首页   系科介绍   师资队伍   科研团队   本科生教学   研究生培养   招聘信息   联系我们

Previous Next
 
首页 >> 学术报告

Quantitative maximal local rewinding volume rigidity with Ricci curvature bounded below II

陈丽娜博士
9月27日(周三)13:00-14:30  闵行第三教学楼314室
 
摘要: For a metric ball $B_r(x)$ in a Riemannian manifold, its local rewinding volume is the volume of $B_r(x^*)$, where $B_r(x^*)\subset (U^*, x^*)$, the (uncomplete) Riemannian universal cover of $(B_r(x), x)$. A compact manifold with Ricci curvature bounded below by $(n-1)H$ is isometric to a space form with constant curvature $H$ if and only if every $\rho$-ball ($\rho$ fixed) achieves the maximal local rewinding volume. In this talk, we will prove that if a compact manifold $M$ with Ricci curvature lower bound $(n-1)H$ satisfies that the universal cover space $\tilde M$ is non-collapsing (there exist a positive lower bound of the volume of a unit ball in $\tilde M$) and each $\rho$-ball almost achieves the maximal local rewinding volume, then this manifold is diffeomorphic and close to a space form with $H$-constant curvature.
This is joint work with Xiaochun Rong and Shicheng Xu.
   
 
 
快捷链接 >>
 
系内资源 >>
 
教学园地 >>
 
  校外链接 >>    上海市核心数学与基础数学重点实验室    华师大-纽大联合数学中心    上海市数学会    中国数学会    美国数学会    欧洲数学会  
         
       Copyright 2012 All rights reserved    Department of Mathematics, East China Normal University    Tel: 86-21-54342609