当前位置: 首页 > 师资队伍 > 个人主页
罗 栗
职称: 副教授,博导
所属部门: 基础数学系
办公室: 闵行数学楼225室
办公电话: 54342646-225
邮箱: lluo@math.ecnu.edu.cn
个人主页: http://math.ecnu.edu.cn/~lluo
学校名录: https://faculty.ecnu.edu.cn/_s42/ll2/main.psp
研究方向或职务
博导,李理论、表示论
个人履历
Resume

教育经历:

2000.09--2004.07 中国科学技术大学 数学系 本科
2004.09--2009.07 中国科学院 数学与系统科学研究院 博士

工作经历:

2009.08--2012.12 华东师范大学 数学系 讲师
2013.01--至今 华东师范大学 数学系 副教授

学术访问:

2009.01--2009.07 澳大利亚 悉尼大学 数学与统计学院
2013.09--2014.04 美国 弗吉尼亚大学 数学系
2014.12 台北 中央研究院 数学研究所


研究成果

Preprints

[22] Li Luo, Zheming Xu, Geometric Howe dualities of finite type, arXiv: 2109.10537. 33 pages.

[21] Li Luo, Weiqiang Wang, Lectures on dualities ABC in representation theory, arXiv: 2012.07203. 57 pages.

[20] Weideng Cui, Li Luo, Weiqiang Wang, Cells in affine q-Schur algebras, arXiv: 2004.00193. 31 pages.

Research Monographs

[19] Zhaobing Fan, Chun-Ju Lai, Yiqiang Li, Li Luo, Weiqiang Wang, Affine flag varieties and quantum symmetric pairs. Mem. Amer. Math. Soc. 265 (2020), no. 1285, v+123 pp.

[18] Zhaobing Fan, Chun-Ju Lai, Yiqiang Li, Li Luo, Weiqiang Wang, Affine Hecke algebras and quantum symmetric pairs. Mem. Amer. Math. Soc., to appear. arXiv: 1609.06199. 87 pages.

Paper accepted

[17] Chih-Whi Chen, Shun-Jen Cheng, Li Luo, Blocks and characters of D(2|1; ζ)-modules of non-integral weights, Transform. Groups, to appear, arXiv: 2002.02662. 27 pages.

[16] Li Luo, Weiqiang Wang, The q-Schur algebras and q-Schur dualities of finite type. J. Inst. Math. Jussieu, to appear. arXiv: 1710.10375. 32 pages.

Paper Published

[15] Chih-Whi Chen, Shun-Jen Cheng, Li Luo, Blocks and characters of G(3)-modules of non-integral weights, J. Algebra, 588 (2021), 574--616.

[14] Chun-Ju Lai, Li Luo, Schur algebras and quantum symmetric pairs with unequal parameters. Int. Math. Res. Not. 2021, no. 13, 10207--10259.

[13] Zhaobing Fan, Chun-Ju Lai, Yiqiang Li, Li Luo, Weiqiang Wang, Hideya Watanabe, Quantum Schur duality of affine type C with three parameters. Math. Res. Lett. 27 (2020), no. 1, 79--114.

[12] Jie Liu, Li Luo, Weiqiang Wang,  Odd singular vector formula for general linear superalgebras. Bull. Inst. Math. Acad. Sin. (N.S.) 14 (2019), no. 4, 389--402.

[11] Li Luo, Husileng Xiao, Vust's theorem and higher level Schur-Weyl duality for types B, C and D. J. Pure Appl. Alg. 222 (2018), no. 2, 340--358.

[10] Chun-Ju Lai, Li Luo, An elementary construction of monomial bases of modified quantum affine gl_n. J. London Math. Soc. 96 (2017), no. 1, 15--27.

[9] Bintao Cao, Li Luo, Ke Ou, Extensions of inhomogeneous polynomial representations for sl(m+1|n). J. Math. Phys. 55 (2014), no.8, 081705, 13pp.

[8] Bintao Cao, Li Luo, Hom-Lie superalgebra structures on finite-dimensional simple Lie superalgebras. J. Lie Theory 23 (2013), no. 4, 1115--1128.

[7] Bintao Cao, Li Luo, Trivial module for ortho-symplectic Lie superalgebras and Littlewood's formula. Sci. China Math. 56 (2013), no. 11, 2251--2260.

[6] Lili Liu, Li Luo, On ad-nilpotent b-ideals for orthogonal Lie algebras. Acta Math. Sin. (Engl. Ser.) 29 (2013), no. 2, 241--262.

[5] Li Luo, Abelian ideals with given dimension in Borel subalgebras. Algebra Colloq. 19 (2012), no. 4, 755--770.

[4] Li Luo, Character formulae for ortho-symplectic Lie superalgebras osp(n|2). J. Algebra 353 (2012), 31--61.

[3] Li Luo, Oriented tree diagram Lie algebras and their abelian ideals. Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 11, 2041--2058.

[2] Li Luo, Cohomology of oriented tree diagram Lie algebras. Comm. Algebra 37 (2009), no. 3, 965--984.

[1] Li Luo, Abelian ideals and cohomology of symplectic type. Proc. Amer. Math. Soc. 137 (2009), no. 2, 479--485.