首页   系科介绍   师资队伍   科研团队   本科生教学   研究生培养   招聘信息   联系我们

Previous Next
 
首页 >> 学术报告

New Helmholtz decomposition in L^r and its application to the 3D Navier-Stokes equations

Professor Hideo Kozono(Waseda University, Japan)
2016年6月8日(周三)15:30-16:30  华东师大中北校区地理楼131室
 
偏微分方程报告

摘要:We first consider a decomposition in L^r of vector fields on 3D bounded domains, which may be regarded as a generalization of the de Rham-Hodge-Kodaira decomposition of differential forms on compact Riemannian manifolds. In accordance with two kinds of boundary conditions, we characterize harmonic vector fields. Our method is based on a certain variational inequality and the generalized Lax-Milgram theorem on the Banach space. Then, we apply our decomposition theorem to the inhomogeneous boundary value problem of the stationary Navier-Stokes equations in multi-connected domains under the general flux condition. This is the joint work with Prof. Taku Yanagisawa at Nara Women University.

演讲人简介:Prof Hideo Kozono,早稻田大学教授。研究Navier-Stokes方程及各种有关方程组、泛函分析、向量场的分析理论。已发表论文110余篇。 2014年获得日本数学会秋季赏(2014 MSJ Autumn Prize),获奖理由是他在不可压Navier-Stokes方程的稳态与非稳态的调和分析研究方面的杰出贡献。

   
 
 
快捷链接 >>
 
系内资源 >>
 
教学园地 >>
 
  校外链接 >>    华师大-纽约大学联合数学研究中心    上海市数学会    中国数学会    美国数学会    欧洲数学会  
         
       Copyright 2012 All rights reserved    Department of Mathematics, East China Normal University    Tel: 86-21-54342609