首页   系科介绍   师资队伍   科研团队   本科生教学   研究生培养   招聘信息   联系我们

Previous Next
 
首页 >> 学术报告

Homotopy equivalences and recollements induced by cotorsion triples

任伟博士(复旦大学,西北师范大学)
2016年11月09日(周三)13:00--14:00  闵行三教205室
 
青年学术论坛邀请报告一(非通俗)

摘要:pdf文件见 (http://math.ecnu.edu.cn/~rdu/forum.htm

Let $(\mathcal{X}, \mathcal{Z}, \mathcal{Y})$ be a cotorsion triple in an abelian category $\mathcal{A}$. By studying abelian models structures on the category of complexes $\mathrm{Ch}(\mathcal{A})$ induced by $(\mathcal{X}, \mathcal{Z}, \mathcal{Y})$, we obtain equivalences and recollements of homotopy categories. As an application, we prove that for a left-Gorenstein ring, there exist equivalences $\mathrm{D}_{\mathcal{G}(\mathcal{PI})}^{sing}(R):= \mathrm{K}_{ex}(\mathcal{GP})\cong \mathrm{K}_{ex}(\mathcal{GI})$ and $\mathrm{D}_{\mathcal{G}(\mathcal{PI})}(R):= \mathrm{K}(\mathcal{GP})\cong \mathrm{K}(\mathcal{GI})$, between the homotopy categories of (exact) complexes of Gorenstein projective and Gorenstein injective modules, and then there is a recollement
\[\text{D}_{\mathcal{G}(\mathcal{P}\mathcal{I})}^{sing}(R)\underset{{}}\leftrightarrow{{}}{{\text{D}}_{\mathcal{G}(\mathcal{P}\mathcal{I})}}(R)\underset{{}}\leftrightarrow {{}}\text{D}(R)\]Moreover, these restrict to equivalences and a recollement for homotopy categories with respect to projective and injective modules.

邀请人:周国栋
   
 
 
快捷链接 >>
 
系内资源 >>
 
教学园地 >>
 
  校外链接 >>    华师大-纽约大学联合数学研究中心    上海市数学会    中国数学会    美国数学会    欧洲数学会  
         
       Copyright 2012 All rights reserved    Department of Mathematics, East China Normal University    Tel: 86-21-54342609