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Abstract. Let F � Rn be a Moran set associated with the set f0< aj < 1; j � 0; 1; . . . ; rg. Let ÿ be
a non-empty subset of f0; 1; 2; . . . ; rg with non-empty complement. Associated with the behaviour of
success run of symbols from ÿ in the coding space f0; 1; . . . ; rgN is a decomposition of F such that

F �
[

t2�0;�1�
Ft:

Depending on F this might be a partition of F or almost a partition of F in the sense that
supx2F#ft : x 2 Ftg< �1. We prove that each Ft is dense in F, and dimHFt � dimPFt �
dimBFt � dimHF � dimPF � dimBF � s with

Pr
j�0 as

j � 1. For L1-a.e. t 2 �0;�1�;Hs�Ft� � 0

and Ft is an s-set when t � ÿ�log
P

j2ÿ as
j �ÿ1

. Moreover, associated with this decomposition
fFt : t 2 �0;�1�g of F is a measurable function Y such that each Ft is a level set of Y . The fractal
dimensions of the graph of Y are also determined.
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1. Introduction

A basic task in Fractal geometry is to determine or estimate the various
dimensions of fractal sets. Fractal dimensions are introduced to measure the sizes of
fractal sets and are employed in many different disciplines. Unfortunately, it is very
dif®cult to determine the exact fractal dimensions of general fractal sets. Many
results on fractal dimensions are obtained for fractal sets with a special structure.
Among them is a typical fractal structure called Moran set or Moran fractal. In order
to describe Moran fractals let us introduce the following notations. Denote

 � f0; 1; . . . ; rg. Here r is a positive integer.

(i) 
! � f� � ���1�; ��2�; . . .� : ��i� 2 
g;
(ii) 
k � f� � ���1�; ��2�; . . . ; ��k�� : ��i� 2 
g for k 2 N, and 
� �S1

k�1 
k;
(iii) j � j is used to denote the length of word. For any �; � 2 
� write

��� � ���1�; . . . ; ��j�j�; ��1�; . . . ; ��j� j��. For any � 2 
�; � 2 
! write
��� � ���1�; . . . ; ��j� j�; ��1�; ��2�; . . .�;
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(iv) �jk � ���1�; ��2�; . . . ; ��k�� for � 2 
! and k 2 N;
(v) For � 2 
k, the cylinder set C��� with base � is de®ned as C��� �

f� 2 
! : � jk � �g for k 2 N;
(vi) Let hj : Rn ! Rn; 04 j4 r. Denote h��x� � h��1� � � � � � h��k��x� for

� 2 
k and x 2 Rn.

Fixing a nonempty compact set J � Rn with int J � J and positive real
numbers 0< aj < 1; j � 0; 1; . . . ; r, the related Moran set (or Moran fractal) is
de®ned in the following way.

Step 1. For each � 2 
k; k 2 N, construct a compact set J� � Rn by induction:

� A family fJj : j 2 
g of nonoverlapping nonempty compact subsets of J is

chosen such that int Jj � Jj and jJjj � ajjJj where j � j denotes the diameter of set.

� Suppose that J� is given for some � 2 
k. Take a family fJ��j : j 2 
g
of nonoverlapping nonempty compact subsets of J� such that int J��j �
J��j; jJ��jj � ajjJ�j and J��j contains an open ball of diameter cjJ��jj where c is
a positive constant independent of ��j.

Step 2. The Moran fractal F associated with f0< aj < 1; j 2 
g and the
J�; � 2 
� is de®ned as the nonempty compact set

F �
\1
k�1

[
�2
k

J�: �1�

We shall refer to J� as a k-th level component set of F if � 2 
k. De®ne
� : 
! ! Rn by

f����g �
\1
k�1

J�jk: �2�

It is easy to see that ��
!� � F and ��C���� � F \ J� by (1). But � may not be an
injection. An important property of � is that there is positive constant c1,
independent of x 2 F, such that

sup
x2F

#f�ÿ1�x�g< c1 �3�

by means of Lemma 9.2 in [5]. Let � be the usual metric on 
! de®ned by

���; �� � 2ÿminfi:��i�6���i�g;

with the convention ���; �� � 0. Let F be equipped with the Euclidean metric.
Then � is continuous. Thus each x 2 F can be encoded via � : � 2 
! is called a
location code of x 2 F if ���� � x (Note that there are multiple location codes for
some x 2 F). Therefore � is also called the coding map and 
! is called the code
space (or symbolic space).

Some comments about Moran fractals are listed below.
(C1) The two crucial requirements in Step 1 (nonoverlapping and open ball

condition ± an analogue of the open set condition for self-similar sets) make the
structure of the Moran set simpler, close to that of self-similar sets and lead to the
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exclusion of the non-self-similar self-af®ne sets (ref. [2], [7], [13], [16], [17] and
[18], etc.).

(C2) The Moran fractals considered here are more general than those de®ned in
[3] where J��i is geometrically similar to J� and [19] where the open balls are
required to be centered at the points on F.

(C3) A Moran fractal is termed map-speci®ed if there exist similitude
contractions hj; j � 0; 1; . . . ; r, such that J� � h��J� for any � 2 
�. In this case F
is actually the self-similar set determined by fhj : j 2 
g, which satis®es the open
set condition with respect to the open set O � int J (i.e.

Sr
j�0 hj�O� � O with a

disjoint union on the left) and the coding map � in (2) can be changed into

f����g �
\1
k�1

h�jk�O� � lim
k!1

h�jk�0�
� �

: �4�

(C4) Moran fractals F are regular fractals in the sense that it has been proven
that dimHF � dimPF � dimBF � s and F is an s-set with

P
j2
 as

j � 1 (see [12],
[14], [15] & [19]).

(C5) The more general Moran fractal structure proposed by Zhiying Wen can
be produced by a similar method where the code space 
! �Q1i�1 
i and
corresponding to different 
i there are different scaling coef®cients
f0< ai; j < 1; j � 0; 1; . . . ; rig. Some fractal dimension results of this generalized
Moran sets can be found in [8], [9], [10], [11] and [14], etc. The class of
generalized Moran sets clearly contains the class of Moran sets, and in fact is far
larger than the class of Moran sets, since a generalized Moran set often has
different fractal dimensions and is not an s-set.

For any E � F there exists � � 
! such that E � ����. For certain �, it is
possible to determine the fractal dimensions of the projections E � ����. Up to
now, solutions which depend on the structure of � are obtained at least in the
following cases:

(S1) Let D � �di; j� be a �r � 1� � �r � 1� matrix with entries 0 and 1, and
� � f� 2 
! : d��k�; ��k�1� � 1 for all k 2 Ng (see [1], [15] & [19]);

(S2) � �Q1i�1 
i, where 
i is a non-empty subset of 
 for i � 1; 2; . . . (see
[10] & [11]);

(S3) Let F be map-speci®ed and � compact and shift invariant (see [7]).

Now let ÿ � 
 � f0; 1; . . . ; rg be non-empty such that ÿc 6� ;. For n 2 N and
� 2 
!, we de®ne Nn���, the length of the ÿ-run starting at n, by

Nn��� �
0;
k;
�1;

if ��n� =2ÿ;
if ��n� 2 ÿ; ��n� 1� 2 ÿ; . . . ; ��n� k ÿ 1� 2 ÿ and ��n� k� =2ÿ;
if ��k� 2 ÿ for k 5 n:

8<:
Let �Q�n�� be a sequence of real numbers such that Q�n� " �1 and Q�n� � o�n�
as n! �1. Let

� � � 2 
! : lim sup
n!1

Nn���
Q�n� � 1

� �
:

The Hausdorff dimension dimH���, box dimension dimB��� and packing dimension
dimP��� of the projection M � ���� will be determined in Section 2.
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Throughout this paper, log denotes the logarithm to base e. Now let us recall a
probability result attributed to D. J. Newman (see [4], p. 61):

Proposition In a sequence of independent Bernoulli trials fXng with success
probability p 2 �0; 1�, de®ne eNn to be the length of the maximal success run
commencing at trial n, that is

feNn � jg � fXn�j � 0;Xi � 1; n4 i< n� jg; j5 0:

Then

P lim sup
n!1

log p

log n
eNn � ÿ1

� �
� 1:

Associated with this proposition a class of special subsets Ft; t 2 �0;�1�, of F
can be de®ned by letting

�t � � 2 
! : lim sup
n!1

Nn���
log n

� t

� �
and Ft � ���t�: �5�

The following properties of Ft will be proved in Section 2:
(P1) F � St2�0;�1� Ft with supx2F#ft : x 2 Ftg< �1;
(P2) Each Ft is dense in F;
(P3) dimHFt � dimPFt � dimBFt � s where s is de®ned by

P
j2
 as

j � 1;
(P4) Moreover, if F is map-speci®ed with similitudes hj; j � 0; 1; . . . ; r, i.e., a

self-similar set, then each Ft is invariant under fhj : j � 0; 1; . . . ; rg, i.e.,

Ft �
[r
j�0

hj�Ft�:

On the other hand, the Ft can be considered as the level sets of the function
Y��� � lim supn!1

Nn���
log n

de®ned on the probability space �
!;G!;P�. This will be
discussed in Section 3 and the following results will be obtained (let s be as in P3):

(P5) For L1-a.e. t 2 �0;�1�; Hs�Ft� � 0, but when t � t̂ �
ÿ�log

P
j2ÿ as

j �ÿ1;Hs�Ft̂�> 0, from this it follows directly that Ft̂ is an s-set;
(P6) Let G be the graph of Y . Then dimHG � dimPG � dimBG � 1� s.

2. Dimension of Subsets of Moran Sets

In this section, a general dimension result on a class of subsets of Moran sets is
®rst obtained. Then this result will be applied to give a decomposition of Moran
sets. The following theorem will be employed.

Proposition 2.1. Let M � ��Q1i�1 
i� where the 
i are non-empty subsets of

 � f0; 1; . . . ; rg; i 2 N. Let d�k� be such thatYk

i�1

X
j2
i

a
d�k�
j

 !
� 1:

Then dimHM � lim infk!1d�k��� d (see [10]).
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Proof. This result can be found in [10] for the more general Moran fractal
structure (see (C5)). Here a simpli®ed proof is given for this special case. For any
d> d, there exists a sequence fnk : k � 1; 2; � � �g such that d�nk�< d. For any � > 0,
we can take k large enough such that fJ� : � 2Qnk

i�1 
ig is a �-covering of M. Then

Hd
��M�4

X
�2
Qnk

i�1

i

jJ�jd � jJjd
Ynk

i�1

X
j2
i

ad
j

 !
4 jJjd

Ynk

i�1

X
j2
i

a
d�nk�
j

 !
� jJjd;

which implies that dimHM 4 d. So we have dimHM 4 d.
Now we turn to prove that dimHM 5 d. Let us suppose without loss of

generality that d> 0. Then we only need to prove that for any ®xed 0< d< d,

dimHM 5 d. Let us construct a probability measure e� on S!�� Q1i�1 
i such that

for any � 2 Sk�� Qk
i�1 
i; k � 1; 2; . . .

e��C����� � Qk
i�1 ad

��i�Qk
i�1

P
j2
i

ad
j

� � ;
where C������f� 2 S! : �jk � �g is a cylinder in S! with base �. Let � be the
image measure under � de®ned in (2) and restricted to S! here. For �> 0, write
S� � f� 2

S1
k�1 Sk : a���

Qj�j
i�1 a��i�4 � and a�j�j�jÿ1�>�g. For any x 2 M; �> 0,

by B�x; �� we denote the closed ball with center at x and radius �. Let
Lx;��� f� 2 S� : J� \ B�x; �� 6� ;g. Since M � S�2S�

�M \ J�� and J�; � 2 S� are
pairwise nonoverlapping, there exists a ®nite constant c independent of x; � such
that 14#Lx;�4 c. Thus

��B�x; ���4
X
�2Lx;�

e��C����� � X
�2Lx;�

Qj�j
k�1 ad

��k�Qj�j
i�1

P
j2
i

ad
j

� � 4 c�d;

where for the last inequality we use that
Qj�j

i�1�
P

j2
i
ad

j �5 1 when � is small
enough, since d< d. Then by Frostman's lemma (see [5]) we obtain Hd�M�> 0
which implies that dimHM 5 d. QED

Remark 2.2. One can show furthermore that dimBM � dimPM �
lim supk!1d�k� (see [11]), and that 0<Hd�M�< �1 if and only if
0< lim infk!1

Qk
i�1�
P

j2
i
a

d
j �< �1 (see [10] & [14]).

Theorem 2.3. Suppose Q�n� " �1 and Q�n� � o�n� as n! �1. Let s be
such that

P
j2
 as

j � 1. Let M � ���� where

� � � 2 
! : lim sup
n!1

Nn���
Q�n� � 1

� �
:

Then dimHM � dimPM � dimBM � s, and M is dense in F.

Proof. It suf®ces to prove dimHM 5 s since dimHM 4 dimPM 4 s and
dimHM 4 dimBM 4 dimBM 4 s always hold. In the following, we shall complete
our proof by proving that for any given 0< d< s there exists a subset E � Ed of M
such that dimHE 5 d.
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Let the constant c be de®ned by

c�� max log#ÿ; log#ÿc; log
X
j2ÿ

as
j

�����
�����; log

X
j2ÿc

as
j

�����
�����

( )
: �6�

Consider the non-negative strictly decreasing function

G�x� � log
X
j2


ax
j ; 04 x4 s:

Clearly G�x� # 0 as x " s. Now let � be de®ned by 6c�
1ÿ� � G�d�. Then the solutions

of the inequality

04G�x� � log
X
j2


ax
j 4

6c�

1ÿ �

will lie in �d; s�.
Given any sequence of integers 0< k1 < u1 < u1;1 < � � � < u1;n1

< k2 < u2

< � � � < ki < ui < ui;1 < ui;2 < � � � < ui;ni
< ki�1 < ui�1 < � � �, we construct a set E

as follows:

E � fx 2 F : x�ki�; x�ui�; x�ui;j� 2 ÿc and x�k� 2 ÿ for

ki < k< ui; i5 1; 14 j4 nig:
Here for convenience we use x�k� to denote the k-th component of a location code
of x 2 F. The set E is a closed subset of F. In the de®nition of E, when ki < k< ui,
we call x�k� a ÿ-choice; when k � ki; ui and ui;j; x�k� is called a ÿc-choice; and the
rest of the x�k� are called 
-choices.

By respectively N
�k�;Nÿ�k� and Nÿc�k� we denote the total number of 
-, ÿ-
and ÿc-choices among the ®rst k entries in a location code of a point in E. Thus we
have that N
�k� � Nÿ�k� � Nÿc�k� � k for k 2 N.

Note that for ki ÿ 14 k4 ui;N
�k� � N
�ki ÿ 1�. For convenience we put

fi � N
�ki ÿ 1�:
Now de®ne a sequence of positive integers bi; i 2 N, by

bi�1 � bi � �Q�bi � 1��; �7�
where �Q�bi � 1�� is the largest integer less than Q�bi � 1�. Here we take b1 large
enough to ensure Q�b1 � 1�5 2. So the bi increase strictly and tend to �1.
We take the sequence of positive integers k1; u1; u1;1; . . . ; u1;n1

; k2; u2; . . . in the
de®nition of E as the sequence b1; b2; . . . . Now for any n 2 N there is an i
with bi 4 n< bi�1. Thus for any � 2 
! with ���� 2 E, because Nn���4
bi�1 ÿ bi ÿ 1;Nbi

��� � 0 and Q is non-decreasing we have

lim sup
n!1

Nn���
Q�n� 4 lim sup

i!1
bi�1 ÿ bi ÿ 1

Q�bi � 1� � 1
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by (7). On the other hand, for any � 2 
! with ���� 2 E we have

lim sup
i!1

Nki�1���
Q�ki � 1� � lim sup

i!1
ui ÿ ki ÿ 1

Q�ki � 1� � 1

by (7). Therefore E � M. Note that this holds for any choice of n1; n2; . . .. We shall
now make a choice for this sequence, based on the previously de®ned �. Suppose
that the n` are de®ned for ` � 1; 2; . . . ; iÿ 1, then also ki and ui are determined.
Letting ni vary, we have

lim
ni!1

N
�ui;ni
�

ui;ni

� lim
ni!1

N
�ui� � ui;ni
ÿ ui ÿ ni

ui;ni

� 1ÿ lim
ni!1

ni

ui;ni

� 1ÿ lim
ni!1

ni ÿ �ni ÿ 1�
ui;ni
ÿ ui;niÿ1

� 1ÿ lim
ni!1

1

�Q�ui;niÿ1 � 1�� � 1:

Here we use Stolz's theorem for the third equality above. Therefore we can choose
ni such that

fi�1 � N
�ki�1 ÿ 1�5 �1ÿ ��ki�1: �8�
According to Proposition 2.1 we have dimHE � lim infk!1d�k�, where d�k�
satis®es

X
j2


a
d�k�
j

 !N
�k� X
j2ÿc

a
d�k�
j

 !Nÿc �k� X
j2ÿ

a
d�k�
j

 !Nÿ�k�
� 1: �9�

Taking logs in (9), and using N
�k� � Nÿ�k� � Nÿc�k� � k we get

log
X
j2


a
d�k�
j � ÿNÿc�k�

N
�k� log
X
j2ÿc

a
d�k�
j ÿ k ÿ N
�k� ÿ Nÿc�k�

N
�k� log
X
j2ÿ

a
d�k�
j : �10�

We shall show that there exist an i� such that d�k�5 d when k5 ki� . Then
dimHE 5 d by Proposition 2.1.

Now, by the properties of �Q�n�� we can take i� such that for all i5 i�

�Q�ki � 1��
ki

4 � and �Q�ui � 1�� ÿ 1>
ÿlog

P
j2ÿc ad

j

log
P

j2
 ad
j

: �11�

We shall consider two cases for the k with k5 ki� .

Case 1. For some i5 i� one has ki 4 k4 ui. In this case, N
�k� � N
�ui� � fi

and hence the equality (10) can be written as

log
X
j2


a
d�k�
j � ÿNÿc�k�

fi

log
X
j2ÿc

a
d�k�
j ÿ log

X
j2ÿ

a
d�k�
j

 !
ÿ k ÿ fi

fi

log
X
j2ÿ

a
d�k�
j :

�12�
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Note that

04
Nÿc�k�

fi

� k ÿ N
�k� ÿ Nÿ�k�
fi

4
k ÿ fi

fi

; �13�

and

04
k ÿ fi

fi

4
ui

fi
ÿ 1 � ki � �Q�ki � 1��

fi

ÿ 1

� ki

fi

1� �Q�ki � 1��
ki

� �
ÿ 1

4
1

1ÿ � 1� �Q�ki � 1��
ki

� �
ÿ 1

� �

1ÿ ��
1

1ÿ � �
�Q�ki � 1��

ki

; �14�

by (8). Note that jlog
P

j2ÿc a
d�k�
j j4 c; jlog

P
j2ÿ a

d�k�
j j4 c by (6). Therefore, when

i5 i� and ki 4 k4 ui,

log
X
j2


a
d�k�
j 4

2�

1ÿ � � 2c� 2�

1ÿ � � c �
6c�

1ÿ � ;

by (12), (13), (14) and the ®rst inequality of (11), which means that d�k�5 d.

Case 2. For some i5 i� one has ui < k< ki�1. First note that if d�k�5 d and
x�k � 1� is a 
-choice, then N
�k � 1� � N
�k� � 1, and hence we see directly

from (9) that also d�k � 1�5 d since
P

j2
 a
d�k�
j 5 1.

To ®nish Case 2, it suf®ces therefore to show that for each k � ui;`;
` � 1; � � � ; ni we have d�ui;`�5 d. Putting ui;0 � ui, this will be done by showing
that d�ui;`�5 d implies d�ui;`�1�5 d for ` � 0; � � � ; ni ÿ 1 (by Case 1 we have
already ui;0 5 d). In fact, taking k � ui;` and k � ui;`�1 in (9), we obtain

X
j2


a
d�ui;`�
j

 !N
�ui;`� X
j2ÿc

a
d�ui;`�
j

 !Nÿc �ui;`� X
j2ÿ

a
d�ui;`�
j

 !Nÿ�ui;`�
� 1; �15�

and

X
j2


a
d�ui;`�1�
j

 !N
�ui;`�1� X
j2ÿc

a
d�ui;`�1�
j

 !Nÿc �ui;`�1� X
j2ÿ

a
d�ui;`�1�
j

 !Nÿ�ui;`�1�
� 1: �16�

Now suppose that d�ui;`�1�< d. Then, since Nÿ�ui;`�1� � Nÿ�ui;`�; Nÿc�ui;`�1� �
Nÿc�ui;`� � 1 and N
�ui;`�1� � N
�ui;`� � �Q�ui;` � 1�� ÿ 1, it follows from (15)
and (16) that

X
j2


a
d�ui;`�1�
j

 !�Q�ui;`�1��ÿ1 X
j2ÿc

a
d�ui;`�1�
j

 !
< 1: �17�
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But since Q�n� is increasing, and
P

j2
 a
d�ui;`�1�
j > 1, this implies

�Q�ui � 1�� ÿ 14 �Q�ui;` � 1�� ÿ 14
ÿlog

P
j2ÿc a

d�ui;`�1�
j

log
P

j2
 a
d�ui;`�1�
j

4
ÿlog

P
j2ÿc ad

j

log
P

j2
 ad
j

;

which is impossible by the second inequality of (11). So we must have
d�ui;`�1�5 d, and we have ®nished the proof of Case 2. Hence we have obtained
that dimHE 5 d, and completed the proof of the dimension result on M.

Finally, the density result is derived directly from the fact that if � 2 � then for
any k 2 N those � 2 
! with ��i� � ��i�; i5 k will lie in �. QED

As a Corollary to Theorem 2.3 we can now prove (P1), (P2), (P3) and (P4) of
the previous section.

Proof (of (P1)±(P4)). By (3) and the de®nition (5) of �t we haveS
t2�0;�1� �t � 
! which leads to (P1). (P2) and (P3) can be directly derived

from Theorem 2.3 by taking Q�n� � tlogn for t 2 �0;�1�;Q�n� � loglogn for
t � 0 and Q�n� � �logn�2 for t � �1. Note that if � 2 �t then for any j 2 
 we
have j�� 2 �t since

lim sup
n!1

Nn� j ���
logn

� lim sup
n!1

Nnÿ1���
log�nÿ 1� �

log�nÿ 1�
logn

� �
� t:

Thus �t �
Sr

j�0 j��t where j��t � fj�� : � 2 �tg, and we get (P4) by (4). QED

3. Level Sets and Hausdorff Measure

Let �p0; p1; . . . ; pr� be a probability vector with each pj > 0 and let �
!;G!;P� be
the probability space so that G! is the �-algebra generated by all cylinder sets of

! and the probability measure P is de®ned for any cylinder set C��� by

P�C���� �
Yj� j
i�1

p��i�: �18�

A sequence of independent Bernoulli trials fXng on the probability space
�
!;G!;P� with success probability p can be de®ned by letting

P
j2ÿ pj � p and

Xn��� � 1, if ��n� 2 ÿ and Xn��� � 0, for ��n� 2 ÿc. Therefore, taking t � ÿ 1
log p

in (5) we have P��t� � 1 by the Proposition in Section 1. For each t 2 �0;�1�,
let �p0; p1; . . . ; pr� be any ®xed probability vector such that

P
j2ÿ pj � eÿ1=t holds,

then we de®ne �t�B� � P��ÿ1�B�� for each Borel subset B � F. Then �t�Ft� � 1
where Ft is de®ned in (5).

On the other hand, de®ne random variables Y���; Yn���; n 2 N on �
!;G!;P�
as follows:

Yn��� � Nn���
logn

and Y��� � lim sup
n!1

Yn���:

We have �t � f� 2 
! : Y��� � tg, i.e., �t is a level set of Y���, and so the
projection Ft � ���t� of �t is, in some sense, a level set of Y���.
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We consider the set

G � f�����; Y���� : � 2 
!g � Rn � �R [ f1g�: �19�
If � is invertible, then letting x � ���� we have G � f�x; Y��ÿ1�x�� : x 2 Fg, i.e.,
G is the graph of the function Y��ÿ1�x�� on F. Note that G � St2�0;�1�f�x; t� : x 2 Ftg and dimHFt � s. We shall show that dimHG � 1� s. The
following proposition can be found in Proposition 7.9 of [5] where the proof is
given for n � 2, which can easily be extended to the general case.

Proposition 3.1. Let H be a Borel subset of Rn; n5 2. If 14 t4 n, then�1
ÿ1

Htÿ1�H \ Lx�dx4 �nÿ 1�tÿ1
2 Ht�H�;

where Lx denotes the hyperplane f�x1; � � � ; xn� 2 Rn : xn � xg. QED

Theorem 3.2. Let G be as in (19). Then dimHG � dimPG � dimBG � 1� s.

Proof. We have dimHG5 1� s by Proposition 3.1 and Theorem 2.3. In fact,
for any 14 t< 1� s,

n
tÿ1

2 Ht�G�5
�1
ÿ1

Htÿ1�G \ Lx�dx �
�1

0

Htÿ1�Fx�dx � �1:

On the other hand, the product formula 7.5 in [5] gives

dimBG4 dimB�F � �0;�1��4 dimBF � dimB��0;�1�� � 1� s: QED

Since F is an s-set, Hs�Ft�4Hs�F�< �1; t 2 �0;�1�. We will consider the
problem whether Ft is an s-set, i.e., whether or not Hs�Ft�> 0. By L1 we denote
the one-dimensional Lebesgue measure on the real line.

Theorem 3.3. For L1-a.e. t 2 �0;�1�;Hs�Ft� � 0; but when t � t̂ �
ÿ�log

P
j2ÿ as

j �ÿ1; Hs�Ft̂�> 0, i.e., Ft̂ is an s-set.

Proof. We ®rst prove the second part. Consider the probability space
�
!;G!;P� where P is de®ned by (18) with pj � as

j ; j 2 
. By the de®nition (5)
of Ft̂ and the Proposition in Section 1, we get P��t̂� � 1. Let bMt̂ � ��b�t̂� where

b�t̂ � � 2 �t̂ : lim
l!1

#f14 k4 l : ��k� � jg
l

� as
j ; j 2 


� �
:

Then bMt̂ � Ft̂. Since P��t̂� � 1, we have P�b�t̂� � 1 by the Law of Large Numbers
or the Ergodic Theorem. Let �t̂ be the image of P under � as before. By Br�x� we
denote the closed ball with centre at x and radius r. Let r be given small enough.
Then for each � 2 b�t̂ there exists a positive integer h��; r� such that

r �min
j2


aj 4 a��jh��; r��4 r; �20�

where a����� Qj�jk�1 a��k� for � 2 
�. Let W � f�jh��; r� : � 2 b�t̂g. For any ®xed
x 2 bMt̂ let W� � f� 2 W : J� \ Br�x� \ bMt̂ 6� ;g. Then there exists a ®nite
positive constant � independent of r and x such that #W�4 � by Lemma 9.2 in
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[5]. Hence

�t̂�Br�x��4P
[

�2W�
C���

0@ 1A4
X
�2W�

P�C���� �
X
�2W�

�a����s 4 �rs

by (18) and (20). So we get

Hs�Ft̂�5Hs�bMt̂�> 0

by Frostman's lemma.
Now we turn to prove the ®rst part. Consider the product measure space

�F � �0;�1�;B1 �B2;H
s �L1� of the �-®nite measure spaces �F;B1;H

s�
and ��0;�1�;B2;L

1�. Write G � St2�0;�1�f�x; t� : x 2 Ftg as before. By � we

denote the indicator of G. By Fubini's Theorem we have�
F

�
�0;�1�

��x; t�dL1�t�dHs�x� �
�
�0;�1�

Hs�Ft�dL1�t�:

Note that each ®xed x 2 F; ��x; t� 6� 0 only for ®nitely many t by (3). Then the left
integral equals 0. Noting that Hs�Ft�5 0 for t 2 �0;�1�, we have that for L1-
a.e. t 2 �0;�1�;Hs�Ft� � 0. QED

We conjecture that Ft is an s-set if and only if t � ÿ�log
P

j2ÿ as
j �ÿ1

.
As an application of the preceding, we end with an example of a measurable

function T : �0; 1� ! �0;�1�, such that each t-level set Tÿ1�t� � �0; 1�;
t 2 �0;�1� has Hausdorff dimension 1.

Example. Take r � 2;ÿ � f0; 2g and J � �0; 1�. Consider the map-speci®ed
Moran fractal F with hj�x� � 1

3
x� j

3
; x 2 R1 and j � 0, 1, 2. Then we have

F � �0; 1�; aj � 1
3
; j � 0, 1, 2 and s � 1. Let Ft; t 2 �0;�1�, be de®ned by (5).

Then we get a decomposition �Ft� of F satisfying the properties (P1)±(P4). Note
that each x 2 F, either has unique location code or it has only two location codes
in 
! � f0; 1; 2g � f0; 1; 2g � � � �. In the former case, the unique location code
has both in®nitely many components in ÿ and in®nitely many components 1. So
the corresponding x only lies in one of the sets Ft. But in the latter case, one of the
two location codes only has components 0 except for ®nitely many components,
the other only has components 2 except for ®nitely many components. So the
corresponding x lies in F1. Hence �Ft� is a partition of F, satisfying the properties
(P1)±(P4). De®ne the function T : �0; 1� ! �0;1� by

T�x� � t if x 2 Ft:

Then we get a measurable function T : �0; 1� ! �0;�1�, such that each t-level set
Tÿ1�t��� Ft� � �0; 1�; t 2 �0;�1� has Hausdorff dimension 1 and the graph of
T�x� has Hausdorff dimension 2. Let t̂ � 1=�log3ÿ log2�. Then we have
H1�Ft̂�> 0 by Theorem 3.3. In fact, in this special case we have

H1�Ft̂�5H1�bMt̂� �L1�bMt̂� � �t̂�bMt̂� � 1;

since we always have H1��� �L1��� and �t̂ is actually the one-dimensional
Lebesgue measure in this special case. Thus we get H1�Ft̂� � 1 and H1�Ft� � 0
for the other t. QED
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