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In the first part of this paper, it is proved that the number of limit cycles of the
competitive three-dimensional Lotka�Volterra system in R3

+ is finite if this system
has not any heteroclinic polycycles in R3

+ . In the second part of this paper, a 3D
competitive Lotka�Volterra system with two small parameters is discussed. This
system always has a heteroclinic polycycle with three saddles. It is proved that there
exists one parameter range in which the system is persistence and has at least two
limit cycles, and there exists other parameter ranges in which the system is not
persistence and has at least one limit cycle. � 2000 Academic Press

1. INTRODUCTION

Competitive Lotka�Volterra system modelling three mutually competing
species, each of which, in isolation, would exhibit logistic growth, is
expressed by

x* =X(b&Ax), (1)

where x=col(x1 , x2 , x3) is a three-dimensional state vector, X=diag
(x1 , x2 , x3) is a 3_3 diagonal matrix, b=col(b1 , b2 , b3) is a positive real
vector and A=(aij)3_3 is a positive matrix. According to a theorem of
M. W. Hirsch in [11], there exists an invariant manifold 7 (i.e., carrying
simplex) which is homeomorphic to the two-dimensional simplex and
attracts all orbits except the origin. Therefore in 3D competitive systems
the Poincare� �Bendixson theorem holds. Based on this, M. L. Zeeman [13]
has given a classification of all possible stable phase portraits of 3D
competitive Lotka�Volterra equations, thus extended a related classifica-
tion of the game dynamical equation [14]. As one knows, it is very impor-
tant to discuss existence of limit cycles of competitve Lotka�Volterra
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system from the point of view of both biology and mathematics. As the list
of papers on the subject is very large, we content ourselves by referencing
the works [7�10, 13]. In these references the limit cycles were all generated
by Hopf bifurcation. In [8] the authors conjectured the number of limit
cycles is at most two for Eq. (1). It is a very interesting conjecture. Now we
are interested in (i) whether or not the number of limit cycles of Eq. (1) is
finite; (ii) at most how many limit cycles there exist for Eq. (1) if they are
finite; (iii) whether or not the limit cycles of Eq. (1) can be generated by
other bifurcation.

In this paper we answer question (i) partly, i.e., we prove that the num-
ber of limit cycles of Eq. (1) in R3

+ is finite if Eq. (1) has not any
heteroclinic polycycles in R3

+ . Therefore the number of limit cycles of 33
stable equivalence classes, which were listed by Zeeman in [13], is finite
except classes 26 and 27. For question (iii) we analyse a 3D competitive
Lotka�Volterra system with two small parameters. The system has a limit
cycle which isn't generated by Hopf bifurcation. Moreover we divide the
parameter range of the system into four parts by Hopf bifurcation curve
and Heteroclinic bifurcation curve. In bifurcation diagram (see Fig. 3)
there exists a parameter range II such that in this range the system is
persistence and has at least two limit cycles, and other parameter range III
such that in that range the system is not persistence and has at least one
limit cycle. Question (ii) is still open.

2. FINITENESS OF LIMIT CYCLE

It is a classical result that 2D Lotka�Volterra equations cannot have
limit cycles: if there is a periodic orbit, then the interior singular point is
a center (i.e., surrounded by a continuum of periodic orbits). Hence a cen-
ter is a codimension one phenomenon for 2D Lotka�Volterra equations
like that for linear equations. On the other hand, 3D Lotka�Volterra equa-
tions allow already complicated dynamics: the period doubling route to
chaos and many other phenomena known from the interaction of the quad-
ratic map have been observed by numerical simulation (Ref. [2]). For 3D
competitive systems, the dynamical possibilities are more restricted, the
compact limit sets of these systems are either singular points or periodic
orbits by a theorem of M. W. Hirsch. The proof of following lemma can be
found in [13].

Lemma 2.1. Every trajectory of Eq. (1) in R3
+ "[0] is asymptotic to one

in 7, and 7 is a Lipschitz submanifold homeomorphic to the unit simplex in
R3

+ by radial projection.
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Hence all equilibria and periodic orbits of Eq. (1) lie on the 7 except the
equilibrium O(0,0,0). If there is no equilibrium in interior of invariant
manifold 7, then the dynamics of Eq. (1) is trivial: every orbit converges to
the boundary of 7. Therefore we are interested only in the case that Eq. (1)
has an equilibrium in the interior of 7 and the equilibrium is non-
degenerative by the results in [13]. Without loss of generality, we can
assume that E=(1, 1, 1) is an equilibrium of Eq. (1), and the equilibrium
E(1, 1, 1) has no zero eigenvalues.

Theorem 2.2. There exists a small neighborhood of equilibrium E(1, 1,1)
such that the number of limit cycles of Eq. (1) is finite in this neighborhood,
i.e. infinitely many limit cycles of Eq. (1) can not accumulate on E(1, 1, 1).

Proof. We devide two cases for the equilibrium E(1, 1, 1) to prove the
theorem.

Case I. If the equilibrium E(1, 1, 1) is hyperbolic, then there exists a
small neighborhood of E(1, 1, 1) such that Eq. (1) has no periodic orbits in
this neighborhoood. Thus the statement of the theorem is true.

Case II. If the equilibrium E(1, 1, 1) is not hyperbolic, then we set
yi=xi&1. Hence, Eq. (1) reads

y* i=&(1+ yi) \ :
3

j=1

aijyj+ , i=1, 2, 3. (2)

To be more explicit, we use coordinate transformation such that Eq. (2)
can be written into

x* =& y+X(x, y, z)

y* =x+Y(x, y, z) (3)

z* =*z+Z(x, y, z),

where x, y, z # R, X, Y and Z are real analytic functions which together
with their first derivatives vanish at (x, y, z)=(0, 0, 0). And * is a negative
real number. According to Bernd Aulbach [3], we know that the equi-
librium O(0, 0, 0) of Eqs. (3) is either a weak focus or a center.

If the equilibrium O(0, 0, 0) is a center, then there exists a small
neighborhood of O(0, 0, 0) such that Eqs. (3) has no isolated periodic
orbits in this neighborhood. Therefore the theorem holds.

If the equilibrium O(0, 0, 0) is a weak focus, then the study of Eqs. (3)
near O(0, 0, 0) can be reduced to the study of the corresponding equations
on a center manifold of O(0, 0, 0). By local center manifold theorem in [4],
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we know that there exists a c� local center manifold such that Eqs. (3) is
locally topologically equivalent to the following equations

x* =& y+W(x, y)

y* =x+V(x, y) (4)

z* =*z,

where x, y, z # R, In the small neighborhood of O(0, 0), W(x, y) and
V(x, y) are real c� functions which together with their first derivatives
vanish at (x, y)=(0, 0). And * is a negative real number.

We consider the subsystem of Eqs. (4)

x* =& y+W(x, y)
(5)

y* =x+V(x, y).

If the equilibrium O(0, 0) of system (5) is a weak focus of multiplicity m,
then the generic Hopf theorem, proved in Chapter II of [15], shows that
at most m limit cycles can be generated from O(0, 0) under any a small c�

perturbation of system (5). According to Lemma 2.1, we easily get that
there exists a small neighborhood of O(0, 0, 0) in the carrying simplex 7
such that Eqs. (3) has at most m limit cycles in this neighborhood. Thus
there exists a small neighborhood of equilibrium E(1, 1, 1) of Eq. (1) such
that Eq. (1) has finite limit cycles in this neighborhood. Q.E.D.

To study orbits of Eq. (1) near equilibrium E(1, 1, 1), property of eigen-
values of Eq. (1) at equilibrium E(1, 1, 1) is very important. By the
knowledge of linear algebra, we easily prove the following proposition.

Proposition 2.3. The necessary and sufficient conditions that the
singular point O(0, 0, 0) of Eqs. (2) has a negative real eigenvalue and a pair
of purely imaginary eigenvalues are

det(A)=(A11+A22+A33) tr(A)>0,

here tr(A)=a11+a22+a33 , A11 =a22a33&a23a32 , A22 =a11 a33&a13 a31

and A33 =a22 a11&a12a21 . Moreover the eigenvalues are &tr(A) and
\- (A11+A22+A33) i.

The proposition is very useful to discuss Hopf bifurcation in Section 3.
Next we consider dynamics near a periodic orbit 1 of Eq. (1). First we

recall the definition of a real analytic function with two-variates.
Let (x, y) # D/R2 and (0, 0) # D. f (x, y) is called a real analytic function

in the neighborhood of (0, 0) if there exists a convergence Taylor series
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expansion of f (x, y) at (0, 0) with all coefficients of the Taylor series expan-
sion being real. It is obvious that the function f (z1 , z2) is a complex
holomorphic (or analytic ) function at a neighborhood of (0, 0) in C2 if we
substitute complex variables (z1 , z2) # C2 for real variables (x, y) of f (x, y).

Suppose Eq. (1) has a periodic orbit 1. Thus the 1 lies on the simplex
7. Choosing a small tubular neighborhood W of 1 and a point O at 1, we
make a transversal plane 6 passing through O of 1. In 6 we construct a
rectangular coordinates system with the point O as the origin of coor-
dinates. Let D0=6 & W and define the Poincare� map P: D0 � D0 by

P(x, y)=( f1(x, y)&x, f2(x, y)& y),

here ( f1(x, y), f2(x, y)) is the coordinate of the first return point of the
orbit passing through point (x, y) of Eq. (1) in D0 . According to [1], we
know that the functions f1(x, y) and f2(x, y) are real analytic functions
in D0 .

Obviously, P(0, 0)=(0, 0) which corresponds to the periodic orbit 1. By
Lemma 2.1, we know that the orbit passing through point (x0 , y0) # D0 of
Eq. (1) is a periodic orbit if and only if P(x0 , y0)=(0, 0). Hence, in order
to know if the periodic orbit 1 is isolated in the small tubular
neighborhood W, we only need to discuss the property of P(x, y) in D0 .

To study the property of P(x, y), some related results on function of
several complex variables are necessary. By C[z], C[z1 , z2] we denote the
rings consisting of analytic functions in a neighborhood of 0 # C and
(0, 0) # C2 respectively, i.e.,

C[z]={ f (z) : f (z)= :
�

k=0

ak zk is a convergent power series

in a neighborhood of the origin in C=,

C[z1 , z2]={ f (z1 , z2) : f (z1 , z2)= :
�

m, n=0

amnzm
1 zn

2 is a convergent power

series in a neighborhood of the origin in C2= .

A function f (z1 , z2) # C[z1 , z2] is called a Weierstrass polynomial in z2 if

f (z1 , z2)=z2
n+ :

n

i=1

a i (z1) z2
n&i, n�1,

where ai (z1) # C[z1] and ai (0)=0 for i=1, } } } , n.
The next theorem comes from some results of [4�6].
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Theorem 2.4. (1) C[z1 , z2] is a unique decomposition integral domain;

(2) (Weierstrass Preparation Theorem) If f (z1 , z2) # C[z1 , z2] and
f (0, z2) is not identically vanishing, then f can be uniquely represented as

f (z1 , z2)=u(z1 , z2) } w(z1 , z2),

in a suitable neighbourhood of (0, 0) where w(z1 , z2) is a Weierstrass polyno-
mial and u(z1 , z2) is a unit in C[z1 , z2] (i.e., an invertible element in
C[z1 , z2], which means 1�u(z1 , z2) # C[z1 , z2], or equivalently u(0, 0){0).

(3) If f (z1 , z2)=zn
2+a1(z1) zn&1

2 + } } } +an(z1) is an irreducible
Weierstrass polynomial, then there exists a disc D=[z1 # C, |z1 |<\] such
that f (z1 , z2) has only simple roots for every z1 {0 and z1 # D. f (z1 , z2) can
be represented as

f (z1 , z2)= `
n

i=1

(z2&Zi (z1)),

where every Zi (z1) is a single-valued holomorphic function on the disc D
cutted along a half line (e.g., positive real axis) and each Zi (z1) can arrives
any other Zj (z1), i, j=1, 2, ..., n, by analytic extension around z1=0.
Moreover the map F: 2=[t # C : |t|<\1�n] � C defined by F(t)=Zi (tn) is
a single-valued holomorphic function. Q.E.D.

Now we give a property of real analytic functions.

Proposition 2.5. Suppose f (x, y) and g(x, y) are real analytic functions
in the neighborhood of (0, 0), and f (0, 0)=0 and g(0, 0)=0. Then one of the
following results holds.

(i) (0, 0) is an isolated zero of f (x, y)= g(x, y)=0;

(ii) there exists a continous curve # starting at (0, 0) in the
neighborhood of (0, 0) such that f (x, y)= g(x, y)=0 when (x, y) # #.

Proof. Assume that (0, 0) is not an isolated zero of f (x, y)=
g(x, y)=0. Then there exists a sequence of points (xn , yn) with (xn , yn){
(0, 0) and (xn , yn) � (0, 0) as n � � such that f (xn , yn)= g(xn , yn)=0.
Without loss of generality we assume that there exist infinity many xn>0
(if necessary it suffices to rotate the rectangular coordinates system when
defining the Poincare� map P(x, y)). In the following we only consider the
subsequence (xn , yn) with xn>0, denoted still by (xn , yn) for sake of con-
venience.

If f (0, y)#0 and g(0, y)#0, then we can take # as x=0 and complete
the proof. If f (0, y)#0 and g(0, y)#% 0, then there exists some k�1 such
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that f (x, y)=xkf *(x, y), where f *(x, y) is real analytic with f *(0, y)#% 0
and f *(xn , yn)=0. The same argument can be applied to the case when
f (0, y)#% 0 and g(0, y)#0. Thus in the following discussion we assume that
f (0, y)#% 0 and g(0, y)#% 0. Then

f (0, y)=b0yd1+b1 yd1+1+ } } } , b0 {0 and d1�1;

g(0, y)=c0yd2+c1yd2+1+ } } } , c0 {0 and d2�1.

By Theorem 2.4(1),(2) there exists a neighborhood V of (0, 0) # C2 such
that

f (z1 , z2)=q1(z1 , z2) f1(z1 , z2) } } } fk1
(z1 , z2),

g(z1 , z2)=q2(z1 , z2) g1(z1 , z2) } } } gk2
(z1 , z2),

where q1(0, 0){0, q2(0, 0){0, fi (z1 , z2) and gj (z1 , z2) (i=1, } } } k1 ,
j=1, } } } k2) are irreducible Weierstress ploynomials. Thus there exist a
subsequence (xni , yni) of (xn , yn) and some i0 and j0 such that fi0(xni , yni)=
gj0

(xni , yni)=0. Let

fi0
(z1 , z2)=zn

2+a1(z1) zn&1
2 + } } } +an(z1),

gj0(z1 , z2)=zm
2 +b1(z1) zm&1

2 + } } } +bm(z1).

By R( f, g) we denote the resultant of polynomials fi0(z1 , z2) and gj0(z1 , z2),
and let

1 a1(z1) } } } an(z1) 0 } } } 0

0 1 } } } an&1(z1) an(z1) 0 } } }

} } } } } } } } } } } } } } } } } } } } }

D(z1) :=R( f, g)=det 0 0 } } } 1 a1(z1) } } } an(z1) .

1 b1(z1) } } } } } } bm(z1) } } } 0

} } } } } } } } } } } } } } } } } } } } }

0 0 } } } 1 b1(z1) } } } bm(z1)

Then D(z1) is an analytic function in a neighborhood of the origin in C.
Since for each xni the polynomials f i0(xni , z2) and gj0(xni , z2) have a com-
mon zero point z2= yni , According to knowledge of linear algebra we have
D(xni)=0. Therefore D(z1)#0 in some neighborhood of the origin in C.
Hence there exists a non-constants common factor between fi0(z1 , z2) and
gj0(z1 , z2) for all z1 lying in some neighborhood of the origin in C.
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On the other hand, according to Theorem 2.4(3) there exists a disc
D=[z1 # C, |z1 |<\] such that

fi0
(z1 , z2)=6 n

i=1(z2&:i (z1)), gj0(z1 , z2)=6 m
j=1(z2&;j (z1)).

Here :i (z1) and ;j (z1) are single-valued holomorphic functions on the disc
D cutted along positive real axis. By analytic extension around z1=0 we
can see that each :i (z1) can arrive any other :j (z1), i, j=1, 2, ..., n, and
each ;i (z1) can arrive any other ; j (z1), i, j=1, 2, ..., m. Since there exists a
non-constants common factor between fi0(z1 , z2) and gj0(z1 , z2) for all z1

lying in some neighborhood of z1=0, there exist i1 and j1 such that
:i1(z1)#; j1(z1) for all z1 in D as we choose a suitable \. Therefore m=n
and fi0(z1 , z2)#gj0(z1 , z2) for all (z1 , z2) # D. Because f (xni , yni)=0 there
exists an infinite subsequence (xti , yti) of (xni , yni) and some 1�k�n such
that :k (xti)= yti .

Next we will show that :k (z1) takes real values as z1 # (0, \). To do this
let F(z1)=:k (z1

n). Theorem 2.4(3) tells us that F(z1) is a single-valued
holomorphic function in 2=[t # C : |t|<\1�n]. Let

F(x+iy)=U(x, y)+iV(x, y), :k (x+iy)=u(x, y)+iv(x, y).

Note that V(x, 0) is real analytic when x is in the interval (&\1�n, \1�n),
and V(x1�n

ti
, 0)=0. Thus V(x, 0)#0 for every x in the interval (&\1�n, \1�n).

Furthermore V(x, 0)=v(xn, 0) when x is in the interval (0, \1�n). Thus
v(x, 0)#0 as x in the interval (0, \), i.e., :k (z1) is real when z1 is in (0, \).
Taking #: y=:k (x), x # (0, \), we complete our proof. Q.E.D.

Remark 2.1. Note that when taking f (x, y)= g(x, y) in the Proposition
2.5, an important property on the zero points of the two-variables real
analytic function is given.

Now we state and prove the main result in this section.

Theorem 2.6. If 1 is a periodic orbit of Eq. (1) in R3
+ , then there exists

a small neighborhood of 1 in R3
+ such that there exist only finite limit cycles

of Eq. (1) in this neighborhood, i.e. infinitely many limit cycles can not
accumulate on 1.

Proof. As stated above, we can choose a small tubular neighborhood
W of 1 and a transversal plane 6. Let D0=6 & W and define a Poincare�
map P: D0 � D0 by

P(x, y)=( f1(x, y)&x, f2(x, y)& y), P(0, 0)=(0, 0),

here f1(x, y) and f2(x, y) are real analytic functions in D0 .
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Let f (x, y)= f1(x, y)&x and g(x, y)= f2(x, y)& y. Then f (x, y) and
g(x, y) are real analytic functions with f (0, 0)=0 and g(0, 0)=0. By
Proposition 2.5 there exists a small neighborhood D1 of the origin in D0

such that either the set [(x, y): P(x, y)=(0, 0)] is a singleton [(0, 0)] in
D1 or there exists a continuous curve #: y=h(x) with h(0)=0 such that
P(x, h(x))=(0, 0) in D1 . Note that any orbit passing through the point in
the set [(x, y) : P(x, y)=(0, 0)] is a periodic orbit, and every non-trivial
periodic orbit of Eq. (1) is in the carrying simplex 7 of Eq. (1) by Lemma
2.1. Hence the set [(x, y) : P(x, y)=(0, 0), and (x, y) # D1]/7. Therefore
there exists a neighborhood 4 of 1 on 7 such that either the 1 is the
unique periodic orbit of Eq. (1) or every orbit of Eq. (1) is a periodic orbit
in 4. Q.E.D.

Summarizing the above Theorem 2.2 and Theorem 2.6, it follows the
next theorem.

Theorem 2.7. If Eq. (1) has not any heteroclinic polycycles, then the
number of limit cycles of Eq. (1) is finite.

Remark 2.2. The number of limit cycles of Eq. (1) is finite except
classes 26 and 27 in [13].

Remark 2.3. It is a very interesting problem to prove whether or not
the number of limit cycles of Eq. (1) is finite in the small neighborhood of
heteroclinic polycycle.

Remark 2.4. It is still a open question that at most how many limit
cycles of Eq. (1) there are if Eq. (1) has no heteroclinic polycycle.

3. BIFURCATIONS FOR A 3D COMPETITIVE
LOTKA�VOLTERRA SYSTEM

In this section we investigate bifurcations of a 3D competitive
Lotka�Volterra system with two small parameters. The system always has
a heteroclinic polycycles with three saddles. We prove that limit cycles of
this system can be generated by Hopf bifurcation and heteroclinic bifurca-
tion.

Consider system

x* 1=x1[(1&x1)+(1&x2)+(1&x3)]

x* 2=x2[(1&x1)+(1&x2)+2(1&x3)] (6)

x* 3=x3[( 13
5 +=1)(1&x1)+( 8

5+=2)(1&x2)+3(1&x3)],

where =1 and =2 are small parameters. Write ==col(=1 , =2).
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When ==0, Eqs. (6) has an interior nondegenarate singular point
E(1,1, 1) which is a center, the three hyperbolic saddle points R1(3, 0, 0),
R2(0, 4, 0), R3(0, 0, 12

5 ) and an unstable node O(0, 0, 0). And there exists a
carrying simplex 70 that is a plane, and the boundary of the plane 70 is
heteroclinic polycycle R1R2 R3 (see Fig. 1).

First we consider the singular point E(1, 1, 1) of Eqs. (6) as 0<&=&<<1.
Proposition 2.3 tells that the necessary condition of occurrence of Hopf
bifurcation at the singular point E(1, 1, 1) for Eqs. (6) is

det(A)=tr(A)(A11+A22+A33)>0. (7)

Here

1 1 1

A=\ 1 1 2+13
5 +=1

8
5+=2 3

and 0<&=&<<1. By calculating we obtain that Eq. (7) is equivalent to
3=2+2=1=0. And when 3=2+2=1=0 the eigenvalues of Eqs. (6) at
E(1, 1, 1) are *1=&5, *2, 3=\i - 1�5&=1 . In addition it is easy to check

FIG. 1. The phase portrait of Eqs. (6) as ==0.
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that the singular point E(1, 1, 1) is an unstable focus when 3=2+2=1>0
and a stable focus when 3=2+2=1<0. Next we discuss stability of E(1, 1, 1)
when 3=2+2=1=0, 0<&=&<<1.

Let yi=1&xi , i=1, 2, 3, and set y=Tz, t={�- 1�5&=1 . Then Eqs. (6)
are transferred to

z* 1= &
5

- 1�5&=1

z1+O(z2)

z* 2=z3+O(z2) (8)

z* 3= &z2+O(z2),

where y=col( y1 , y2 , y3), z=col(z1 , z2 , z3), and

6 &1 -
1
5&=1

T=\ 9 1 2-
1
5&=1 + .

10 -
1
5&=1 &2 -

1
5&=1

According to the method of Bernd Aulbach in [3], we subject the given
Eqs. (8) to the tranformation z1=rw, z2=r cos %, z3=r sin %. Here r, % and
w # R, which yields a system of the form

r* =rR(%, r, w)

%* =1+3(%, r, w) (9)

w* =&
5

-
1
5&=1

w+8(%) r+W(%, r, w),

where R, 3, W are analytic functions which can be represented as power
series in r, w around (r, w)=(0, 0) # R_R. The coefficients of those series
as well as the function 8(%) are analytic and 2?-periodic on R. For each
% # [0, 2?] these power series converge for |r|�$, |w|�$, here $ is a
positive constant independent of %. The Taylor series of R and 3 (around
(r, w)=(0, 0)) begin with the first order terms in r, w, whereas the Taylor
series of W begins with the second order terms in r, w. Because of the par-
ticular form of the %-equation it is possible to eliminate the independent
variable { from Eqs. (9). This leads to a 2-dimensional system of the form

dr
d%

=rR� (%, r, w)
(10)

dw
d%

=&
5

-
1
5&=1

w+8(%) r+W� (%, r, w),
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where the functions on the right-hand side can be written

rR� (%, r, w)= :
i�1, i+ j�2

Ri, j (%) riw j

(11)

W� (%, r, w)= :
i+ j�2

Wi, j (%) riw j.

The coefficients Ri, j (%) and Wi, j (%) are analytic and 2?-periodic functions.
The series in (11) are absolutely convergent in a polycylinder |r|�k1 ,
|w|�k1 , % # [0, 2?] for some positive k1 and its coefficients satisfy the
Cauchy estimates

|Ri, j |�
M

k i+ j
1

, |Wij |�
M

k i+ j
1

,

where M is the maximum of |rR� (%, r, w)| and |W� (%, r, w)| on the above
polycyclinder.

Let r=��
i=1 :i (%) ci, w=��

i=1 ;i (%) ci be a solution of (10) with initial
value (%, r, w)=(0, c, c), 0�&c&<<1. Substituting ��

i=1 :i (%) c i and
��

i=1 ;i (%) ci for r and w respectively in Eqs. (10) yields that : i (%) and
;i (%) satisfies the scalar differential equations with initial value
:1(0)=;1(0)=1 and :i (0)=; i (0)=0 for i�2. Solving the scalar differen-
tial equations, we find the singular point E(1, 1, 1) is an unstable focus with
positive first focal value at curve 3=2+2=1=0 by Theorem 4.1 in [3]. On
the other hand, the singular point E(1, 1, 1) is unstable when the
parameters (=1 , =2) lie in the range 3=2+2=1>0 and stable when the
parameters (=1 , =2) lie in the range 3=2+2=1<0. By Hopf bifurcation
theorem (subcritical case) in [4], we obtain that an unstable limit cycle of
Eqs. (6) is born in a small neighborhood of E(1, 1, 1), and the curve
3=2+2=1=0 is a Hopf bifurcation curve (see Fig. 2).

Now we consider stability of heteroclinic polycycle. When parameter
={0, the heteroclinic polycycle R1 R2 R3 is changed to heteroclinic poly-
cycle R1*R2*R3*. The saddles are R1*(3, 0, 0), R2*(0, 4, 0) and
R3*(0, 0, 12

5 + 1
3(=1+=2)). The external eigenvalues at equilibrium Ri* ,

i=1, 2, 3 in the direction j are given by *12=1, *23= 4
5+=1&3=2 ,

*31=3�5&(=1+=2 )�3, *21=&1, *13=&3
5&2=1+=2 , *32=&4

5&2(=1+=2).
In order to test the stability of heteroclinic polycycle R1*R2*R3*, we

denote

p=*12*23 *31+*21*13*32=(=1+=2) \&
37
15

+3=2&
13=1

3 +.
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FIG. 2. The Hopf bifurcation diagram and the corresponding phase portraits near the
equilibrium E of Eqs. (6).

The results in [7] tell that the heteroclinic polycycle is unstable when p>0
and the heteroclinic polycycle is stable when p<0. However, when p=0
we cannot directly decide the stability of heteroclinic polycycle. The
heteroclinic bifurcation curve is

=1+=2=0, as 0<&=&<<1.

The heteroclinic polycycle is unstable when =1+=2<0 and stable when
=1+=2>0.

We note that the Poincare� �Bendixson theorem holds in the carrying
complex 7= of Eqs. (6). Hence Eqs. (6) have at least two limit cycles in 7=

when (=1 , =2) belongs to the parameter range II, II=[= : 0<&=&<<
1, =1+=2<0 and 2=1+3=2<0], and Eqs. (6) are persistence, however,
Eqs. (6) have at least one limit cycle in 7= when (=1 , =2) belongs to the
parameter range III, III=[= : 0<&=&<<1, =1+=2>0 and 2=1+3=2<0],
and the heteroclinic polycycle is stable, which means Eqs. (6) are not per-
sistence. Moreover the Eqs. (6) have at least one limit cycle in 7= when
(=1 , =2) is in the range I, I=[= : 0<|=|<<1, =1+=2<0 and 2=1+3=2>0]
(see Fig. 3).

Remark 3.1. We guess that Eqs. (6) have not any periodic orbits in 7=

when (=1 , =2) is in the range IV, IV=[= : 0<|=|<<1, =1+=2>0 and
2=1+3=2>0]. If Eqs. (6) have hyperbolic periodic orbits in this parameter
range, then Eqs. (6) have at least three periodic orbits in some parameter
range.

13COMPETITIVE 3D LOTKA�VOLTERRA SYSTEM



FIG. 3. The bifurcation diagram and the corresponding phase portraits with limit cycles
of Eqs. (6).
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