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Abstract
Let �β be the middle-(1−2β) Cantor set with β ∈ (1/3, 1/2). We give all real
numbers t with unique {−1, 0, 1}-code such that the intersections �β ∩ (�β + t)

are self-similar sets. For a given β ∈ (1/3, 1/2), a criterion is obtained to
check whether or not a t ∈ [−1, 1] has the unique {−1, 0, 1}-code from both
geometric and algebraic views.

Mathematics Subject Classification: 28A80, 28A78

1. Introduction

Let β ∈ (0, 1/2) and Fk(x) = βx + k(1 − β), k = −1, 0, 1. The middle-(1 − 2β) Cantor set
�β ⊂ [0, 1] is a straightforward generalization of the classical middle third Cantor set which
is defined as the invariant nonempty compact set under maps F0 and F1:

�β = F0(�β) ∩ F1(�β). (1)

In this case �β is called a self-similar set generated by the iterated function
system {F0(x), F1(x)}.

In general, a nonempty compact set P ⊆ R is said to be a self-similar set if there exists
a finite collection of linear mappings fj (x) = rj x + bj with 0 < |rj | < 1, bj ∈ R for
j = 1, . . . , N such that

P =
N⋃

j=1

fj (P ).

The collection {fj (x)}Nj=1, also called an iterated function system (IFS), is said to satisfy
the strong separation condition (SSC) if fj (P ), 1 � j � N are pairwise disjoint, and to
satisfy the open set condition (OSC) if there exists a nonempty bounded open set O such that
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j=1 fj (O) ⊆ O with disjoint union on the left side. One can refer to [3, 4] for some more

properties of self-similar sets. Clearly, {F0(x), F1(x)} satisfy the SSC and OSC. �1/3 is the
classical middle third Cantor set.

In the past two decades, intersection of Cantor sets has been the subject of several studies
[1, 5, 6–11, 12, 14–16]. An algebraic approach was used in [11] to determine the Hausdorff
dimension of �β ∩ (�β + t) with β ∈ (0, 1/3] and t ∈ �β − �β . When β ∈ (1/3, 1/2) the
intersections �β ∩ (�β + t) present a very complicated geometric structure and an algorithm
was given in [16] for calculating their Hausdorff dimensions for some β ∈ (1/3, 1/2).

Recently, Deng et al [2] obtained a delicate description on the structure of �1/3 ∩(�1/3 + t),
for t ∈ �1/3 − �1/3 = [−1, 1]. More exactly, they gave a necessary and sufficient
characterization for those t such that the corresponding �1/3 ∩ (�1/3 + t) are self-similar sets.
Motivated by [2], Li et al [13] extended the results in [2] to homogeneous symmetric Cantor
sets E which are generated by a finite collection of contraction similitudes with same ratios.
Approaches in [2, 13] greatly depend on the property that �1/3 − �1/3 (or E − E) satisfies
the OSC.

It is well known that points in �β and �β −�β (easy to check that the compact set �β −�β

is invariant under the collection {F−1, F0, F1}) can be encoded by digits from {0, 1} and from
{−1, 0, 1}, respectively. This is done by the so-called coding mapping � : {0, 1}N → �β (or
{−1, 0, 1}N → �β − �β):

�(J ) =
∞∑
i=1

jkβ
k−1(1 − β),

for J = (jk)
∞
k=1 ∈ {0, 1}N (or J = (jk)

∞
k=1 ∈ {−1, 0, 1}N). For each x ∈ �β (or x ∈ �β −�β),

the J ∈ {0, 1}N (or J ∈ {−1, 0, 1}N) satisfying �(J ) = x is called a {0, 1}-code (or a
{−1, 0, 1}-code) of x. Obviously, each x ∈ �β has a unique {0, 1}-code. However, the
{−1, 0, 1}-code of x ∈ �β − �β may not be unique. In fact, about codes of points in �β − �β

we have that

(I) each point of �β − �β has a unique {−1, 0, 1}-code when β ∈ (0, 1/3);
(II) all but a countable number of points of �1/3 − �1/3 = [−1, 1] have a unique {−1, 0, 1}-

code, and each exceptional point has two {−1, 0, 1}-codes;
(III) when β ∈ (1/3, 1/2), �β −�β = [−1, 1] and {F−1, F0, F1} does not satisfy the OSC and

so a point of �β − �β may have an infinite number of {−1, 0, 1}−codes.

For β ∈ (0, 1/3), �β ∩ (�β + t) can be algebraically characterized as (cf [2, 11])

�β ∩ (�β + t) =
{ ∞∑

i=1

xiβ
i−1(1 − β) : xi ∈ {0, 1} ∩ ({0, 1} + ti)

}

= �

( ∞∏
i=1

{0, 1} ∩ ({0, 1} + ti)

)
.

(2)

where (ti)
∞
i=1 ∈ {−1, 0, 1}N is the unique {−1, 0, 1}-code of t ∈ �β − �β .

For β = 1/3, �β ∩ (�β + t) is either of form (2) when t has a unique {−1, 0, 1}-code or a
finite set when t has two {−1, 0, 1}-codes.

When β ∈ (1/3, 1/2) one can check that for each t ∈ �β − �β = [−1, 1]

�β ∩ (�β + t) =
⋃

t̃

�

( ∞∏
k=1

Dk,t̃

)
, (3)
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where the union is taken over all {−1, 0, 1}-codes of t , and Dk,t̃ = {0, 1} ∩ ({0, 1} + tk) for an
appointed {−1, 0, 1}-code t̃ = (tk)

∞
k=1 of t . Thus �β ∩ (�β + t) is of the form (2) if and only

if t has a unique {−1, 0, 1}-code.
To state results in this paper, we need some notations. Let {0, 1}∗ = ⋃

n�0{0, 1}n be
the set of all finite words, where {0, 1}0 contains only empty word ∅. For I ∈ {0, 1}m and
J ∈ {0, 1}n, let IJ ∈ {0, 1}m+n be the concatenation of I and J . For I ∈ {0, 1}∗, let |I |
denote its length and Ī := III · · · ∈ {0, 1}N, the infinite repeating of I . K ∈ {0, 1}N is called
strong p-periodic (or simply, strong periodic) if there exist two words I, J ∈ {0, 1}p such that
K = I J̄ and I � J , where I � J means in � jn, 1 � n � p for I = i1 · · · ip, J = j1 · · · jp.
For a J = (ji)

∞
i=1 ∈ {0, 1}N and k ∈ N, let J |k = (ji)

k
i=1 ∈ {0, 1}k . For I, J ∈ {0, 1}N, we

say I � J if I |n � J |n for all n ∈ N.
For J = (ji)

k
i=1 ∈ {0, 1}k , denote

FJ = Fj1 ◦ Fj2 ◦ · · · ◦ Fjk

with F∅ = I , the identity map on R. Thus (recall �β is defined as in (1))

�β =
∞⋂

k=1

⋃
J∈{0,1}k

FJ ([0, 1]).

Let S0(x) = βx + t (1 − β), S1(x) = βx + (t + 1)(1 − β) and SJ = Sj1 ◦ Sj2 ◦ · · · ◦ Sjk
for

J = (ji)
k
i=1 ∈ {0, 1}k . Similarly S∅ denotes the identity map. Then

SJ (t) = FJ (0) + t for J ∈ {0, 1}∗
and

�β + t = S0(�β + t) ∪ S1(�β + t) =
∞⋂

k=1

⋃
J∈{0,1}k

SJ ([t, 1 + t]).

We call the sets FJ ([0, 1]), SJ ([t, 1 + t]) for J ∈ {0, 1}k the k-level components of �β and
�β + t , respectively. Clearly, [0, 1], [t, 1 + t] are the 0-level components. For J ∈ {0, 1}k with
k � 0, the neighbourhood of FJ ([0, 1]) with respect to the k-level components of �β + t is
defined as

N�β,k(FJ ([0, 1])) = {SI ([t, 1 + t]) : I ∈ {0, 1}k, FJ ([0, 1]) ∩ SI ([t, 1 + t]) �= ∅}.
Note that for some FJ ([0, 1]) with J ∈ {0, 1}k , N�β,k(FJ ([0, 1])) may be empty. So these

components do not meet any k-level components of �β + t and then they have no contribution
to �β ∩ (�β + t). Let

�k = {J ∈ {0, 1}k : N�β,k(FJ ([0, 1])) �= ∅}.
One can readily check that

�β ∩ (�β + t) =
∞⋂

k=1

⋃
J∈�k

FJ ([0, 1]).

Thus, �k with k ∈ N ∪ {0} geometrically characterizes �β ∩ (�β + t). Let

M�β,k = {FJ ([0, 1]) : J ∈ �k} and M�β
=


FJ ([0, 1]) : J ∈

⋃
k�0

�k


 .

A graph with vertex set M�β
is constructed as follows. For I ∈ �k and J ∈ �k+1, if there

exists an � ∈ {0, 1} such that J = I�, then we connect a directed edge � from FI ([0, 1]) to
FJ ([0, 1]). In this case, FI ([0, 1]) is called the parent of FJ ([0, 1]) and FJ ([0, 1]) an offspring
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of FI ([0, 1]). Clearly each k-level component in M�β,k(k � 1) of �β has only one parent, but
may have no offspring. The reduced graph is then constructed by removing those vertexes
having no offspring and the edges going to them. The reduced graph determines a subset �

of {0, 1}N,

� = {J = (ji)
∞
i=1 ∈ {0, 1}N : J |k ∈ �k for any k ∈ N}. (4)

Therefore �β ∩ (�β + t) = �(�).
Let #A denote the cardinality of set A. The following proposition comes from [16] which

describes the geometric criterion for �β ∩ (�β + t) to be of the form (2), or equivalently, for t

to have a unique {−1, 0, 1}-code.

Proposition 1.1 ( [16], theorem 3.5). Let � be defined as in (4). Let β ∈ (1/3, 1/2). If
#N�β,k(FJ ([0, 1])) � 1 for all J ∈ {0, 1}k , k ∈ N ∪ {0}, then

� =
∞∏
i=1

Di,

where ∅ �= Di ⊆ {0, 1} consists of edges connecting a parent in M�β,i−1 to its offspring in
M�β,i in the reduced graph.

Assume that �β ∩ (�β + t) = �(
∏∞

i=1 Di). From (3) it follows that t has the unique
{−1, 0, 1}-code (ti)

∞
i=1 and so Di = {0, 1} ∩ ({0, 1} + ti). We will study its translation. Let

� = �β ∩ (�β + t) − γ = �

( ∞∏
i=1

(Di − γi)

)
, (5)

where γ = min{x|x ∈ �β ∩ (�β + t)} = ∑∞
k=1 γkβ

k−1(1−β) with γk = min{z : z ∈ Dk}. Let

γ ∗ = (γ ∗
k )∞k=1 where γ ∗

k = max{z : z ∈ Dk − γk} = max
z∈Dk

z − min
z∈Dk

z.

Then γ ∗
k = 1 − |tk| and

∞∏
i=1

(Di − γi) = {(xi)
∞
i=1 ∈ {0, 1}N : xk � γ ∗

k for all k ∈ N}. (6)

The set � in (5) can be algebraically dealt with more advantageously than �β ∩ (�β + t)

since � has the following properties.

(P1) 0 ∈ �. If
∑∞

k=1 xkβ
k−1(1 − β) ∈ �, then

∑∞
k=1 ykβ

k−1(1 − β) ∈ � for all
(yk)

∞
k=1 � (xk)

∞
k=1.

(P2) � is centrally symmetric, i.e. � = �(γ ∗) − �. Thus, when � is generated by an IFS,
say fi(x) = rix + bi, i = 1, 2, . . . , N , one can require all ri > 0. Otherwise, one can replace
fi(x) by f ∗

i (x) = −rix + ri�(γ ∗) + bi if ri < 0. This can be seen by (cf [2, 13])

f ∗
i (�) = −ri� + ri�(γ ∗) + bi = ri(�(γ ∗) − �) + bi = ri� + bi = fi(�).

Furthermore, one can assume 0 = b1 � b2 � · · · � bN since 0 ∈ �.
The first theorem in this paper is to answer when the intersections �β ∩ (�β + t) have

self-similar structure for the case of t having a unique {−1, 0, 1}-code. Its proof is done along
with the idea in [2]. The properties (P1) and (P2) play a very important role. As to the case
of t having multiple {−1, 0, 1}-codes, �β ∩ (�β + t) is of the form (3) and seems not to be a
self-similar set. But we cannot prove it.

Theorem 1.2. Let β ∈ (1/3, 1/2). Suppose that t ∈ (�β − �β) = [−1, 1] has a unique
{−1, 0, 1}-code (tk)

∞
k=1. Then �β ∩ (�β + t) is a self-similar set if and only if (1 − |tk|)∞k=1 is

strong periodic.
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For a β ∈ (1/3, 1/2) we denote by Bβ the set of t ∈ [−1, 1] which have a unique
{−1, 0, 1}-code. Clearly, for all β ∈ (1/3, 1/2), Bβ contains −1, 0 and 1. The following
theorem gives a way to check whether or not a t belongs to Bβ from both geometric and
algebraic views.

Theorem 1.3. Let β ∈ (1/3, 1/2) and t ∈ �β − �β = [−1, 1]. Then the following three
statements are equivalent.

(i) #N�β,k(FJ ([0, 1])) � 1 for all k ∈ N ∪ {0} and all J ∈ {0, 1}k;
(ii) t has a unique {−1, 0, 1}-code;

(iii) there exists a {−1, 0, 1}-code (ti)
∞
i=1 of t such that for each k ∈ N



∣∣∣∣∣ykβ
k−1(1 − β) −

∞∑
n=k

tnβ
n−1(1 − β)

∣∣∣∣∣ > βk, tk = 0,

ykβ
k−1(1 − β) −

∞∑
n=k

tnβ
n−1(1 − β) < −βk, tk = 1,

ykβ
k−1(1 − β) −

∞∑
n=k

tnβ
n−1(1 − β) > βk, tk = −1,

(7)

where yk = ±1 if tk = 0 and yk = 0 if tk = ±1.

We now apply theorems 1.2 and 1.3 for a simple example. Some more complicated
examples can be constructed in a similar way.

Example 1.4. �β ∩ (�β + t) are self-similar sets for all t ∈ {±(1 − β)β�, ±(1 − β)(1 + β�) :
� ∈ N} and β ∈ (1/3, (3 − √

5)/2).

Proof. When t = ±(1 − β)β� with � ∈ N, we first check that t satisfies (7) (so t ∈ Bβ).
For 1 � k � �, (7) is equivalent to

(1 − β)(1 − β�−k+1) > β,

which is true since (1 − β)(1 − β�−k+1) � (1 − β)2 > β for β ∈ (1/3, (3 − √
5)/2).

For k � � + 1, (7) is equivalent to (1 − β)βk−1 > βk which is true. Thus, the desired
results follow just from theorem 1.2.

When t = ±(1 − β)(1 + β�) with � ∈ N, one can also check that they satisfy (7) and so
lead to the desired results by theorem 1.2. �

The rest of this paper is organized as follows. We prove theorem 1.3 in section 2. For the
reader’s convenience the proof of proposition 1.1 is also included in this section. The proof of
theorem 1.2 is arranged in section 3.

2. Proofs of proposition 1.1 and theorem 1.3

To prove proposition 1.1, we now establish an equivalence relation for members in M�β
.

Since the k-level components of �β and �β + t are intervals of length βk , they are completely
determined by their left-end points. For I = (i�)

k
�=1 ∈ {0, 1}k , the endpoints of intervals

FI ([0, 1]) and SI ([t, t + 1]) are

FI (0) = Fi1 ◦ · · · ◦ Fik (0) =
k∑

j=1

ij (1 − β)βj−1
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and

SI (t) = Si1 ◦ · · · ◦ Sik (t) =
k∑

j=1

ij (1 − β)βj−1 + t.

For τ ∈ M�β,k , let

R�β,k(τ ) = {β−k(δ̂ − τ̂ ) : δ ∈ N�β,k(τ )},
where δ̂, τ̂ are the left-end points of δ, τ , respectively. τ1 and τ2 are said to be equivalent (or
of the same type), denoted by τ1 ∼ τ2, if R�β,k1(τ1) = R�β,k2(τ2). Zou et al [16] obtained the
following results (see [16, lemma 3.1]), which will be used in the proof of proposition 1.1.

Lemma 2.1. Let I ∈ �k1 and J ∈ �k2 . If FI ([0, 1]) ∼ FJ ([0, 1]), then for � ∈ {0, 1},
I� ∈ �k1+1 if and only if J� ∈ �k2+1. Further, FI�([0, 1]) ∼ FJ�([0, 1]).

Proof of proposition 1.1. First let Dk denote the union of edges connecting a parent belonging
to M�β,k−1 to its offspring belonging to M�β,k . We begin with k = 1. Then there are two
possible cases.

Case 1. #N�β,1(F0([0, 1])) = #N�β,1(F1([0, 1])) = 1. In this case, N�β,1(F0([0, 1])) =
S0([t, t + 1]) and N�β,1(F1([0, 1])) = S1([t, t + 1]), implying F0([0, 1]) ∼ F1([0, 1]).

Case 2. There exists a unique j ∈ {0, 1} such that #N�β,1(Fj ([0, 1])) = 1 and then
Fj ([0, 1]) ∼ Fj ([0, 1]).

Thus, for both cases described above we have that all FI ([0, 1]), I ∈ �1 := D1 are
equivalent and ∅ �= D1 ⊆ {0, 1}.

Now suppose that all FI ([0, 1]), I ∈ �k are equivalent and �k = ∏k
i=1 Di , where

Di = {0, 1} ⊆ {0, 1}. Then for each FI ([0, 1]) with I ∈ �k , either it has only one offspring
in M�β,k+1 and so FI0 ∼ FI0 (or FI1 ∼ FI1) or it has two offspring in M�β,k+1 and these two
offspring are of the same type, i.e. FI0 ∼ FI1, by the same argument as that in case 1. On
the other hand, for I, J ∈ �k lemma 2.1 shows that they connect their offspring in the same
way and FIi([0, 1]) ∼ FJi([0, 1]) with i ∈ {0, 1}. Therefore, we obtain that for each k ∈ N,
FI ([0, 1]), I ∈ �k are of the same type and �k = ∏k

i=1 Di with Di ⊆ {0, 1}. By the definition
of �, we have � = ∏∞

i=1 Di . Finally, �β ∩ (�β + t) �= ∅ implies � �= ∅ and so each Dk is not
empty. �

Now we are ready to give the proof of theorem 1.3.

Proof of theorem 1.3.

(i) �⇒ (ii) and (i) �⇒ (iii). By proposition 1.1 we have

�β ∩ (�β + t) = �

( ∞∏
�=1

D�

)
with ∅ �= D� ⊆ {0, 1}.

Thus, the {−1, 0, 1}-code of t is unique by (3). We denote by (tk)
∞
k=1 the unique {−1, 0, 1}-code

of t . Then

tk =




0 if Dk = {0, 1},
−1 if Dk = {0},
1 if Dk = {1}.
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For each x ∈ �β ∩ (�β + t) there exists unique x∗ ∈ �β , called the accompanying point
of x, such that x = x∗ + t . Let J = (jk)

∞
k=1 ∈ ∏∞

�=1 D� and J ∗ = (j ∗
k )∞k=1 ∈ {0, 1}N be the

codes of x and x∗, respectively. The code J ∗ is called the accompanying code of J . Then

(j ∗
k )∞k=1 = (jk)

∞
k=1 − (tk)

∞
k=1 = (jk − tk)

∞
k=1,

since (tk)
∞
k=1 is the unique {−1, 0, 1}-code of t . In addition, FJ |k([0, 1])∩SJ ∗|k([t, t + 1]) �= ∅

for all k ∈ N ∪ {0}.
In the following we verify that (tk)

∞
k=1 satisfies (7). Let J = (j�)

∞
�=1 ∈ ∏∞

�=1 D�

with J ∗ = (j ∗
� )∞�=1 ∈ {0, 1}N its accompanying code. Let L ∈ {0, 1}k be such that

L|(k − 1) = J ∗|(k − 1) and L �= J ∗|k. Then

FJ |k([0, 1]) ∩ SL([t, t + 1]) = FJ |k([0, 1]) ∩ (FL([0, 1] + t) = ∅ for all k ∈ N, (8)

where we have used the fact that SL([t, t + 1]) = FL([0, 1]) + t . Thus the distance between the
left endpoint FJ |k(0) of FJ |k([0, 1]) and the left endpoint FL(0) + t of SL([t, t + 1]) is bigger
than βk .

Case 1. Suppose tk = 1. Then Dk = {1} and so jk = 1 and j ∗
k = 0. Thus, L = (J ∗|(k − 1))1.

Note that FJ |k([0, 1]) ∩ SL([t, t + 1]) = ∅ (by (8)) and FJ |k([0, 1]) ∩ SJ ∗|k([t, t + 1]) �= ∅.
Thus SL([t, t + 1]) lies on the right side of FJ |k([0, 1]). So (at this moment yk = 0 for tk = 1)

ykβ
k−1(1 − β) −

∞∑
n=k

tnβ
n−1(1 − β)

=
k−1∑
n=1

tnβ
n−1(1 − β) + ykβ

k−1(1 − β) −
∞∑

n=1

tnβ
n−1(1 − β)

=
k−1∑
n=1

(jn − j ∗
n )βn−1(1 − β) + (1 − 1)βk−1(1 − β) −

∞∑
n=1

tnβ
n−1(1 − β)

= FJ |k(0) − FL(0) − t = FJ |k(0) − SL(t) < −βk,

which leads to (7).

Case 2. Suppose tk = −1. Then Dk = {0} and so jk = 0 and j ∗
k = 1. One can check (7) by

the same argument as above.

Case 3. Suppose tk = 0. Then Dk = {0, 1} and so jk = 0 or 1 and, correspondingly, j ∗
k = 0

or 1, respectively. Therefore, by the same argument as those in case 1{
FJ |k(0) − SL(t) < −βk if jk = 0,

FJ |k(0) − SL(t) > βk if jk = 1.

So the first inequality in (7) is verified where yk = 1 corresponds to jk = 1 and yk = −1
corresponds to jk = 0.

(iii) �⇒ (i). Clearly, N�β,0(F∅([0, 1])) = {[t, t + 1]}. Let

D� = {0, 1} ∩ ({0, 1} + t�) for � ∈ N.

Below we will prove by induction that for any k ∈ N and J ∈ {0, 1}k

N�β,k(FJ ([0, 1])) =




{SJ−(ti )
k
i=1

([t, t + 1])} if J ∈
k∏

i=1

Di,

∅ otherwise.

(9)
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When k = 1, formula (7) becomes


t > β if t1 = 1,

t < −β if t1 = −1,

|1 − β − t | > β and |β − 1 − t | > β if t1 = 0.

Thus, when t1 = 1 we have

N�β,1(F0([0, 1])) = ∅ and N�β,1(F1([0, 1])) = {S0([t, t + 1])}.
When t1 = −1 we have

N�β,1(F0([0, 1])) = {S1([t, t + 1])} and N�β,1(F1([0, 1])) = ∅.

When t1 = 0 we have 2β − 1 < t < 1 − 2β and so

N�β,1(F0([0, 1])) = {S0([t, t + 1])} and N�β,1(F1([0, 1])) = {S1([t, t + 1])}.
Thus (9) is true when k = 1.

Suppose that (9) is true for k = n. Arbitrarily fix a J = (ji)
n+1
i=1 ∈ {0, 1}n+1.

Case 1. J |n /∈ ∏n
i=1 Di . Then N�β,n(FJ |n([0, 1])) = ∅ by inductive hypothesis and so

N�β,n+1(FJ ([0, 1])) = ∅.

Case 2. J |n ∈ ∏n
i=1 Di (and so J |n − (ti)

n
i=1 ∈ {0, 1}n). Let L = (�i)

n+1
i=1 be such that

L|n = (�i)
n
i=1 = J |n − (ti)

n
i=1 and �n+1 = jn+1 − yn+1.

(A) Suppose tn+1 = 1. Then (7) shows that
n+1∑
i=1

jiβ
i−1(1 − β) −

(
n∑

i=1

(ji − ti)β
i−1(1 − β) + (jn+1 − yn+1)β

n(1 − β) + t

)
< −βn+1.

(10)

At this moment, we have

Dn+1 = {1}, yn+1 = 0, �n+1 = jn+1 and so L ∈ {0, 1}n+1.

From (10) it follows that

FJ (0) − SL(t) < −βn+1. (11)

By taking jn+1 = 0 we obtain that

N�β,n+1(F(J |n)0([0, 1])) = ∅.

Taking jn+1 = 1, (11) gives

F(J |n)1([0, 1]) ∩ S(J |n−(ti )
n
i=1)1([t, t + 1]) = ∅.

By inductive hypothesis we know N�β,n(FJ |n([0, 1])) �= ∅, which implies that

N�β,n+1(F(J |n)1([0, 1])) = {S(J |n−(ti )
n
i=1)0([t, t + 1])},

where the condition 1/3 < β < 1/2 is used. Thus, (9) is true when k = n + 1 and tn+1 = 1.

(B) Suppose tn+1 = −1. (9) can be verified by the same argument as above.

(C) Suppose tn+1 = 0. Then (7) shows that


∣∣∣∣∣
n+1∑
i=1

jiβ
i−1(1 − β) −

(
n∑

i=1

(ji − ti)β
i−1(1 − β) + (jn+1 − 1)βn(1 − β) + t

)∣∣∣∣∣ > βn+1,

∣∣∣∣∣
n+1∑
i=1

jiβ
i−1(1 − β) −

(
n∑

i=1

(ji − ti)β
i−1(1 − β) + (jn+1 + 1)βn(1 − β) + t

)∣∣∣∣∣ > βn+1.
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This implies that

F(J |n)1([0, 1]) ∩ S(J |n−(ti )
n
i=1)0([t, t + 1]) = and

F(J |n)0([0, 1]) ∩ S(J |n−(ti )
n
i=1)1([t, t + 1]) = ∅.

Therefore, by inductive hypothesis N�β,n(FJ |n([0, 1])) �= ∅ and 1/3 < β < 1/2 we have

N�β,n+1(F(J |n)0([0, 1])) = {S(J |n−(ti )
n
i=1)0([t, t + 1])}

and

N�β,n+1(F(J |n)1([0, 1])) = {S(J |n−(ti )
n
i=1)1([t, t + 1])},

i.e. (9) is true when k = n + 1 and tn+1 = 0.

(ii) �⇒ (i). Suppose that N�β,k(FJ ([0, 1])) = {SI0([t, t + 1]), SI1([t, t + 1])} for some
J = (ji)

k
i=1 ∈ {0, 1}k, I ∈ {0, 1}k−1 with k ∈ N. Let j̄k = 1 − jk and J̄ = (ji)

k−1
i=1 j̄k .

Then #N�β,k(FJ̄ ([0, 1])) = 1. Without loss of generality, assume jk = 0. Then

N�β,k(FJ̄ ([0, 1])) = {SI1([t, t + 1])}.
Note that �β −�β = [−1, 1] means that �β ∩ (�β + t) �= ∅ for any t ∈ [−1, 1]. Thus we have

FJ ([0, 1]) ∩ SI1([t, t + 1]) ∩ �β ∩ (�β + t) �= ∅
and

FJ̄ ([0, 1]) ∩ SI1([t, t + 1]) ∩ �β ∩ (�β + t) �= ∅.

Take x ∈ FJ ([0, 1])∩SI1([t, t+1])∩�β ∩(�β +t), y ∈ FJ̄ ([0, 1])∩SI1([t, t+1])∩�β ∩(�β +t).
Let x̃ = (x�)

∞
�=1, ỹ = (y�)

∞
�=1 be the unique {0, 1}-code of x and y, respectively. By

x∗ = �((x∗
� )∞�=1), y

∗ = �((y∗
� )∞�=1) we denote the accompanying points of x and y,

respectively. Thus

x = x∗ + t, xk = 0, x∗
k = 1 and y = y∗ + t, yk = 1, y∗

k = 1.

Therefore, t has two distinct {−1, 0, 1}-codes. �

3. Proof of theorem 1.2

In this section, we give the proof of theorem 1.2. The following lemma (cf [2] [13, lemma 2.2])
gives a description of a strong periodic infinite string.

Lemma 3.1. Let (xk)
∞
k=1 ∈ {0, 1}N. If there exists a positive integer q such that xk+q � xk for

all k ∈ N, then (xk)
∞
k=1 is strong periodic.

Lemma 3.2. Let � be defined as in (5). If � is a self-similar set, then the γ ∗ is strong periodic.

Proof. When � is a singleton, we have γ ∗ = 0̄ and so γ ∗ is strong periodic. Suppose that �

is not a singleton. Let � be generated by an IFS{fi(x) = rix + bi}Ni=1 where ri ∈ (0, 1) and
0 = b1 � b2 � · · · � bN . Take m ∈ N ∪ {0} such that βm(1 − β) ∈ �. Then

� � f1(β
m(1 − β)) = βmr1(1 − β) =

∞∑
k=1

xkβ
k−1(1 − β) with xk � γ ∗

k , k ∈ N.

Since r1 < 1, we have xk = 0 if k � m + 1. Thus there exists a positive integer q such that

r1 = βq +
∑
i>q

xiβ
i, xi ∈ {0, 1}.
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If k ∈ N is such that γ ∗
k = 1, then βk−1(1 − β) ∈ � by (6) and so

f1(β
k−1(1 − β)) = βq+k−1(1 − β) +

∑
i>q

xiβ
i+k−1(1 − β) ∈ �,

implying γ ∗
k+q = 1. Hence γ ∗

k+q � γ ∗
k for all k. The desired result is then obtained by

lemma 3.1. �

Proof of theorem 1.2. The necessity part follows directly from lemma 3.2 since �β ∩(�β +t) =
� + γ .

To prove sufficiency, we restate an alternative representation of a self-similar set. Let
D = {d1, d2, . . . , dN } be a finite set of real numbers. Let fi(x) = r(x + di), 1 � i � N

and |r| < 1. Then the self-similar set, denoted by T (r, D), generated by IFS (fi)
N
i=1 can be

represented as

T (r, D) =
{ ∞∑

k=1

dkr
k : dk ∈ D

}
.

Since γ ∗ is strong periodic, it can be written as γ ∗ = II + J ∈ {0, 1}N for some p ∈ N and
some I = i1i2 . . . ip, J = j1j2 . . . jp ∈ {0, 1}p satisfying I+J := (i1+j1)(i2+j2) . . . (ip+jp) ∈
{0, 1}p. Take a finite set of real numbers

D =
{

p∑
k=1

σkβ
k−1−p(1 − β) +

p∑
k=1

τkβ
k−1(1 − β) : σ1 . . . σp � I, τ1 . . . τp � J

}

=
{

β−p

2p∑
k=1

σkβ
k−1(1 − β) : σ1 . . . σpσp+1 . . . σ2p � IJ

}
.

(12)

We shall show � = T (βp, D). Now arbitrarily fix an x ∈ � with {0, 1}-code x̃ = x1x2 . . ..
Then for each k ∈ N, xkp+1xkp+2 . . . xkp+p can be uniquely represented as

xkp+1xkp+2 · · · xkp+p = ykp+1ykp+2 · · · ykp+p + zkp+1zkp+2 · · · zkp+p,

where ykp+1ykp+2 . . . ykp+p � I and zkp+1zkp+2 . . . zkp+p � J . Hence (note that x1x2 . . . xp � I )

x =
∞∑

k=1

xkβ
k−1(1 − β) = βp

p∑
k=1

xkβ
k−1−p(1 − β) + β2p

2p∑
k=p+1

(yk + zk)β
k−1−2p(1 − β)

+ β3p

3p∑
k=2p+1

(yk + zk)β
k−1−3p(1 − β) + · · ·

= βp


 p∑

k=1

xkβ
k−1−p(1 − β) +

2p∑
k=p+1

zkβ
k−1−p(1 − β)




+ β2p


 2p∑

k=p+1

ykβ
k−1−2p(1 − β) +

3p∑
k=2p+1

zkβ
k−1−2p(1 − β)


 + · · · ∈ T (βp, D).

Thus, � ⊆ T (βp, D). The inverse inclusion is left for the readers. �
From the above proof it follows that if γ ∗ = II + J ∈ {0, 1}N with I = i1i2 . . . ip, J =

j1j2 . . . jp ∈ {0, 1}p, then � can be generated by the IFS {fi(x) = βp(x + di) : d ∈ D} where
D is determined by (12). More exactly,

� =
⋃

K�IJ

(βp� + �(K 0̄)). (13)
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We claim that the right side of (13) is a disjoint union, and so the resulting IFS satisfies the
SSC. In fact, for a given K = k1 . . . kpkp+1 . . . k2p � IJ we have

βp� + �(K 0̄) =
{

βpx +
2p∑

j=1

kjβ
j−1(1 − β) : x ∈ �

}

=
{

p∑
j=1

kjβ
j−1(1 − β) +

2p∑
j=p+1

(kj + xj−p)βj−1(1 − β)

+
∑
j>2p

xj−pβj−1(1 − β) : (xk)
∞
k=1 � γ ∗

}
.

Thus each point of βp� + �(K 0̄) has a unique {0, 1}-code of the form k1 . . . kp(kp+1 +
x1) . . . (k2p + xp)xp+1xp+2 . . . for some (xk)

∞
k=1 � γ ∗.

Take distinct K = k1 . . . kpkp+1 . . . k2p � IJ and K∗ = k∗
1 . . . k∗

pk∗
p+1 . . . k∗

2p � IJ .

If k1 . . . kp �= k∗
1 . . . k∗

p, then (βp� + �(K 0̄)) ∩ (βp� + �(K∗0̄)) = ∅ follows directly
from the above arguments. If k1 . . . kp = k∗

1 . . . k∗
p, we have, without loss of generality,

kp+1 = 1 and k∗
p+1 = 0. Hence, γ ∗

1 = 0 and so each (xk)
∞
k=1 � γ ∗ has x1 = 0.

(βp� + �(K 0̄)) ∩ (βp� + �(K∗0̄)) = ∅ then follows from the above arguments. Note that

#D = #{K ∈ {0, 1}2p : K � IJ } =
p∏

k=1

(ik + 1)(jk + 1) =
p∏

k=1

(ik + jk + 1) = 2
∑p

k=1(ik+jk).

Consequently, we have

dimH �β ∩ (�β + t) = dimH � = log #D

−p log β
=

∑p

k=1(ik + jk) log 2

−p log β
.

This extends the results in [11] for the case β ∈ (1/3, 1/2) and t has a unique {−1, 0, 1}-code.
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