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Bases which admit exactly two expansions

By YI CAI (Shanghai) and WENXIA LI (Shanghai)

Abstract. Given a positive integer m, let Ωm = {0, 1, . . . ,m}, and let B2(m)

denote the set of bases q ∈ (1,m+1] in which there exist numbers having precisely two

q-expansions over the alphabet Ωm. Sidorov [23] firstly studied the set B2(1) and raised

some questions. Komornik and Kong [15] further investigated the set B2(1) and partially

answered Sidorov’s questions. In the present paper, we consider the set B2(m) for general

positive integer m, and generalise the results obtained by Komornik and Kong.

1. Introduction

Given a positive integer m and a real number q ∈ (1,m+1], sequence (ci) ∈
ΩN

m is called a q-expansion with respect to the alphabet Ωm := {0, 1, . . . ,m} of

a real number x ∈ Iq := [0, m
q−1 ] if

x =

∞∑
i=1

ci
qi

:= (ci)q.

A sequence (ci) ∈ ΩN
m is said to be infinite if either all ci = 0 or ci ̸= 0 for infinite

many i.

Many works were devoted to the sets

Uq := {x ∈ Iq : x has a unique q-expansion w.r.t. Ωm} (1.1)
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and

Vq := {x ∈ Iq : x has at most one doubly infinite q-expansion} ,

where a q-expansion (ai) w.r.t. Ωm is called doubly infinite if both (ai) and its

reflection (ai) := (m − ai) are infinite. The Hausdorff dimensions of Uq were

determined in [16] and [20].

The following two subsets of (1,m+ 1] are quite important:

U := {q ∈ (1,m+ 1] : 1 ∈ Uq} ,
V := {q ∈ (1,m+ 1] : 1 ∈ Vq} .

It was known that Uq ⊆ Vq and U ⊆ V. Two numbers, the generalized golden

ratio G(m) ∈ (1,m + 1] and the Komornik–Loreti constant qKL ∈ (1,m + 1],

play an important role in the study of q-expansions. Their definitions are given

in Section 2. When m = 1, we have G(1) = 1+
√
5

2 =: G (the golden ratio) and

qKL ≈ 1.787. It was known that V ∩ (1, qKL) = {q1 < q2 < · · · } is countable and

qn ↑ qKL.

For a positive integer k, let

Bk(m) := {q ∈ (1,m+ 1] : ∃ x ∈ Iq has exactly

k different q-expansions w.r.t. Ωm} . (1.2)

For the case m = 1, there are lots of results have been obtained. Glendin-

ning and Sidorov [14] showed that Uq is countable for q ∈ (G, qKL), and un-

countable with positive Hausdorff dimension for q ∈ (qKL, 2]. Komornik and

Loreti [19], and de Vries, Komornik and Loreti [10] proved that U is closed

from above but not from below, and its closure U is a Cantor set. Komornik

and Loreti ([17], [18]) found the smallest number of U is qKL. Erdős et al.

([11], [12], [13]) proved that Bk(1) ̸= ∅ for each k ∈ N∪{ℵ0} and minBℵ0
(1) = G.

Later, it was shown in [4] that minBk(1) ≈ 1.75488 for any k ≥ 3. However, one

knows very few about Bk(1) for k ≥ 3. Fortunately, B2(1) is well understood.

Sidorov in [23] showed the following:

Theorem A. Let m = 1, B2(1), and Uq be defined by (1.2) and (1.1). Then:

(i) q ∈ B2(1) ⇐⇒ 1 ∈ Uq − Uq;

(ii) U ⊆ B2(1);

(iii) [T, 2] ⊆ B2(1) where T ≈ 1.83929 denotes the Tribonacci number, i.e., the

root of q3 − q2 − q − 1 = 0;
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(iv) the smallest two elements of B2(1) are qs ≈ 1.71064, the root of

q4 − 2q2 − q − 1 = 0,

and qf ≈ 1.75488, the root of

q3 − 2q2 + q − 1 = 0.

Now, for given m ∈ N and i ∈ N ∪ {0}, let

B(i+1)
2 (m) :=

{
q ∈ (1,m+ 1] : q is an accumulation point of B

(i)
2 (m)

}
,

where B(0)
2 (m) = B2(m). Thus, the sequence of sets B

(i)
2 (m), i = 1, 2, . . . , is de-

creasing. We denote by B(∞)
2 (m) the limit of B

(i)
2 (m), i = 1, 2, . . . , i.e., B(∞)

2 (m) =

limi→∞ B(i)
2 (m). The next results are from [15, Theorems 1.3, 1.5. 1.7, 1.9] for

the case m = 1.

(I) The following conditions are equivalent: (A) q ∈ B2(1); (B) 1 ∈ Uq − Uq;

(C) 1 ∈ Uq − Uq; (D) 1 ∈ Vq − Vq and q ̸= G.

(II) U ⊂ B(∞)
2 (1), V \ {G} ⊂ B(2)

2 (1).

(III) B(i)
2 (1) is compact for all i ≥ 0, and minB(1)

2 (1) = minB(2)
2 (1) = qf ≈

1.75488.

(IV) Every set B(i)
2 (1) has infinitely many accumulation points in each con-

nected component (q0, q
∗
0) of (1, 2] \ U .

(V) B2(1)∩(1, qKL) contains only algebraic integers, and hence it is countable,

where qKL is the Komornik–Loreti constant.

(VI) If V ∩ (1, qKL) = {qn : n = 1, 2, . . . } where qn ↑ qKL, then

qj+1 < minB(2j)
2 (1) < q2j+1

for all j ≥ 1, and hence, minB(j)
2 (1) ↗ minB(∞)

2 (1) = qKL as j → ∞.

(VII) For each j = 0, 1, . . . , B(j)
2 (1)∩(1, qKL) has infinitely many isolated points,

and they are dense in B(j)
2 (1) ∩ (1, qKL).

(VIII) For any q ∈ B2(1), we have

lim
δ→0

dimH(B2(1) ∩ (q − δ, q + δ)) ≤ 2 dimH Uq.
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The conclusions of (V), (VII) and (VIII) keep true for the case of the general

alphabet Ωm, since their proofs are independent of the choice ofm. Thus, we have:

(V’) B2(m)∩ (1, qKL) contains only algebraic integers, and hence it is count-

able, where qKL
1 is the Komornik–Loreti constant.

(VII’) For each j = 0, 1, . . . , B(j)
2 (m) ∩ (1, qKL) has infinitely many isolated

points, and they are dense in B(j)
2 (m) ∩ (1, qKL).

(VIII’) For any q ∈ B2(m), we have

lim
δ→0

dimH(B2(m) ∩ (q − δ, q + δ)) ≤ 2 dimH Uq.

As to conclusion (IV), its proof is independent of the choice of m when i ≥ 3

and need to be reproved for i = 0, 1, 2. We shall show that B(i)
2 (m) are compact

(see Theorem 1.2 (i)), and so, B(i)
2 (m), i ≥ 0 is a decreasing sequence. Thus, (IV)

keeps true for the general alphabet Ωm:

(IV’) Every set B(i)
2 (m) has infinitely many accumulation points in each con-

nected component (q0, q
∗
0) of (1,m+ 1] \ U .

About conclusion (VI), we shall point out that qj+1 ≤ minB(2j)
2 (m) may

not hold for general m > 1. A counter-example will be given in the remark after

Corollary 5.6. However, qj ≤ minB(2j)
2 (m) still holds. Thus, we have the following

(IV’) with a minor modification:

(VI’) If V ∩ (1, qKL) = {qn : n = 1, 2, . . . } where qn ↑ qKL, then qj ≤
minB(2j)

2 (m) < q2j+1 for all j ≥ 1, and hence, minB(j)
2 (m) ↗ minB(∞)

2 (m) =

qKL as j → ∞.

In this paper, we focus on generalising the conclusions (I), (II) and (III)

of [15] by Komornik and Kong into the case of the general alphabet Ωm.

Corresponding to (I), we have

Theorem 1.1. The following conditions are equivalent:

(i) q ∈ B2(m);

(ii) 1 ∈ Uq − Uq;

(iii) 1 ∈ Uq − Uq;

(iv) 1 ∈ Vq − Vq, q ̸= G(m), where G(m) is the generalized golden ratio.

1To simplify notation, we write qKL instead of qKL(m), there is no any confusion once m is

being considered at a given moment.
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Corresponding to (II) and (III), we have

Theorem 1.2.

(i) B(i)
2 (m) is compact for all i ≥ 0;

(ii) U ⊂ B(∞)
2 (m);

(iii) V \ {G(m)} ⊂ B(2)
2 (m);

(iv) minB(1)
2 (m) = minB(2)

2 (m) = qf (m), qf (m) is the largest real root of

q3 − (k + 2)q2 + q − k − 1 = 0, if m = 2k + 1,

and

q2 − (k + 1)q − k = 0, if m = 2k.

The rest of the paper is organized as follows. In Section 2, we recall some

basic results on q-expansions. The technical steps will be arranged in Section 3,

while in order to present the key results clearly, we put the tedious computations

in the Appendix. In Section 4, we prove the main theorems. The final section is

devoted to the detailed description of unique expansions.

2. Preliminaries

In this section, we introduce some notations and list some important results.

The greedy q-expansion of x ∈ Iq is the largest q-expansion in lexicographical

order. The quasi-greedy q-expansion of x ∈ Iq is the largest infinite q-expansion in

lexicographical order. In the whole paper, denote by α(q) = (αi) and β(q) = (βi)

the quasi-greedy and greedy q-expansions of 1, respectively. For a finite word

a1 · · · an ∈ Ωn
m, define

a1 · · · an−1a
+
n := a1 · · · an−1(an + 1), if an < m,

a1 · · · an−1a
−
n := a1 · · · an−1(an − 1), if an > 0.

Recall that U and V denote the set of univoque bases q ∈ (1,m + 1] and

the set of bases q ∈ (1,m + 1] for which there is a unique doubly infinite q-

expansion, respectively. Moreover, (1,m + 1] \ U =
⋃
(p0, p

∗
0), where p0 runs

over {1} ∪ (U \ U) and p∗0 runs over a proper subset of U , and V ∩ (p0, p
∗
0) =

{qℓ : ℓ = 1, 2 . . . } is a strictly increasing sequence converging to p∗0. Especially,
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V ∩ (1, qKL) has a smallest element G(m) called generalized golden ratio, which

was given by Baker [3]. More precisely,

G(m) =

{
k + 1, if m = 2k, k = 1, 2, . . . ,
k+1+

√
k2+6k+5
2 , if m = 2k + 1, k = 0, 1, . . . .

(2.1)

Let (τi)
∞
i=0 be the classical Thue–Morse sequence. For each positive integer i, let

(di) =

{
(k + τi − τi−1), if m = 2k, k = 1, 2, . . . ,

(k + τi), if m = 2k + 1, k = 0, 1, . . . .
(2.2)

The Komornik–Loreti constant qKL is given by α(qKL) = (di), i.e., the sequence

(di) is just the quasi-greedy qKL-expansion of 1. In fact, (di) is the unique qKL-

expansion of 1. We emphasize the fact that 1 < G(m) < qKL < m+ 1.

This generalized golden ratio G(m) plays an important part in the sense that

for q ∈ (1,G(m)), every x ∈ (0, m
q−1 ) has uncountable q-expansions, and each x

has at least countably many q-expansions if q = G(m). Thus, Uq =
{
0, m

q−1

}
for

all q ∈ (1,G(m)] (see, e.g., [13], [24]).

The following property was given in [2], which is related to Parry’s work [22]

(see also [6], [7], [9]).

Lemma 2.1.

(i) The map q 7→ α(q) is a strictly increasing bijection from (1,m+1] onto the

set of all infinite sequences (αi) satisfying the inequality

αn+1αn+2 · · · ≤ α1α2 · · · , for all n ≥ 0.

Moreover, the map q 7→ α(q) is continuous from the left.

(ii) The map q 7→ β(q) is a strictly increasing bijection from (1,m+1) onto the

set of all sequences (βi) satisfying the inequality

βn+1βn+2 · · · < β1β2 · · · , for all n ≥ 1.

Moreover, the map q 7→ β(q) is continuous from the right.

Remark that β(m + 1) = m∞. Let U ′
q be the set of the corresponding

q-expansions of all elements in Uq defined by (1.1). We recall the following char-

acterization of unique expansion:
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Lemma 2.2 ([2]). Let q ∈ (1,m+ 1], then (ci) ∈ U ′
q if and only if

cn+1cn+2 · · · < α1(q)α2(q) · · · , whenever cn < m,

cn+1cn+2 · · · < α1(q)α2(q) · · · , whenever cn > 0. (2.3)

In fact, it is easy to check that (2.3) is equivalent to

ck+1ck+2 · · · < α1(q)α2(q) · · · , when c1 · · · ck ̸= mk,

ck+1ck+2 · · · < α1(q)α2(q) · · · , when c1 · · · ck ̸= 0k. (2.4)

De Vries, Komornik and Loreti [10] investigated the sets U ,U and V, it was
shown that V is closed and U is a Cantor set.

Lemma 2.3 ([10]).

(i) q ∈ U \ {m+ 1} if and only if α(q) = (αi(q)) satisfies

α(q) < αn+1(q)αn+2(q) · · · < α(q), for all n ≥ 1.

(ii) q ∈ U if and only if α(q) = (αi(q)) satisfies

α(q) < αn+1(q)αn+2(q) · · · ≤ α(q), for all n ≥ 1.

(iii) q ∈ V if and only if α(q) = (αi(q)) satisfies

α(q) ≤ αn+1(q)αn+2(q) · · · ≤ α(q), for all n ≥ 1. (2.5)

The authors also described the following important relations between the

three sets, see [10, Theorem 1.2, Lemmas 3.11, 3.14].

Lemma 2.4.

(i) For every q ∈ U \ U , there exists a sequence (qn) ∈ U satisfying (qn) ↗ q as

n → ∞.

(ii) For every q ∈ U \ U , the quasi-greedy expansion α(q) is periodic.

(iii) For every q ∈ V \ (U ∪ {G(m)}), there exists a word a1 · · · an with n ≥ 1

such that

α(q) = (a1 · · · an−1a
+
n a1 · · · an−1a

+
n )

∞,

where (a1 · · · an)∞ satisfies (2.5).

Lemma 2.5 ([8, Theorems 1.4, 1.5]).

(i) Uq is closed if and only if q ∈ (1,m+ 1] \ U .
(ii) Uq = Uq = Vq if and only if q ∈ (1,m+ 1] \ V.
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3. B2(m) with general alphabet

In this section, we give characterizations of B2(m).

Lemma 3.1. Let q ∈ (1,m+ 1]. If x has exactly two different q-expansions

(ai) and (bi) w.r.t. Ωm satisfying

a1 · · · ak−1 = b1 · · · bk−1 and bk > ak,

then bk = ak + 1.

Proof. Assume that bk = ak + d, d > 1, then we can find 1 ≤ n ≤ d − 1

such that

(a1 · · · ak−1(ak + n)0∞)q < (b1b2 · · · )q = x

and

(a1 · · · ak−1(ak + n)m∞)q > (a1a2 · · · )q = x.

Hence, qk(x − (a1 · · · ak−1(ak + n)0∞)q) ∈ [0, m
q−1 ], and there exists a sequence

ck+1ck+2 · · · such that qk(x− (a1 · · · ak−1(ak + n)0∞)q) = (ck+1ck+2 · · · )q, which
is equivalent to (a1 · · · ak−1(ak + n)ck+1ck+2 · · · )q = x. In other words, x has at

least three q-expansions, which leads to contradiction. □

Theorem 3.2. For q ∈ (1,m + 1], q ∈ B2(m) if and only if there exist two

sequences (ci), (di) ∈ U ′
q satisfying the equality

((n+ 1)(ci))q = (n(di))q

for all n = 0, 1, . . . ,m− 1.

Proof. It suffices to take q ∈ (G(m),m + 1], because Uq =
{
0, m

q−1

}
if

1 < q ≤ G(m).

If q ∈ B2(m), then there exists x ∈ (0, m
q−1 ) having exactly two q-expansions

(ai) and (bi) w.r.t. Ωm. Suppose that a1 · · · ak−1 = b1 · · · bk−1 and bk = ak + 1

for some k ≥ 1 by Lemma 3.1. Thus, the equalities x = (ai)q = (bi)q imply

(0ak+1ak+2 · · · )q = (1bk+1bk+2 · · · )q,

and so

1 = (ak+1ak+2 · · · )q − (bk+1bk+2 · · · )q. (3.1)
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Alternatively, we can rewrite (3.1) as

((n+ 1)(ci))q = (n(di))q

for all n = 0, 1, . . . ,m− 1, where (ci) = bk+1bk+2 · · · , (di) = ak+1ak+2 · · · . By as-

sumption, we have (ci), (di) ∈ U ′
q.

Conversely, there exist (ci) and (di) belonging to U ′
q such that

1 + (ci)q = (di)q, i.e., x := (0d1d2 · · · )q = (1c1c2 · · · )q,

and then 1 ∈ Uq − Uq. Thus, x has no more q-expansion w.r.t. Ωm starting with

0 or 1. On the other hand, we claim that any q-expansion w.r.t. Ωm of x ca not

start with 2 ≤ c ≤ m. Otherwise,

c

q
≤ x = (0d1d2 · · · )q ≤ m

q(q − 1)
,

which leads to 2 ≤ c ≤ m
q−1 . Hence, q ≤ 1 + m

2 ≤ G(m) by (2.1). However,

Uq =
{
0, m

q−1

}
for all q ∈ (1,G(m)], which contradicts 1 ∈ Uq − Uq. □

For q ∈ (1,m+ 1], we set

A′
q :=

{
(ci) ∈ U ′

q : 0 ≤ c1 < α1(q)
}
.

According to the definition of A′
q, each sequence (ci) ∈ A′

q satisfies

ci+1ci+2 · · · < α(q)

for all i ≥ 0 by (2.4) (cf. [2]). Hence, we obtain

Lemma 3.3. U ′
q =

⋃
c∈A′

q
{c, c}.

Proof. Indeed, this holds for q ∈ (1,G(m)] by Uq = {0,m/(q−1)}. Suppose
that q ∈ (G(m),m + 1]. Let (di) ∈ U ′

q with d1 ≥ α1(q). Then, by Lemma 2.2,

(di) ∈ U ′
q. Furthermore, we have d1 < α1(q); because q > G(m) ≥ k+1 (no matter

m = 2k or 2k+1), which implies that α1(q) ≥ k+1, and then 2α1(q) > m. Hence,

m− d1 ≤ m−α1(q) < α1(q). We remark that it is possible that both d1 < α1(q)

and d1 < α1(q). □

Lemma 3.4. For q ∈ (1,m + 1], q ∈ B2(m) if and only if q is a zero of the

function

fc,d(t) = (1c)t + (md)t − (m∞)t (3.2)

for some c,d ∈ A′
q, i.e., (1c)q + (md)q = (m∞)q.
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Proof. It follows from Theorem 3.2 and Lemma 3.3 that q ∈ B2(m) if and

only if q satisfies one of the following equations for some c,d ∈ A′
q :

(1c)q = (0d)q, (1c)q = (0d)q, (1c)q = (0d)q and (1c)q = (0d)q. (3.3)

We claim that q only satisfies the second equation. For d ∈ A′
q, one has that

(d)q < α1(q)
q . Thus, for any s ∈ {0, 1, . . . ,m}N,

(0d)q =
1

q
(d)q <

α1(q)

q2
≤ 1

q
= (10∞)q ≤ (1s)q. (3.4)

Hence, for any c,d ∈ A′
q, one has

(1c)q > (0d)q and (1c)q > (0d)q.

Finally, the fourth equality (1c)q = (0d)q in (3.3) is equivalent to ((m − 1)c)q =

(md)q, and then is equivalent to (0c)q = (1d)q. However, by (3.4), one has that

(0c)q < (1d)q.

We complete the proof by the equality (1c)q − (0d)q = (1c)q + (md)q −
(m∞)q. □

We rewrite (3.2) as

fc,d(t) = ((m+ 1)(ci + di))t − (m∞)t, (3.5)

where c = (ci) and d = (di). It is natural to observe the following properties.

Lemma 3.5. Let q ∈ (1,m+ 1] and c,d ∈ A′
q.

(1) fc,d(t) is symmetric w.r.t (c,d), i.e., fc,d(t) = fd,c(t).

(2) fc,d(t) ∈ C([q,m+ 1]) and fc,d(q) is continuous w.r.t. (c,d) ∈ A′
q ×A′

q.

(3) If c′ ∈ A′
q and c′ > c, then fc′,d(p) > fc,d(p) for all p ≥ q. Similarly, if

d′ ∈ A′
q and d′ > d, then fc,d′(p) > fc,d(p) for all p ≥ q.

(4) fc,d(m+ 1) ≥ 0.

Proof. (1) It just follows from the definition (3.5) of fc,d(q).

(2) Firstly, we point out that for given c,d ∈ A′
q, fc,d(t) is well-defined for

t ∈ [q,m+ 1] because c,d ∈ A′
q ⊆ A′

t. Note that

fc,d(t) = ((m+ 1)(ci + di))t − (m∞)t =
m+ 1

t
− m

t− 1
+

∞∑
k=2

ck−1 + dk−1

tk
.
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Denote S(t) =
∑∞

k=2
ck−1+dk−1

tk
. We show S(t) is continuous in [q,m+1]. Note that

ck−1 + dk−1

tk
≤ 2m

qk
, for all t ∈ [q,m+ 1], and

∞∑
k=2

2m

qk
< +∞.

Thus,
∑∞

k=2
ck−1+dk−1

tk
converges uniformly in [q,m+1]. So, S(t) ∈ C([q,m+1]).

Now, let cn = (cn,i), dn = (dn,i) ∈ A′
q be such that cn → c and dn → d.

Then, for any k ∈ N, there exist ℓ = ℓ(k) ∈ N such that cn,1cn,2 · · · cn,k =

c1c2 · · · ck and dn,1dn,2 · · · dn,k = d1d2 · · · dk whenever n ≥ ℓ. Then, for n ≥ ℓ,

we have

|fcn,dn
(q)− fc,d(q)| ≤

m

qk(q − 1)
+

m

qk(q − 1)
=

2m

qk(q − 1)
.

(3) Note that c′, c ∈ A′
q, and c′ > c implies (c′)q > (c)q. Since U ′

q ⊂ U ′
p for

all p ≥ q, we have A′
q ⊂ A′

p. The desired result just follows from (3.5).

(4) We have

fc,d(m+ 1) = ((m+ 1)(ci + di))m+1 − (m∞)m+1 = (0(ci + di))m+1 ≥ 0,

as desired. □

We recall that qf (m) is the largest real root of

q2 − (k + 1)q − k = 0, when m = 2k, (3.6)

and

q3 − (k + 2)q2 + q − k − 1 = 0, when m = 2k + 1. (3.7)

We emphasize the important relations:

k + 2 > qf (2k) =
k + 1 +

√
k2 + 6k + 1

2
> G(2k) = k + 1

and

k + 2 > qf (2k + 1) > G(2k + 1) =
k + 1 +

√
k2 + 6k + 5

2
> k + 1.

Remark. Actually, we obtain qf (2k+1) > G(2k+1) by comparing the quasi-

greedy expansions of 1, more precisely:

α(qf (2k + 1)) = ((k + 1)(k + 1)kk)∞ > ((k + 1)k)∞ = α(G(2k + 1)).
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Now, we pay our attention to the following two results, which are the key

steps used afterward.

Lemma 3.6. Let q ∈ [qf (m),m+1] and c,d ∈ A′
q w.r.t. Ωm. If fc,d(q) ≤ 0,

then fc,d(t) is strictly increasing in [q,m+ 1].

For q ∈ [qf (m),m+ 1], let

B′
q :=

{
(c,d) : c,d ∈ A′

q, fc,d(q) ≤ 0
}
.

Obviously, B′
q ̸= ∅ follows from the following calculation:

f0∞,0∞(q) = ((m+ 1)0∞)q − (m∞)q =
1

q
− m

q(q − 1)
≤ 0.

Lemma 3.7. Let q ∈ [qf (m),m+ 1].

(1) If (c,d), (e,d) ∈ B′
q with e > c, then qe,d < qc,d.

(2) If (c,d), (c, e) ∈ B′
q with e > d, then qc,e < qc,d.

In the remaining part of this section, we divide the above proof of two lem-

mas into several steps. Since B2(m) ∩ (1, qf (m)) is a finite discrete set (see [21,

Propositions 3.5 and 4.9]), we shall focus on B2(m)∩[qf (m),m+1]. For an infinite

sequence c = c1c2 · · · , write c|n := c1 · · · cn and c|s,n := cs · · · cn for s ≤ n. A sim-

ple fact will frequently occur in the following lemmas. We list it as a proposition

without proof.

Proposition 3.8. Let h(x) ∈ C3([a, b]). We have h(x) > 0 for x ∈ [a, b] if

the following conditions hold:

(I) h′′′(x) ≥ 0, x ∈ [a, b], or h′′′(x) ≤ 0, x ∈ [a, b], or there exist a < c < b

such that h′′′(x) ≥ 0, x ∈ [a, c] and h′′′(x) ≤ 0, x ∈ [c, b].

(II) h′′(a) > 0, h′(a) > 0, h(a) > 0 and h(b) > 0.

We first consider the case of m being odd.

Lemma 3.9. Let m = 2k + 1, q ∈ [qf (m),m+ 1] and c,d ∈ A′
q w.r.t. Ωm.

(1) If k = 0 and c + d ≥ 00120∞, then fc,d(q) > 0.

(2) If k = 0 and c+ d < 00120∞, then fc,d(t) is strictly increasing for t ∈ [q, 2].

Proof. (1) Since qf (1) ≤ q ≤ 2, we have

min
c≥00120∞

(c)q = min{(00120∞)q, (010
∞)q, (0020

∞)q} = (010∞)q.
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Thus, when (c + d) ≥ 00120∞, for q ∈ [qf (1), 2], we have

fc,d(q) = ((1 + 1)(ci + di))q − (1∞)q =
2

q
+

1

q
(c + d)q −

1

q − 1

>
2

q
+

1

q
(010∞)q −

1

q − 1
=

2

q
+

1

q3
− 1

q − 1
=

q3 − 2q2 + q − 1

q3(q − 1)
≥ 0,

where the last inequality follows from the fact that x3 − 2x2 + x − 1 is strictly

increasing in [qf (1), 2] and (qf (1))
3 − 2(qf (1))

2 + qf (1)− 1 = 0.

(2) Suppose that k = 0 and c + d < 00120∞. Then, c + d ≤ 00112∞. Now,

take q1, q2 ∈ [q, 2] with q2 > q1. It is important to point out that both fc,d(q2)

and fc,d(q1) make sense, because c,d ∈ A′
t for all t ∈ [q, 2]. Then, we have

fc,d(q2)− fc,d(q1) = (2(ci + di))q2 − (1∞)q2 − [(2(ci + di))q1 − (1∞)q1 ]

= 2

(
1

q2
− 1

q1

)
+

∞∑
k=1

(ck+dk)

(
1

qk+1
2

− 1

qk+1
1

)
−(1∞)q2+(1∞)q1 .

Note that 1
qk2

− 1
qk1

< 0 for all k ≥ 1. Obviously, for two sequences (αi), (βi) of

nonnegative integers, if all αi ≤ βi, then

∞∑
k=1

αk

(
1

qk2
− 1

qk1

)
≥

∞∑
k=1

βk

(
1

qk2
− 1

qk1

)
.

Thus, when (c + d)|4 = 0011, we have

2

(
1

q2
− 1

q1

)
+

∞∑
k=1

(ck + dk)

(
1

qk+1
2

− 1

qk+1
1

)
≥ (200112∞)q2 − (200112∞)q1 .

Furthermore, when (c + d)|4 = 0002, we claim

2

(
1

q2
− 1

q1

)
+

∞∑
k=1

(ck + dk)

(
1

qk+1
2

− 1

qk+1
1

)
≥ (200112∞)q2 − (200112∞)q1

also holds. This is because we have

1

q52
− 1

q51
>

1

q42
− 1

q41

for q2 > q1 with q1, q2 ∈ [q, 2] ⊆ [qf (1), 2]. Indeed, f(x) = 1
x5 − 1

x4 is strictly

increasing for x > 1.25, and qf (1) ≈ 1.75. Therefore, we obtain that

fc,d(q2)− fc,d(q1) ≥ ((200112∞)q2 − (1∞)q2)− ((200112∞)q1 − (1∞)q1) .
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Now, let us think about the function

g(x) = (200112∞)x − (1∞)x =
2

x
+

1

x4
+

1

x5
+

2

x5(x− 1)
− 1

x− 1

=
x5 − 2x4 + x2 + 1

x5(x− 1)
.

We shall prove that it is strictly increasing in [q, 2]. Note that

g′(x) =
−x6 + 4x5 − 2x4 − 4x3 + 3x2 − 6x+ 5

x6(x− 1)2
:=

h(x)

x6(x− 1)2
.

What left is to verify that h(x) > 0 for x ∈ [qf (1), 2]. By calculating, we put the

results in Table 1, for the details, see the Appendix. □

function [qf (1), 2] monotonicity

h(4)(x) negative

h(3)(x) negative decreasing

h′′(x) positive decreasing

h′(x) positive increasing

h(x) positive increasing

Table 1

Lemma 3.10. Let m = 2k + 1, q ∈ [qf (m),m+ 1] and c,d ∈ A′
q w.r.t. Ωm.

(1) Let k = 1. If (c + d)|1 = 0 and c + d ≥ 0450∞, or c + d ≥ 120∞, then

fc,d(q) > 0.

(2) Let k = 1. If c+d < 0450∞, or (c+d)|1 = 1 and c+d < 120∞, then fc,d(t)

is strictly increasing for t ∈ [q, 4].

Proof. (1) For the case (c + d)|1 = 0 and (c + d) ≥ 0450∞, we split the

proof into two cases.

Case 1. (c + d)|2 = 04 and c + d ≥ 0450∞. Then,

fc,d(q) = ((3 + 1)(ci + di))q − (3∞)q > (40450∞)q − (3∞)q

=
4

q
+

4

q3
+

5

q4
− 3

q − 1
=

q4 − 4q3 + 4q2 + q − 5

q4(q − 1)
.

Now, we need to verify the numerator is positive for q ∈ [qf (3), 4]. Let g(x) =

x4 − 4x3 + 4x2 + x− 5. We have

g′(x) = 4x3 − 12x2 + 8x+ 1 and g′′(x) = 4(3x2 − 6x+ 2).
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Note that qf (3) is the largest real root of x3 − 3x2 + x − 2 = 0 (qf (3) ≈ 2.893).

By calculating, g′′(qf (3)), g′(qf (3)), g(qf (3)) and g(4) are all positive. Thus,

we have g(x) > 0 for x ∈ [qf (3), 4] by Proposition 3.8.

Case 2. If (c + d)|1 = 0 and c + d ≥ 050∞, then

fc,d(q) = ((3 + 1)(ci + di))q − (3∞)q > (4050∞)q − (3∞)q

=
4

q
+

5

q3
− 3

q − 1
=

q3 − 4q2 + 5q − 5

q3(q − 1)
.

We need to verify the numerator is positive for q ∈ [qf (3), 4]. Let g(x) = x3 −
4x2 + 5x− 5. Note that g′′′(x) = 6 > 0 for x ∈ [qf (3), 4]; and

g(qf (3)) = (qf (3))
3 − 4(qf (3))

2 + 5qf (3)− 5 = −(qf (3))
2 + 4qf (3)− 3 > 0.

Also, g′′(qf (3)), g
′(qf (3)) and g(4) are positive. Thus, g(x) > 0 for x ∈ [qf (3), 4]

by Proposition 3.8.

Now, we discuss the case k = 1 and c + d ≥ 120∞. Since q ≥ qf (3) > 2,

min
α≥120∞

(α)q = min{(120∞)q, (20
∞)q} = (120∞)q.

Thus, we have

fc,d(q) = ((3 + 1)(ci + di))q − (3∞)q > (4120∞)q − (3∞)q

=
4

q
+

1

q2
+

2

q3
− 3

q − 1
=

q3 − 3q2 + q − 2

q3(q − 1)
≥ 0.

The last inequality follows from the fact that x3−3x2+x−2 is strictly increasing

in [qf (3), 4] and (qf (3))
3 − 3(qf (3))

2 + qf (3)− 2 = 0 by (3.7).

(2) We first consider the case that k = 1 and c+d < 0450∞. We have m = 3

and c + d ∈ ΩN
6 . The condition c + d < 0450∞ implies c + d ≤ 0446∞. Take

q1, q2 ∈ [q, 4] ⊆ [qf (3), 4] with q2 > q1. We have

fc,d(q2)− fc,d(q1) = ((4(ci + di))q2 − (3∞)q2)− ((4(ci + di))q1 − (3∞)q1)

= 4

(
1

q2
− 1

q1

)
+

∞∑
k=1

(ck+dk)

(
1

qk+1
2

− 1

qk+1
1

)
−(3∞)q2+(3∞)q1 .

When (c + d)|3 = 044, using the same argument as that in (4), we have

4

(
1

q2
− 1

q1

)
+

∞∑
k=1

(ck + dk)

(
1

qk+1
2

− 1

qk+1
1

)
≥ (40446∞)q2 − (40446∞)q1 .
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Furthermore, when (c + d)|4 = 036, we claim

4

(
1

q2
− 1

q1

)
+

∞∑
k=1

(ck + dk)

(
1

qk+1
2

− 1

qk+1
1

)
≥ (40446∞)q2 − (40446∞)q1

also holds. This is because we have

2

(
1

q42
− 1

q41

)
>

1

q32
− 1

q31

for q2 > q1 with q1, q2 ∈ [q, 4] ⊆ [qf (3), 4]. Indeed, f(x) = 2
x4 − 1

x3 is strictly

increasing for x > 8
3 , and qf (3) ≈ 2.89. Therefore, we obtain

fc,d(q2)− fc,d(q1) ≥ ((40446∞)q2 − (3∞)q2)− ((40446∞)q1 − (3∞)q1) .

Now, let us take

g(x) = (40446∞)x − (3∞)x =
x4 − 4x3 + 4x2 + 2

x4(x− 1)
,

and show that g(x) is strictly increasing in [q, 4] ⊆ [qf (3), 4]. Let

g′(x) =
−x5 + 8x4 − 16x3 + 8x2 − 10x+ 8

x5(x− 1)2
:=

h(x)

x5(x− 1)2
.

By calculation and Proposition 3.8, h(x) > 0 for x ∈ [qf (3), 4] ⊇ [q, 4], see Table 2.

function qf (3) x = 4

h(3)(x) negative

h′′(x) positive

h′(x) positive

h(x) positive positive

Table 2

Now, we turn to consider the case k = 1, (c + d)|1 = 1 and c + d < 120∞.

Note that c+d ∈ ΩN
6 . Thus, c+d ≤ 116∞. As before, for q1, q2 ∈ [q, 4] ⊆ [qf (3), 4]

with q1 < q2, we have

fc,d(q2)− fc,d(q1) = (4(ci + di))q2 − (3∞)q2 − ((4(ci + di))q1 − (3∞)q1)

≥ (4116∞)q2 − (3∞)q2 − (4116∞)q1 + (3∞)q1 .
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Again, let

g(x) = (4116∞)x − (3∞)x =
x3 − 3x2 + 5

x3(x− 1)
,

and try to prove it is strictly increasing for x ∈ [q, 4] ⊆ [qf (3), 4]. Let

g′(x) =
−x4 + 6x3 − 3x2 − 20x+ 15

x4(x− 1)
:=

h(x)

x4(x− 1)
.

We conclude h(x) > 0 in [qf (3), 4] by Table 3, then g(x) is increasing, where

increasing⊕decreasing means the function increases first and then decreases,

the same for positive⊕negative. □

function [qf (3), 4] monotonicity

h′′(x) negative

h′(x) positive⊕negative decreasing

h(x) positive increasing⊕decreasing

Table 3

Lemma 3.11. Let m = 2k + 1, q ∈ [qf (m),m+ 1] and c,d ∈ A′
q w.r.t. Ωm.

(1) Let k ≥ 2. If (c + d)|1 = k − 1 and c + d ≥ (k − 1)(m + 2)0∞, or c + d ≥
k(k + 1)0∞, then fc,d(q) > 0.

(2) Let k ≥ 2. If c+d < (k−1)(m+2)0∞, or (c+d)|1 = k and c+d < k(k+1)0∞,

then fc,d(t) is strictly increasing for t ∈ [q,m+ 1].

Proof. (1) k ≥ 2. When (c + d)|1 = k− 1 and (c + d) ≥ (k− 1)(m+ 2)0∞,

we have

fc,d(q) = ((m+ 1)(ci + di))q − (m∞)q > ((m+ 1)(k − 1)(m+ 2)0∞)q − (m∞)q

=
m+ 1

q
+

k − 1

q2
+

m+ 2

q3
− m

q − 1
=

q3 − (k + 3)q2 + (k + 4)q − 2k − 3

q3(q − 1)
.

In order to verify that the numerator is positive in [qf (2k + 1), 2k + 2], let

g(x) = x3 − (k + 3)x2 + (k + 4)x− 2k − 3.

Clearly, g′′′(x) = 6 satisfies condition (I) of Proposition 3.8 in [qf (2k+1), 2k+2].

Table 4 shows g(x) > 0 for x ∈ [qf (2k + 1), 2k + 2] by Proposition 3.8.
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function qf (2k + 1) x = 2k + 2

g′′′(x) positive

g′′(x) positive

g′(x) positive

g(x) positive positive

Table 4

Now, we consider the case c + d ≥ k(k + 1)0∞. Note that for q ∈ (qf (2k +

1), 2k + 2] and qf (2k + 1) > k + 1,

min
c≥k(k+1)0∞

(c)q = min{(k(k + 1)0∞)q, ((k + 1)0∞)q} = (k(k + 1)0∞)q.

Thus, when c + d ≥ k(k + 1)0∞, we have

fc,d(q) = ((m+ 1)(ci + di))q − (m∞)q > ((m+ 1)k(k + 1)0∞)q − (m∞)q

=
m+ 1

q
+

k

q2
+

k + 1

q3
− m

q − 1
=

q3 − (k + 2)q2 + q − k − 1

q3(q − 1)
.

Let g(x) = x3− (k+2)x2+x−k−1. Then, g′(x) > 0 for x ∈ (qf (2k+1), 2k+2].

So, we have g(x) > 0 for x ∈ (qf (2k + 1), 2k + 2], since g(qf (2k + 1)) = 0.

(2) We first consider the case that k ≥ 2 and c+d < (k−1)(m+2)0∞ where

m = 2k + 1. Take q1, q2 ∈ [q,m+ 1] ⊆ [qf (2k + 1), 2k + 2] with q2 > q1. We split

the proof into two cases.

Case 1. (c + d)|1 < (k − 1). Then, c + d ≤ (k − 2)(2m)∞. Hence,

fc,d(q2)− fc,d(q1) ≥ ((m+ 1)(k − 2)(2m)∞)q2 − (m∞)q2

− (((m+ 1)(k − 2)(2m)∞)q1 − (m∞)q1) .

As before, we take

g(x) = ((m+ 1)(k − 2)(2m)∞)x − (m∞)x =
x2 − (k + 4)x+ 3k + 4

x2(x− 1)
,

and prove g(x) is strictly increasing in [qf (2k + 1),m+ 1] ⊇ [q,m+ 1]. We have

g′(x) =
−x3 + (2k + 8)x2 − (10k + 16)x+ 6k + 8

x3(x− 1)2
.
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Let h(x) be the numerator of g′(x). We show h(x) > 0 in [qf (2k + 1),m + 1] =

[qf (2k + 1), 2k + 2] by Tables 5 and 6.

function [qf (5), 6] qf (5)

h′(x) positive

h(x) positive positive

Table 5. Case k = 2.

function [k + 1,m+ 1] k + 1 m+ 1

h′(x) positive⊕negative

h(x) positive positive positive

Table 6. Case k ≥ 3.

Case 2. (c+d)|1 = k−1 and c+d < (k−1)(m+2)0∞. In this case, we have

c + d ≤ (k − 1)(m+ 1)(2m)∞. And so,

fc,d(q2)− fc,d(q1) ≥ ((m+ 1)(k − 1)(m+ 1)(2m)∞)q2 − (m∞)q2

− (((m+ 1)(k − 1)(m+ 1)(2m)∞)q1 − (m∞)q1) .

It suffices to prove g(x) is strictly increasing in [qf (2k + 1), 2k + 2] where

g(x) = ((m+ 1)(k − 1)(m+ 1)(2m)∞)x − (m∞)x

=
x3 − (k + 3)x2 + (k + 3)x+ 2k

x3(x− 1)
.

Let

g′(x) =
−x4 + 2(k + 3)x3 − (4k + 12)x2 − (6k − 6)x+ 6k

x4(x− 1)2
:=

h(x)

x4(x− 1)2
.

We have h(x) > 0 for x ∈ [k + 1,m + 1] ⊇ [qf (2k + 1), 2k + 2] by Table 7 and

Proposition 3.8.

function [k + 1,m+ 1] k + 1 m+ 1

h′′′(x) negative

h′′(x) positive

h′(x) positive

h(x) positive positive positive

Table 7



358 Yi Cai and Wenxia Li

Now, we turn to consider the case that k ≥ 2, (c + d)|1 = k and c + d <

k(k + 1)0∞. Then, c + d ≤ kk(2m)∞, and so

fc,d(q2)− fc,d(q1) ≥ ((m+ 1)kk(2m)∞)q2 − (m∞)q2

− (((m+ 1)kk(2m)∞)q1 − (m∞)q1) .

Let

g(x) = ((m+ 1)kk(2m)∞)x − (m∞)x =
x3 − (k + 2)x2 + 3k + 2

x3(x− 1)

and

g′(x) =
−x4 + (2k + 4)x3 − (k + 2)x2 − (12k + 8)x+ 3(3k + 2)

x4(x− 1)2
:=

h(x)

x4(x− 1)2
.

We verify that g(x) is strictly increasing in [q,m + 1] ⊆ [qf (2k + 1),m + 1] by

Table 8. □

function [k + 1,m+ 1] k + 1 m+ 1

h′′′(x) negative

h′′(x) positive

h′(x) positive

h(x) positive positive positive

Table 8

Now, we consider the case that m is even.

Lemma 3.12. Let m = 2, q ∈ [qf (2), 3] and c,d ∈ A′
q w.r.t. Ω2.

(1) If c + d ≥ 0210∞, then fc,d(q) > 0.

(2) If c + d < 0210∞, then fc,d(t) is strictly increasing for t ∈ [q, 3].

Proof. (1) We have qf (2) = 1 +
√
2 by (3.6). For any q ∈ [qf (2), 3],

min
α≥0210∞

(α)q = min{(0210∞)q, (10
∞)q, (030

∞)q} = (0210∞)q.

Thus, when c + d ≥ 0210∞, we have

fc,d(q) = (3(ci + di))q − (2∞)q > (30210∞)q − (2∞)q

=
3

q
+

2

q3
+

1

q4
− 2

q − 1
=

q4 − 3q3 + 2q2 − q − 1

q4(q − 1)
.
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We need to check g(x) := x4 − 3x3 +2x2 − x− 1 ≥ 0 for x ∈ [qf (2), 3]. Note that

g′(x) = 4x3 − 9x2 + 4x− 1 and g′′(x) = 12x2 − 18x+ 4.

We have g′′(x) > 0 for x ∈ [qf (2), 3]. As g′(qf (2)) = 4+6
√
2, we get g′(x) > 0 for

x ∈ [qf (2), 3]. Finally, it follows from g(qf (2)) = 0 that g(x) ≥ 0 for x ∈ [qf (2), 3].

(2) We now consider the case c+d < 0210∞. Take q1, q2 ∈ [q, 3] with q2 > q1.

Suppose that (c + d)|2 ≤ 01. Then, (c + d) < 014∞ and

fc,d(q2)− fc,d(q1) =(3(ci + di))q2 − (2∞)q2 − (3(ci + di))q1 + (2∞)q1

≥(3014∞)q2 − (2∞)q2 − (3014∞)q1 − (2∞)q1) .

Let

g(x) = (3014∞)x − (2∞)x =
x3 − 3x2 + x+ 3

x3(x− 1)
.

In the same way as in Lemma 3.9, we have g(x) is strictly increasing in [qf (2), 3].

Furthermore, when (c + d)|2 = 02 and c + d < 0210∞, we claim

fc,d(q2)− fc,d(q1) =(3(ci + di))q2 − (2∞)q2 − (3(ci + di))q1 + (2∞)q1

≥(3014∞)q2 − (2∞)q2 − (3014∞)q1 − (2∞)q1)

also holds. This is because 1
x3 − 4

x4 is strictly increasing in [qf (2), 3], and so

1

q32
− 1

q31
>

4

q42
− 4

q41

for q2 > q1 with q1, q2 ∈ [q, 2] ⊆ [qf (2), 3]. □

Lemma 3.13. Let m = 2k, q ∈ [qf (m),m+ 1] and c,d ∈ A′
q over Ωm.

(1) Let k ≥ 1. If c + d ≥ k0∞, then fc,d(q) > 0.

(2) Let k ≥ 2. We have fc,d(q) > 0 if c,d satisfy one of the following conditions:

(i) (c + d)|1 = k − 1 and c + d ≥ (k − 1)(m− 1)(k + 1)0∞;

(ii) (c + d)|1 = k − 2 and c + d ≥ (k − 2)(2m− 1)(k + 1)0∞.

(3) Let k ≥ 2. Then, fc,d(t) is strictly increasing in [q,m+ 1] if c,d satisfy one

of the following conditions:

(i) (c + d)|1 = k − 1 and c + d < (k − 1)(m− 1)(k + 1)0∞;

(ii) c + d < (k − 2)(2m− 1)(k + 1)0∞.
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Proof. (1) When (c + d) ≥ k0∞, we have

fc,d(q) = ((m+ 1)(ci + di))q − (m∞)q > ((m+ 1)k0∞)q − (m∞)q

=
m+ 1

q
+

k

q2
− m

q − 1
=

q2 − (k + 1)q − k

q2(q − 1)
≥ 0.

The last equality follows from the fact that x2− (k+1)x−k is strictly increasing

in [qf (m),m+ 1] and (qf (2k))
2 − (k + 1)qf (2k)− k = 0.

(2) We first consider the case (i): (c + d)|1 = k − 1 and c + d ≥ (k − 1)(m−
1)(k + 1)0∞. Note that for any q ∈ [qf (2k), 2k + 1],

min
α≥(m−1)(k+1)0∞

(α)q = min{((m−1)(k+1)0∞)q, (m0∞)q} = ((m−1)(k+1)0∞)q.

Thus, we have

fc,d(q)=((m+1)(ci+di))q−(m∞)q≥((m+1)(k−1)(m−1)(k+1)0∞)q−(m∞)q

=
q4 − (k + 2)q3 + kq2 − (k − 2)q − k − 1

q4(q − 1)
.

Let g(x) = x4 − (k+2)x3 + kx2 − (k− 2)x− k− 1, and we show it is positive for

x ∈ [qf (2k), 2k + 1] by Table 9.

function [qf (2k), 2k + 1] k + 1 qf (2k)

g′′(x) positive

g′(x) positive

g(x) positive positive

Table 9

Now, we consider the case (ii): (c + d)|1 = k − 2 and c + d ≥ (k − 2)(2m −
1)(k + 1)0∞. Note that for any q ∈ [qf (2k), 2k + 1],

min
α≥(2m−1)(k+1)0∞

(α)q=min{((2m−1)(k+1)0∞)q, (2m0∞)q}=((2m−1)(k+1)0∞)q.

Thus, we have

fc,d(q) = ((m+1)(ci+di))q−(m∞)q ≥ ((m+1)(k−2)(2m−1)(k+1)0∞)q−(m∞)q

=
q4 − (k + 3)q3 + (3k + 1)q2 − (3k − 2)q − k − 1

q4(q − 1)
.
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Let g(x) = x4− (k+3)x3+(3k+1)x2− (3k−2)x−k−1. Table 9 shows g(x) > 0

for x ∈ [qf (2k), 2k + 1].

(3) Let q1, q2 ∈ [q,m+ 1] = [q, 2k + 1] with q2 > q1.

(i) Suppose that (c + d)|1 = k − 1 and c + d < (k − 1)(m − 1)(k + 1)0∞.

We split the proof into two cases.

Case 1. (c + d)|1 = k − 1 and (c + d) < (k − 1)(m− 1)0∞. Then, (c + d) ≤
(k − 1)(m− 2)(2m)∞. Thus,

fc,d(q2)− fc,d(q1) ≥ ((m+ 1)(k − 1)(m− 2)(2m)∞)q2 − (m∞)q2

− (((m+ 1)(k − 1)(m− 2)(2m)∞)q1 − (m∞)q1) .

We shall prove g(x) is strictly increasing in [q,m+ 1] where

g(x)=((m+1)(k−1)(m−2)(2m)∞)x− (m∞)x =
x3−(k+2)x2+(k−1)x+2k+2

x3(x− 1)
.

Note that

g′(x) =
−x4 + (2k + 4)x3 − (4k − 1)x2 − (6k + 10)x+ 6(k + 1)

x4(x− 1)2
:=

h(x)

x4(x− 1)2
.

Then, h(x) > 0 for x ∈ [qf (2k),m+ 1] follows from Tables 10, 11.

function [3, 5] x = 3 x = 5

h′′(x) positive⊕negative

h′(x) positive positive

h(x) positive positive positive

Table 10. Case k = 2.

function [k + 1,m+ 1] k + 1 m+ 1

h′′(x) positive⊕negative

h′(x) positive negative

h(x) positive positive positive

Table 11. Case k ≥ 3.

Case 2. (c + d)|2 = (k − 1)(m− 1) and (c + d) < (k − 1)(m− 1)(k + 1)0∞.

Then, (c + d) ≤ (k − 1)(m− 1)k(2m)∞. Thus,
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fc,d(q2)− fc,d(q1) ≥ ((m+ 1)(k − 1)(m− 1)k(2m)∞)q2 − (m∞)q2

− (((m+ 1)(k − 1)(m− 1)k(2m)∞)q1 − (m∞)q1) .

Table 12 shows that g(x) is strictly increasing in [q,m+ 1], where

g(x) = ((m+1)(k−1)(m−1)k(2m)∞)x−(m∞)x=
x4−(k+2)x3+kx2−(k−1)x+3k

x4(x− 1)
,

and g′(x) = h(x)
x5(x−1)2 .

function [k + 1,m+ 1] k + 1 m+ 1

h′′′(x) negative

h′′(x) positive

h′(x) positive

h(x) positive positive positive

Table 12

(ii) Suppose that (c+d) < (k−2)(2m−1)(k+1)0∞. We split the proof into

three cases.

Case 1. (c+ d)|2 = (k− 2)(2m− 1) and (c+ d) < (k− 2)(2m− 1)(k+1)0∞.

Then, (c + d) ≤ (k − 2)(2m− 1)k(2m)∞. Thus,

fc,d(q2)− fc,d(q1) ≥ ((m+ 1)(k − 2)(2m− 1)k(2m)∞)q2 − (m∞)q2

− (((m+ 1)(k − 2)(2m− 1)k(2m)∞)q1 − (m∞)q1) .

As before, let g(x) = ((m+1)(k−2)(2m−1)k(2m)∞)x− (m∞)x and try to prove

it is strictly increasing in [q,m+ 1]. Note that

g(x) = ((m+ 1)(k − 2)(2m− 1)k(2m)∞)x − (m∞)x

=
x4 − (k + 3)x3 + (3k + 1)x2 − (3k − 1)x+ 3k

x4(x− 1)
,

and

g′(x)=
−x5+(2k+6)x4−(10k+6)x3+(18k−2)x2−(24k−3)x+12k

x5(x− 1)2
:=

h(x)

x5(x−1)2
.
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By calculation, h′′′(x) = 12(−5x2 + 4(k + 3)x− 5k − 3) < 0 for x ∈ [qf (2k), 2k +

1], and

h′′(qf (2k)) > 0, h′(qf (2k)) > 0, h(qf (2k)) > 0 and h(m+ 1) > 0.

From Proposition 3.8, it follows that h(x) > 0 for x ∈ [qf (2k), 2k + 1].

Case 2. (c+d)|1 = k− 2 and (c+d) < (k− 2)(2m− 1)0∞. Then, (ci+di) ≤
(k − 2)(2m− 2)(2m)∞, and

fc,d(q2)− fc,d(q1) ≥ ((m+ 1)(k − 2)(2m− 2)(2m)∞)q2 − (m∞)q2

− (((m+ 1)(k − 2)(2m− 2)(2m)∞)q1 − (m∞)q1) .

Table 12 shows that g(x) is strictly increasing in [qf (2k),m+ 1] where

g(x) = ((m+ 1)(k − 2)(2m− 2)(2m)∞)x − (m∞)x =
x3 − (k + 3)x2 + 3kx+ 2

x3(x− 1)

and

g′(x) =
−x4 + (2k + 6)x3 − (10k + 3)x2 + (6k − 8)x+ 6

x4(x− 1)2
:=

h(x)

x4(x− 1)2
.

Case 3. k ≥ 3 and (c + d) < (k − 2)0∞. Then, (c + d) ≤ (k − 3)(2m)∞. So,

fc,d(q2)− fc,d(q1) ≥ ((m+ 1)(k − 3)(2m)∞)q2 − (m∞)q2

− ((m+ 1)(k − 3)(2m)∞)q1 − (m∞)q1) .

Again, one needs to prove g(x) is strictly increasing in [qf (2k),m+ 1] where

g(x) = ((m+ 1)(k − 3)(2m)∞)x − (m∞)x =
x2 − (k + 4)x+ 3k + 3

x2(x− 1)
.

Note that

g′(x) =
−x3 + (2k + 8)x2 − (10k + 13)x+ 6(k + 1)

x3(x− 1)2
:=

h(x)

x3(x− 1)2
.

The roots x1, x2 of h′(x) = −3x2 + 4(k + 4)x− 10k − 13 = 0 satisfy

x1 < qf (6) < 7 < x2, for k = 3,

x1 < qf (2k) < x2 < 2k + 1, for k ≥ 4.

Moreover, one can check that h(qf (2k)) > 0 and h(2k + 1) > 0. Thus, h(x) > 0

in [qf (2k), 2k + 1]. □
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Lemma 3.14. Let (c,d) ∈ B′
q, then there exists a unique qc,d ∈ B2(m).

Proof. Since fc,d(m+1) ≥ 0 always holds for any (c,d) ∈ B′
q, from Lemma

3.6 it follows that for any (c,d) ∈ B′
q, there exists a unique qc,d ∈ [q,m+ 1] such

that

fc,d(qc,d) = (1c)qc,d + (md)qc,d − (m∞)qc,d = 0,

which means that qc,d ∈ B2(m). □

Proof of Lemma 3.6. It was established by Lemmas 3.9–3.13. □

Proof of Lemma 3.7. By the symmetry, it suffices to prove (3.7). Accord-

ing to Lemma 3.5,

fc,d(qe,d) = (1c)qe,d + (md)qe,d − (m∞)qe,d

< (1e)qe,d + (md)qe,d − (m∞)qe,d = fe,d(qe,d) = 0.

By Lemma 3.6, we have qc,d > qe,d. □

4. Proof of Theorems 1.1 and 1.2

The following results reveal that U ,V are subsets of B2(m).

Lemma 4.1. U ⊂ B2(m). Furthermore, U ⊂ B(∞)
2 (m).

Proof. Take a q ∈ U arbitrarily, 1 has a unique q-expansion, write (ci).

Then, 1 = (ci)q − (0∞)q, which implies q ∈ B2(m) by Theorem 3.2. Since U
is a Cantor set, we have U ⊂ B(∞)

2 (m) when U ⊂ B2(m). Next, we show that

U \ U ⊂ B2(m).

Let q ∈ U \ U . By Lemma 2.4 (ii), there exists a word a1a2 · · · an such that

α(q) = (a1a2 · · · an)∞ where n is the smallest period of α(q). If n = 1, then

α(q) = (α1(q))
∞, which implies that q = α1(q) + 1. Otherwise, q is a noninteger.

Therefore, we distinguish two cases.

Case I. q is a noninteger. In this case, n ≥ 2 and β(q) = a1 · · · a+n 0∞. From

Lemmas 2.1 and 2.3 (ii), we know that

a1 · · · an−i ≤ ai+1 · · · an < ai+1 · · · a+n ≤ a1 · · · an−i (4.1)

for all 0 < i < n. Since q ∈ U \ U , Lemma 2.4 (i) tells us that there exists

a p ∈ U ∩ (1, q) such that

α1(p) · · ·αn(p) = a1a2 · · · an.
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Let

c = a1 · · · a+nα(p) and d = 0nα(p).

It remains to prove that c,d ∈ A′
q and q = qc,d.

First, we show that c,d ∈ A′
q. Since p ∈ U∩(1, q), by Lemmas 2.1 and 2.3 (i),

we have

α(q) < α(p) < σi(α(p)) < α(p) < α(q)

for all i > 0. Moreover, a1 ≥ k + 1 implies that a1 > a1. Then, d ∈ A′
q.

On the other hand, for 0 < i < n, by (4.1) we have ai+1 · · · a+n ≥ a1 · · · an−i and

a1 · · · ai ≥ an−i+1 · · · an, then

ai+1 · · · a+nα(p) = ai+1 · · · a+n a1 · · · aiαi+1(p) · · ·

≥ a1 · · · an−ian−i+1 · · · anα(p) > a1 · · · anα(q) = α(q).

Together with ai+1 · · · a+n < a1 · · · an−i, we obtain c ∈ A′
q. We conclude that

q = qc,d ∈ B2(m) by the following calculation:

fc,d(q) = (1c)q + (md)q − (m∞)q = (1a1 · · · a+nα(p))q + (m0nα(p))q − (m∞)q

= ((m+ 1)a1 · · · a+n 0∞)q − (mn+10∞)q = (10∞)q − (0a1 · · · a+n 0∞)q = 0.

Case II. q is an integer. Let

c = a+1 α(p) and d = 0α(p).

As was the case in the previous analysis, it can be proved similarly. □

Lemma 4.2. V \ {G(m)} ⊂ B2(m).

Proof. Thanks to Lemma 4.1, it suffices to prove that V \ (U ∪ {G(m)}) ⊂
B2(m). Given arbitrarily q ∈ V \ (U ∪{G(m)}), Lemma 2.4 (iii) tells us that there

exists a word a1 · · · an with n ≥ 1 such that

α(q) = (a1 · · · a+n a1 · · · a+n )∞,

and for all 0 < i < n,

(a1 · · · an)∞ ≤ σi((a1 · · · an)∞) < (a1 · · · an)∞.

Take c = (ci) = a1 · · · a+n (a1 · · · an)∞ and d = (di) = 02n(a1 · · · an)∞. It remains

to show c,d ∈ A′
q and q = qc,d ∈ B2(m).
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(i) Suppose that n ≥ 2. Then, by the above inequalities and the definition

of V, we have for all 0 < i < n,

ai+1 · · · a+n < ai+1 · · · an ≤ a1 · · · an−i

ai+1 · · · an < ai+1 · · · a+n ≤ a1 · · · an−i. (4.2)

By Lemma 2.2, it suffices to prove for all 0 < i < 2n,

ci+1ci+2 · · · < α(q), when ci < m,

ci+1ci+2 · · · < α(q), when ci > 0.

If 0 < i < n, it follows from (4.2). If n < i < 2n, we use (4.2) once again. For

the case i = n, we have a1 ≥ k + 1 (no matter m = 2k or m = 2k + 1), it follows

from a1 < a1. Hence, c ∈ A′
q. Similarly, one can show d ∈ A′

q.

Next, we show q = qc,d. Since β(q) = a1 · · · a+n a1 · · · an0∞, we have

fc,d(q) = (1c)q + (md)q − (m∞)q

= (1a1 · · · a+n (a1 · · · an)∞)q + (m02n(a1 · · · an)∞)q − (m∞)q

= ((m+ 1)a1 · · · a+n a1 · · · an0∞)q − (m2n+10∞)q

= (10na1 · · · an0∞)q − (0a1 · · · a+nmn0∞)q

= (10∞)q − (0a1 · · · a+n a1 · · · an0∞)q = 0.

(ii) Suppose that n = 1. Take

c = a+1 a
∞
1 and d = 02(a1)

∞.

In this case, α(q) = (a+1 a
+
1 )

∞, a+1 ≥ k + 1 (m = 2k) or a+1 ≥ k + 2 (m = 2k + 1).

Then, c,d ∈ A′
q and q = qc,d follow from that facts a+1 < a1 < a+1 and

fc,d(q) = (1c)q + (md)q − (m∞)q = (1a+1 a
∞
1 )q + (m02(a1)

∞)q − (m∞)q

= ((m+ 1)a+1 a10
∞)q − (m30∞)q = (10a10

∞)q − (0a+1 m0∞)q

= (10∞)q − (0a+1 a10
∞)q = 0.

So the proof is finished. □

The following result strengthens Theorem 3.2.
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Proposition 4.3. We write

E2(m) :=
{
q ∈ (1,m+ 1] : 1 ∈ Uq − Uq

}
F2(m) := {q ∈ (1,m+ 1] : 1 ∈ Vq − Vq} .

Then, B2(m) = E2(m) = F2(m) \ {G(m)}.

Proof. By Theorem 3.2, we have B2(m) = {q ∈ (1,m+ 1] : 1 ∈ Uq − Uq}.
Moreover, Uq ⊂ Uq ⊂ Vq. Hence, we have B2(m) ⊂ E2(m) ⊂ F2(m).

Applying Lemma 2.5 (i), we see that E2(m) ⊂ B2(m) ∪ U . Thus, it follows

from Lemma 4.1 that E2(m) = B2(m). On the other hand, according to Lemma

2.5 (ii), we know that F2(m) ⊂ B2(m)∪V. Then, it follows from Lemma 4.2 and

G(m) /∈ B2(m) that F2(m) = B2(m) ∪ {G(m)}. □

Now, we give topological descriptions of B(i)
2 (m).

Lemma 4.4. B(i)
2 (m) is compact for all i ≥ 0.

Proof. It suffices to prove B2(m) is compact. We claim [qM ,m+1]\B2(m)

is open, where qM is smallest base of B2(m) (cf. [21]). Take q ∈ [qM ,m+1]\B2(m)

arbitrarily. So, 1 /∈ Uq − Uq by Theorem 3.2, and q /∈ U by Lemma 4.1. Thus, Uq

is compact, and so Uq −Uq is compact by Lemma 2.5 (i). Then, dH(1,Uq −Uq) >

0, where dH denotes the Hausdorff metric. Since Up continuously depends on

p /∈ U (see [5]), we take 0 < δ < dH(1,Uq − Uq), and a small open set O(δ)

which contains q such that dH(Up0
− Up0

,Uq − Uq) < δ for all p0 ∈ O(δ). Then,

dH(1,Up0
− Up0

) > 0, i.e., p0 /∈ B2(m). □

Lemma 4.5. V \ G(m) ⊂ B(2)
2 (m).

Proof. It suffices to prove that V \ (U ∪{G(m)}) ⊂ B(2)
2 (m) by Lemma 4.1.

Fix q ∈ V \ (U ∪ {G(m)}) arbitrarily. By Lemma 2.4 (iii), there exists a word

a1 · · · an with n ≥ 1 such that α(q) = (a1 · · · a+n a1 · · · a+n )∞, and for all 0 < i < n,

(a1 · · · an)∞ ≤ σi((a1 · · · an)∞) < (a1 · · · an)∞. (4.3)

Set

c = a1 · · · a+n (a1 · · · an)∞, d = 02n(a1 · · · an)∞,

and

dj = 02n(a1 · · · an)j(a1 · · · a+n a1 · · · a+n )∞.
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(i) Suppose that n ≥ 2. According to the proof of Lemma 4.2, one gets

c,d ∈ A′
q and q = qc,d. We will show that dj ∈ A′

p for all j ≥ 1 and p ∈ (q,m+1].

Since q ∈ V, by Lemma 2.3 (iii), it suffices to prove

α(p) < σi((a1 · · · an)j(a1 · · · a+n a1 · · · a+n )∞) < α(p)

holds for all 0 ≤ i < nj. It follows from (4.3) and a1 < a1 that

a1 · · · a+n < a1 · · · an ≤ ai+1 · · · ana1 · · · ai ≤ a1 · · · an < a1 · · · a+n

for 0 ≤ i < n. Hence, dj ∈ A′
p for all j ≥ 1. Next, we prove qc,dj ∈ B2(m),

fc,dj
(q) = (1c)q + (m02n(a1 · · · an)j(a1 · · · a+n a1 · · · a+n )∞)q − (m∞)q

= (1c)q + (m02n(a1 · · · an)j+10∞)q − (m∞)q

< (1c)q + (m02n(a1 · · · an)∞)q − (m∞)q = fc,d(q) = 0.

By Lemma 3.6, fc,dj
(t) = 0 has a unique root qc,dj

in (q,m + 1] for all j ≥ 1,

i.e., qc,dj
∈ B2(m). Applying Lemma 3.7 and the continuity of fc,d w.r.t. (c,d),

we infer that qc,dj
↘ q as j → ∞. Let

cℓ = a1 · · · a+n (a1 · · · an)ℓ(a1 · · · a+n a1 · · · a+n )∞.

Note that fcℓ,dj
(q) < 0 for all sufficiently large ℓ. By the same argument, we can

conclude that for each fixed j ≥ 1, we have qcℓ,dj
∈ B2(m) for all sufficiently

large ℓ, and qcℓ,dj
↗ qc,dj

as ℓ → ∞. Then, for each j, qc,dj
∈ B(1)

2 (m), and then

q = qc,d ∈ B(2)
2 (m).

(ii) Suppose that n = 1. Then, α(q) = (a+1 a
+
1 )

∞. Let c = a+1 a
∞
1 , d = 02a1

∞,

cℓ = a+1 (a1)
ℓ(a+1 a

+
1 )

∞ and dj = 02(a1)
j(a+1 a

+
1 )

∞. By the same argument as in

the first case, we can conclude that q ∈ B(2)
2 (m). □

Proof of Theorem 1.1. We get the result by Theorem 3.2 and Proposi-

tion 4.3. □

Proof of Theorem 1.2. Results (i), (ii) and (iii) follow from Lemmas 4.4,

4.1 and 4.5, respectively. Result (iv) follows from Lemma 4.5 and the fact that

the set (G(m), qf (m)) ∩ B2(m) is finite. □
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5. Some results on unique expansions

Recall that U and V denote the set of univoque bases q ∈ (1,m+ 1] and the

set of bases q ∈ (1,m+1] for which there is a unique doubly infinite q-expansion,

respectively. Let

(1,m+ 1] \ U = ∪(p0, p∗0),

where p0 runs over {1} ∪ (U \ U) and p∗0 runs over a proper subset of U . It was

proved in [20] that p0 is an algebraic number, while p∗0 is a transcendental number.

Now, let

(M,m+ 1] \ U = ∪(q0, q∗0), M =
⌊m
2

⌋
+ 1. (5.1)

In this section, we shall give a description of U ′
q∗0
.

Note from [19] and [10] that for each connected component (q0, q
∗
0), there

exists a finite word a1 · · · an such that α(q0) = (a1 · · · an)∞ ∈ ΩN
m, where a1 · · · an

is assumed the smallest periodic block. The right endpoint q∗0 is the limit of

sequence {qℓ} defined below. Let

c−0 := a1 · · · an and cℓ+1 = cℓcℓ
+, ℓ = 0, 1, . . . . (5.2)

Then, (ci) is a Thue–Morse type sequence generated by c−0 (cf. [1]). From [10],

it follows that for each ℓ = 1, 2, . . . , there exists qℓ ∈ (q0, q
∗
0) such that β(qℓ) =

cℓ0
∞. De Vries and Komornik obtained in [19] and [10] that for each connected

component (q0, q
∗
0),

V ∩ (q0, q
∗
0) = {qℓ; ℓ ∈ N} and qℓ ↑ q∗0 .

We recall some standard results:

Lemma 5.1 ([20]). Let M, cℓ be given in (5.1) and (5.2). Let (q0, q
∗
0) be

a connected component of (M,m+1]\U related to c−0 , and (di) ∈ U ′
q∗0

w.r.t. Ωm.

(i) If dj < m and dj+1 · · · dj+2ℓn = cℓ for some ℓ ≥ 0, then

dj+2ℓn+1 · · · dj+2ℓ+1n = cℓ or dj+2ℓn+1 · · · dj+2ℓ+1n = cℓ
+.

(ii) If dj > 0 and dj+1 · · · dj+2ℓn = cℓ for some ℓ ≥ 0, then

dj+2ℓn+1 · · · dj+2ℓ+1n = cℓ or dj+2ℓn+1 · · · dj+2ℓ+1n = c−ℓ .

Lemma 5.2 ([20, Lemma 4.2]). Let M, cℓ be given in (5.1) and (5.2). Let

(q0, q
∗
0) be a connected component of (M,m+1] \ U related to c−0 . Then, for any

ℓ ≥ 0, cℓ = a1 · · · a2ℓn satisfies

a1 · · · a2ℓn−i < ai+1 · · · a2ℓn ≤ a1 · · · a2ℓn−i

for all 0 ≤ i < 2ℓn.
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Our first result is

Theorem 5.3. Let M, cℓ be given in (5.1) and (5.2). Let (q0, q
∗
0) = (M, qKL)

be the first connected component of (M,m+ 1] \ U related to c−0 .

(I) Suppose that m = 2k+ 1 ≥ 3. Then, (bi) ∈ U ′
qKL

\ {0∞,m∞} if and only

if (bi) is formed by sequences of the form

ω(c−0 )
j(ci1ci1)

j1(ci1ci2)
l1(ci2ci2)

j2(ci2ci3)
l2 · · · (5.3)

or their reflections, where 0 ≤ i1 < i2 < · · · are integers, 1 ≤ j ≤ 2, 0 ≤ li ≤ 1,

0 ≤ ji ≤ ∞ for all i ≥ 1, and

ω ∈ {1, · · · ,m− 1} ∪
∞⋃

N=1

{0Nb : 0 < b ≤ k + 1} ∪
∞⋃

N=1

{mNb : k ≤ b < m}.

(II) Suppose that m = 2k. Then, (bi) ∈ U ′
qKL

\ {0∞,m∞} if and only if (bi)

is formed by sequences of the form

ω(c−0 )
j(ci1ci1)

j1(ci1ci2)
l1(ci2ci2)

j2(ci2ci3)
l2 · · · (5.4)

or their reflections, where 0 ≤ i1 < i2 < · · · are integers, 0 ≤ li ≤ 1, 0 ≤ j, ji ≤ ∞
for all i ≥ 1, and

ω ∈ {1, · · · ,m− 1} ∪
∞⋃

N=1

{0Nb : 0 < b ≤ k + 1} ∪
∞⋃

N=1

{mNb : k − 1 ≤ b < m}.

Remark. The case m = 1 was studied in [15], which is quite different from

the cases m = 2k + 1 ≥ 3. So, we assume m = 2k + 1 ≥ 3 in Theorem 5.3 (I).

Proof. We have (q0, q
∗
0) = (M, qKL), thus U ′

q0 = {0∞,m∞}. Note that

whether m = 2k or m = 2k + 1, we always have q0 = M = k + 1, and so,

α(q0) = k∞, c−0 = k.

For the sufficiency, it is not difficult to be verified by Lemma 5.2. We leave

it for the readers.

In the following, we prove the necessity. Take (bi) ∈ U ′
q∗0

\ U ′
q0 . Let

N = min{s : 0 < bs < m}.

Then, N is well-defined and is a positive integer.
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Case I. m = 2k + 1 with k ≥ 1.

Note that from (2.2), α(qKL) = (k+1)(k+1)k(k+1) · · · . By (2.4), we have

for t ≥ 1:

bt+1bt+2 · · · < (k + 1)(k + 1)k(k + 1) · · · , when b1 · · · bt ̸= mt,

bt+1bt+2 · · · > kk(k + 1)k · · · , when b1 · · · bt ̸= 0t. (5.5)

We now split our discussion into two steps.

Step 1. We shall show what the block ω = b1 · · · bN looks like. The case

N = 1 is trivial, we only consider the case N > 1.

Subcase 1. Suppose that ω begins at 0. Then, by (5.5), we have ω = 0N−1bN
with 0 < bN ≤ k + 1.

Subcase 2. Suppose that ω begins atm. Then, by (5.5), we have ω = mN−1bN
with k ≤ bN < m.

Step 2. Now, let us to explore the sequence (bN+i) = (bN+i)i≥1. Note that

0 < bN < m and α(qKL) = (k + 1)(k + 1)k(k + 1) · · · . Thus, by Lemma 2.2,

we have for each i ≥ 1,

kk(k + 1)k · · · < bN+ibN+i+1 · · · < (k + 1)(k + 1)k(k + 1) · · · , (5.6)

and so,

k ≤ bN+i ≤ k + 1, (bN+i)i≥1 not ending with k∞ or (k + 1)∞.

From (5.6) it follows that there exists 1 ≤ j ≤ 2 such that either bN+1 · · · bN+j =

kj or bN+1 · · · bN+j = (k + 1)j . Without loss of generality, we assume that

bN+1 · · · bN+j = kj . Otherwise, we only need to consider (bi)i≥1 instead.

So bN+j+1 = k+1 = c0. In the following, we shall determine the tail (bN+j+i)i>1

by means of Lemma 5.1.

Let us recall that

c0 = c0
+ = k + 1, c−0 = c0 = k, and cℓ+1 = cℓcℓ

+, cℓ+1 = cℓc
−
ℓ . (5.7)

Roughly speaking, Lemma 5.1 tells us that which possible blocks will follow

a block cℓ or cℓ. This can be simply described in Figure 1.

cℓ ⇒ cℓcℓ

cℓ
+ ⇒ cℓcℓ

+ = cℓ+1

cℓ ⇒ cℓcℓ

c−ℓ ⇒ cℓc
−
ℓ = cℓ+1

cℓ cℓ

Figure 1. Relation induced by Lemma 5.1.
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By A ⇀ B, we denote block A followed by block B. We point out that in

Figure 1 the action cℓ ⇀ cℓ
+ cannot be implemented continuously infinite times,

since (bi) ∈ U ′
qKL

cannot be ended with α(qKL). Similarly, the action cℓ ⇀ c−ℓ
cannot be implemented continuously infinite times.

Now, we have bN+j+1 = k + 1 = c0 and bN+j = k < m. Then, the following

block is either c0 or c0
+ by Lemma 5.1, i.e.,

(bi) = ω(c−0 )
jc0c0(bN+j+2+i)i≥1, (5.8)

or

(bi) = ω(c−0 )
jc0c0

+(bN+j+2+i)i≥1 = ω(c−0 )
jc1(bN+j+2+i)i≥1 (5.9)

by (5.7). If (5.8) occurs, then

(bi) = ω(c−0 )
jc0c0c0 · · · or (bi) = ω(c−0 )

jc0c0c
−
0 · · · = ω(c−0 )

jc0c1 · · ·

by Lemma 5.1 and (5.7). If (5.9) occurs, then

(bi) = ω(c−0 )
jc1c1 · · · or (bi) = ω(c−0 )

jc1c1
+ · · · = ω(c−0 )

jc2 · · ·

by Lemma 5.1 and (5.7).

In any cases described above, one can continue to implement the process in

the same way as above. Therefore, (bi) is of form (5.3) or its reflection.

Case II. m = 2k with k ≥ 1.

Note that α(qKL) = (k + 1)k(k − 1)(k + 1) · · · . By (2.4), we have for t ≥ 1:

bt+1bt+2 · · · < (k + 1)k(k − 1)(k + 1) · · · , when b1 · · · bt ̸= mt,

bt+1bt+2 · · · > (k − 1)k(k + 1)(k − 1) · · · , when b1 · · · bt ̸= 0t. (5.10)

We now split our discussion into two steps.

Step 1. We shall show what the block ω = b1 · · · bN looks like. As in Case I,

we only consider N > 1.

Subcase 1. Suppose that ω begins at 0. Then, by (5.10), we have ω = 0N−1bN
with 0 < bN ≤ k + 1.

Subcase 2. Suppose that ω begins at m. Then, by (5.10), we have ω =

mN−1bN with k − 1 ≤ bN < m.

Step 2. Now, let us explore the sequence (bN+i) = (bN+i)i≥1. Note that

0 < bN < m and α(qKL) = (k + 1)k(k − 1)(k + 1) · · · . Thus, by Lemma 2.2,

we have for each i ≥ 1:

(k − 1)k(k + 1)(k − 1) · · · < bN+ibN+i+1 · · · < (k + 1)k(k − 1)(k + 1) · · · . (5.11)
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From (5.11), it follows that

bN+1 ∈ {k − 1, k, k + 1} = {c0, c−0 , c0}.

(I) bN+1 = k. In this case, either (bN+i)i≥1 = k∞ = (c−0 )
∞ or there ex-

ists a positive integer j such that bN+1 · · · bN+j+1 ∈ {kj(k + 1), kj(k − 1)} =

{(c−0 )jc0, (c
−
0 )

jc0}.
Without loss of generality, we assume that bN+1 · · · bN+j+1 = kj(k + 1) =

(c−0 )
jc0. Otherwise, we only need to consider (bi)i≥1 instead. So bN+j+1=k+1=c0.

(II) bN+1 ∈ {k − 1, k + 1} = {c0, c0}. Without loss of generality, we assume

that bN+1 = k+1 = c0. Otherwise, we only need to consider (bi)i≥1 instead. For

the sake of uniformity, we write bN+1 = k+ 1 = (c−0 )
0c0, corresponding to j = 0.

In the following, we shall determine the tail (bN+j+1+i)i≥1 by means of

Lemma 5.1, where j is a nonnegative integer.

Let us recall that

c−0 =c0
+=k, c0=k+1, c0=k−1, and cℓ+1=cℓcℓ

+, cℓ+1=cℓc
−
ℓ . (5.12)

Roughly speaking, Lemma 5.1 tells us that which block can follow a block cℓ or

cℓ. This can be simply described in Figure 1.

We point out that in Figure 1 the action cℓ ⇀ cℓ
+ cannot be implemented

continuously infinite times, since (bi) ∈ U ′
qKL

cannot be end with α(qKL). Simi-

larly, the action cℓ ⇀ c−ℓ cannot be implemented continuously infinite times.

Now, we have bN+j+1 = k+1 = c0 and bN+j < m. Then, the following block

is either c0 or c0
+ by Lemma 5.1, i.e.,

(bi) = ω(c−0 )
jc0c0(bN+j+2+i)i≥1, (5.13)

or

(bi) = ω(c−0 )
jc0c0

+(bN+j+2+i)i≥1 = ω(c−0 )
jc1(bN+j+2+i)i≥1 (5.14)

by (5.12). If (5.13) occurs, then

(bi) = ω(c−0 )
jc0c0c0 · · · or (bi) = ω(c−0 )

jc0c0c
−
0 · · · = ω(c−0 )

jc0c1 · · ·

by Lemma 5.1 and (5.12). If (5.14) occurs, then

(bi) = ω(c−0 )
jc1c1 · · · or (bi) = ω(c−0 )

jc1c1
+ · · · = ω(c−0 )

jc2 · · ·

by Lemma 5.1 and (5.12).

In any case described above, one can continue to implement the process in

the same way as above. Therefore, (bi) is of form (5.4) or its reflection. □
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Let (q0, q
∗
0) be a connected component of (M,m+1]\U . Suppose that α(q0) =

(a1 · · · an)∞ = (c−0 )
∞. For a word v1v2 · · · vp ∈ {0, 1, · · · ,m}p and 1 ≤ q ≤ p, let

(v1 · · · vp)|q = v1 · · · vq, if σ(v1v2 · · · vp) = v2 · · · vp.

A word u1 · · ·up ∈ {0, 1, · · · ,m}p is matched to a1 · · · an if up < m and for any

1 ≤ ℓ ≤ p,

σℓ(u1 · · ·upa1 · · · an)|n ≤ a1 · · · an, whenever u1 · · ·uℓ ̸= mℓ,

and

σℓ(u1 · · ·upa1 · · · an)|n ≥ a1 · · · an, whenever u1 · · ·uℓ ̸= 0ℓ.

Obviously, if u1 · · ·up is matched to a1 · · · an,then u1 · · ·upa1 · · · an is also matched

to a1 · · · an.

Theorem 5.4. LetM, cℓ be given in (5.1) and (5.2). If (q0, q
∗
0) is a connected

component of (M,m + 1] \ U related to c−0 = a1 · · · an with q0 > M , then (bi) ∈
U ′
q∗0

\ U ′
q0 if and only if (bi) is formed by the sequences of the form

ω(c−0 )
j(ci1ci1)

j1(ci1ci2)
l1(ci2ci2)

j2(ci2ci3)
l2 · · ·

or their reflections, where

ω ∈
∞⋃
p=1

{u1 · · ·up : u1 · · ·up is matched to a1 · · · an},

0 ≤ i1 < i2 < · · · are integers, 0 ≤ li ≤ 1, j ∈ {0,∞} and 0 ≤ ji ≤ ∞ for all

i ≥ 1.

Proof. As described in (5.2), we have

α(q0) = (a1 · · · an)∞ = (c−0 )
∞

and

α(q∗0) = c0c0
+c0c0 · · · = a1 · · · an−1a

+
n a1 · · · an · · · .

Now, take a (bi) ∈ U ′
q∗0

\ U ′
q0 .

Case I. (bi) ends with neither (c−0 )
∞ nor (c−0 )

∞.

Since (bi) /∈ U ′
q0 , there exists a smallest positive integer η such that

b1 · · · bη ̸= mη and bη+1 · · · bη+n > c−0 = a1 · · · an, (5.15)
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or

b1 · · · bη ̸= 0η and bη+1 · · · bη+n < c−0 = a1 · · · an.

Without loss of generality, we assume that (5.15) holds. Otherwise, one can con-

sider (bi) instead.

On the other hand, by Lemma 2.2, we have

bη+1 · · · bη+n · · · < c0c0
+c0c0 · · · .

Thus, combining (5.15), one can get

b1 · · · bη ̸= mη and bη+1 · · · bη+n = c0 = a1 · · · a+n .

We claim that bη < m. This is clear when η = 1. Suppose that η > 1 and bη = m.

Then, by the minimality, we have

b1 · · · bη−1 ̸= mη−1 and bηbη+1 · · · bη+n−1 ≤ c−0 = a1 · · · an.

By (5.15), this implies that a1 · · · an = mn, and so q0 = m + 1, a contradiction.

Hence, we get

bη < m and bη+1 · · · bη+n = c0 = a1 · · · a+n .

By the same argument as in Theorem 5.3, one can get (bη+i)i≥1 is of the form

(ci1ci1)
j1(ci1ci2)

l1(ci2ci2)
j2(ci2ci3)

l2 · · · .

Next, let us investigate what the prefix b1 · · · bη looks like.

By the definition of η, we can denote

b1 · · · bη = mubu+1 · · · bη,

where u < η is a nonnegative integer, bu+1, bη < m. Then, by (5.15),

σp(b1 · · · bηa1 · · · an)|n = σp(b1 · · · bηbη+1 · · · bη+n−1b
−
η+n)|n ≤ a1 · · · an,

for u < p ≤ η, and

σp(b1 · · · bηa1 · · · an)|n = σp(b1 · · · bηbη+1 · · · bη+n−1b
−
η+n)|n ≥ a1 · · · an,

for 1 ≤ p ≤ η with b1 · · · bp ̸= 0p. Therefore, b1 · · · bη is matched to a1 · · · an.
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Case II. (bi) ends with either (c−0 )
∞ or (c−0 )

∞.

Without loss of generality, we assume (bi) ends with (c−0 )
∞. Otherwise, one

only needs to consider (bi) instead. Then, (bi) can be written as

(bi) = b1 · · · bp(a1 · · · an)∞

where p is a positive integer. We claim that b1 · · · bp is matched to a1 · · · an.
Otherwise, there exists a smallest positive integer 1 ≤ ℓ ≤ p such that

σℓ(b1 · · · bpa1 · · · an)|n=σℓ(b1 · · · bpbp+1 · · · bp+n)|n>a1 · · · an and b1 · · · bℓ ̸=mℓ

or

σℓ(b1 · · · bpa1 · · · an)|n=σℓ(b1 · · · bpbp+1 · · · bp+n)|n<a1 · · · an and b1 · · · bℓ ̸=0ℓ.

Then, by the same argument as in Case I, we have that

bℓ < m and bℓ+1 · · · bℓ+n = c0 = a1 · · · an−1a
+
n

or

bℓ > 0 and bℓ+1 · · · bℓ+n = c0 = a1 · · · an−1a
+
n .

So (bi) cannot end with (c−0 )
∞ by the argument in Case I, which contradicts our

hypothesis.

The sufficiency can be checked directly. □

Recall that for each connected component (q0, q
∗
0), we have (q0, q

∗
0) ∩ V =

{qℓ : ℓ ∈ N}. If q ∈ (qℓ, qℓ+1], then α(q) ≤ α(qℓ+1) = (cℓcℓ)
∞ by Lemma 2.1, it

follows from Lemma 5.1 that the blocks wcℓ and wcℓ are forbidden in each (bi) ∈
U ′
q, where w ∈ {0, . . . ,m− 1}. Otherwise, (bi) would end with (cℓcℓ)

∞, which

leads to contradiction by Lemma 2.2. So by Theorems 5.3 and 5.4, we obtain the

following results.

Corollary 5.5. LetM, cℓ be given in (5.1) and (5.2). Let (q0, q
∗
0) = (M, qKL)

be the first connected component of (M,m+ 1] \ U related to c−0 .

(1) Suppose that q ∈ (qℓ, qℓ+1] for some ℓ ≥ 1 and m = 2k + 1 ≥ 3. Then,

(bi) ∈ U ′
q \ {0∞,m∞} if and only if (bi) is formed by sequences of the form

ω(c−0 )
j(ci1ci1)

j1(ci1ci2)
l1(ci2ci2)

j2 · · · (cin−1
cin)

ln−1(cincin)
jn
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or their reflections, where 0 ≤ i1 < i2 < · · · < in < ℓ are integers, 1 ≤ j ≤ 2,

0 ≤ li ≤ 1, 0 ≤ ji ≤ ∞ for all i ≥ 1, and

ω ∈ {1, · · · ,m− 1} ∪
∞⋃

N=1

{0Nb : 0 < b ≤ k + 1} ∪
∞⋃

N=1

{mNb : k ≤ b < m}.

(2) Suppose that q ∈ (qℓ, qℓ+1] for some ℓ ≥ 1 and m = 2k. Then, (bi) ∈
U ′
q \ {0∞,m∞} if and only if (bi) is formed by sequences of the form

ω(c−0 )
j(ci1ci1)

j1(ci1ci2)
l1(ci2ci2)

j2 · · · (cin−1
cin)

ln−1(cincin)
jn

or their reflections, where 0 ≤ i1 < i2 < · · · < in < ℓ are integers, 0 ≤ li ≤ 1,

0 ≤ j, ji ≤ ∞ for all i ≥ 1, and

ω ∈ {1, · · · ,m− 1} ∪
∞⋃

N=1

{0Nb : 0 < b ≤ k + 1} ∪
∞⋃

N=1

{mNb : k − 1 ≤ b < m}.

Corollary 5.6. LetM, cℓ be given in (5.1) and (5.2). If (q0, q
∗
0) is a connected

component of (M,m + 1] \ U related to c−0 = a1 · · · an with q0 > M , and q ∈
(qℓ, qℓ+1] for some ℓ ≥ 1. Then, (bi) ∈ U ′

q \ U ′
q0 if and only if (bi) is formed by

sequences of the form

ω(c−0 )
j(ci1ci1)

j1(ci1ci2)
l1(ci2ci2)

j2 · · · (cin−1cin)
ln−1(cincin)

jn

or their reflections, where

ω ∈
∞⋃
p=1

{u1 · · ·up : u1 · · ·up is matched to a1 · · · an},

0 ≤ i1 < i2 < · · · < in < ℓ are integers, 0 ≤ li ≤ 1, j ∈ {0,∞} and 0 ≤ ji ≤ ∞
for all i ≥ 1.

Remark. We give an example to show inequality qj+1 ≤ minB(2j)
2 (m) no

longer holds for some j ≥ 1 if m > 1. Let q ≈ 3.627 be the real root of x3 −
3x2 − 2x − 1 = 0 and m = 4, we have (04432∞)q = (112∞)q. In this case, q2 =

qf (4) ≈ 3.562 and qKL ≈ 3.667, then qf (4) < q < qKL, and hence, q ∈ (qn, qn+1)

for some n > 1. Moreover, α(qf (4)) = (31)∞, thus 4432∞, 12∞ ∈ U ′
q by Lemmas

2.1 and 2.2. Since the proof of [15, Lemma 6.1] is independent of the alphabet,

it follows from this lemma and Theorem 3.2 that q ∈ B(2n)
2 (4) ∩ (qn, qn+1).
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6. Appendix

• Page 11, calculation of Table 1:

Let

h(x) = −x6 + 4x5 − 2x4 − 4x3 + 3x2 − 6x+ 5

h′(x) = 2(−3x5 + 10x4 − 4x3 − 6x2 + 3x− 3)

h′′(x) = 2(−15x4 + 40x3 − 12x2 − 12x+ 3)

h′′′(x) = 24(−5x3 + 10x2 − 2x− 1)

h(4)(x) = 24(−15x2 + 20x− 2).

It follows from h(4)(x) < 0 for x ∈ [qf (1), 2] that h′′′(x) is strictly decreasing in

[qf (1), 2]. Since

h′′′(qf (1)) = 24(−5(qf (1))
3 + 10(qf (1))

2 − 2qf (1)− 1) = 24(3qf (1)− 6) < 0,

we have h′′′(x) < 0 for x ∈ [qf (1), 2]. So h′′(x) is strictly decreasing in [qf (1), 2].

Now, h′′(2) = 22, and so h′′(x) > 0 for x ∈ [qf (1), 2]. Note that

h′(x) = 2(−3x5 + 10x4 − 4x3 − 6x2 + 3x− 3)

= 2((x3 − 2x2 + x− 1)(−3x2 + 4x+ 7) + x2 + 4).

Thus, h′(qf (1)) = 2(qf (1))
2 + 8 > 0. Finally, we have h(2) > 0 and

h(x) = −x6 + 4x5 − 2x4 − 4x3 + 3x2 − 6x+ 5

= (x3 − 2x2 + x− 1)(−x3 + 2x2 + 3x− 1)− 2x+ 4.

Thus, h(qf (1)) = −2qf (1) + 4 > 0. Therefore, h(x) > 0 for x ∈ [qf (1), 2] by

Proposition 3.8.

• Page 13, calculation of Table 2:

Let

h(x) = −x5 + 8x4 − 16x3 + 8x2 − 10x+ 8

h′(x) = −5x4 + 32x3 − 48x2 + 16x− 10

h′′(x) = 4(−5x3 + 24x2 − 24x+ 4)

h′′′(x) = 12(−5x2 + 16x− 8).
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We have h′′′(x) < 0 for x ∈ [qf (3), 4]. Recall that qf (3) satisfies

(qf (3))
3 − 3(qf (3))

2 + qf (3)− 2 = 0. (6.1)

In fact,

−5x4 +32x3 − 48x2 +16x− 10 = (x3 − 3x2 + x− 2)(−5x+17)+ 8x2 − 11x+24.

Thus, by (6.1), we have

h′(qf (3)) = 8(qf (3))
2 − 11qf (3) + 24

= 8
(
(qf (3))

2 − 3qf (3) + 1
)
+ 13qf (3) + 16 =

16

qf (3)
+ 13qf (3) + 16 > 0.

Similarly, h′′(qf (3))>0 and h(qf (3))>0 by means of (6.1). Finally, h(4)=96>0.

• Page 14, calculation of Table 3:

Let

h(x) = −x4 + 6x3 − 3x2 − 20x+ 15

h′(x) = −4x3 + 18x2 − 6x− 20

h′′(x) = −12x2 + 36x− 6.

It follows from h′′(x) < 0 for x ∈ [qf (3), 4] that h′(x) is strictly decreasing in

[qf (3), 4]. But h
′(x)>0 in [qf (3), α) and h′(x)<0 in (α, 4] for some qf (3)<α<4.

Moreover, h(qf (3)) and h(4) are positive.

• Page 14, calculation of Table 4:

Let
g(x) = x3 − (k + 3)x2 + (k + 4)x− 2k − 3.

g′′′(x) satisfies condition (I) of Proposition 3.8 in [qf (2k+1), 2k+2], and g′(qf (2k+

1)) > 0, g′′(qf (2k + 1)) > 0 and g(2k + 2) > 0. Note that

x3 − (k + 3)x2 + (k + 4)x− 2k − 3

= (x3 − (k + 2)x2 + x− k − 1) + (−x2 + (k + 3)x− k − 2).

Recall that qf (2k + 1) is the root of x3 − (k + 2)x2 + x − k − 1 = 0. Since

k + 1 < qf (2k + 1) < k + 2, we have

g(qf (2k + 1)) = −(qf (2k + 1))2 + (k + 3)qf (2k + 1)− k − 2

= −(qf (2k + 1)− 1)(qf (2k + 1)− k − 2) > 0.
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• Page 15, calculation of Tables 5 and 6:

Let

h(x) = −x3 + (2k + 8)x2 − (10k + 16)x+ 6k + 8

h′(x) = −3x2 + 4(k + 4)x− 10k − 16.

The roots x1 < x2 of h′(x) = 0 satisfy, for k ≥ 3,

x1 =
2k + 8−

√
4k2 + 2k + 16

3
< k + 1 < qf (2k + 1)

k + 1 < x2 =
2k + 8 +

√
4k2 + 2k + 16

3
< m+ 1 = 2k + 2,

and for k = 2,

x1 = 2 < k + 1 < qf (5) < k + 2 < x2 = 6 = 2k + 2.

Hence, h(x) is strictly increasing in [k+1, x2], and strictly decreasing in [x2,m+1]

for k ≥ 3, and h(k + 1) = k3 − k2 − 5k − 1 > 0, h(m+ 1) = 4k2 + 2k > 0; h(x) is

strictly increasing in [qf (5), 6] for k = 2, and h(qf (5)) > 0.

• Page 16, calculation of Table 7:

Let

h(x) = −x4 + 2(k + 3)x3 − (4k + 12)x2 − (6k − 6)x+ 6k

h′(x) = 2(−2x3 + 3(k + 3)x2 − (4k + 12)x− 3k + 3)

h′′(x) = −4(3x2 − 3(k + 3)x+ 2k + 6)

h′′′(x) = −4(6x− 3(k + 3)).

We have h′(k+1) = 2(k3+5k2−4k−2) > 0, h′′(k+1) = 16k > 0 and h′′′(x) < 0

in [k + 1,m+ 1]. In addition,

h(k + 1) = k4 + 4k3 − 8k2 − 6k − 1 > 0

h(m+ 1) = h(2k + 2) = (8k2 − 6k − 2)(2k + 2) + 6k > 0.

• Page 17, calculation of Table 8:

Let

h(x) = −x4 + (2k + 4)x3 − (k + 2)x2 − (12k + 8)x+ 3(3k + 2)

h′(x) = 2(−2x3 + 3(k + 2)x2 − (k + 2)x− 6k − 4)
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h′′(x) = −2(6x2 − 6(k + 2)x+ k + 2)

h′′′(x) = −12(2x− (k + 2)).

Then h′′′(x) < 0 in [k + 1,m+ 1], h′′(k + 1) = −2(−5k − 4) > 0 and h′(k + 1) =

2(k3 + 5k2 − 2) > 0. Since

h(k + 1) = (k3 + 4k2 − 8k − 7)(k + 1) + 9k + 6 > 0

h(m+ 1) = (6k2 − 2k − 4)(2k + 2) + 9k + 6 > 0,

we have h(x) > 0 for x ∈ [k+1,m+1] ⊇ [qf (2k+1), 2k+2] by Proposition 3.8.

• Page 19, calculation of Table 9 for (2) case (i):

We have

g(x) = x4 − (k + 2)x3 + kx2 − (k − 2)x− k − 1

g′(x) = 4x3 − 3(k + 2)x2 + 2kx− k + 2

g′′(x) = 2(6x2 − 3(k + 2)x+ k).

The roots of g′′(x) satisfy

x1 < x2 =
3k + 6 +

√
9k2 + 12k + 36

12
< k + 1 < qf (2k)

and g′(k+1)=k3+2k2−2k>0. Hence, g(x) is strictly increasing in [qf (2k), 2k+1].

Next, we shall show that g(qf (2k)) > 0 for k ≥ 2. Recall qf (2k) = (k + 1 +√
k2 + 6k + 1)/2 is the largest real root of x2 − (k + 1)x− k = 0, and

g(x) = x4 − (k + 2)x3 + kx2 − (k − 2)x− k − 1

= (x2 − x+ k − 1)(x2 − (k + 1)x− k) + (k − 1)2(x+ 1)− 2.

Thus, g(qf (2k)) > 0 for k ≥ 2.

• Page 19, Table 9 for (2) case (ii):

We have

g(x) = x4 − (k + 3)x3 + (3k + 1)x2 − (3k − 2)x− k − 1

g′(x) = 4x3 − 3(k + 3)x2 + 2(3k + 1)x− 3k + 2

g′′(x) = 2(6x2 − 3(k + 3)x+ 3k + 1).
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The roots of g′′(x) satisfy for k ≥ 2,

x1 < x2 =
3k + 9 +

√
9k2 − 18k + 57

12
< k + 1 < qf (2k).

Thus, g′(x) > 0 in [k + 1, 2k + 1] by g′(k + 1) > 0. So, g(x) is strictly increasing

in [qf (2k), 2k + 1]. Finally,

g(x) = x4 − (k + 3)x3 + (3k + 1)x2 − (3k − 2)x− k − 1

= (x2 − 2x+ 2k − 1)(x2 − (k + 1)x− k)+(2k2 − 4k + 1)x+(2k2 − 2k − 1).

• Page 20, calculation of Tables 10 and 11:

Let

h(x) = −x4 + (2k + 4)x3 − (4k − 1)x2 − (6k + 10)x+ 6(k + 1)

h′(x) = 2(−2x3 + 3(k + 2)x2 − (4k − 1)x− 3k − 5)

h′′(x) = 2(−6x2 + 6(k + 2)x− 4k + 1).

The roots x1, x2 of h′′(x) satisfy for k ≥ 2,

x1 < k + 1 < x2 =
3k + 6 +

√
9k2 + 12k + 42

6
< k + 2.

Hence, h′(x) is strictly increasing in [k+1, x2], and strictly decreasing in [x2,m+1]

for k ≥ 2. Note that

h′(k + 1) = 2(k3 + 2k2 + 3k) > 0.

In addition, we have h′(m+ 1) = h′(2k + 1) is positive when k = 2, but negative

for k ≥ 3. This means that in [k+1,m+1] the function h(x) is strictly increasing

if k = 2, and h(x) is strictly increasing firstly, and then strictly decreasing if

k ≥ 3. However, we have for all k ≥ 2,

h(k + 1) = (k3 + k2 − 2k)(k + 1) > 0

h(m+ 1) = (4k2 + 4k − 6)(2k + 1) + 6k + 6 > 0.

• Page 20, calculation of Table 12 for (3)(i) case 2:

Let

h(x) = −x5 + (2k + 4)x4 − (4k + 2)x3 + (6k − 4)x2 − (18k − 3)x+ 12k.
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Then, h′′′(x) = 12(−5x2 + 4(k + 2)x− 2k − 1) < 0 for x ∈ [k + 1,m+ 1], and

h′′(k + 1) > 0, h′(k + 1) > 0, h(k + 1) > 0 and h(m+ 1) > 0.

Therefore, h(x) > 0 for x ∈ [k + 1,m+ 1] ⊇ [qf (2k),m+ 1] by Proposition 3.8.

• Page 20, calculation of Table 12 for (3)(ii) case 2:

Let

h(x) = −x4 + (2k + 6)x3 − (10k + 3)x2 + (6k − 8)x+ 6

h′(x) = 2(−2x3 + 3(k + 3)x2 − (10k + 3)x+ 3k − 4)

h′′(x) = 2(−6x2 + 6(k + 3)x− 10k − 3).

We have h′′′(x) = −24x+12(k+3) < 0 in [k+1,m+1]. In addition, one can check

h′′(k + 1) > 0, h′(k + 1) > 0, h(k + 1) ≥ 0 and h(m+ 1) > 0.

From Proposition 3.8, it follows that h(x) > 0 for x ∈ [qf (2k), 2k + 1]. Here,

we would like to remark that h(k + 1) = 0 for k = 2, however, h(k + 1) > 0 for

k ≥ 3. This does not affect us to get the result in [qf (2k), 2k+1] ⫋ [k+1, 2k+1].
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[13] P. Erdős, I. Joó and V. Komornik, Characterization of the unique expansions

1 =
∑

q−ni and related problems, Bull. Soc. Math. France 118 (1990), 377–390.

[14] P. Glendinning and N. Sidorov, Unique representations of real numbers in non-integer

bases, Math. Res. Lett. 8 (2001), 535–543.

[15] V. Komornik and D. Kong, Bases in which some numbers have exactly two expansions,
J. Number Theory 195 (2019), 226–268.

[16] V. Komornik, D. Kong, and W. Li, Hausdorff dimension of univoque sets and Devil’s
staircase, Adv. Math. 305 (2017), 165–196.

[17] V. Komornik and P. Loreti, Unique developments in non-integer bases, Amer. Math.

Monthly 105 (1998), 636–639.

[18] V. Komornik and P. Loreti, Subexpansions, superexpansions and uniqueness properties

in non-integer bases, Period. Math. Hungar. 44 (2002), 197–218.

[19] V. Komornik and P. Loreti, On the topological structure of univoque sets, J. Number

Theory 122 (2007), 157–183.

[20] D. Kong and W. Li, Hausdorff dimension of unique beta expansions, Nonlinearity 28
(2015), 187–209.

[21] D. Kong, W. Li, and Y. Zou, On small bases which admit points with two expansions,
J. Number Theory 173 (2017), 100–128.

[22] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11

(1960), 401–416.

[23] N. Sidorov, Expansions in non-integer bases: lower, middle and top orders, J. Number

Theory 129 (2009), 741–754.

[24] N. Sidorov and A. Vershik, Ergodic properties of the Erdős measure, the entropy of the
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