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Abstract

Let I'g be the middle-(1 —28) Cantor set with 8 € (1/3, 1/2). We give all real
numbers ¢ with unique {—1, 0, 1}-code such that the intersections I'g N (I'g +1)
are self-similar sets. For a given 8 € (1/3, 1/2), a criterion is obtained to
check whether or not a r € [—1, 1] has the unique {—1, 0, 1}-code from both
geometric and algebraic views.

Mathematics Subject Classification: 28A80, 28A78

1. Introduction

Let B € (0,1/2) and Fy(x) = Bx +k(1 — B),k = —1,0, 1. The middle-(1 — 28) Cantor set
I'g C [0, 1] is a straightforward generalization of the classical middle third Cantor set which
is defined as the invariant nonempty compact set under maps Fy and F:

T's = Fo(T'p) N Fi(Tp). ey

In this case I'g is called a self-similar set generated by the iterated function
system {Fy(x), F;(x)}.

In general, a nonempty compact set P C R is said to be a self-similar set if there exists
a finite collection of linear mappings f;j(x) = rjx + b; with 0 < |r;| < 1,b; € R for
j=1,..., N such that

N
P=JrwP.

j=1
The collection {f; (x)}j.vzl, also called an iterated function system (IFS), is said to satisfy
the strong separation condition (SSC) if f;(P),1 < j < N are pairwise disjoint, and to
satisfy the open set condition (OSC) if there exists a nonempty bounded open set O such that
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Uj-vzl f;(0) € O with disjoint union on the left side. One can refer to [3, 4] for some more
properties of self-similar sets. Clearly, {Fy(x), F1(x)} satisfy the SSC and OSC. I'y 3 is the
classical middle third Cantor set.

In the past two decades, intersection of Cantor sets has been the subject of several studies
[1,5,6-11,12,14-16]. An algebraic approach was used in [11] to determine the Hausdorff
dimension of I'g N (I'g +¢) with B € (0,1/3]and ¢t € I'g — I'ys. When 8 € (1/3,1/2) the
intersections I'g N (I'g + 1) present a very complicated geometric structure and an algorithm
was given in [16] for calculating their Hausdorff dimensions for some 8 € (1/3, 1/2).

Recently, Deng et al [2] obtained a delicate description on the structure of I' 3N (I 3 +1),
fort € I'y3 — I'yys = [—1,1]. More exactly, they gave a necessary and sufficient
characterization for those ¢ such that the corresponding I'y;3 N (I'13 + ¢) are self-similar sets.
Motivated by [2], Li et al [13] extended the results in [2] to homogeneous symmetric Cantor
sets E which are generated by a finite collection of contraction similitudes with same ratios.
Approaches in [2, 13] greatly depend on the property that I';3 — I'j 3 (or E — E) satisfies
the OSC.

It is well known that points in I'g and I'g — I'g (easy to check that the compact set I'g —I'g
is invariant under the collection {F_;, Fy, F1}) can be encoded by digits from {0, 1} and from
{—1,0, 1}, respectively. This is done by the so-called coding mapping IT : {0, 1}V — I'g (or
{—1, 0, 1}N — Fﬂ — Fﬂ)i

o
Wy =Y jp ' = p),

i=1
for J = (ji)2, € {0, 1N (or J = ()2, € {—1,0, 1}"). Foreachx € I'g (or x € T'g —I'p),
the J € {0, 1}N (or J € {—1,0, 1}N) satisfying I1(J) = x is called a {0, 1}-code (or a
{—1,0, 1}-code) of x. Obviously, each x € I'g has a unique {0, 1}-code. However, the
{—1,0, I}-code of x € I'g — I'g may not be unique. In fact, about codes of points in I'g — I'g
we have that

(I) each point of I'g — I'g has a unique {—1, 0, 1}-code when g € (0, 1/3);
(ID) all but a countable number of points of I';;3 — I'1;3 = [—1, 1] have a unique {1, 0, 1}-
code, and each exceptional point has two {—1, 0, 1}-codes;
(III) when B € (1/3,1/2),T'g —T'g =[—1, 1]and {F_,, Fy, F} does not satisfy the OSC and
so a point of I'g — I'g may have an infinite number of {—1, 0, 1}—codes.

For B € (0,1/3), 'g N (I'g +t) can be algebraically characterized as (cf [2, 11])

TpN(Tp+1) = {Zx,ﬂ"‘(l —B):x; € {0, 1} N ({0, 1}+t,-)}

i=1

=1 (]‘[{o, 1} N ({0, 1} +t,-)) )

(@)

i=1

where (#,)2, € {—1,0, 1}V is the unique {—1, 0, 1}-code of ¢ € I'g —Tg.
For B =1/3,Tg N (I'g +1) is either of form (2) when ¢ has a unique {—1, 0, 1}-code or a
finite set when ¢ has two {—1, 0, 1}-codes.

When 8 € (1/3,1/2) one can check that foreacht € I'g — I'g = [—1, 1]

FyN(Tp+0) =M (]‘[ Dk,;>, A3)

7 k=1
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where the union is taken over all {—1, 0, 1}-codes of 7, and D, ; = {0, 1} N ({0, 1} +#) for an
appointed {—1, 0, 1}-code = (t)ge, of t. Thus I'g N (I'g +¢) is of the form (2) if and only
if ¢ has a unique {—1, 0, 1}-code.

To state results in this paper, we need some notations. Let {0, 1}* = U@O{O, 1}" be
the set of all finite words, where {0, 1}° contains only empty word #. For I € {0, 1} and
J € {0,1}", let IJ € {0, 1}™*" be the concatenation of I and J. For I € {0, 1}*, let ||
denote its length and  := I11 - -- € {0, 1}V, the infinite repeating of I. K € {0, 1}V is called
strong p-periodic (or simply, strong periodic) if there exist two words I, J € {0, 1}” such that
K=1JandI < J,where I < J meansi, < j,, | <n<pforl=ij---ip,J=ji " jp
Fora J = (ji)2, € {0, Nandk € N, let J|k = (j,»)i.‘:1 € {0, 1}*. For I, J € {0, 1}V, we
say I < JifIln < J|nforalln € N.

For J = (j;)f?=1 € {0, 1}*, denote

Fy=FjoFjo---0Fj

with Fy = I, the identity map on R. Thus (recall I'g is defined as in (1))

re=() U Fsq0.1).

k=1 Je{0,1}*
Let So(x) = fx +1(1 — B), Si(x) = fx+(+1)(1 — f)and S; = 5, 0 S;, 0+ 0 S, for
J = (ji)_, € {0, 1}*. Similarly Sy denotes the identity map. Then
S;(t) = F;0)+t  forJ € {0, 1}*

and
o0

Tp+t=Sy(Tp+1)US(Ty+1)= ﬂ U S;([t, 1 +1]).
k=1 Je{0,1}

We call the sets F; ([0, 1]), S;([t, 1 +¢]) for J € {0, 1}* the k-level components of I'g and
I'g +1, respectively. Clearly, [0, 1], [¢, 1 +¢] are the O-level components. For J € {0, 1}* with
k > 0, the neighbourhood of F;([0, 1]) with respect to the k-level components of I'g + ¢ is
defined as

Nr, «(F;([0, 1) = {S;([t, 1 +1]) : T € {0, 1}*, F;([0, 11) N S;([t, 1 +1]) # @},

Note that for some F; ([0, 1]) with J € {0, 1}%, Nr, «(F;([0, 1])) may be empty. So these
components do not meet any k-level components of I'g + ¢ and then they have no contribution
tolg N (T'g+1). Let

Ap ={J €{0,1}* : N, « (F; ([0, 11)) # 0}

One can readily check that

o0

TsN(@p+0) =) J Fs0.1D.

k=1 JeA;
Thus, Ay with & € NU {0} geometrically characterizes I'g N (I'g + ). Let

My, = {F;([0,1]) : J € A4} and Mr, = {F;([0,1]) : J € U Ax
k>0
A graph with vertex set Mr, is constructed as follows. For I € Ay and J € Ay, if there

exists an £ € {0, 1} such that J = [¢, then we connect a directed edge ¢ from F; ([0, 1]) to
F; ([0, 1]). In this case, F; ([0, 1]) is called the parent of F; ([0, 1]) and F; ([0, 1]) an offspring
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of F;([0, 1]). Clearly each k-level component in Mr, x(k > 1) of I'g has only one parent, but
may have no offspring. The reduced graph is then constructed by removing those vertexes
having no offspring and the edges going to them. The reduced graph determines a subset A
of {0, 1},
A=1{J =X, 0, 1)V : Jlk € A for any k € N}. 4)
Therefore I'g N (I'g + 1) = TI(A).
Let #A denote the cardinality of set A. The following proposition comes from [16] which

describes the geometric criterion for I'g N (I'g +¢) to be of the form (2), or equivalently, for ¢
to have a unique {—1, 0, 1}-code.

Proposition 1.1 ([16], theorem 3.5). Let A be defined as in (4). Let B € (1/3,1/2). If
#Nr, 1 (F;([0, 1) < 1 forall J € {0, 1}¥, k € NU {0}, then

18

A= D;,

Il
—_

i
where § # D; C {0, 1} consists of edges connecting a parent in Mr, ;_ to its offspring in
My, ; in the reduced graph.

Assume that I'g N (I'g + 1) = H(I—[fil D;). From (3) it follows that ¢ has the unique
{—1,0, 1}-code (#;)72, and so D; = {0, 1} N ({0, 1} + ;). We will study its translation. Let

o0
F=F,m<rﬂ+t>—y=H(]‘[<Di—m>), s)
i=1
where y = min{x|x e TgN(Tp+0)} =D 12, v B (1 — B) with y;, = min{z : z € Dy}. Let
Y =i where ¥ = max{z : z € Dy — y4} = maxz — minz.
zeDy z€Dy

Then y;* =1 — |t] and

o0
[J@: =) = (G2, € (0. 137 1 xi < 3 for all k € N} (6)
i=1
The set I" in (5) can be algebraically dealt with more advantageously than I'g N (I'g + 1)
since I" has the following properties.

P10 e I'. If Z;:i] xkﬂk_l(l — B) € T, then Z;:i] ykﬁk_l(l — B) € T for all
(yk)zi1 < (xk)]?ip

(P2) T is centrally symmetric, i.e. ' = I1(y*) — I'. Thus, when I' is generated by an IFS,
say fi(x) =rix+b;,i =1,2,..., N, one can require all r; > 0. Otherwise, one can replace
fix) by f*(x) = —rix + r;I1(y™) + b; if r; < 0. This can be seen by (cf [2, 13])

[F@) = =T +r (") + by = ri(II(y*) =T) + by = i, +b; = fi(l).

Furthermore, one can assume 0 = b; < b, < --- < bysince0 eI.

The first theorem in this paper is to answer when the intersections I'g N (I'g + ¢) have
self-similar structure for the case of # having a unique {—1, 0, 1}-code. Its proof is done along
with the idea in [2]. The properties (P1) and (P2) play a very important role. As to the case
of ¢ having multiple {—1, 0, 1}-codes, I'g N (I'g + 1) is of the form (3) and seems not to be a
self-similar set. But we cannot prove it.

Theorem 1.2. Let § € (1/3,1/2). Suppose thatt € (I'y — I'g) = [—1, 1] has a unique
{—1,0, 1}-code (t,)32,. Then T'g N (g + 1) is a self-similar set if and only if (1 — [t);2, is
strong periodic.
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For a B € (1/3,1/2) we denote by Bg the set of + € [—1, 1] which have a unique
{—1,0, 1}-code. Clearly, for all 8 € (1/3,1/2), Bg contains —1,0 and 1. The following
theorem gives a way to check whether or not a ¢ belongs to Bg from both geometric and
algebraic views.

Theorem 1.3. Let § € (1/3,1/2) and t € I'g — I'g = [=1,1]. Then the following three
statements are equivalent.

(i) #Nr, «(F; ([0, 11)) < 1 forallk e NU {0} and all J € {0, 1}%;
(ii) t has a unique {—1, 0, 1}-code;
(iii) there exists a {—1,0, 1}-code (t;)72, of t such that for each k € N

WA =) =) np T A=) > B =0,

n=k

B A=) =Y 0p T A=) < —p5 n=1 ™

n=k

WA =B =Y np (1 —p) > B fo=—1,

n=k
where y, = £1ifty =0and y, =0ift;, = 1.

We now apply theorems 1.2 and 1.3 for a simple example. Some more complicated
examples can be constructed in a similar way.

Example 1.4. T'g N (I'g + 1) are self-similar sets for all t € {£(1 — BB, (1 — B+ 85 :
¢eNYyand B € (1/3,(3 —/5)/2).

Proof. When t = (1 — 8)8¢ with £ € N, we first check that ¢ satisfies (7) (so ¢t € Bg).
For 1 < k < £, (7) is equivalent to

1=pa -7 > B,
which is true since (1 — g)(1 — 851 > (1 — B)2 > Bfor B € (1/3, 3 — V/5)/2).
For k > € + 1, (7) is equivalent to (1 — B)8%~! > B¥ which is true. Thus, the desired
results follow just from theorem 1.2.
When t = (1 — B)(1 + %) with £ € N, one can also check that they satisfy (7) and so
lead to the desired results by theorem 1.2. ]

The rest of this paper is organized as follows. We prove theorem 1.3 in section 2. For the
reader’s convenience the proof of proposition 1.1 is also included in this section. The proof of
theorem 1.2 is arranged in section 3.

2. Proofs of proposition 1.1 and theorem 1.3

To prove proposition 1.1, we now establish an equivalence relation for members in Mr,.
Since the k-level components of I'g and I'g + ¢ are intervals of length ¥, they are completely
determined by their left-end points. For I = (ig)]z:l e {0, 1}, the endpoints of intervals
F;([0,1]) and S;([t, t + 1]) are
k
Fi(0)=F, 00 F,(0) =Y i;(1-p)p~"

j=1
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and

k
Si(t)=58;,0---08,(1) = Zii(l — BB 41,
j=1

Fort e Mr, k. let
Rr,o(1) = {756 — ) : 8 € Nr,x (D)},

where 8, 7 are the left-end points of §, T, respectively. t; and 1, are said to be equivalent (or
of the same type), denoted by 7| ~ 1, if Rr, 4, (t1) = Rr,.1,(12). Zou et al [16] obtained the
following results (see [16, lemma 3.1]), which will be used in the proof of proposition 1.1.

Lemma 2.1. Let I € Ay, and J € Ay, If Fi([0, 1) ~ F;([0, 1]), then for £ € {0, 1},
1€ € Agyy1 ifand only if JE € Ag,41. Further, Fre([0, 1) ~ F;,([0, 1]).

Proof of proposition 1.1. First let D; denote the union of edges connecting a parent belonging
to Mr, x—1 to its offspring belonging to Mr, r. We begin with k = 1. Then there are two
possible cases.

Case 1. #Nr, 1(Fo([0,1])) = #Nr, 1(Fi([0, 1)) = 1. In this case, Nr, (Fo([0, 1])) =
So([#, ¢ +1]) and Ny, 1 (F1 ([0, 1])) = Si([z, ¢ + 1]), implying Fo([O, 1]) ~ F1 ([0, 1]).

Case 2. There exists a unique j € {0, 1} such that #Nr, 1(F;([0,1])) = 1 and then
F;([0, 1]) ~ F; ([0, 1D).

Thus, for both cases described above we have that all F;([0, 1]),1 € Ay := D, are
equivalent and @ # D; C {0, 1}.

Now suppose that all F;([0, 1]),I € A, are equivalent and Ay = ]_[f:l D;, where
D; = {0, 1} < {0, 1}. Then for each F; ([0, 1]) with I € Ay, either it has only one offspring
in Mr, x+1 and so Fjo ~ Fyo (or Fy; ~ Fjp) or it has two offspring in Mr, x+1 and these two
offspring are of the same type, i.e. F;9 ~ Fjj, by the same argument as that in case 1. On
the other hand, for I, J € A lemma 2.1 shows that they connect their offspring in the same
way and Fp; ([0, 1]) ~ F; ([0, 1]) with i € {0, 1}. Therefore, we obtain that for each k € N,
F; ([0, 1]), I € Ay are of the same type and Ay = I—[f:l D; with D; C {0, 1}. By the definition
of A, we have A = []72, D;. Finally, 'y N (I'g +1) # ¢ implies A # @ and so each Dy is not
empty. U

Now we are ready to give the proof of theorem 1.3.

Proof of theorem 1.3.

(i) = (ii) and (i) = (iii). By proposition 1.1 we have
(o]
FgNTg+1)=11 (1—[ D() with @ # D, C {0, 1}.
=1

Thus, the {—1, 0, 1}-code of # is unique by (3). We denote by (#;); , the unique {—1, 0, 1}-code
of t. Then

0 if Dy = {0, 1},
th=1-1  if Dy = {0},
1 if D = {1).



Self-similar structure on intersection 2905

For each x € I'g N (I'g + 1) there exists unique x* € I'g, called the accompanying point
of x, such that x = x* + 1. Let J = (ji){2, € [[i2, De and J* = ()2, € {0, 1} be the
codes of x and x*, respectively. The code J* is called the accompanying code of J. Then

GO = GO = 7 = Gk — 1072,
since (fx)o is the unique {—1, 0, 1}-code of ¢. In addition, F;; ([0, 1)) NSy ([t, 1 +1]) # @
for all k € N U {0}.

In the following we verify that (#);2, satisfies (7). Let J = (j)j2, € ]_[;il Dy
with J* = (j)2, € {0, 1}Y its accompanying code. Let L € {0, 1}* be such that
Li(k—1)=J*|(k — 1) and L # J*|k. Then
Fri([0, 1) N Se([2, 1 +11) = Fyp ([0, 1D N (FL([0, 1] +1) = @ forall k € N, ®
where we have used the fact that S; ([z, ¢ + 1]) = F ([0, 1]) +¢. Thus the distance between the
left endpoint F;;(0) of F; ([0, 1]) and the left endpoint F (0) + ¢ of Sy ([z, ¢ + 1]) is bigger
than B*.

Case 1. Suppose t; = 1. Then Dy = {1} and so jr = 1 and j’ = 0. Thus, L = (J*|(k —1))1.
Note that F; ([0, 17) N Sy ([t, ¢ + 11) = @ (by (8)) and F; ([0, 11) N Sy« ([t, ¢ + 1]) # .
Thus Sy ([¢, t + 1]) lies on the right side of F; ([0, 1]). So (at this moment y; = O for#; = 1)

BT A=) =Y 6p (A= p)

n=k

k—1 [ee)
=Y 6N A =B+ A= =) np T 1= B)

n=1 n=1
k—1

=D Un— DB A=+ A =D A=) = 1,71 = p)

n=1 n=1
= Fy(0) — Fr(0) —t = Fy(0) — Sp.(1) < —pF,
which leads to (7).

Case 2. Suppose ty = —1. Then Dy = {0} and so ji = 0 and j; = 1. One can check (7) by
the same argument as above.

Case 3. Suppose #; = 0. Then Dy = {0, 1} and so jx = 0 or 1 and, correspondingly, j = 0
or 1, respectively. Therefore, by the same argument as those in case 1

Frr(0) — Sp(t) < —B* if jr =0,
Fru(0) — Sp(t) > g if iy =1.

So the first inequality in (7) is verified where y; = 1 corresponds to jz = 1 and y; = —1
corresponds to j; = 0.

(iii) = (i). Clearly, Nr, o(Fy([0, 1])) = {[z, z + 1]}. Let
D, ={0,1} N ({0, 1} + 1) for £ € N.
Below we will prove by induction that for any k € N and J € {0, 1}*

k
1S)_qy, (t,t+1D}  if J €[] D,
i=1

Nr, 1 (Fy([0,1])) = ©))

] otherwise.
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When k = 1, formula (7) becomes

t>p ity =1,
t<—p if 1 =—1,
1—-B—t>8 and |B—1—t>8 if , =0.

Thus, when #; = 1 we have

Nr, 1 (Fo([0,1])) =0 and Nr, 1 (F1([0, 1D) = {So([7, 7 + 1])}.
When t; = —1 we have

Nr,1(Fo([0, 1) = {Si([z, t + 1D} and Nr, 1(F1([0, 1)) = 0.
When#, =0wehave2f —1 <t <1—28andso
Nr,1(Fo([0, 1) = {So([z, £ + 1D} and Nr, 1 (F1([0, 1) = {Si([z, 1 + 1D}

Thus (9) is true when k = 1.
Suppose that (9) is true for k = n. Arbitrarily fixa J = (j,-)l’,“’l1 e {0, 1)+,

Case 1. Jin ¢ I—[;’Zl D;. Then Nr, ,(Fj,([0, 1])) = ¢ by inductive hypothesis and so
Nryn1 (F; ([0, 1)) = 0.
Case 2. Jin € []'_, D; (and so J|n — (t;)'_, € {0, 1}"). Let L = (Zi);’;} be such that

L|I’l = (Ei)?:] = J|n - (ti)l"l=1 and En+1 = jn+1 — Yn+l-

(A) Suppose #,+; = 1. Then (7) shows that

n+l n
DB T A= B) - (Z(ji — )BT (1= B) + (st — Yus)B" (1 — B) + r) <—p".
i=1 i=1
(10)

At this moment, we have

Dyt = (1}, Y1 = 0, €ys1 = jusr and so L € {0, 1)
From (10) it follows that

Fy(0) — Sp(1) < —p"". (11)
By taking j,+1 = 0 we obtain that

Nryue1 (Fmyo ([0, 1)) = 9.
Taking j,+1 = 1, (11) gives

Fmn ([0, 1D N S¢ppn—qy i (2, 1 +1]) = @.
By inductive hypothesis we know N, ,,(F;, ([0, 1])) # @, which implies that

Nry et (Fm1 ([0, 1) = {Sn—@r_po(lz, £+ 1D},
where the condition 1/3 < 8 < 1/2 is used. Thus, (9) is true when k = n + 1 and f,,,; = 1.

(B) Suppose #,+1 = —1. (9) can be verified by the same argument as above.

(C) Suppose t,+1 = 0. Then (7) shows that

n+l n

Y iB T —B) - (Z(ji — )BT (A = )+ (on — DB"(1 = ) + r) > g,
i=1 i=1

n+l ) n )

i —p) - (Z(j,» — )BT = )+ (ot + DB (1 = B) + t) > pri.
i=1 i=1
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This implies that

Fomi ([0, 1D N Sypn—@ypo(lt, £+ 1]) = and
Fmo([0, 1D N S¢rpn—qy 1 (£, 1+ 11) = 0.

Therefore, by inductive hypothesis Nr, ,(F;; ([0, 1])) # @ and 1/3 < 8 < 1/2 we have
Nry et (Faimo ([0, 11) = {Sum—ayr_po(lz, t + 1D}

and
Nry et (Fmy1 ([0, 1D) = {Su -y (£, £ + 1D},

ie. (9)istrue whenk =n+1and ¢, =0.

(i) = (). Suppose that Nr, ((F;([0,1])) = {Sio([z,¢ + 1), Si1([#, ¢ + 1])} for some
J = (b, e {0,135, 1 € {0, 1} withk € N. Let jy = 1 — jrand J = ()i ji-
Then #Nr, «(F;([0, 1])) = 1. Without loss of generality, assume ji = 0. Then
Nr, «(F;([0, 1)) = {Sn1 ([z, £ + 1D}
Note that I'g —I'g = [—1, 1] means that 'g N (I'g +1) # @ for any ¢ € [—1, 1]. Thus we have
Fr(0, 1D NS, e+ 1D NTgN(Tg+1) #90

and
Fj([o, IDNStt+1)N Fﬁ N (Fﬁ +1) # A.

Takex € F; ([0, 1DNS;1([t, t+1])ﬂFﬁﬁ(F5+t),y € FJ‘([O, 1DNS; [z, t+1])ﬂFﬂﬁ(Fﬂ+t).
Let X = (x0)52,,y = (yo)y2, be the unique {0, 1}-code of x and y, respectively. By
x* = ()R, y* = IW(y;)2,) we denote the accompanying points of x and y,
respectively. Thus

x=x"+t, x=0, x;=1 and y=y'+t, w=1 y =L

Therefore, ¢ has two distinct {—1, 0, 1}-codes. (|

3. Proof of theorem 1.2

In this section, we give the proof of theorem 1.2. The following lemma (cf [2] [13, lemma 2.2])
gives a description of a strong periodic infinite string.

Lemma 3.1. Let (x)72, € {0, 1}N. If there exists a positive integer q such that Xk+q = Xi for
all k € N, then (x;);2, is strong periodic.

Lemma 3.2. Let " be defined as in (5). If U is a self-similar set, then the y* is strong periodic.

Proof. When I" is a singleton, we have y* = 0 and so y* is strong periodic. Suppose that I’
is not a singleton. Let I' be generated by an IFS{ f;(x) = rix + b;}"_, where r; € (0, 1) and
0=b; < by <--- < by. Take m € NU {0} such that 8" (1 — B) € I". Then

i=1

Cs AP A=) =p"nl—p) =Yy up'A-p)  withx <y, kel

k=1
Since r; < 1, we have x; = 0 if K < m + 1. Thus there exists a positive integer g such that

r=p1+Y xp. x €01}

i>q
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If k € Nis such that y;* = 1, then ,3"_1(1 — B) € I" by (6) and so
ABTIA=p) = A=+ xip™M 1 - p e,

i>q
implying y;,, = 1. Hence y;\, > y; for all k. The desired result is then obtained by
lemma 3.1. O

Proof of theorem 1.2. The necessity part follows directly from lemma 3.2 since g N(I'g+¢t) =
+y.

To prove sufficiency, we restate an alternative representation of a self-similar set. Let
D = {d\,d,,...,dy} be a finite set of real numbers. Let fi(x) = r(x +d;), 1 <i < N
and |r| < 1. Then the self-similar set, denoted by T (r, D), generated by IFS ( ﬁ)f\': | can be
represented as

T(r,D) = {derk 2 dy € D}.

k=1

Since y* is strong periodic, it can be writtenas y* = I'T + J € {0, 1}" for some p € Nand
somel =ijiy...ip, J = jij2...Jp, € {0, 1}7 satisfying I+J := (i1+j1)(i2+j2) ... ((p+]jp) €
{0, 1}?. Take a finite set of real numbers

14 p
D= {Zakﬁ"_l_”(l —,3)+Ztk,3k_1(l —-B oo < Lt...T, < J}
k=1 k=1

. (12)
= {ﬁ_”Zakﬁk_l(l —B)i01...0p0p41...00p < IJ} .
k=1
We shall show I' = T (87, D). Now arbitrarily fix an x € I" with {0, 1}-code X = xjx;....
Then for each k € N, Xy 1Xkps2 - . . Xkps+p can be uniquely represented as
Xkp+1Xkp+2 =+ * Xkp+p = Yikp+1Ykp+2 = * * Ykp+p t Zkp+1Zkp+2 " Zkp+p>
where Vi1 Vip+2 - - - Yip+p = T and 2ipi1Zips2 - - - Zhp+p < J. Hence (note thatxjx; ... x, < 1)

00 p 2p
x=Y A =B =Y B TPA =BT Y iz - )
k=1 k=1 k=p+1
3p
+ B Y iz T =By
k=2p+1
P 2p
=7 | D B TPA=B+ Y wpTPA—p)
k=1 k=p+1
2p 3p
+ B Y BT A =B+ Y apTPA—B) |+ e T(BP. D).
k=p+1 k=2p+1
Thus, I' € T(B?, D). The inverse inclusion is left for the readers. ]

From the above proof it follows that if y* = IT + J € {0, 1}N with I = iyip...i,, J =
Jij2--.Jjp €10, 1}7, then I" can be generated by the IFS { f;(x) = B?(x +d;) : d € D} where
D is determined by (12). More exactly,

r = U (BPT + I1(K0)). (13)

K<IJ
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We claim that the right side of (13) is a disjoint union, and so the resulting IFS satisfies the
SSC. In fact, for a given K = ki ...kyk,41 ...k, < IJ we have

2p
BPT + TI(KO0) = {ﬂpx+2kjﬂj_l(l —B):xe F}

j=1

14 2p
- { DokBTIA=B+ Y Gkt )BT (- p)

j=1 Jj=p+l

+ Z xj—pﬁj71(1 -B): (xk)lfi1 < V*}-
j>2p
Thus each point of 7T + H(K(_)) has a unique {0, 1}-code of the form k;...k,(k,.1 +
xX1) ... (kap +Xp)Xps1Xps2 . . . fOr some (xp)p2; < ™.

Take distinct K = ky...kykpe1 ... kpp < IJ and K* = k]k...k;‘,kzﬂ...k;p < 1J.
If ky. ...k, # kT ...k;, then (BPT + II(KO0)) N (BPT + II(K*0)) = @ follows directly
from the above arguments. If k; ...k, = kj.. .k;‘,, we have, without loss of generality,

kpri = 1 and kfm = 0. Hence, y; = 0 and so each (x);2; < y* has x; = 0.

(BPT + T1(K0)) N (BPT + I(K*0)) = ¢ then follows from the above arguments. Note that

14 p
#D =#K € {0, 1}’ : K < 1]} = l—[(ik +DGe+ ) = H(ik + i+ 1) = 22Xk Gt
k=1 k=1
Consequently, we have
log#D Z,f:](ik + ji) log?2

—plog ~ —plogp
This extends the results in [11] for the case 8 € (1/3, 1/2) and ¢ has a unique {—1, 0, 1}-code.

dimHFﬁﬂ(Fﬁ+t)=dimHF=
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