首页   系科介绍   师资队伍   科研团队   本科生教学   研究生培养   招聘信息   联系我们

Previous Next
 
首页 >> 学术报告

On extending the Gauss-Bonnet-Chern theorem to singular varieties

James Fullwood 博士(香港大学)
2016年03月29日 13:00-14:00  闵行数学楼102报告厅
 
青年学术论坛邀请报告:

摘要:The first deep theorem of differential geometry after Gauss'
Theorem Egregium was the Gauss-Bonnet Theorem, which says that the integral of the Gaussian curvature of a compact orientable surface without boundary is equal to 4\pi times its topological Euler characteristic. This theorem established for the first time a deep link between geometry and topology, and paved the way for vast generalizations such as the Grothendieck-Riemann-Roch theorem, the Atiyah-Singer index theorem and the Gauss-Bonnet-Chern theorem, which is the most direct generalization of the classical Gauss-Bonnet theorem to complex manifolds. In this talk, we discuss different generalizations of the Gauss-Bonnet-Chern theorem to singular varieties, some of which come from theoretical physics.

个人简介:James Fullwood毕业于Florida State University 数学系,从2012年至今为香港大学数学系博士后。研究兴趣为代数几何、数学物理、奇点理论及特征类。

邀请人:杜 荣
   
 
 
快捷链接 >>
 
系内资源 >>
 
教学园地 >>
 
  校外链接 >>    上海市核心数学与基础数学重点实验室    华师大-纽大联合数学中心    上海市数学会    中国数学会    美国数学会    欧洲数学会  
         
       Copyright 2012 All rights reserved    Department of Mathematics, East China Normal University    Tel: 86-21-54342609