
^®"' Analysis Exchange
issN;(H47-H)a7

Vol. 32(1). 2006/2007, pp. 87-96

Wenxia Lif Department of Mathematics. East China Normal University,
Shanghai 200062, P. R. China, email: wxliOmath.ecnu.edu.en

POINTS OF INFINITE DERIVATIVE OF
CANTOR FUNCTIONS

Abstract
We consider self-similar Borel probability measures }i on a self-similar

set E with strong separation property. We prove that for any such
measure /i the derivative of its distribution function F{x) is infinite for
/i-a.e. X e E, and so the set of points at which F(x) has no derivative,
finite or infinite is of î-

1 Introduction.

Let E C R be a Borel set, let /z be a finite, atomiess Borel measure on E. For
0 < c < 00, set

•̂,.1 f r. .• fi(\x — r,X + r]) 1
Ql^ ^ <x& E : l imsup ^--^ •——^ <c\ ,

iind

Then a classical result (ref. proposition 2.2 (a) and (c) in [4]) shows that
^liQ"^) < CHHQ^) and fi{Qi) < cV'{Qi), where H^-) and V\-) are, respec-
li\(ly, the one-dimonsional Hansdorff and packing measures. Therefore, if
\>',\U dim// E and d'mipE are less than 1, then for /i-a.e. x e E,

Iim8up/i([x-r.j:-|-r])/r = -|-oo and liminf ^([a; - r.i-I-r])/r = +oo. (1)
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The first equality in (1) implies that for /i-a.e. x e E,

f, Li\x — T,x] ,. Li[x,x + r]]
max< hmsup—i^ -, limsup > — 4-cx).

I r r J

It shows that the distribution function of ft has infinite upper derivatives f.i.
almost everywhere. However, the second equality in (1) provides less informa-
tion about its lower derivatives which for x € IR equal

mm < hm lnf — , bni mf — >.
L r—0+ r r-.o+ ;• J

In the following, we consider £̂  as a class of self-similar sets, and {.i as
the self-similar measures on E. In the present paper, we show that their
distribution functions have infinite derivatives for //-a.e. x £ E.

A self-similar set E in M. is defined as the unique nonempty compact set
invariant under /ij's:

E^\Jhj(E). (2)

where hjix) = ayx -\-bj, j — 0 ,1 , . . . , r, with 0 < aj < 1 and r > 1 being a
positive integer. Without loss of generality, we shall assume that bo = 0 and
ar +br = 1. We fin-thermore assume that the images hji[0,1]), j = 0 ,1 , . . . ,r
are pairwise disjoint (i.e., E satisfies the strong separation property) and are
ordered from left to right. We remark that this assumption implies that the
h/s satisfy the open set condition with the open set (0,1), which is less general
than the usual one defined by [6]. It is well-known that dim// E = dims E =
dimpE = ^ £ (0,1) and 0 < H^iE) < V^{E) < +oo whtm- i is given by
E;=oaHl(ref. [6]).

As usual, the elements of E in (2) can be encoded by digits in H =
{ 0 , 1 , . . . , r} as follows. We write i1^ = {a = ((T(1),(T(2), . . . ) : a(j) 6 Q}
and W = U^if^*" with Q.'' = {a = (a(l),fT(2),... ,(T(fc)) : aij) £ fi}
for fc £ N. |a| is used to denote the length of the word a € 0*. For
any fT, T G Q.*. write u * T — ( a ( l ) , . . . ,i7{|o'|),r(l), . . . , r ( |T[)) , and write
T*a = ( r ( l ) , , . . ,T( | r | ) .a( l} , fT(2) , . . . ) for any r e n\ a £ Q^. ajfc =
((T(l),c7(2),...,CT(fc)) for a € f7^ and fc € N. Let Kix) = /i^(i) o ••• o
ha{k.)i^) for a e U'^ and x € R. Then for a £ Q,'^, the intervals ha*o{[O,l]),
/i^.i([0,1]) /i^*r([04]) are contained in /(.̂ ([0,1]) in this order where the
left endpoint of hcr*o{[0,1]) coincides with the left endpoint of /^^([0,1]), and
the right endpoint of ^^^^([0,1]) coincides with the right endpoint of ^o-([0,1]).
Moreover, the length of the interval hrrilO. 1]) equals A(/).̂ ([0,1])) = Ilj^i "T(J)
—: ap- for a £ O*', where A(-) denotes the one-dimensional Lebesgue measure.
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For j = 1,2,..., let Ej - U^^njh^i^, 1]). Then Ej i E as j ^ oc and
X G E can be encoded by a unique a G Q^ satisfying

Throughout this paper we sometimes denote this unique code of a; by i and
use x{k) to denote the A;-th component of x; i.e., use x = {x{l), x{2),...) for
(he code of x G E. In this way one can establish a continuous one-to-one
correspondence between i1^ and E. The endpoints of ha{[0,1]) for a u £ Q*
will be called the endpoints of E. So the set of endpoints of E is countable.
Obviously, any endpoint p of E lies in E and except for H finite number of
t erms, its coding e consists of either only the symbol 0 if e is the left endpoint
of some ho^([0,1]), or only the symbol r if e is the right endpoint of some
/v([o,i]).

Let fi be a self-similar Borel probability measure on E corresponding to the
probability vector (po^Pi^ • • • iPr), where eachp^ > 0 and X]i=oPt = 1; i.e., the
measure satisfying

ft{A) ^ ^pj^{hj\A)) for any Borel set A,
j=0

and so

€n^ keN. (3)

Obviously, /i is atomless. Consider the distribution function of such a proba-
bility measure //, also called Cantor function or a self-affine 'devil's staircase'
function,

F{x):=fM{{O,x]),xe[i)A]. (4)

Then F(x) is a uon-decreasing continuous function with F(0) < F( l ) ; that
is, constant off the support of //. Obviously, the derivative of F{x) is zero for
each X G [0,1] \ E. In particular, the set 5 of points of non-differentiability of
F{x); that is, those x where

4 = lim L , ,f,<
S s^o s \ -6

(toes not exist eitlier as a finite number or oo, has Lebesgue measure 0. The
Hausdorff dimension of 5 has been obtained (ref. [1, 2, 3, 5] for the case
Pi = af, [8] for the case pi = ai{Yl^-^o ">)~^ ^^^ [7] for the case pi > a^). Let

E* =E\ {endpoints of E},
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and
.. n r

T={tEE*: lim - V l o g ^ = Vpi( logp, - loga,)}. (5)

Then fi{T) = 1 by the law of large numbers. We decompose the set 5 into

where N'^iN~) is the set of points in E* at which the right (left) derivative of
F{x) doesn't exist, finite or infinite, 2" is a subset of the set of endpoints of E,
so at most countable. In the present paper, we prove the following theorem.

Theorem 1.1. Let (poiPi)• • • iPr) be an arbitrarily given probability vector.
Let fi and Fix) be determined by (3) and (4) respectively. Then F'ix) = +oo
for ii-a.e. x € E. So ^(5) = 0.

2 Proofs.

In this section, we first prove in the following Proposition 2.1 that Fix) has
infinite upper derivatives for /i-a.e. x E E (although it can be obtained directly
from (1)) by showing that both of the upper right and the upper left derivatives
of Fix) are infinite for each x E T. Then the set T n N+ (T n A^~) consists
of those points of T at which Fix) has finite lower right (left) derivatives by
the definition of iV+ iN^). We characterize T n Â + {TnN~) by the coding
property of its elements in Lemma 2.2. Theorem LI then is proved by showing
that niTnN+)=O

Proposition 2.1. Both the upper right and the upper left derivatives of Fix)
are infinite for each x G T.

PROOF. Let i € T with code ( = (^(1), ^2 ) , . . . ) . Then i has infinitely many
entries lying in D \ {r}. Suppose t has an entry from U \ {r} in position
j . Then t lies in the interval 'it|{j-i)([0,1]), but is not equal to the right
endpoint u of/i,;|(j_i^([0,1]), where u — (i( l ) , . . . ,t(j - l ) , r , r , . . . ) . Note that
u is also the right endpoint of ^u|j([0,1]) and that t ^ /iu|j([0,1]). Thus we
have that /,u E 'if|(_;-i)([0,1]) and (f,u] 2 ft,i|j([0.1]). Consider the slope of
the hne segment from the point P = it, Fit)) on the graph of Fix) to the
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point Q = [u, Fiu)). We have

F{u) - E{t)

/ " i-1 X " (6)

\ •' i = l

Note that by corollary 1.5 in [4],

i=0 j=0

Thus, the upper right derivative of E{x) at t is infinite by (6) and (5)
./ —» +OO. Symmetrically, the upper left derivative of E{x) aX t oi E is also
infinite. D

Lemma 2.2. Let T = {0,1, . . . ,r - 1}. Let t e E* and let z{t,n) denote the
position of the n-th occurrence of elements of F in i. Then

(I) \ ^ j ^ ^
)

(II) r n {̂  £ E* : limsup^^^ ^ ^ > 1 " 1 3 ^ ^:=oPii^<'SPi ~ log a,)} C
T'nAr+.

Symmetrically, if we replace F by {1,2 ,r}, then

(D TnN- C Tnlt £ E* : limsup^^giii > 1 - ^ ^ p , ( l o g p , - log a,) I;

(IF) Tn{t £ E* : hmsup^^ ^ ^ g ^ > 1 " IH^ ELoPiaogPi - log a,)} C

PROOF. We first prove statement (I); i.e., the lower-right derivative of E{x)
is infinite at ( G T when

limsup ' " . < 1 - -. y'piClogpi - logai). (7)
n-̂ oo Z{t,n) \0gpr f^

Considor such a point t with / ^ (((1), t(2),. . .). By (7) and (5) let fc be a
positive integer such that for n > A;

^|S^iEP.(lo8P.-'oga.) + 2,. (8)
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and

z{t,n]

zit^n)

E log (9)
i=Q

for some negative real number q. Let u be a positive number such that u
is smaller than the distance between t and [0,1] \ £'£1̂  with / = z{t,k). Let
X be a point in the segment {t,t + u). Then t,x G ft(|;([O,l]). We will see
that {F{x) - F{t))/{x - t) is large relative to k, so t is not in N'^. Let i
denote the level at which x ^ /ifji([0,1]) but a: G /'•f:|(,;_i)([0,1]). Note also that
* e /i(|(i-i)([O,l]). Thus x - t < |/if|(i_i)([O,l])| = a(-|(i_ij; also i = z{t,n)
for some n > k. Put j = ^((,n -f 1) — 1, and by v we denote the right
endpoint of /i,-|j([0,1]), which implies that v = (<(1), t{j),r,r,...) and
{t,v] O /ifi|(j+i)([0,1]). Then we have ( < t; < a; and F{v) - F{t) = (i{{t,v]) >

y 1])) = PiijPr- Therefore, we have

Ptim)F{X) - Fit) ^ Pi\jPr

x-t

Pi(7

(10)

0<m<r
,7^- n

z(t,n)

Let

Taking lo^, and by (8) and (9), we have

-^T^— l | I o g p ^ - h - - >

Since i is a non-end point, z{t,n) —* oo and the lower-right derivative of F{x)
is infinite at t by (10) and (11).

Now we turn to the proof of statement (II). Let f G T be such that

hmsup
z{t,n-\-l)



POINTS OF INFINITE DERIVATIVE OF CANTOR FUNCTIONS

Then there exists a sequence {rik} of positive integers such that for some
positive constant c,

^ ^ i E P - ( ' ° « P . - > o « « . : ) + 2c, (12)

and in addition by (5),

.. 2(tnk)

(13)

Let Xk be the left endpoint of \t|jfc)*(i(jfc+i)-(-i)([O.l])r where jk = z{t,nk) -
1. Thus we have :r;t = (f(l),... , i ( iO . 'U + 1) + 1,0,... ,0 , . . . ) . Let Ufc
be the riglit endpoint of /it|Ofc-(-i)([0'!])• Then Uk = {t{l),... ,t{jk),t{jk +
l ) , r , r , r , . . . ) . Thus, iuk,Xk) is the gap on the right side of /IIKJ^+IJCIO, 1])
a n d A([ut,a:A.)) ^ x*. - ^^k = a^^j^PtUk + i) w h e r e b y 0j. j = 0,1,.,. ,r - I,
we denote length of the gap between images hj{[0.1]) and /(:j+i([0,1]). Note
that [t,Xk] 5 [uk,Xk] and fi{{t,Xk]) = fi{{t,Uk]) + fi{{uk,Xk]) = f^{{t,Uk]) <
M^-|(^('.n, + i)-i)([0'l]))s"icei|(2(^,7ifc + l ) - l ) -Ufr |{2(f ,n ; t + l ) - l ) . There-
fore we have

F{Xk) - F{t) - fi{{t,Xk]) <

and

Let /3* ~ niinj£|o 1 ^-l} 0j and a* = maxjg{o,i,...,r} «j- Then we obtain, by
a similar reasoning which led to (10),

(14)

Let

tJi
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Taking logs and using (12) and (13), we obtain

logQ ^ ( —77 : 1) logpr + —r. r ^ log - ^ < clogpr < 0. (15)

From (14) and (15) it follows that the lower-right derivative of Fix) at t is
finite by letting k —> OG. Finally, (I') and (IF) can be proved similarly. D

PROOF OF THEOREM 1.1. Since fi is atomless, we only need to prove that

fiiN'^f]T) = n{N~C\T) = 0. Below we prove/x(/V+n^) =0; ^ ( ^ ^ 0 ^ ) =

0 can be obtained in the same way. By lemma 2.2 (I), we have A'̂ "'" f]T C M

where

t ET : limsup —j-—^— > 1 - , y^Pt(logPi - loga,) \ .

Now fix a positive real number

1
. (16)

i=o

Choose n* large enough to assure that when k > n

2 log A- Q 1 (i
. < 2

Now for each k > n*, we can choose Uk > k such that

1 ^

and

Then we have

-f <f
a
4'

T ^ ^ w ^ Ẑ̂ '̂d̂ sP̂  i«g«O | , (18)
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by (18), (19) and the second inequality in (17). Let

Jk = {x E^ E : x{i) = r for k < i < Uk}, k > n*,

and

oo

m=n' k>m

Now for eac:h point t e M, there exists a strictly increasing sequence (n,-,i €
N} of positive integers such that z{t, ui) > n* and

z{t,ni + 1) , 1 Y^ -. . , Q

'"i) logPr£^ ' 4
(21)

i = 0

Taking ki = z{t, ui) and using (21) as well as the second inequality in (20), we
have z{t,ni + 1) > UA:,, which imphes that t 6 Jk,- Thus we have M C J°^,
Note that for k >n* and by the first inequality in (17), (18) and (16),

A:

Therefore for any m > n*.

1 ^ ^ i.e., P - - < k-\ (22)

n T) < /.(M) <,^{\JJk)<Y. Pr'^' ^ E "̂
k>m k>m k>fn

by (22). Finally, we obtain /f(A''+ fl T) = 0 by letting m -*• oo. D
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