Home   Overview   Faculty   Research   Undergraduate Programs   Graduate Programs   Position Available   Contact Us

Previous Next
 
Home >> Seminar

Bilateral identities of the Rogers-Ramanujan type

Michael Schlosser教授(奥地利维也纳大学)
Friday, September 21st, 2018, 8:30 AM  闵行统计楼105室
 
报告人简介:Michael Schlosser教授1996年在维也纳大学获得博士学位,导师是澳科学院通讯院士Krattenthaler教授。Michael Schlosser教授是当今国际上研究多变量q-超几何级数的顶级专家,迄今已经在国际著名刊物上发表了60多篇学术论文,他的研究极大地推动了多变量q-超几何级数的发展。此外他还担了著名数学期刊Journal of Mathematical Analysis and Applications 和Ramanujan Journal的编委;担任过2016年SASTRA Ramanujan奖的评委。

报告内容简介:We derive by analytic means a number of bilateral identities of the Rogers- Ramanujan type. Our results include bilateral extensions of the Rogers-Ramanujan and the Go?llnitz-Gordon identities, and of related identities by Ramanujan, Jackson, and Slater. We give corresponding results for multi-series including multilateral extensions of the Andrews-Gordon identities, of Bressoud’s even modulus identities, and other identities. The here revealed closed form bilateral and multilateral summations appear to be the very first of their kind. Given that the classical Rogers-Ramanujan identities have well-established connections to various areas in mathematics and in physics, it is natural to expect that the new bilateral and multilateral identities can be similarly connected to those areas. This is supported by concrete combinatorial interpretations for a collection of four bilateral companions to the classical Rogers-Ramanujan identities。

主持人:刘治国 教授
主办单位:数学科学学院 科技处
   
 
 
Links >>
 
Resources >>
 
 
  Other Links >>    Shanghai Mathematical Society    Chinese Mathematical Society    American Mathematical Society    The European Mathematical Society  
         
       Copyright 2012 All rights reserved    Department of Mathematics, East China Normal University    Tel: 86-21-54342609