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Abstract. Let F C R" be a Moran set associated with the set {0 <a; <1,j=0,1,...,r}. LetT be

a non-empty subset of {0, 1,2, ..., r} with non-empty complement. Associated with the behaviour of
success run of symbols from I in the coding space {0, 1,...,r}" is a decomposition of F such that
F= U F,.

€[0,+00]

Depending on F this might be a partition of F or almost a partition of F in the sense that
Sup,ep#{t :x € F;} < +00. We prove that each F, is dense in F, and dimyF, = dimpF, =
dimgF, = dimyF = dimpF = dimgF = s with Z, 0@ = 1. For Plae. t€[0,+00], #°(F) =0
and F, is an s-set when r= (logzlepa) . Moreover, associated with this decomposition
{F;:t € [0,+00]} of F is a measurable function Y such that each F; is a level set of Y. The fractal
dimensions of the graph of Y are also determined.
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1. Introduction

A basic task in Fractal geometry is to determine or estimate the various
dimensions of fractal sets. Fractal dimensions are introduced to measure the sizes of
fractal sets and are employed in many different disciplines. Unfortunately, it is very
difficult to determine the exact fractal dimensions of general fractal sets. Many
results on fractal dimensions are obtained for fractal sets with a special structure.
Among them is a typical fractal structure called Moran set or Moran fractal. In order
to describe Moran fractals let us introduce the following notations. Denote
Q=140,1,...,r}. Here r is a positive integer.

i) Q ={o=(0(1),0(2),...): 0(i) € Q};

(11) Q" ={o=(o(1),0(2),...,0(k)): 0(i) €Q} for k€N, and Q* =
Ui, 9%

(iii) || is used to denote the length of word. For any o,7 € Q* write
oxt = (o(1),...,0(|a]),7(1),...,7(]7])). For any 7€ Q* oceQ” write
0 = (7(1) 7(|7]), 0(1),0(2),...);
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(iv) olk = (o(1),0(2),...,0(k)) for o € Q¥ and k € N;

(v) For o € O, the cylinder set C(c) with base o is defined as C(0) =
{r € Q¥: 7|k =0} for k €N;

(vi) Let hj:R" — R",0 <j<r. Denote hy(x)=hyq)o---0hsu(x) for
o€ OFand x € R".

Fixing a nonempty compact set J C R" with intJ =J and positive real
numbers 0<a;<1,j=0,1,...,r, the related Moran set (or Moran fractal) is
defined in the following way.

Step 1. For each o € QF, k € N, construct a compact set J, C R" by induction:

e A family {J; : j € Q} of nonoverlapping nonempty compact subsets of J is

chosen such that intJ; = J; and |J;| = g;|J| where | - | denotes the diameter of set.

e Suppose that J, is given for some o € Q. Take a family {Joxj 1 j € Q}
of nonoverlapping nonempty compact subsets of J, such that intJys; =
Joxj, [Joxjl = aj|J,;| and J,x; contains an open ball of diameter c|J,«;| where c is
a positive constant independent of oj.

Step 2. The Moran fractal F associated with {0<a;<1,j€ Q} and the
J,,0 € QF is defined as the nonempty compact set

F:ﬁ U 7o (1)

=1 oeQk

We shall refer to J, as a k-th level component set of F if o € Q. Define
¢: Q¥ — R" by

(600} = (V. @)

It is easy to see that ¢(Q2¥) = F and ¢(C(0)) = F NJ, by (1). But ¢ may not be an
injection. An important property of ¢ is that there is positive constant ci,
independent of x € F, such that

sup #{¢~' ()} <c1 (3)

xeF
by means of Lemma 9.2 in [5]. Let p be the usual metric on Q)“ defined by
p(a, 7_) — zfmin{i:a(i);é-r(i)}7

with the convention p(o,0) = 0. Let F be equipped with the Euclidean metric.
Then ¢ is continuous. Thus each x € F can be encoded via ¢: o € Q¥ is called a
location code of x € F if ¢(0) = x (Note that there are multiple location codes for
some x € F). Therefore ¢ is also called the coding map and €2* is called the code
space (or symbolic space).

Some comments about Moran fractals are listed below.

(C1) The two crucial requirements in Step 1 (nonoverlapping and open ball
condition — an analogue of the open set condition for self-similar sets) make the
structure of the Moran set simpler, close to that of self-similar sets and lead to the
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exclusion of the non-self-similar self-affine sets (ref. [2], [7], [13], [16], [17] and
[18], etc.).

(C2) The Moran fractals considered here are more general than those defined in
[3] where J,x; is geometrically similar to J, and [19] where the open balls are
required to be centered at the points on F.

(C3) A Moran fractal is termed map-specified if there exist similitude
contractions h;, j = 0,1,...,r, such that J, = h,(J) for any o € Q*. In this case F
is actually the self-similar set determined by {#; : j € Q}, which satisfies the open
set condition with respect to the open set O = intJ (i.e. J_,#(0) C O with a
disjoint union on the left) and the coding map ¢ in (2) can be changed into

(0101} = (o @) = { im 10} @

(C4) Moran fractals F are regular fractals in the sense that it has been proven
that dimyF = dimpF = dimgF = s and F is an s-set with Zjeﬂ a; =1 (see [12],
[14], [15] & [19)]).

(C5) The more general Moran fractal structure proposed by Zhiying Wen can
be produced by a similar method where the code space Q¥ = [[2, € and
corresponding to different €); there are different scaling coefficients
{0<a;;<1,j=0,1,...,r;}. Some fractal dimension results of this generalized
Moran sets can be found in [8], [9], [10], [11] and [14], etc. The class of
generalized Moran sets clearly contains the class of Moran sets, and in fact is far
larger than the class of Moran sets, since a generalized Moran set often has
different fractal dimensions and is not an s-set.

For any E C F there exists A C Q¢ such that E = ¢(A). For certain A, it is
possible to determine the fractal dimensions of the projections E = ¢(A). Up to
now, solutions which depend on the structure of A are obtained at least in the
following cases:

(S1) Let D = (d; ;) be a (r+1) x (r+ 1) matrix with entries 0 and 1, and
A ={0€ 0 dy) o0ty =1 forall ke N} (see[l], [15] & [19]);

(S2) A =112, i, where ©; is a non-empty subset of  for i =1,2,... (see
[10] & [11]);

(83) Let F be map-specified and A compact and shift invariant (see [7]).

Now letI' C Q2 = {0, 1,...,r} be non-empty such that I'“ # (). For n € N and
o € ¥, we define N,(o), the length of the I'-run starting at n, by

0, if o(n)¢r,
Nu(o) = k, ifo(n) elon+1)el,...,o(n+k—1)€T and o(n +k)¢T,
+oo, if o(k) €T for k = n.

Let (Q(n)) be a sequence of real numbers such that Q(n) T +o00 and Q(n) = o(n)
as n — +oo. Let

o N, (o) }
A={J0e€ Q¥ limsu =1;.
{ et Q)
The Hausdorff dimension dimg(-), box dimension dimp(-) and packing dimension
dimp(-) of the projection M = ¢(A) will be determined in Section 2.
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Throughout this paper, log denotes the logarithm to base e. Now let us recall a
probability result attributed to D. J. Newman (see [4], p. 61):

Proposition In a sequence of independent Bernoulli trials {X,} with success
probability p € (0,1), define N, to be the length of the maximal success run
commencing at trial n, that is

{(No=j} ={Xss; =0,X; = Ln<i<n+j}, j=0.
Then

los p ~
{hmsup1 ipN,, = —1} =1.
n—00 n

Associated with this proposition a class of special subsets F;, 7 € [0, 4+o00], of F
can be defined by letting

N,
A= {UEQw:limsup "(J):t} and F, = ¢(Ay). (5)
n—oo lOgn
The following properties of F; will be proved in Section 2:
(P1) F = UteLO oo Fr with sup,cp#{t : x € F;} < + o0;
(P2) Each F, is dense in F;
(P3) dimyF; = dimpF; = dimgF; = s where s is defined by Zjeﬂ a; =1;
(P4) Moreover, if F' is map-specified with similitudes #;, j = 0,1,...,r,ie., a
self-similar set, then each F; is invariant under {h; : j =0,1,...,r}, i.e.,

F, = m(F,).
j=0

On the other hand the F; can be con51dered as the level sets of the function
Y(o) = limsup,_, Tog Nulo ) (¥, 9 P). This will be
discussed in Section 3 and the followmg results will be obtained (let s be as in P3)

(PS) For PL'ae. t€[0,+c0], H*(F,)=0, but when t=1i=

—(log jeraj)” L (F) > 0 from this it follows directly that F; is an s-set;

(P6) Let G be the graph of Y. Then dimyG = dimpG = dimpG =1 + .

2. Dimension of Subsets of Moran Sets

In this section, a general dimension result on a class of subsets of Moran sets is
first obtained. Then this result will be applied to give a decomposition of Moran
sets. The following theorem will be employed.

Proposition 2.1. Let M = ¢(] [, %) where the Q; are non-empty subsets of
Q={0,1,...,r},i € N. Let d(k) be such that

( Z a;l(k)> =1.
jeQy
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Proof. This result can be found in [10] for the more general Moran fractal
structure (see (C5)). Here a simplified proof is given for this special case. For any
d > d, there exists a sequence {rn; : k = 1,2, --} such that d(n;) < d. For any 6 > 0,
we can take k large enough such that {J, : o € [[*, {;} is a 6-covering of M. Then

wy< Y w%mﬁﬁiﬁ>ﬂmﬁ@yﬁﬁ4m
X i=1 i=1

OGHZ] Q jGQ; jEQ,'

which implies that dimyM < d. So we have dimyM < d.

Now we turn to prove that dimyM > d. Let us suppose without loss of
generality that d > 0. Then we only need to prove that for any fixed 0 <d <d,
dimgM = d. Let us construct a probablhty measure 1 on S = H, 1 € such that
for any o € Sk 2 T, Qi k=

k
[Tie a§<,~>
k
Hi:l (ZjeQ, “f)

where C*(o )A{H €S0k = a} is a cylinder in S¥ with base 0. Let u be the
image measure under ¢ deﬁned in (2) and restricted to S¥ here. For € >0, write
Se={oelUyz, S: Hl | doi) < €and a,|(|oj—1) > €}. For any x € M,e>0,
by g(x, €) we denote the closed ball with center at x and radius e. Let
Lic={0 €S8 :J,NB(x,¢) #0}. Since M =, (MNJ,) and J,,0 € S, are
pairwise nonoverlapping, there exists a finite constant ¢ independent of x, € such
that 1 < #L,. < c. Thus

)

fi(C*(0)) =

lo] 4
- k=1 %k
u(Bx,) < Y fCH (o) = Y e <,
o€Ly, oL, [ 12 (Zjeﬂ, aj)

where for the last inequality we use that Hl I(ZJEQ a’) > 1 when € is small
enough, since d < d. Then by Frostman’s lemma (see [5]) we obtain (M) >0
which implies that dimyM > d. QED

Remark 2.2. One can show furthermore that dimgM = dimpM =
lim sup;_, . d(k) (see [11]) and that 0< #%4(M)< +oc if and only if
0 <liminf;_~ Hl 1O jen, 45 ) < 400 (see [10] & [14]).

Theorem 2.3. Suppose Q(n) T +oo and Q(n) = o(n) as n — +oc. Let s be

such that ) ..o a; = 1. Let M = ¢(A) where

A= {O’ e 0¥ llii}plé((i) 1}.

Then dimyM = dimpM = dimgM = s, and M is dense in F.

Proof. Tt suffices to prove dimyM > s since dimyM < dimpM < s and
dimyM < dimpM < dimgM < s always hold. In the following, we shall complete
our proof by proving that for any given 0 < d < s there exists a subset E = E; of M
such that dimyFE > d.
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Let the constant ¢ be defined by

log Z a;

jeT

log Za;

jere

)

c2 max{log#l“7 log#T1°,

}. (6)

Consider the non-negative strictly decreasing function

G(x) zlogZa;‘, 0<x<s.

jen

Clearly G(x) | 0 as x | s. Now let € be defined by ¢ = G(d). Then the solutions
of the inequality

6ce

0<Gx) = logZa}‘ <

e I—e

will lie in [d, s].

Given any sequence of integers 0 <ki <uy <up1< -+ <up, <k <up
<<k <u<upy <uip < - <y, <k <uipp < ---, we construct a set E
as follows:

E={xeF :x(ki),x(u;), x(u;j) €T and x(k) €' for
k,-<k<u,-,i> 1,1 <]<n,}

Here for convenience we use x(k) to denote the k-th component of a location code
of x € F. The set E is a closed subset of F. In the definition of E, when k; < k < u;,
we call x(k) a I'-choice; when k = k;, u; and u; ;, x(k) is called a I'“~choice; and the
rest of the x(k) are called Q-choices.

By respectively N (k), Np(k) and Ny« (k) we denote the total number of §2-, I'-
and I'“~choices among the first k entries in a location code of a point in E. Thus we
have that N (k) 4+ Nr(k) 4+ Nre(k) = k for k € N.

Note that for k; — 1 < k < u;, No(k) = Nq(k; — 1). For convenience we put

fi=Na(ki —1).
Now define a sequence of positive integers b;,i € N, by
biv1 = bi +[Q(bi + 1)], (7)

where [Q(b; + 1)] is the largest integer less than Q(b; + 1). Here we take b, large
enough to ensure Q(b; + 1) = 2. So the b; increase strictly and tend to +oo.
We take the sequence of positive integers ki, ui,u11,...,U41,,,k2, Uz, ... in the
definition of E as the sequence bi,b;,.... Now for any n € N there is an i
with b; < n<b;y;. Thus for any o€ Q¥ with ¢(0) € E, because N,(0) <
bit1 — bi — 1,N,,,(0) = 0 and Q is non-decreasing we have

N, . biy1 —bi—1
lim sup Q((U)) < lim sup% =
n—0o0 n i—o00 i
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by (7). On the other hand, for any o € Q¥ with ¢(o) € E we have

N i — ki — 1
lim sup————+ k+1() *limsupui

—00 Q(k + ) i—00 Q(kz + 1) B
by (7). Therefore E C M. Note that this holds for any choice of ny, n,, . ... We shall
now make a choice for this sequence, based on the previously defined e. Suppose
that the n, are defined for £ =1,2,...,i — 1, then also k; and u; are determined.
Letting n; vary, we have

No(u;p,) ~ lim No(u;) + tip, — ui — n;

lim
m—00 Ui, ni—00 Uip,
. n; oo — (i —1
=1-— lim zl—hm¥
ni—00 Uj p, ni—00 Ui p. — Ujp,—1
=1— lim

= (O + 1))

Here we use Stolz’s theorem for the third equality above. Therefore we can choose
n; such that

fir1 = Na(kiyr — 1) = (1 — )k (8)
According to Proposition 2.1 we have dimyE = liminf,_d(k), where d(k)

satisfies
N (k) Nre (k) Nr (k)
d(k) d(k) d(k) _
() (ze) (ze) -v o
=y jere jeT

Taking logs in (9), and using Nq (k) + Nr(k) + Nr-(k) = k we get

NFL (k) d(k) k — Nq(k) — N (k) d(k)
log = log» d;" — log» a; . (10)
2= Nt e 2 ol 2

We shall show that there exist an i* such that d(k) > d when k > k. Then
dimyE > d by Proposition 2.1.

Now, by the properties of (Q(n)) we can take i* such that for all i > i*
ki 1 —lo T a‘?
[0 +1)] <e and [Q(ui+1)}—1>L€Fdj. (11)
ki log ) icq @

We shall consider two cases for the k with k > kx.

Case 1. For some i > i* one has k; < k < u;. In this case, No(k) = Nq(u;) = f;
and hence the equality (10) can be written as

log Z af(k) = NF( ( Z a;’’ —log Z af(k)> — k= fl log Z a;

je jere jel jel’

(12)
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Note that
Nre(k) _k—Nqo(k) —Nr(k) _ k—fi
0< - < : 13
< 7 7 < 7 (13)
and
0< k—fz< &_1_k1+[Q(ki+1)]_1
fi Ji Ji
ki [O(ki +1)]
f <1 ki ) !
1 [O(k; 4 1)]
S 1—c¢ <] + ki ) -
__€ . 1 [Q(kilJr 1)] 7 (14)

by (8) Note that [log ) . @j (k) | < ¢ [log er a;-j(k)| < ¢ by (6). Therefore, when
i>i"and k; <k <u,

2¢ 6ce
logZa ~2c+]_€'c:1_€,
jen

by (12), (13), (14) and the first inequality of (11), which means that d(k) > d.

Case 2. For some i > i* one has u; <k < k; . First note that if d(k) > d and
x(k +1) is a Q-choice, then No(k + 1) = Nq(k) + 1, and hence we see directly
from (9) that also d(k + 1) > d since >, a;.i(k) > 1.

To finish Case 2, it suffices therefore to show that for each k = u;y,
¢=1,---,n; we have d(u;y) > d. Putting u; o = u;, this will be done by showing
that d(u;¢) > d implies d(u;1) >d for £=0,---,n; — 1 (by Case 1 we have
already u; o > d). In fact, taking k = u; ¢ and k = u; 441 in (9), we obtain

Na(uig) Nre (uig) Nr(uiz)
(za=) (ma) () v oo

jeQ jere jer

and

Nao(uigi1) Nre (ig11) T (uier1)
d(uips1 d(uips1 d(ui s
(Zaj( ¢ )) (Zaj( ¢ )) ( v ) —1. (16)
=y jere
Nr(

Now suppose that d(u;¢41) <d. Then, since Np(u;py1) = uig), Nre(uiopr) =
Nre (u,_{) + 1 and NQ(MMJFI) NQ(ML[) =+ [Q(u,p =+ )} — 1, it follows from (15)

and (16) that
[O(uig+1)]-1
(Z af(uzlﬂ)) (Z af(”i,kﬂ)) <1. (17)

= jere
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d (#igr1)

But since Q(n) is increasing, and . @;

> 1, this implies

d(u,
—log Z:jel“‘ aj( o < —log Zjel“‘f ajd

Q@i+ )] =1 < [Quip +1)] - 1 < . < :
log e “Jl‘i ) log 3jeq af

which is impossible by the second inequality of (11). So we must have
d(u;e+1) = d, and we have finished the proof of Case 2. Hence we have obtained
that dimyE > d, and completed the proof of the dimension result on M.

Finally, the density result is derived directly from the fact that if ¢ € A then for
any k € N those 7 € Q¥ with 7(i) = o(i),i = k will lie in A. QED

As a Corollary to Theorem 2.3 we can now prove (P1), (P2), (P3) and (P4) of
the previous section.

Proof (of (P1)-(P4)). By (3) and the definition (5) of A, we have
Uzeo +od] At Q“ which leads to (P1). (P2) and (P3) can be directly derived
from Theorem 2.3 by taklng Q(n) = tlogn for t € (0,400), Q(n) = loglogn for
t =0 and Q(n) = (logn)* for r = 4oc. Note that if o € A, then for any j € Q we
have jxo € A; since
N,(j*xo) .. Ny—1(0) log(n—1)

li =1 . =1
1nmj;1p logn lﬁgp log(n — 1) logn

Thus A, = U_yj*A; where jxA, = {jxo : 0 € A}, and we get (P4) by (4). QED

3. Level Sets and Hausdorff Measure

Let (po,p1, ..., pr) be a probability vector with each p; >0 and let (2, 9“, P) be
the probability space so that “ is the o-algebra generated by all cylinder sets of
Q¥ and the probability measure P is defined for any cylinder set C(7) by

|7l

7)) = HPT(i)- (18)

A sequence of independent Bernoulli trials {X,} on the probability space
(€%, %%, P) with success probability p can be defined by letting > ... p; = p and
Xu(0) = 1,if o(n) € I" and X,,(0) = 0, for o(n) € I'°. Therefore, taking t = — @
in (5) we have P(A;) = 1 by the Proposition in Section 1. For each ¢ € (0, +00),
let (po, p1, - - -,pr) be any ﬁxed probability vector such that > . p; = e ~1/ holds,
then we define j,(B) = P(¢~'(B)) for each Borel subset B C 'F. Then w(Fr) =1
where F; is defined in (5).

On the other hand, define random variables Y (o), Y,(o),n € N on (¥, %“ P)

as follows:

Ny .
Yy(o) = 102:1) and Y(o) = limsup Y,(o).

We have A, = {0 € Q¥ :Y(0) =t}, ie., A, is a level set of Y(o), and so the
projection F; = ¢(A;) of A, is, in some sense, a level set of Y (o).
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We consider the set
G ={(¢(0),Y(0)): 0 € 2} CR" x (RU{o0}). (19)

If ¢ is invertible, then letting x = ¢(co) we have G = {(x,Y(¢~'(x)) : x € F}, i.e.,

G is the graph of the function Y(¢'(x)) on F. Note that G = Ureo 400
{(x,t) :x € F;} and dimyF; =s. We shall show that dimyG =1+s. The
followmg proposition can be found in Proposition 7.9 of [5] where the proof is
given for n = 2, which can easily be extended to the general case.

Proposition 3.1. Let H be a Borel subset of R, n = 2. If 1 <t < n, then

JOO AN HAL)dx < (n— 1)7 #'(H),

where L, denotes the hyperplane {(x1,---,x,) € R" : x, = x}. QED
Theorem 3.2. Let G be as in (19). Then dimyG = dimpG = dimpG = 1 + 5.

Proof. We have dimyG > 1 + s by Proposition 3.1 and Theorem 2.3. In fact,
forany 1 <tr<1+s,
nT A (G) > J A N(GNL)dx = J AH'NF)dx = +oo.
0

—00

On the other hand, the product formula 7.5 in [5] gives
dimpG < dimp(F x [0, +00]) < dimpF + dimp([0, +o0]) = 1 +5.  QED

Since F is an s-set, #°(F;) < #°(F) < + 00,1 € [0, +00]. We will consider the
problem whether F, is an s-set, i.e., whether or not #*(F,) >0. By #' we denote
the one-dimensional Lebesgue measure on the real line.

Theorem 3.3. For %'-ae. t€[0,+o0], #°(F,)=0; but when t=1=
—(log 3 er a;)_l, H*(F;) >0, i.e., F; is an s-set.

Proof. We first prove the second part. Consider the probability space
(©2%,%, P) where P is defined by (18) with p; = a;, j € Q. By the definition (5)
of F; and the Proposition in Section 1, we get P(A ) = 1. Let M; = <;5(A ) where

-~ I1<k<!i: =
A;—{UGA hm#{ k<t:o(k) ]}—ajs-,jEQ}.

[—o0 l

Then M; C F,. Since P(A;) = 1, we have P(K;) = 1 by the Law of Large Numbers
or the Ergodic Theorem. Let y; be the image of P under ¢ as before. By B,(x) we
denote the closed ball with centre at x and radius r. Let r be given small enough.
Then for each o € A; there exists a positive integer h(o, r) such that

r-min a; < a(olh(o,r)) <r, (20)

jeQ

where a(o ) L‘lag( p for o € Q% Let W = {o|h(o,r) : 0 € A;}. For any fixed
xeM;, let W*={reW:J.NB.(x)NM,;+#0}. Then there exists a finite
positive constant ¢ independent of r and x such that #W™* < ¢ by Lemma 9.2 in
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[5]. Hence

wBx) <P |J ¢ | < Y PCE) =) (alr) <&
rew* rew* rew*
by (18) and (20). So we get
H(Fy) = A (M) >0
by Frostman’s lemma.

Now we turn to prove the first part. Consider the product measure space
(F x [0, 400], 8 X ﬂz H* x L) of the o-finite measure spaces (F, %, #*)
and ([0, +-00], %5, £"). Write G = Ureo, 1o {(x:7) : x € F;} as before. By x we
denote the indicator of G. By Fubini’s Theorem we have

J J (6 AL ()d A (x) = J H(F)AL (1),

[0,+00] [0,+00]
Note that each fixed x € F, x(x,t) # 0 only for finitely many # by (3). Then the left
integral equals 0. Noting that #*(F,) > 0 for ¢ € [0, +00], we have that for £'-
a.e. t € [0,+oc], #°(F;) = 0. QED

We conjecture that F; is an s-set if and only if t = —(log ) ;cr a;)_1

As an application of the preceding, we end with an example of a measurable
function 7 :[0,1] — [0,+oc], such that each tlevel set T-!(r) C[0,1],
t € [0, +o0] has Hausdorff dimension 1.

Example. Take r =2,I' = {0 2} and J = [0, 1]. Consider the map-specified
Moran fractal F with h( )=1x+L xeR' and j=0, 1, 2. Then we have
=1[0,1],q5=1,j=0,1, 2ands—1 Let F;,t € [0,400], be defined by (5).
Then we get a decomposmon (F;) of F satisfying the properties (P1)-(P4). Note
that each x € F, either has unique location code or it has only two location codes
in Q¥ ={0,1,2} x {0,1,2} x ---. In the former case, the unique location code
has both infinitely many components in I' and infinitely many components 1. So
the corresponding x only lies in one of the sets F;. But in the latter case, one of the
two location codes only has components O except for finitely many components,
the other only has components 2 except for finitely many components. So the
corresponding x lies in F,. Hence (F,) is a partition of F, satisfying the properties
(P1)—(P4). Define the function 7 : [0, 1] — [0, o] by
T(x)=1t if x€F,.
Then we get a measurable function 7 : [0, 1] — [0, +00], such that each #-level set
T-'(t)(= F,) C[0,1],t € [0, +00] has Hausdorff dimension 1 and the graph of
T(x) has Hausdorff dimension 2. Let 7= 1/(log3 —log2). Then we have
#'(F;) >0 by Theorem 3.3. In fact, in this special case we have

HF) = A (M) = L1 (M) = (M) =1,

since we always have #'(-) = £'(-) and y; is actually the one-dimensional
Lebesgue measure in this special case. Thus we get #'(F;) = 1 and #'(F,) =0
for the other . QED
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