主持人:朱萌 教授
报告简介:
王丽涵,加州州立大学长滩分校助理教授,博士毕业于加州大学尔湾分校,师从国际著名几何学家Peter Li,并先后在加州大学河滨分校和康涅狄格大学担任访问助理教授和研究助理教授。研究方向为微分几何与几何分析,最近一直关注微分算子的特征值研究,在国际知名期刊JDG, TAMS, JGA, PAMS上发表论文6篇,并获得NSF的 LEAPS-MPS (Launching Early-Career Academic Pathways in the Mathematical and Physical Sciences)基金资助。
主讲人简介:
Steklov eigenvalues, introduced by Steklov in 1902, are a type of eigenvalue arising in boundary value problems. In geometric analysis, there is a deep connection between extremal Steklov eigenvalue problems and free boundary minimal surface theory. Steklov eigenvalues can also be viewed as eigenvalues of the Dirichlet-to-Neumann operator, which plays a central role in inverse problems. They arise in fluid dynamics, influencing the behavior of liquids in containers and informing the design of engineering structures. In this talk, we will discuss the question how rare simple Steklov eigenvalues are on manifolds and its applications in nodal sets and critical points of eigenfunctions.