ) logm nj . (13)

Let p∗ = (p∗
j )

�
j=1 be given by (12). Take q = (qd)d∈D where qd = p∗

j

nj
for d ∈ �j . Then

q = (qd)d∈D is a probability vector on D and µ̃q(KT (�(s, t, β))) = 1 by (11). From (10) and
(12) it follows:

logm µ̃q(Qk(x)) =
[αk]∑
j=1

logm qxj
+

k∑
j=[αk]+1

logm

∑
d∈D,σ(d)=σ(xj )

qd

=
�∑

j=1

N[αk](x, �j ) logm

p∗
j

nj

+
�∑

j=1

(Nk(x, �j ) − N[αk](x, �j )) logm p∗
j

=
�∑

j=1

Nk(x, �j ) logm p∗
j −

�∑
j=1

N[αk](x, �j ) logm nj

=
∑
j∈I

Nk(x, �j )
(

logm

(
ββn−αβ

s n−α
t

) 1
1+β + logm nα

j + logm p∗
t

)
+ Nk(x, �s)

× (
logm β + logm p∗

t

)
+ Nk(x, �t ) logm p∗

t −
�∑

j=1

N[αk](x, �j ) logm nj

=
∑
j∈I

Nk(x, �j ) logm

(
ββn−αβ

s n−α
t

) 1
1+β + Nk(x, �s) logm β + k logm p∗

t

−N[αk](x, �s) logm ns − N[αk](x, �t ) logm nt + αSk(x) − S[αk](x). (14)

Therefore, for all x ∈ �(s, t, β)

lim sup
k→∞

1

k
logm µ̃q(Qk(x)) = (1 − (1 + β)p∗

t ) logm

(
ββn−αβ

s n−α
t

) 1
1+β + p∗

t β logm β + logm p∗
t

− p∗
t αβ logm ns − p∗

t α logm nt + α lim sup
k→∞

(
Sk(x)

k
− S[αk](x)

αk

)
.

By means of (12), it is easy to check that

(1 − (1 + β)p∗
t ) logm

(
ββn−αβ

s n−α
t

) 1
1+β + p∗

t β logm β + logm p∗
t

− p∗
t αβ logm ns − p∗

t α logm nt = −γ.

In the following, we show that for every point x ∈ �(s, t, β),

lim sup
k→∞

(
Sk(x)

k
− S[αk](x)

αk

)
� 0. (15)

This essentially can be derived from lemma 4.1 in [6]. Obviously, for every point x ∈ �(s, t, β)

and any k ∈ N, from (13) we have

sup
k

|Sk+1(x) − Sk(x)| < ∞. (16)

For a fixed x = (xj )
∞
j=1 ∈ �(s, t, β), let Y (k) = Sk(x). We extend Y to [1, +∞) by piecewise

linear interpolation. Then Y is a Lipschitz function by (16). Now define g : [0, ∞) → R by

g(z) = e−zY (ez).
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We claim that g(z) is bounded and uniformly continuous on [0, ∞). In fact, for z ∈ (0, +∞)

(the following is also true when z = 0)

|g(z)| � |g(0)|e−z + |g(z) − g(0)e−z| � |Y (1)| + e−z|Y (ez) − Y (1)|
� |Y (1)| +

|Y (ez) − Y (1)|
ez − 1

� |Y (1)| + sup
u,v∈[1,∞),u �=v

|Y (u) − Y (v)|
|u − v|

= |Y (1)| + LipY, (17)

and for any δ > 0

|g(z + δ) − g(z)| = |e−(z+δ)Y (ez+δ) − e−zY (ez)|
� e−(z+δ)|Y (ez+δ) − Y (ez)| + |g(z)|(1 − e−δ)

= |Y (ez+δ) − Y (ez)|
ez+δ − ez

× ez+δ − ez

ez+δ
+ |g(z)|(1 − e−δ)

� (1 − e−δ)LipY + (1 − e−δ)(|Y (1)| + LipY ),

by (17). Now for any v > − log α, we have∣∣∣∣∫ v

− log α

(g(z) − g(z + log α)) dz

∣∣∣∣ =
∣∣∣∣∫ v

− log α

g(z) dz −
∫ v

− log α

g(z + log α) dz

∣∣∣∣
=

∣∣∣∣∫ v

− log α

g(z) dz −
∫ v+log α

0
g(z) dz

∣∣∣∣
=

∣∣∣∣∫ − log α

0
g(z) dz +

∫ v+log α

v

g(z) dz

∣∣∣∣
�

∣∣∣∣∫ − log α

0
g(z) dz

∣∣∣∣ +

∣∣∣∣∫ v+log α

v

g(z) dz

∣∣∣∣
� 2(|Y (1)| + LipY )| log α|,

by (17). Therefore,

lim sup
z→+∞

(g(z) − g(z + log α)) � 0.

Otherwise,
∣∣∣∫ v

− log α
(g(z) − g(z + log α)) dz

∣∣∣ → +∞ as v → +∞. By letting z = log t , this

gives

lim sup
t→+∞

(
Y (t)

t
− Y (αt)

αt

)
� 0.

Note that

Y (t)

t
− Y (αt)

αt
=

(
Y (t) − Y ([t])

t
− Y (αt) − Y ([αt])

αt

)
+

Y ([t])

[t]

(
[t]

t
− 1

)
+

(
S[α[t]](x)

α[t]
− S[αt](x)

αt

)
+

(
S[t](x)

[t]
− S[α[t]](x)

α[t]

)
, (18)

where, as before, [t] with t ∈ R denotes the greatest integer function. However, the first
three terms in the right side of (18) tend to zero as t → +∞ by the facts that both functions
|Y (t) − Y ([t])| and g(z) are bounded, and g(z) is uniformly continuous. Hence (15) holds.
Therefore, for every x = (xj )

∞
j=1 ∈ �(s, t, β) we have

lim sup
k→∞

1

k
logm µ̃q(Qk(x)) � −γ,
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which leads to

lim sup
k→∞

(kδ + logm µ̃q(Qk(x))) = lim sup
k→∞

k

(
δ +

1

k
logm µ̃q(Qk(x))

)
= +∞,

for any δ > γ . Now lemma 2.1 (2) implies that dimH KT (�(s, t, β)) � γ .
Finally, for the case when D\(�s ∪ �t) has uniform horizontal fibres we have

lim
k→∞

(
Sk(x)

k
− S[αk](x)

αk

)
= 0,

by (13). This gives dimP KT (�(s, t, β)) � γ by remark 2.2.

Proof of theorem 1.2. The desired results (I) and (II)(b) can be derived directly from
(R4) (b) by the facts that KT (�(s, t, β)) ⊃ KT (�(�, p∗)) and dimH KT (�(s, t, β)) =
dimH KT (�(�, p∗)) = f (p∗) by (6), theorem 1.1 and (R1).

When β = 1 and D has uniform horizontal fibres (i.e. nj = n1 for all 1 � j � �), we
have p∗

j = �−1 for all 1 � j � � by (12). In this case, we have

γ = f (p∗) = logm � + α logm n1,

and for all x ∈ �(s, t, 1), it follows from the last second equality in (14) that

logm µ̃q(Qk(x)) =
∑
j∈I

Nk(x, �j )
(

logm

(
ββn−αβ

s n−α
t

) 1
1+β + logm nα

j + logm p∗
t

)
+ Nk(x, �s)

× (
logm β + logm p∗

t

)
+ Nk(x, �t ) logm p∗

t −
�∑

j=1

N[αk](x, �j ) logm nj

=
∑
j∈I

Nk(x, �j )
(
logm n−α

1 + logm nα
1 + logm �−1

)
+ Nk(x, �s) logm �−1

+ Nk(x, �t ) logm �−1 −
�∑

j=1

N[αk](x, �j ) logm n1 = logm �−1
�∑

j=1

Nk(x, �j )

− logm n1

�∑
j=1

N[αk](x, �j ) = −k logm � − [αk] logm n1.

Then

A(x) = lim sup
k−→∞

(kf (p∗) + logm µq(Qk(x))) = lim sup
k−→∞

(αk − [αk]) logm n1

is bounded on �(s, t, 1) and so (II) (a) holds by lemma 2.1 (3).
Finally, as to the results on Pγ (KT (�(s, t, β))) we only need to prove (II) (a). By

remark 2.2, this is done by the fact that lim inf
k−→∞

(kf (p∗)+logm µq(Qk(x))) is finite on �(s, t, 1).

Remark 3.1. Let both �∗ and �∗∗ be unions of certain horizontal fibres of D. Comparing
with (4) let

�(�∗, �∗∗, β) = {
x = (xi)

∞
i=1 ∈ DN : ζ(x, �∗) = βζ(x, �∗∗) > 0

}
, (19)

where ζ(x, �∗) and ζ(x, �∗∗) are defined as in (3). When �∗ ∩ �∗∗ = ∅, an analogue of
theorems 1.1 and 1.2 for KT (�(�∗, �∗∗, β)) can be obtained in the same way, even if there
are more proportional frequencies in (19). In addition, if �∗ and �∗∗ are two arbitrary subsets
of D, the Hausdorff dimension of KT (�(�∗, �∗∗, β)) can also be determined implicitly in a
similar way.
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