当前位置: 首页 > 学术报告
曹锡华数学论坛
Minimal surfaces defined by extremal eigenvalue problems
Richard Schoen 教授(美国斯坦福大学)
10月21日 15:00  

主持人:刘钢 教授

报告内容介绍:
Minimal surfaces in spheres are characterized by the condition that their embedding functions are eigenfunctions on the surface with its induced metric. The metric on the surface turns out to be an extremal for the eigenvalue among metrics on the surface with the same area. In recent decades, this extremal property has been used to construct new minimal surfaces by eigenvalue maximization. There is an analogous theory for minimal surfaces in the euclidean ball with a free boundary condition. In this talk we will describe new work that generalizes this idea to products of balls. We will describe the general theory and apply it in a specific case to explain and generalize the Schwarz p-surface, which is a free boundary minimal surface in the three dimensional cube with one boundary component on each face of the cube. We will show how the method can be used to construct such surfaces in rectangular prisms with arbitrary side lengths.

主讲人介绍:
理查德·舍恩(Richard Schoen),美国数学家,沃尔夫数学奖获得者,美国国家科学院院士,美国艺术与科学院院士,美国科学促进会会士,美国数学学会会士,斯坦福大学安妮·T和罗伯特·巴斯人文与科学学院名誉教授。2017年获得沃尔夫数学奖,2025年获顶科协奖“智能科学或数学奖”。他致力于研究微分几何和几何分析等数学问题。