现代数值分析
(数值线性代数部分)
(Modern Numerical Analysis/Numerical Linear Algebra)
|
|
|
- 本课程有两部分内容:
数值线性代数
和 微分方程数值解,
本网页仅提供数值线性代数的内容
- 教材:课程讲义(配合课堂 slides 使用)
- 上课时间:周三9、10、11;
地点:四教214
|
|
|
课程内容与教学进度
周次 |
日期 |
资料 |
第 1 周 |
03/03 |
课件:
第零讲:课程介绍
第一讲:线性代数基础
参考资料:
IEEE 浮点运算标准,
数值计算中的误差,
科学计算软件介绍
矩阵论 (戴华, 2001)
Matrix Analysis (2nd, Horn & Johnson, 2013)
Topics in Matrix Analysis (Horn & Johnson, 1991)
Linear Algebra and Its Applications (5th, Lay et al., 2016)
Introduction to Linear Algebra (5th, Strang, 2016)
课外阅读:
Numerical Analysis (Trefethen, 2008)
The Best of the 20th Century: Editors Name Top 10 Algorithms (SIAM News, 2000)
Is Numerical Analysis Boring (Sullivan, 2006)
科学计算:科技创新的第三种方法 (陈志明, 2012)
冯康 —— 一位杰出数学家的故事
|
第 2 周 |
03/10 |
课件:
第二讲:线性方程组的直接解法(一)Gauss消去法与LU分解
参考资料:
Matrix factorizations and direct solution of linear systems (Beattie, Handbook of LA, 2014)
Gaussian Elimination (Higham, 2011)
MATLAB基础及其应用教程 (周开利等, 2007),
Matlab小结
代码:
PLU.m
|
第 3 周 |
03/17 |
课件:
第二讲:线性方程组的直接解法(二)特殊方程组求解
课外阅读:
A survey of direct methods for sparse linear systems (Davis et al., 2016)
Direct Methods for Sparse Matrices, 2nd Edition (Duff et al., 2017)
Direct Methods for Sparse Linear Systems (Davis, 2006)
|
第 4 周 |
03/24 |
课件:
第三讲:线性最小二乘问题(一)QR分解
参考资料:
Numerical Methods for Least Squares Problems (Bjorck, 1996)
代码:
House.m,
QR_3methods.m
|
第 5 周 |
03/31 |
课件:
第三讲:线性最小二乘问题(二)SVD与最小二乘求解
参考资料:
Singular Values and Singular Value Inequalities (Mathias, Handbook of LA, 2014)
课外阅读:
We Recommend a Singular Value Decomposition (AMS Feature Column, 2009)
Professor SVD (Moler, 2006)
视频:The Singular Value Decomposition Saves the Universe (by Moler, 2016)
应用举例:
信号去噪 LS_Denoise.zip,
图像压缩 SVD_Image.zip
代码:
LS_3methods.m
|
第 6 周 |
04/07 |
课件:
第四讲:非对称矩阵的特征值问题
课外阅读:
Francis's Algorithm (Watkins, American Mathematical Monthly, 2011)
The QR Algorithm Revisited (Watkins, SIAM Review, 2008),
代码:
Eig_Power_shift.m,
Eig_Rayleigh.m,
Eig_QR.m,
Eig_QR_shift.m
|
第 7 周 |
04/14 |
第四讲:非对称矩阵的特征值问题
第五讲:对称矩阵的特征值问题(一)
参考资料:
The Symmetric Eigenvalue Problem, Classic version (Parlett, SIAM, 1998)
Computation of the SVD (Cline & Dhillon, 2014)
课外阅读:
New Fast and Accurate Jacobi SVD Algorithm I (SIMAX, 2008)
New Fast and Accurate Jacobi SVD Algorithm II (SIMAX, 2008)
代码:
Eig_TriQR.m
|
第 8 周 |
04/21 |
第五讲:对称矩阵的特征值问题(二)
课外阅读:
Eigenvalue computation in the 20th century (Golub & van der Vorst, JCAM, 2000)
|
第 9 周 |
04/28 |
第六讲:线性方程组基本迭代解法
参考资料:
Matrix Iterative Analysis, (R.S. Varga, Springer, 1962 & 2000)
Iterative Solution of Large Linear Systems, (D.M. Young, Academic Press, 1971)
课外阅读:
Iterative solution of linear systems in the 20th century (Saad & van der Vorst, JCAM, 2000)
代码:
Poisson_SOR_omega.m,
Poisson_SSOR_omega.m,
Poisson_Jacobi_GS_SOR.m
|
|
|
|
参考资料
- 曹志浩,
数值线性代数, 复旦大学出版社, 1996.
- 徐树方,
矩阵计算的理论与方法, 北京大学出版社, 1995.
- 徐树方,
矩阵计算六讲, 高等教育出版社, 2011.
- Golub and van Loan,
Matrix Computations, 4th, Johns Hopkins University Press, 2013.
- Demmel,
Applied Numerical Linear Algebra, SIAM, 1997.
- Trefethen and Bau, III,
Numerical Linear Algebra, SIAM, 1997.
- Bjorck,
Numerical Methods in Matrix Computations, Springer, 2015.
- Corless and Fillion,
A Graduate Introduction to Numerical Methods
-- From the Viewpoint of Backward Error Analysis,
Springer, 2014.
|
|
|
课外读物
- The History of Numerical Analysis and Scientific Computing, SIAM
- G.H. Golub,
History of Numerical Linear Algebra, a Personal View, 2007
- L.N. Trefethen,
Predictions for scientific computing 50 years from now,
Mathematics Today, 2000
- F. Sullivan,
Is Numerical Analysis Boring,
Computing in Science and Engineering, Vol. 8, Issue 6, 2006
|
|
|
|
|
Last modified: February 2021
|