首页   系科介绍   师资队伍   科研团队   本科生教学   研究生培养   招聘信息   联系我们

Previous Next
 
首页 >> 学术报告

The Determinant of Laplace Operators and the Analytic Torsion

刘博博士
2017年10月26日周四 13:00-14:30  闵行校区3教205
 
华东师范大学几何研讨班

Abstract: In this talk, we introduce the Ray-Singer analytic torsion as the determinant of Laplace operators and the extended Cheeger-Mueller Theorem by Bismut-Zhang which gives the explicit relation between the Ray-Singer analytic torsion and the Reidemeister torsion. Note that the Reidemeister torsion is the first topological invariant in the history distinguishing the homotopy equivalent but not homeomorphic manifolds. At last, we explain the complex valued torsion, Burghelea-Haller torsion and Cappell-Miller torsion, and the resent results by Liu-Yu and Su-Zhang.
   
 
 
快捷链接 >>
 
系内资源 >>
 
教学园地 >>
 
  校外链接 >>    上海市核心数学与基础数学重点实验室    华师大-纽大联合数学中心    上海市数学会    中国数学会    美国数学会    欧洲数学会  
         
       Copyright 2012 All rights reserved    Department of Mathematics, East China Normal University    Tel: 86-21-54342609