Home   Overview   Faculty   Research   Undergraduate Programs   Graduate Programs   Position Available   Contact Us

Previous Next
Home >> Seminar

Polysymplectic Reduction and the Moduli Space of Flat Connections

Dr. Casey Blacker(华东师范大学)
Thursday, January 10th, 2019, 1:00 PM  闵行数学楼102报告厅
In a landmark paper, Atiyah and Bott showed that the moduli space of flat connections on a principal bundle over an orientable closed surface is the symplectic reduction of the space of all connections by the action of the gauge group. By appealing to polysymplectic geometry, a generalization of symplectic geometry in which the symplectic form takes values in a given vector space, we may extend this result to the case of higher-dimensional base manifolds. In this setting, the space of connections possesses a natural polysymplectic structure, and the polysymplectic reduction of this space by the action of the gauge group yields the moduli space of flat connections equipped with a 2-form taking values in the cohomology of the base manifold. In this talk, based on the recent preprint arXiv:1810.04924, I will first review the polysymplectic formalism and then outline its role in obtaining the moduli space of flat connections.
Links >>
Resources >>
  Other Links >>    Shanghai Mathematical Society    Chinese Mathematical Society    American Mathematical Society    The European Mathematical Society  
       Copyright 2012 All rights reserved    Department of Mathematics, East China Normal University    Tel: 86-21-54342609