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Preface

This book is based on a two-semester course in ordinary differential equa-
tions that I have taught to graduate students for two decades at the Uni-
versity of Missouri. The scope of the narrative evolved over time from
an embryonic collection of supplementary notes, through many classroom
tested revisions, to a treatment of the subject that is suitable for a year (or
more) of graduate study.

If it is true that students of differential equations give away their point of
view by the way they denote the derivative with respect to the independent
variable, then the initiated reader can turn to Chapter 1, note that I write
ẋ, not x′, and thus correctly deduce that this book is written with an eye
toward dynamical systems. Indeed, this book contains a thorough intro-
duction to the basic properties of differential equations that are needed to
approach the modern theory of (nonlinear) dynamical systems. However,
this is not the whole story. The book is also a product of my desire to
demonstrate to my students that differential equations is the least insular
of mathematical subjects, that it is strongly connected to almost all areas
of mathematics, and it is an essential element of applied mathematics.

When I teach this course, I use the first part of the first semester to pro-
vide a rapid, student-friendly survey of the standard topics encountered in
an introductory course of ordinary differential equations (ODE): existence
theory, flows, invariant manifolds, linearization, omega limit sets, phase
plane analysis, and stability. These topics, covered in Sections 1.1–1.8 of
Chapter 1 of this book, are introduced, together with some of their im-
portant and interesting applications, so that the power and beauty of the
subject is immediately apparent. This is followed by a discussion of linear
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systems theory and the proofs of the basic theorems on linearized stabil-
ity in Chapter 2. Then, I conclude the first semester by presenting one
or two realistic applications from Chapter 3. These applications provide a
capstone for the course as well as an excellent opportunity to teach the
mathematics graduate students some physics, while giving the engineering
and physics students some exposure to applications from a mathematical
perspective.

In the second semester, I introduce some advanced concepts related to
existence theory, invariant manifolds, continuation of periodic orbits, forced
oscillators, separatrix splitting, averaging, and bifurcation theory. However,
since there is not enough time in one semester to cover all of this material
in depth, I usually choose just one or two of these topics for presentation in
class. The material in the remaining chapters is assigned for private study
according to the interests of my students.

My course is designed to be accessible to students who have only stud-
ied differential equations during one undergraduate semester. While I do
assume some knowledge of linear algebra, advanced calculus, and analysis,
only the most basic material from these subjects is required: eigenvalues and
eigenvectors, compact sets, uniform convergence, the derivative of a func-
tion of several variables, and the definition of metric and Banach spaces.
With regard to the last prerequisite, I find that some students are afraid
to take the course because they are not comfortable with Banach space
theory. However, I put them at ease by mentioning that no deep properties
of infinite dimensional spaces are used, only the basic definitions.

Exercises are an integral part of this book. As such, many of them are
placed strategically within the text, rather than at the end of a section.
These interruptions of the flow of the narrative are meant to provide an
opportunity for the reader to absorb the preceding material and as a guide
to further study. Some of the exercises are routine, while others are sections
of the text written in “exercise form.” For example, there are extended ex-
ercises on structural stability, Hamiltonian and gradient systems on man-
ifolds, singular perturbations, and Lie groups. My students are strongly
encouraged to work through the exercises. How is it possible to gain an un-
derstanding of a mathematical subject without doing some mathematics?
Perhaps a mathematics book is like a musical score: by sight reading you
can pick out the notes, but practice is required to hear the melody.

The placement of exercises is just one indication that this book is not
written in axiomatic style. Many results are used before their proofs are pro-
vided, some ideas are discussed without formal proofs, and some advanced
topics are introduced without being fully developed. The pure axiomatic
approach forbids the use of such devices in favor of logical order. The other
extreme would be a treatment that is intended to convey the ideas of the
subject with no attempt to provide detailed proofs of basic results. While
the narrative of an axiomatic approach can be as dry as dust, the excite-
ment of an idea-oriented approach must be weighed against the fact that
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it might leave most beginning students unable to grasp the subtlety of the
arguments required to justify the mathematics. I have tried to steer a mid-
dle course in which careful formulations and complete proofs are given for
the basic theorems, while the ideas of the subject are discussed in depth
and the path from the pure mathematics to the physical universe is clearly
marked. I am reminded of an esteemed colleague who mentioned that a
certain textbook “has lots of fruit, but no juice.” Above all, I have tried to
avoid this criticism.

Application of the implicit function theorem is a recurring theme in the
book. For example, the implicit function theorem is used to prove the rec-
tification theorem and the fundamental existence and uniqueness theorems
for solutions of differential equations in Banach spaces. Also, the basic re-
sults of perturbation and bifurcation theory, including the continuation of
subharmonics, the existence of periodic solutions via the averaging method,
as well as the saddle node and Hopf bifurcations, are presented as appli-
cations of the implicit function theorem. Because of its central role, the
implicit function theorem and the terrain surrounding this important re-
sult are discussed in detail. In particular, I present a review of calculus in
a Banach space setting and use this theory to prove the contraction map-
ping theorem, the uniform contraction mapping theorem, and the implicit
function theorem.

This book contains some material that is not encountered in most treat-
ments of the subject. In particular, there are several sections with the title
“Origins of ODE,” where I give my answer to the question “What is this
good for?” by providing an explanation for the appearance of differential
equations in mathematics and the physical sciences. For example, I show
how ordinary differential equations arise in classical physics from the fun-
damental laws of motion and force. This discussion includes a derivation
of the Euler–Lagrange equation, some exercises in electrodynamics, and
an extended treatment of the perturbed Kepler problem. Also, I have in-
cluded some discussion of the origins of ordinary differential equations in
the theory of partial differential equations. For instance, I explain the idea
that a parabolic partial differential equation can be viewed as an ordinary
differential equation in an infinite dimensional space. In addition, traveling
wave solutions and the Galërkin approximation technique are discussed.
In a later “origins” section, the basic models for fluid dynamics are intro-
duced. I show how ordinary differential equations arise in boundary layer
theory. Also, the ABC flows are defined as an idealized fluid model, and I
demonstrate that this model has chaotic regimes. There is also a section on
coupled oscillators, a section on the Fermi–Ulam–Pasta experiments, and
one on the stability of the inverted pendulum where a proof of linearized
stability under rapid oscillation is obtained using Floquet’s method and
some ideas from bifurcation theory. Finally, in conjunction with a treat-
ment of the multiple Hopf bifurcation for planar systems, I present a short
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introduction to an algorithm for the computation of the Lyapunov quanti-
ties as an illustration of computer algebra methods in bifurcation theory.

Another special feature of the book is an introduction to the fiber con-
traction principle as a powerful tool for proving the smoothness of functions
that are obtained as fixed points of contractions. This basic method is used
first in a proof of the smoothness of the flow of a differential equation
where its application is transparent. Later, the fiber contraction principle
appears in the nontrivial proof of the smoothness of invariant manifolds
at a rest point. In this regard, the proof for the existence and smoothness
of stable and center manifolds at a rest point is obtained as a corollary of
a more general existence theorem for invariant manifolds in the presence
of a “spectral gap.” These proofs can be extended to infinite dimensions.
In particular, the applications of the fiber contraction principle and the
Lyapunov–Perron method in this book provide an introduction to some of
the basic tools of invariant manifold theory.

The theory of averaging is treated from a fresh perspective that is in-
tended to introduce the modern approach to this classical subject. A com-
plete proof of the averaging theorem is presented, but the main theme of
the chapter is partial averaging at a resonance. In particular, the “pen-
dulum with torque” is shown to be a universal model for the motion of a
nonlinear oscillator near a resonance. This approach to the subject leads
naturally to the phenomenon of “capture into resonance,” and it also pro-
vides the necessary background for students who wish to read the literature
on multifrequency averaging, Hamiltonian chaos, and Arnold diffusion.

I prove the basic results of one-parameter bifurcation theory—the saddle
node and Hopf bifurcations—using the Lyapunov–Schmidt reduction. The
fact that degeneracies in a family of differential equations might be un-
avoidable is explained together with a brief introduction to transversality
theory and jet spaces. Also, the multiple Hopf bifurcation for planar vector
fields is discussed. In particular, and the Lyapunov quantities for polyno-
mial vector fields at a weak focus are defined and this subject matter is
used to provide a link to some of the algebraic techniques that appear in
normal form theory.

Since almost all of the topics in this book are covered elsewhere, there is
no claim of originality on my part. I have merely organized the material in
a manner that I believe to be most beneficial to my students. By reading
this book, I hope that you will appreciate and be well prepared to use the
wonderful subject of differential equations.

Columbia, Missouri Carmen Chicone
June 1999
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1
Introduction to Ordinary Differential
Equations

This chapter is about the most basic concepts of the theory of differential
equations. We will answer some fundamental questions: What is a differen-
tial equation? Do differential equations always have solutions? Are solutions
of differential equations unique? However, the most important goal of this
chapter is to introduce a geometric interpretation for the space of solutions
of a differential equation. Using this geometry, we will introduce some of
the elements of the subject: rest points, periodic orbits, and invariant man-
ifolds. Finally, we will review the calculus in a Banach space setting and
use it to prove the classic theorems on the existence, uniqueness, and ex-
tensibility of solutions. References for this chapter include [8], [11], [49],
[51], [78], [83], [95], [107], [141], [164], and [179].

1.1 Existence and Uniqueness

Let J ⊆ R, U ⊆ R
n, and Λ ⊆ R

k be open subsets, and suppose that
f : J × U × Λ → R

n is a smooth function. Here the term “smooth” means
that the function f is continuously differentiable. An ordinary differential
equation (ODE) is an equation of the form

ẋ = f(t, x, λ) (1.1)

where the dot denotes differentiation with respect to the independent vari-
able t (usually a measure of time), the dependent variable x is a vector of
state variables, and λ is a vector of parameters. As convenient terminology,
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especially when we are concerned with the components of a vector differ-
ential equation, we will say that equation (1.1) is a system of differential
equations. Also, if we are interested in changes with respect to parameters,
then the differential equation is called a family of differential equations.

Example 1.1. The forced van der Pol oscillator

ẋ1 = x2,

ẋ2 = b(1 − x2
1)x2 − ω2x1 + a cos Ωt

is a differential equation with J = R, x = (x1, x2) ∈ U = R
2,

Λ = {(a, b, ω,Ω) : (a, b) ∈ R
2, ω > 0, Ω > 0},

and f : R × R
2 × Λ → R

2 defined in components by

(t, x1, x2, a, b, ω, Ω) �→ (x2, b(1 − x2
1)x2 − ω2x1 + a cos Ωt).

If λ ∈ Λ is fixed, then a solution of the differential equation (1.1) is a
function φ : J0 → U given by t �→ φ(t), where J0 is an open subset of J ,
such that

dφ

dt
(t) = f(t, φ(t), λ) (1.2)

for all t ∈ J0.
In this context, the words “trajectory,” “phase curve,” and “integral

curve” are also used to refer to solutions of the differential equation (1.1).
However, it is useful to have a term that refers to the image of the solution
in R

n. Thus, we define the orbit of the solution φ to be the set {φ(t) ∈ U :
t ∈ J0}.

When a differential equation is used to model the evolution of a state
variable for a physical process, a fundamental problem is to determine the
future values of the state variable from its initial value. The mathematical
model is then given by a pair of equations

ẋ = f(t, x, λ), x(t0) = x0

where the second equation is called an initial condition. If the differential
equation is defined as equation (1.1) and (t0, x0) ∈ J × U , then the pair
of equations is called an initial value problem. Of course, a solution of this
initial value problem is just a solution φ of the differential equation such
that φ(t0) = x0.

If we view the differential equation (1.1) as a family of differential equa-
tions depending on the parameter vector and perhaps also on the initial
condition, then we can consider corresponding families of solutions—if they
exist—by listing the variables under consideration as additional arguments.
For example, we will write t �→ φ(t, t0, x0, λ) to specify the dependence of
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a solution on the initial condition x(t0) = x0 and on the parameter vector
λ.

The fundamental issues of the general theory of differential equations
are the existence, uniqueness, extensibility, and continuity with respect to
parameters of solutions of initial value problems. Fortunately, all of these
issues are resolved by the following foundational results of the subject:
Every initial value problem has a unique solution that is smooth with respect
to initial conditions and parameters. Moreover, the solution of an initial
value problem can be extended in time until it either reaches the domain of
definition of the differential equation or blows up to infinity.

The next three theorems are the formal statements of the foundational
results of the subject of differential equations. They are, of course, used
extensively in all that follows.

Theorem 1.2 (Existence and Uniqueness). If J ⊆ R, U ⊆ R
n, and

Λ ⊆ R
k are open sets, f : J × U × Λ → R

n is a smooth function, and
(t0, x0, λ0) ∈ J × U × Λ, then there exist open subsets J0 ⊆ J , U0 ⊆ U ,
Λ0 ⊆ Λ with (t0, x0, λ0) ∈ J0 × U0 × Λ0 and a function φ : J0 × J0 ×
U0 × Λ0 → R

n given by (t, s, x, λ) �→ φ(t, s, x, λ) such that for each point
(t1, x1, λ1) ∈ J0 × U0 × Λ0, the function t �→ φ(t, t1, x1, λ1) is the unique
solution defined on J0 of the initial value problem given by the differential
equation (1.1) and the initial condition x(t1) = x1.

Recall that if k = 1, 2, . . . ,∞, a function defined on an open set is called
Ck if the function together with all of its partial derivatives up to and
including those of order k are continuous on the open set. Similarly, a func-
tion is called real analytic if it has a convergent power series representation
with a positive radius of convergence at each point of the open set.

Theorem 1.3 (Continuous Dependence). If, for the system (1.1), the
hypotheses of Theorem 1.2 are satisfied, then the solution φ : J0 ×J0 ×U0 ×
Λ0 → R

n of the differential equation (1.1) is a smooth function. Moreover,
if f is Ck for some k = 1, 2, . . . ,∞ (respectively, f is real analytic), then
φ is also Ck (respectively, real analytic).

As a convenient notation, we will write |x| for the usual Euclidean norm
of x ∈ R

n. However, because all norms on R
n are equivalent, the results of

this section are valid for an arbitrary norm on R
n.

Theorem 1.4 (Extensibility). If, for the system (1.1), the hypotheses of
Theorem 1.2 hold, and if the maximal open interval of existence of the so-
lution t �→ φ(t) (with the last three of its arguments suppressed) is given by
(α, β) with ∞ ≤ α < β < ∞, then |φ(t)| approaches ∞ or φ(t) approaches
a point on the boundary of U as t → β.

In case there is some finite T and limt→T |φ(t)| approaches ∞, we say
the solution blows up in finite time.
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The existence and uniqueness theorem is so fundamental in science that
it is sometimes called the “principle of determinism.” The idea is that if
we know the initial conditions, then we can predict the future states of the
system. The principle of determinism is of course validated by the proof
of the existence and uniqueness theorem. However, the interpretation of
this principle for physical systems is not as clear as it might seem. The
problem is that solutions of differential equations can be very complicated.
For example, the future state of the system might depend sensitively on
the initial state of the system. Thus, if we do not know the initial state
exactly, the final state may be very difficult (if not impossible) to predict.

The variables that we will specify as explicit arguments for the solution
φ of a differential equation depend on the context, as we have mentioned
above. However, very often we will write t �→ φ(t, x) to denote the solution
such that φ(0, x) = x. Similarly, when we wish to specify the parameter vec-
tor, we will use t �→ φ(t, x, λ) to denote the solution such that φ(0, x, λ) = x.

Example 1.5. The solution of the differential equation ẋ = x2, x ∈ R, is
given by the elementary function

φ(t, x) =
x

1 − xt
.

For this example, J = R and U = R. Note that φ(0, x) = x. If x > 0, then
the corresponding solution only exists on the interval J0 = (−∞, x−1).
Also, we have that |φ(t, x)| → ∞ as t → x−1. This illustrates one of the
possibilities mentioned in the extensibility theorem, namely, blow up in
finite time.

Exercise 1.6. Consider the differential equation ẋ = −√
x, x ∈ R. Find the

solution with dependence on the initial point, and discuss the extensibility of
solutions.

1.2 Types of Differential Equations

Differential equations may be classified in several different ways. In this
section we note that the independent variable may be implicit or explicit,
and that higher order derivatives may appear.

An autonomous differential equation is given by

ẋ = f(x, λ), x ∈ R
n, λ ∈ R

k; (1.3)

that is, the function f does not depend explicitly on the independent vari-
able. If the function f does depend explicitly on t, then the corresponding
differential equation is called nonautonomous.
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In physical applications, we often encounter equations containing second,
third, or higher order derivatives with respect to the independent variable.
These are called second order differential equations, third order differential
equations, and so on, where the the order of the equation refers to the order
of the highest order derivative with respect to the independent variable that
appears explicitly. In this hierarchy, a differential equation is called a first
order differential equation.

Recall that Newton’s second law—the rate of change of the linear mo-
mentum acting on a body is equal to the sum of the forces acting on
the body—involves the second derivative of the position of the body with
respect to time. Thus, in many physical applications the most common
differential equations used as mathematical models are second order differ-
ential equations. For example, the natural physical derivation of van der
Pol’s equation leads to a second order differential equation of the form

ü + b(u2 − 1)u̇ + ω2u = a cos Ωt. (1.4)

An essential fact is that every differential equation is equivalent to a first
order system. To illustrate, let us consider the conversion of van der Pol’s
equation to a first order system. For this, we simply define a new variable
v := u̇ so that we obtain the following system:

u̇ = v,

v̇ = −ω2u + b(1 − u2)v + a cos Ωt. (1.5)

Clearly, this system is equivalent to the second order equation in the sense
that every solution of the system determines a solution of the second or-
der van der Pol equation, and every solution of the van der Pol equation
determines a solution of this first order system.

Let us note that there are many possibilities for the construction of
equivalent first order systems—we are not required to define v := u̇. For
example, if we define v = au̇ where a is a nonzero constant, and follow the
same procedure used to obtain system (1.5), then we will obtain a family
of equivalent first order systems. Of course, a differential equation of order
m can be converted to an equivalent first order system by defining m − 1
new variables in the obvious manner.

If our model differential equation is a nonautonomous differential equa-
tion of the form ẋ = f(t, x), where we have suppressed the possible de-
pendence on parameters, then there is an “equivalent” autonomous system
obtained by defining a new variable as follows:

ẋ = f(τ, x),
τ̇ = 1. (1.6)

For example, if t �→ (φ(t), τ(t)) is a solution of this system with φ(t0) = x0
and τ(t0) = t0, then τ(t) = t and

φ̇(t) = f(t, φ(t)), φ(t0) = x0.
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Thus, the function t �→ φ(t) is a solution of the initial value problem

ẋ = f(t, x), x(t0) = x0.

In particular, every solution of the nonautonomous differential equation
can be obtained from a solution of the autonomous system (1.6).

We have just seen that all ordinary differential equations correspond to
first order autonomous systems. As a result, we will pay special attention
to the properties of autonomous systems. In most cases, the conversion of
a higher order differential equation to a first order system is useful. On
the other hand, the conversion of nonautonomous equations (or systems)
to autonomous systems is not always wise. However, there is one notable
exception. Indeed, if a nonautonomous system is given by ẋ = f(t, x) where
f is a periodic function of t, then, as we will see, the conversion to an
autonomous system is very often the best way to analyze the system.

Exercise 1.7. Find a first order system that is equivalent to the third order
differential equation

εx′′′ + xx′′ − (x′)2 + 1 = 0

where ε is a parameter and the ′ denotes differentiation with respect to the
independent variable.

1.3 Geometric Interpretation of Autonomous
Systems

In this section we will describe a very important geometric interpretation
of the autonomous differential equation

ẋ = f(x), x ∈ R
n. (1.7)

The function given by x �→ (x, f(x)) defines a vector field on R
n associ-

ated with the differential equation (1.7). Here the first component of the
function specifies the base point and the second component specifies the
vector at this base point. A solution t �→ φ(t) of (1.7) has the property that
its tangent vector at each time t is given by

(φ(t), φ̇(t)) = (φ(t), f(φ(t))).

In other words, if ξ ∈ R
n is on the orbit of this solution, then the tangent

line to the orbit at ξ is generated by the vector (ξ, f(ξ)), as depicted in
Figure 1.1.

We have just mentioned two essential facts: (i) There is a one-to-one
correspondence between vector fields and autonomous differential equa-
tions. (ii) Every tangent vector to a solution curve is given by a vector in
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FIGURE 1.1. Tangent vector field and associated integral curve.

FIGURE 1.2. Closed trajectory (left) and fictitious trajectory (right) for an au-
tonomous differential equation.

the vector field. These facts suggest that the geometry of the associated
vector field is closely related to the geometry of the solutions of the dif-
ferential equation when the solutions are viewed as curves in a Euclidean
space. This geometric interpretation of the solutions of autonomous dif-
ferential equations provides a deep insight into the general nature of the
solutions of differential equations, and at the same time suggests the “ge-
ometric method” for studying differential equations: qualitative features
expressed geometrically are paramount; analytic formulas for solutions are
of secondary importance. Finally, let us note that the vector field associ-
ated with a differential equation is given explicitly. Thus, one of the main
goals of the geometric method is to derive qualitative properties of solutions
directly from the vector field without “solving” the differential equation.

As an example, let us consider the possibility that the solution curve
starting at x0 ∈ R

n at time t = 0 returns to the point x0 at t = τ > 0.
Clearly, the tangent vector of the solution curve at the point φ(0) = x0 is
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the same as the tangent vector at φ(τ). The geometry suggests that the
points on the solution curve defined for t > τ retraces the original orbit.
Thus, it is possible that the orbit of an autonomous differential equation is
a closed curve as depicted in the left panel of Figure 1.2. However, an orbit
cannot cross itself as in the right panel of Figure 1.2. If there were such a
crossing, then there would have to be two different tangent vectors of the
same vector field at the crossing point.

The vector field corresponding to a nonautonomous differential equation
changes with time. In particular, if a solution curve “returns” to its starting
point, the direction specified by the vector field at this point generally
depends on the time of arrival. Thus, the curve will generally “leave” the
starting point in a different direction than it did originally. For example,
suppose that t �→ (g(t), h(t)) is a curve in R

2 that has a transverse crossing
as in the right panel of Figure 1.2, and consider the following system of
differential equations

dx

dt
= g′(t),

dy

dt
= h′(t). (1.8)

We have just defined a differential equation with the given curve as a solu-
tion. Thus, every smooth curve is a solution of a differential equation, but
not every curve is a solution of an autonomous differential equation.

The fact that solution curves of nonautonomous differential equations
can cross themselves is an effect caused by not treating the explicit time
variable on an equal footing with the dependent variables. Indeed, if we
consider the corresponding autonomous system formed by adding time as
a new variable, then, in the extended state space (the domain of the state
and time variables), orbits cannot cross themselves. For example, the state
space of the autonomous system of differential equations

ẋ = g′(τ), ẏ = h′(τ), τ̇ = 1,

corresponding to the nonautonomous differential equation (1.8), is R
3. The

system’s orbits in the extended state space cannot cross—the corresponding
vector field in R

3 is autonomous.
If the autonomous differential equation (1.7) has a closed orbit and t �→

φ(t) is a solution with its initial value on this orbit, then it is clear that
there is some T > 0 such that φ(T ) = φ(0). In fact, as we will show in
the next section, even more is true: The solution is T -periodic; that is,
φ(t + T ) = φ(t) for all t ∈ R. For this reason, closed orbits of autonomous
systems are also called periodic orbits.

Another important special type of orbit is called a rest point. To define
this concept, note that if f(x0) = 0 for some x0 ∈ R

n, then the constant
function φ : R → R

n defined by φ(t) ≡ x0 is a solution of the differential
equation (1.7). Geometrically, the corresponding orbit consists of exactly
one point. Thus, if f(x0) = 0, then x0 is a rest point. Such a solution is
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FIGURE 1.3. A curve in phase space consisting of four orbits of an autonomous
differential equation.

also called a steady state, a critical point, an equilibrium point, or a zero
(of the associated vector field).

What are all the possible orbit types for autonomous differential equa-
tions? The answer depends on what we mean by “types.” However, we have
already given a partial answer: An orbit can be a point, a simple closed
curve, or the homeomorphic image of an interval. A geometric picture of
all the orbits of an autonomous differential equation is called its phase por-
trait or phase diagram. This terminology comes from the notion of phase
space in physics, the space of positions and momenta. But here the phase
space is simply the space R

n, the domain of the vector field that defines
the autonomous differential equation. For the record, the state space in
physics is the space of positions and velocities. However, when used in the
context of abstract vector fields, the terms state space and phase space are
synonymous. The fundamental problem of the geometric theory of differen-
tial equations is evident: Given a differential equation, determine its phase
portrait.

Because there are essentially only the three types of orbits mentioned in
the last paragraph, it might seem that phase portraits would not be too
complicated. However, as we will see, even the portrait of a single orbit can
be very complex. Indeed, the homeomorphic image of an interval can be a
very complicated subset in a Euclidean space. As a simple but important
example of a complex geometric feature of a phase portrait, let us note the
curve that crosses itself in Figure 1.1. Such a curve cannot be an orbit of
an autonomous differential equation. However, if the crossing point on the
depicted curve is a rest point of the differential equation, then such a curve
can exist in the phase portrait as a union of the four orbits indicated in
Figure 1.3.

Exercise 1.8. Consider the harmonic oscillator (a model for an undamped
spring) given by the second order differential equation ü + ω2u = 0 with the
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FIGURE 1.4. Phase portrait of the harmonic oscillator

equivalent first order system

u̇ = ωv, v̇ = −ωu. (1.9)

The phase portrait, in the phase plane, consists of one rest point at the origin
of R

2 with all other solutions being simple closed curves as in Figure 1.4. Solve
the differential equation and verify these facts. Find the explicit time dependent
solution that passes through the point (u, v) = (1, 1) at time t = 0. Note that
the system

u̇ = v, v̇ = −ω2u

is also equivalent to the harmonic oscillator. Is its phase portrait different from
the phase portrait of the system (1.9)? Can you make precise the notion that two
phase portraits are the same?

Exercise 1.9. Suppose that F : R → R is a positive periodic function with
period p > 0. If t �→ x(t) is a solution of the differential equation ẋ = F (x) and

T :=
∫ p

0

1
F (x)

dx,

then prove that x(t+T )−x(t) = p for all t ∈ R. What happens for the case where
F is periodic but not of fixed sign? Hint: Define G to be an antiderivative of 1

F
.

Show that the function x → G(x+p)−G(x) is constant and G(x(b))−G(x(a)) =
b − a.

In case our system depends on parameters, the collection of the phase
portraits corresponding to each choice of the parameter vector is called a
bifurcation diagram.

As a simple but important example, consider the differential equation
ẋ = µ − x2, x ∈ R, that depends on the parameter µ ∈ R. If µ = 0, then
the phase portrait, on the phase line, is depicted in Figure 1.5. If we put
together all the phase portrait “slices” in R × R, where a slice corresponds
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x

FIGURE 1.5. Phase portrait of ẋ = µ − x2 for µ = 0.

x

�

FIGURE 1.6. Bifurcation diagram ẋ = µ − x2.
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to a fixed value of µ, then we produce the bifurcation diagram, Figure 1.6.
Note that if µ < 0, there is no rest point. When µ = 0, a rest point is
born in a “blue sky catastrophe.” As µ increases from µ = 0, there is a
“saddle-node” bifurcation; that is, two rest points appear. If µ < 0, this
picture also tells us the fate of each solution as t → ∞.

No matter which initial condition we choose, the solution goes to −∞
in finite positive time. When µ = 0 there is a steady state. If x0 > 0, then
the solution t �→ φ(t, x0) with initial condition φ(0, x0) = x0 approaches
this steady state; that is, φ(t, x0) → 0 as t �→ ∞. Whereas, if x0 < 0, then
φ(t, x0) → 0 as t �→ −∞. In this case, we say that x0 is a semistable rest
point. However, if µ > 0 and x0 > 0, then the solution φ(t, x0) → √

µ as
t �→ ∞. Thus, x0 =

√
µ is a stable steady state. The point x0 = −√

µ is an
unstable steady state.

1.4 Flows

An important property of the set of solutions of the autonomous differential
equation (1.7),

ẋ = f(x), x ∈ R
n,

is the fact that these solutions form a one-parameter group that defines a
phase flow. More precisely, let us define the function φ : R × R

n → R
n as

follows: For x ∈ R
n, let t �→ φ(t, x) denote the solution of the autonomous

differential equation (1.7) such that φ(0, x) = x.
We know that solutions of a differential equation may not exist for all

t ∈ R. However, for simplicity, let us assume that every solution does exist
for all time. If this is the case, then each solution is called complete, and the
fact that φ defines a one-parameter group is expressed concisely as follows:

φ(t + s, x) = φ(t, φ(s, x)).

In view of this equation, if the solution starting at time zero at the point
x is continued until time s, when it reaches the point φ(s, x), and if a new
solution at this point with initial time zero is continued until time t, then
this new solution will reach the same point that would have been reached if
the original solution, which started at time zero at the point x, is continued
until time t + s.

The prototypical example of a flow is provided by the general solution
of the ordinary differential equation ẋ = ax, x ∈ R, a ∈ R. The solution is
given by φ(t, x0) = eatx0, and it satisfies the group property

φ(t + s, x0) = ea(t+s)x0 = eat(easx0) = φ(t, easx0) = φ(t, φ(s, x0)).

For the general case, let us suppose that t �→ φ(t, x) is the solution of
the differential equation (1.7). Fix s ∈ R, x ∈ R

n, and define

ψ(t) := φ(t + s, x), γ(t) := φ(t, φ(s, x)).
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Note that φ(s, x) is a point in R
n. Therefore, γ is a solution of the differ-

ential equation (1.7) with γ(0) = φ(s, x). The function ψ is also a solution
of the differential equation because

dψ

dt
=

dφ

dt
(t + s, x) = f(φ(t + s, x)) = f(ψ(t)).

Finally, note that ψ(0) = φ(s, x) = γ(0). We have proved that both t �→
ψ(t) and t �→ γ(t) are solutions of the same initial value problem. Thus, by
the uniqueness theorem, γ(t) ≡ ψ(t). The idea of this proof—two functions
that satisfy the same initial value problem are identical—is often used in
the theory and the applications of differential equations.

By the theorem on continuous dependence, φ is a smooth function. In
particular, for each fixed t ∈ R, the function x �→ φ(t, x) is a smooth
transformation of R

n. In particular, if t = 0, then x �→ φ(0, x) is the
identity transformation. Let us also note that

x = φ(0, x) = φ(t − t, x) = φ(t, φ(−t, x)) = φ(−t, φ(t, x)).

In other words, x �→ φ(−t, x) is the inverse of the function x �→ φ(t, x).
Thus, in fact, x �→ φ(t, x) is a diffeomorphism for each fixed t ∈ R.

If J × U is a product open subset of R × R
n, and if φ : J × U → R

n

is a function given by (t, x) �→ φ(t, x) such that φ(0, x) ≡ x and such
that φ(t + s, x) = φ(t, φ(s, x)) whenever both sides of the equation are
defined, then we say that φ is a flow. Of course, if t �→ φ(t, x) defines the
family of solutions of the autonomous differential equation (1.7) such that
φ(0, x) ≡ x, then φ is a flow.

Exercise 1.10. For each integer p, construct the flow of the differential equa-
tion ẋ = xp.

Exercise 1.11. Consider the differential equation ẋ = t. Construct the family
of solutions t �→ φ(t, ξ) such that φ(0, ξ) = ξ for ξ ∈ R. Does φ define a flow?
Explain.

Suppose that x0 ∈ R
n, T > 0, and that φ(T, x0) = x0; that is, the

solution returns to its initial point after time T . Then φ(t + T, x0) =
φ(t, φ(T, x0)) = φ(t, x0). In other words, t �→ φ(t, x0) is a periodic func-
tion with period T . The smallest number T > 0 with this property is called
the period of the periodic orbit through x0.

Exercise 1.12. Write ü + αu = 0, u ∈ R, α ∈ R as a first order system.
Determine the flow of the system, and verify the flow property directly. Also,
describe the bifurcation diagram of the system.

Exercise 1.13. Determine the flow of the first order system

ẋ = y2 − x2, ẏ = −2xy.
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Show that (almost) every orbit lies on an circle. Note that the flow gives rational
parameterizations for the circular orbits. Hint: Define z := x + iy.

In the mathematics literature, the notations t �→ φt(x) and t �→ φt(x)
are often used in place of t �→ φ(t, x) for the solution of the differential
equation

ẋ = f(x), x ∈ R
n,

that starts at x at time t = 0. We will use all three notations. The only
possible confusion arises when subscripts are used for partial derivatives.
However, the meaning of the notation will be clear from the context in
which it appears.

1.4.1 Reparametrization of Time
Suppose that U is an open set in R

n, f : U → R
n is a smooth function, and

g : U → R is a positive smooth function. What is the relationship among
the solutions of the differential equations

ẋ = f(x), (1.10)
ẋ = g(x)f(x)? (1.11)

The vector fields defined by f and gf have the same direction at each
point in U , only their lengths are different. Thus, by our geometric inter-
pretation of autonomous differential equations, it is intuitively clear that
the differential equations (1.10) and (1.11) have the same phase portraits
in U . This fact is a corollary of the next proposition.

Proposition 1.14. If J ⊂ R is an open interval containing the origin and
γ : J → R

n is a solution of the differential equation (1.10) with γ(0) =
x0 ∈ U , then the function B : J → R given by

B(t) =
∫ t

0

1
g(γ(s))

ds

is invertible on its range K ⊆ R. If ρ : K → J is the inverse of B, then
the identity

ρ′(t) = g(γ(ρ(t))

holds for all t ∈ K, and the function σ : K → R
n given by σ(t) = γ(ρ(t)) is

the solution of the differential equation (1.11) with initial condition σ(0) =
x0.
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Proof. The function s �→ 1/g(γ(s)) is continuous on J . So B is defined
on J and its derivative is everywhere positive. Thus, B is invertible on its
range. If ρ is its inverse, then

ρ′(t) =
1

B′(ρ(t))
= g(γ(ρ(t))),

and

σ′(t) = ρ′(t)γ′(ρ(t)) = g(γ(ρ(t))f(γ(ρ(t)) = g(σ(t))f(σ(t)). �

Exercise 1.15. Use Proposition 1.14 to prove that differential equations (1.10)
and (1.11) have the same phase portrait in U .

The fact that ρ in Proposition 1.14 is the inverse of B can be expressed
by the formula

t =
∫ ρ

0

1
g(γ(s))

ds.

Thus, if we view ρ as a new time-like variable (that is, a variable that
increases with time), then we have

dt

dρ
=

1
g(γ(ρ))

,

and therefore the differential equation (1.11), with the change of indepen-
dent variable from t to ρ, is given by

dx

dρ
=

dx

dt

dt

dρ
= f(x).

In particular, this is just differential equation (1.10) with the independent
variable renamed.

The same result is obtained from a different point of view by using the
definition of the solution of a differential equation to obtain the identity

d

dt
[γ(ρ(t))] = g(γ(ρ(t)))f(γ(ρ(t))).

Equivalently, we have that

ρ′(t)γ′(ρ(t)) = g(γ(ρ(t)))f(γ(ρ(t))),

and therefore

γ′(ρ(t)) = f(γ(ρ(t))).
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If we view this equation as a differential equation for γ, then we can express
it in the form

dγ

dρ
= f(γ(ρ)).

As a convenient expression, we say that the differential equation (1.10)
is obtained from the differential equation (1.11) by a reparametrization of
time.

In the most important special cases the function g is constant. If its con-
stant value is c > 0, then the reparametrization of the differential equation
ẋ = cf(x) by ρ = ct results in the new differential equation

dx

dρ
= f(x).

Reparametrization in these cases is also called rescaling.
Note that rescaling, as in the last paragraph, of the differential equation

ẋ = cf(x) produces a differential equation in which the parameter c has
been eliminated. This idea is often used to simplify differential equations.
Also, the same rescaling is used in applied mathematics to render the inde-
pendent variable dimensionless. For example, if the original time variable t
is measured in seconds, and the scale factor c has the units of 1/sec, then
the new variable ρ is dimensionless.

The next proposition is a special case of the following claim: Every au-
tonomous differential equation has a complete reparametrization (see Ex-
ercise 1.19).

Proposition 1.16. If the differential equation ẋ = f(x) is defined on R
n,

then the differential equation

ẋ =
1

1 + |f(x)|2 f(x) (1.12)

is defined on R
n and its flow is complete.

Proof. The vector field corresponding to the differential equation (1.12) is
smoothly defined on all of R

n. If σ is one of its solutions with initial value
σ(0) = x0 and t is in the domain of σ, then, by integration with respect to
the independent variable, we have that

σ(t) − σ(0) =
∫ t

0

1
1 + |f(σ(s))|2 f(σ(s)) ds.

Note that the integrand has norm less than one and use the triangle in-
equality (taking into account the fact that t might be negative) to obtain
the following estimate:

|σ(t)| ≤ |x0| + |t|.
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FIGURE 1.7. Phase portrait of an asymptotically stable (spiral) sink.

In particular, the solution does not blow up in finite time. By the extensi-
bility theorem, the solution is complete. �

Exercise 1.17. Consider the function g : (0, ∞) → R given by g(x) = x−n

for a fixed positive integer n. Construct the flow φt of the differential equation
ẋ = −x and the flow ψt of ẋ = −g(x)x on (0, ∞), and find the explicit expression
for the reparametrization function ρ such that ψt(x) = φρ(t)(x) (see [46]).

Exercise 1.18. Suppose that the solution γ of the differential equation ẋ =
f(x) is reparametrized by arc length; that is, in the new parametrization the
velocity vector at each point of the solution curve has unit length. Find an implicit
formula for the reparametrization ρ, and prove that if t > 0, then

|γ(ρ(t))| ≤ |γ(0)| + t.

Exercise 1.19. Suppose that ẋ = f(x) is a differential equation defined on
an open subset U of R

n. Show that the differential equation has a complete
reparametrization.

1.5 Stability and Linearization

Rest points and periodic orbits correspond to very special solutions of au-
tonomous differential equations. However, in the applications these are of-
ten the most important orbits. In particular, common engineering practice
is to run a process in “steady state.” If the process does not stay near the
steady state after a small disturbance, then the control engineer will have
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FIGURE 1.8. The open sets required in the definition of Lyapunov stability. The
trajectory starting at x can leave the ball of radius δ but it must stay in the ball
of radius ε.

to face a difficult problem. We will not solve the control problem here, but
we will introduce the mathematical definition of stability and the classic
methods that can be used to determine the stability of rest points and
periodic orbits.

The concept of Lyapunov stability is meant to capture the intuitive notion
of stability—an orbit is stable if solutions that start nearby stay nearby.
To give the formal definition, let us consider the autonomous differential
equation

ẋ = f(x) (1.13)

defined on an open set U ⊂ R
n and its flow φt.

Definition 1.20. A rest point x0 of the differential equation (1.13) is stable
(in the sense of Lyapunov) if for each ε > 0, there is a number δ > 0 such
that |φt(x) − x0| < ε for all t ≥ 0 whenever |x − x0| < δ (see Figure 1.8).

There is no reason to restrict the definition of stability to rest points. It
can also refer to arbitrary solutions of the autonomous differential equation.

Definition 1.21. Suppose that x0 is in the domain of definition of the
differential equation (1.13). The solution t �→ φt(x0) of this differential
equation is stable (in the sense of Lyapunov) if for each ε > 0, there is a
δ > 0 such that |φt(x) − φt(x0)| < ε for all t ≥ 0 whenever |x − x0| < δ.

Figure 1.7 shows a typical phase portrait of an autonomous system in
the plane near a type of stable rest point called a sink. The special type
of rest point called a center in the phase portrait depicted in Figure 1.4 is
also stable.
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FIGURE 1.9. Phase portrait of an unstable rest point.

A solution that is not stable is called unstable. A typical phase portrait
for an unstable rest point, a source, is depicted in Figure 1.9 (see also the
saddle point in Figure 1.1).

Definition 1.22. A solution t → φt(x0) of the differential equation (1.13)
is asymptotically stable if it is stable and there is a constant a > 0 such
that limt→∞ |φt(x) − φt(x0)| = 0 whenever |x − x0| < a.

We have just defined the notion of stability for solutions in case a definite
initial point is specified. The concept of stability for orbits is slightly more
complicated. For example, we have the following definition of stability for
periodic orbits (see also Section 2.4.4).

Definition 1.23. A periodic orbit of the differential equation (1.13) is
stable if for each open set V ⊆ R

n that contains Γ, there is an open set
W ⊆ V such that every solution, starting at a point in W at t = 0, stays
in V for all t ≥ 0. The periodic orbit is called asymptotically stable if, in
addition, there is a subset X ⊆ W such that every solution starting in X
is asymptotic to Γ as t → ∞.

The definitions just given capture the essence of the stability concept.
However, they do not give any indication of how to determine if a given
solution or orbit is stable. We will study two general methods, called the
indirect and the direct methods by Lyapunov, that can be used to determine
the stability of rest points and periodic orbits. In more modern language,
the indirect method is called the method of linearization and the direct
method is called the method of Lyapunov. However, before we discuss these
methods in detail, let us note that for the case of the stability of special
types of orbits, for example rest points and periodic orbits, there are two
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main problems: (i) Locating the special solutions. (ii) Determining their
stability.

For the remainder of this section and the next, the discussion will be re-
stricted to the analysis for rest points. Our introduction to the methods for
locating and determining the stability of periodic orbits must be postponed
until some additional concepts have been introduced.

Let us note that the problem of the location of rest points for the dif-
ferential equation ẋ = f(x) is exactly the problem of finding the roots of
the equation f(x) = 0. Of course, finding roots may be a formidable task,
especially if the function f depends on parameters and we wish to find
its bifurcation diagram. In fact, in the search for rest points, sophisticated
techniques of algebra, analysis, and numerical analysis are often required.
This is not surprising when we stop to think that solving equations is one
of the fundamental themes in mathematics. For example, it is probably not
too strong to say that the most basic problem in linear algebra, abstract
algebra, and algebraic geometry is the solution of systems of polynomial
equations. The results of all of these subjects are sometimes needed to solve
problems in differential equations.

Let us suppose that we have identified some point x0 ∈ R
n such that

f(x0) = 0. What can we say about the stability of the corresponding rest
point? One of the great ideas in the subject of differential equations—not to
mention other areas of mathematics—is linearization. This idea, in perhaps
its purest form, is used to obtain the premier method for the determina-
tion of the stability of rest points. The linearization method is based on
two facts: (i) Stability analysis for linear systems is “easy.” (ii) Nonlinear
systems can be approximated by linear systems. These facts are just reflec-
tions of the fundamental idea of differential calculus: Replace a nonlinear
function by its derivative!

To describe the linearization method for rest points, let us consider (ho-
mogeneous) linear systems of differential equations; that is, systems of the
form ẋ = Ax where x ∈ R

n and A is a linear transformation of R
n. If the

matrix A does not depend on t—so that the linear system is autonomous—
then there is an effective method that can be used to determine the stability
of its rest point at x = 0. In fact, we will show in Chapter 2 that if all of
the eigenvalues of A have negative real parts, then x = 0 is an asymptot-
ically stable rest point for the linear system. (The eigenvalues of a linear
transformation are defined on page 135.)

If x0 is a rest point for the nonlinear system ẋ = f(x), then there is a
natural way to produce a linear system that approximates the nonlinear
system near x0: Simply replace the function f in the differential equation
with the linear function x �→ Df(x0)(x − x0) given by the first nonzero
term of the Taylor series of f at x0. The linear differential equation

ẋ = Df(x0)(x − x0) (1.14)

is called the linearized system associated with ẋ = f(x) at x0.
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The “principle of linearized stability” states that if the linearization of
a differential equation at a steady state has a corresponding stable steady
state, then the original steady state is stable. This principle is not a theo-
rem, but it is the motivation for much of the theory of stability.

Exercise 1.24. Prove that the rest point at the origin for the differential equa-
tion ẋ = ax, a < 0, x ∈ R is asymptotically stable. Also, determine the stability
of this rest point in case a = 0 and in case a > 0.

Let us note that by the change of variables u = x−x0, the system (1.14)
is transformed to the equivalent linear differential equation u̇ = f(u + x0)
where the rest point corresponding to x0 is at the origin. If we define
g(u) := f(u + x0), then we have u̇ = g(u) and g(0) = 0. Thus, it should be
clear that there is no loss of generality if we assume that our rest point is at
the origin. This fact is often a useful simplification. Indeed, if f is smooth
at x = 0 and f(0) = 0, then

f(x) = f(0) + Df(0)x + R(x) = Df(0)x + R(x)

where Df(0) : R
n → R

n is the linear transformation given by the derivative
of f at x = 0 and, for the remainder R, there is a constant k > 0 and an
open neighborhood U of the origin such that

|R(x)| ≤ k|x|2

whenever x ∈ U . Because of this estimate for the size of the remainder
and the fact that the stability of a rest point is a local property (that
is, a property that is determined by the values of the restriction of the
function f to an arbitrary open subset of the rest point), it is reasonable to
expect that the stability of the rest point at the origin of the linear system
ẋ = Df(0)x will be the same as the stability of the original rest point.
This expectation is not always realized. However, we do have the following
fundamental stability theorem.

Theorem 1.25. If x0 is a rest point for the differential equation ẋ = f(x)
and if all eigenvalues of the linear transformation Df(x0) have negative
real parts, then x0 is asymptotically stable.

Proof. See Theorem 2.43. �

It turns out that if x0 is a rest point and Df(x0) has at least one eigen-
value with positive real part, then x0 is not stable. If some eigenvalues of
Df(x0) lie on the imaginary axis, then the stability of the rest point may
be very difficult to determine. Also, we can expect qualitative changes to
occur in the phase portrait of a system near such a rest point as the pa-
rameters of the system are varied. These bifurcations are the subject of
Chapter 8.
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Exercise 1.26. Prove: If ẋ = 0, x ∈ R, then x = 0 is Lyapunov stable. Consider
the differential equations ẋ = x3 and ẋ = −x3. Prove that whereas the origin
is not a Lyapunov stable rest point for the differential equation ẋ = x3, it is
Lyapunov stable for the differential equation ẋ = −x3. Note that the linearized
differential equation at x = 0 in both cases is the same; namely, ẋ = 0.

If x0 is a rest point for the differential equation (1.13) and if the linear
transformation Df(x0) has all its eigenvalues off the imaginary axis, then
we say that x0 is a hyperbolic rest point. Otherwise x0 is called nonhy-
perbolic. In addition, if x0 is hyperbolic and all eigenvalues have negative
real parts, then the rest point is called a hyperbolic sink. If all eigenvalues
have positive real parts, then the rest point is called a hyperbolic source. A
hyperbolic rest point that is neither a source nor a sink is called a hyper-
bolic saddle. If the rest point is nonhyperbolic with all its eigenvalues on
the punctured imaginary axis (that is, the imaginary axis with the origin
removed), then the rest point is called a linear center. If zero is not an
eigenvalue, then the corresponding rest point is called nondegenerate.

If every eigenvalue of a linear transformation A has nonzero real part,
then A is called infinitesimally hyperbolic. If none of the eigenvalues of
A have modulus one, then A is called hyperbolic. This terminology can be
confusing: For example, if A is infinitesimally hyperbolic, then the rest point
at the origin of the linear system ẋ = Ax is hyperbolic. The reason for the
terminology is made clear by consideration of the scalar linear differential
equation ẋ = ax with flow given by φt(x) = eatx. If a �= 0, then the linear
transformation x → ax is infinitesimally hyperbolic and the rest point at
the origin is hyperbolic. In addition, if a �= 0 and t �= 0, then the linear
transformation x �→ etax is hyperbolic. Moreover, the linear transformation
x �→ ax is obtained by differentiation with respect to t at t = 0 of the
family of linear transformations x �→ etax. Thus, in effect, differentiation—
an infinitesimal operation on the family of hyperbolic transformations—
produces an infinitesimally hyperbolic transformation.

The relationship between the dynamics of a nonlinear system and its
linearization at a rest point is deeper than the relationship between the
stability types of the corresponding rest points. The next theorem, called
the Hartman–Grobman theorem, is an important result that describes this
relationship in case the rest point is hyperbolic.

Theorem 1.27. If x0 is a hyperbolic rest point for the autonomous dif-
ferential equation (1.13), then there is an open set U containing x0 and
a homeomorphism H with domain U such that the orbits of the differen-
tial equation (1.13) are mapped by H to orbits of the linearized system
ẋ = Df(x0)(x − x0) in the set U .

Proof. See Section 4.3. �
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FIGURE 1.10. Level sets of a Lyapunov function.

In other words, the linearized system has the same phase portrait as the
original system in a sufficiently small neighborhood of the hyperbolic rest
point. Moreover, the homeomorphism H in the theorem can be chosen to
preserve not just the orbits as point sets, but their time parameterizations
as well.

Exercise 1.28. In the definition of asymptotic stability for rest points, the first
requirement is that the rest point be stable and the second requirement is that
all solutions starting in some open set containing the rest point be asymptotic to
the rest point. Does the first requirement follow from the second? Explain.

Exercise 1.29. Consider the mathematical pendulum given by the second or-
der differential equation ü+sin u = 0. Find the corresponding first order system.
Find all rest points of your first order system, and characterize these rest points
according to their stability type. Also, draw the phase portrait of the system in
a neighborhood at each rest point. Solve the same problems for the second order
differential equation given by

ẍ + (x2 − 1)ẋ + ω2x − λx3 = 0.

1.6 Stability and the Direct Method of Lyapunov

Let us consider a rest point x0 for the autonomous differential equation

ẋ = f(x), x ∈ R
n. (1.15)

A continuous function V : U → R , where U ⊆ R
n is an open set with

x0 ∈ U , is called a Lyapunov function for the differential equation (1.15)
at x0 provided that
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(i) V (x0) = 0,

(ii) V (x) > 0 for x ∈ U − {x0},

(iii) the function x �→ gradV (x) is continuous for x ∈ U − {x0}, and, on
this set, V̇ (x) := gradV (x) · f(x) ≤ 0.

If, in addition,

(iv ) V̇ (x) < 0 for x ∈ U − {x0},

then V is called a strict Lyapunov function.

Theorem 1.30 (Lyapunov’s Stability Theorem). If x0 is a rest point
for the differential equation (1.15) and V is a Lyapunov function for the
system at x0, then x0 is stable. If, in addition, V is a strict Lyapunov
function, then x0 is asymptotically stable.

The idea of Lyapunov’s method is very simple. In many cases the level
sets of V are “spheres” surrounding the rest point x0 as in Figure 1.10.
Suppose this is the case and let φt denote the flow of the differential equa-
tion (1.15). If y is in the level set Sc = {x ∈ R

n : V (x) = c} of the function
V , then, by the chain rule, we have that

d

dt
V (φt(y))

∣∣∣
t=0

= gradV (y) · f(y) ≤ 0. (1.16)

The vector grad V is an outer normal for Sc at y. (Do you see why it must
be the outer normal?) Thus, V is not increasing on the curve t �→ φt(y) at
t = 0, and, as a result, the image of this curve either lies in the level set
Sc, or the set {φt(y) : t > 0} is a subset of the set in the plane with outer
boundary Sc. The same result is true for every point on Sc. Therefore, a
solution starting on Sc is trapped; it either stays in Sc, or it stays in the set
{x ∈ R

n : V (x) < c}. The stability of the rest point follows easily from this
result. If V is a strict Lyapunov function, then the solution curve definitely
crosses the level set Sc and remains inside the set {x ∈ R

n : V (x) < c} for
all t > 0. Because the same property holds at all level sets “inside” Sc, the
rest point x0 is asymptotically stable.

If the level sets of our Lyapunov function are as depicted in Figure 1.10,
then the argument just given proves the stability of the rest point. How-
ever, it is not clear that the level sets of a Lyapunov function must have
this simple configuration. For example, some of the level sets may not be
bounded.

The proof of Lyapunov’s stability theorem requires a more delicate anal-
ysis. Let us use the following notation. For α > 0 and ζ ∈ R

n, define

Sα(ζ) := {x ∈ R
n : |x − ζ| = α},

Bα(ζ) := {x ∈ R
n : |x − ζ| < α},

B̄α(ζ) := {x ∈ R
n : |x − ζ| ≤ α}.
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Proof. Suppose that ε > 0 is given, and note that, in view of the definition
of Lyapunov stability, it suffices to assume that B̄ε(x0) is contained in
the domain U of the Lyapunov function V . Using the fact that Sε(x0)
is a compact set not containing x0, there is a number m > 0 such that
V (x) ≥ m for all x ∈ Sε(x0). Also, there is some δ > 0 with δ < ε such
that the maximum value M of V on the compact set B̄δ(x0) satisfies the
inequality M < m. If not, consider the closed balls given by B̄ε/k(x0) for
k ≥ 2, and extract a sequence of points {xk}∞

k=1 such that xk ∈ B̄ε/k(x0)
and V (xk) ≥ m. Clearly, this sequence converges to x0. Using the continuity
of the Lyapunov function V at x0, we have limk→∞ V (xk) = V (x0) = 0, in
contradiction.

Let ϕt denote the flow of (1.15). If x ∈ Bδ(x0), then

d

dt
V (ϕt(x)) = gradV (ϕt(x))f(ϕt(x)) ≤ 0.

Thus, the function t → V (ϕt(x)) is not increasing. Since V (ϕ0(x)) ≤ M <
m, we must have V (ϕt(x)) < m for all t ≥ 0 for which the solution t �→
ϕt(x) is defined. But, for these values of t, we must also have ϕt(x) ∈
Bε(x0). If not, there is some T > 0 such that |ϕT (x) − x0| ≥ ε. Since
t �→ |ϕt(x) − x0| is a continuous function, there must then be some τ with
0 < τ ≤ T such that |ϕτ (x) − x0| = ε. For this τ , we have V (ϕτ (x)) ≥ m,
in contradiction. Thus, ϕt(x) ∈ Bε(x0) for all t ≥ 0 for which the solution
through x exists. By the extensibility theorem, if the solution does not exist
for all t ≥ 0, then |ϕt(x)| → ∞ as t → ∞, or ϕt(x) approaches the boundary
of the domain of definition of f . Since neither of these possibilities occur,
the solution exists for all positive time with its corresponding image in the
set Bε(x0). Thus, x0 is stable.

If, in addition, the Lyapunov function is strict, we will show that x0 is
asymptotically stable.

Let x ∈ Bδ(x0). By the compactness of B̄ε(x0), either limt→∞ φt(x) = x0,
or there is a sequence {tk}∞

k=1 of real numbers 0 < t1 < t2 · · · with tk → ∞
such that the sequence {ϕtk

(x)}∞
n=1 converges to some point x∗ ∈ B̄ε(x0)

with x∗ �= x0. If x0 is not asymptotically stable, then such a sequence exists
for at least one point x ∈ Bδ(x0).

Using the continuity of V , it follows that limk→∞ V (ϕtk
(x)) = V (x∗).

Also, V decreases on orbits. Thus, for each natural number k, we have
that V (ϕtk

(x)) > V (x∗). But, in view of the fact that the function t �→
V (φt(x∗)) is strictly decreasing, we have

lim
k→∞

V (ϕ1+tk
(x)) = lim

k→∞
V (ϕ1(ϕtk

(x))) = V (ϕ1(x∗)) < V (x∗).

Thus, there is some natural number � such that V (φ1+t�
(x)) < V (x∗).

Clearly, there is also an integer n > � such that tn > 1 + t�. For this
integer, we have the inequalities V (φtn(x)) < V (φ1+t�

(x)) < V (x∗), in
contradiction. �



26 1. Introduction to Ordinary Differential Equations

Example 1.31. The linearization of ẋ = −x3 at x = 0 is ẋ = 0. It provides
no information about stability. Define V (x) = x2 and note that V̇ (x) =
2x(−x3) = −2x4. Thus, V is a strict Lyapunov function, and the rest point
at x = 0 is asymptotically stable.

Example 1.32. Consider the harmonic oscillator ẍ+ω2x = 0 with ω > 0.
The equivalent first order system

ẋ = y, ẏ = −ω2x

has a rest point at (x, y) = (0, 0). Define the total energy (kinetic energy
plus potential energy) of the harmonic oscillator to be

V =
1
2
ẋ2 +

ω2

2
x2 =

1
2
(y2 + ω2x2).

A computation shows that V̇ = 0. Thus, the rest point is stable. The energy
of a physical system is often a good choice for a Lyapunov function!

Exercise 1.33. As a continuation of example (1.32), consider the equivalent
first order system

ẋ = ωy, ẏ = −ωx.

Study the stability of the rest point at the origin using Lyapunov’s direct method.

Exercise 1.34. Consider a Newtonian particle of mass m moving under the
influence of the potential U . If the position coordinate is denoted by

q = (q1, . . . , qn),

then the equation of motion (F = ma) is given by

mq̈ = − grad U(q).

If q0 is a strict local minimum of the potential, show that the equilibrium (q̇, q) =
(0, q0) is Lyapunov stable. Hint: Consider the total energy of the particle.

Exercise 1.35. Determine the stability of the rest points of the following sys-
tems. Formulate properties of the unspecified scalar function g so that the rest
point at the origin is stable or asymptotically stable.

1. ẋ = y − x3,

ẏ = −x − y3

2. ẋ = y + αx(x2 + y2),
ẏ = −x + αy(x2 + y2)

3. ẋ = 2xy − x3,

ẏ = −x2 − y5

4. ẋ = y − xg(x, y),
ẏ = −x − yg(x, y)
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5. ẋ = y + xy2 − x3 + 2xz4,

ẏ = −x − y3 − 3x2y + 3yz4,

ż = − 5
2y2z3 − 2x2z3 − 1

2z7

Exercise 1.36. Determine the stability of all rest points for the following dif-
ferential equations. For the unspecified scalar function g determine conditions so
that the origin is a stable and/or asymptotically stable rest point.

1. ẍ + εẋ + ω2x = 0, ε > 0, ω > 0

2. ẍ + sin x = 0

3. ẍ + x − x3 = 0

4. ẍ + g(x) = 0

5. ẍ + εẋ + g(x) = 0, ε > 0

6. ẍ + ẋ3 + x = 0.

The total energy is a good choice for the strict Lyapunov function required to
study system 5. It almost works. Can you modify the total energy to obtain a
strict Lyapunov function? If not, see Exercise 2.45. Alternatively, consider apply-
ing the following refinement of Theorem 1.30: Suppose that x0 is a rest point for
the differential equation ẋ = f(x) with flow φt and V is a Lyapunov function at
x0. If, in addition, there is a neighborhood W of the rest point x0 such that for
each point p ∈ W \{x0}, the function V is not constant on the set {φt(p) : t ≥ 0},
then x0 is asymptotically stable (see Exercise 1.113).

Exercise 1.37. [Basins of Attraction] Consider system 5 in the previous exer-
cise, and note that if g(0) = 0 and g′(0) > 0, then there is a rest point at the origin
that is asymptotically stable. Moreover, this fact can be proved by the principle
of linearization. Thus, it might seem that finding a strict Lyapunov function in
this case is wasted effort. However, the existence of a strict Lyapunov function
determines more than just the stability of the rest point; the Lyapunov function
can also be used to estimate the basin of attraction of the rest point; that is (in
general), the set of all points in the space that are asymptotic to the rest point.
Consider the (usual) first order system corresponding to the differential equation

ẍ + εẋ + x − x3 = 0

for ε > 0, and describe the basin of attraction of the origin. Define a subset of
the basin of attraction, which you have described, and prove that it is contained
in the basin of attraction. Formulate and prove a general theorem about the
existence of Lyapunov functions and the extent of basins of attraction of rest
points.

In engineering practice, physical systems (for example a chemical plant or a
power electronic system) are operated in steady state. When a disturbance occurs
in the system, the control engineer wants to know if the system will return to
the steady state. If not, she will have to take drastic action! Do you see why
theorems of the type requested in this exercise (a possible project for the rest of
your mathematical life) would be of practical value?

Exercise 1.38. Prove the following instability result: Suppose that V is a
smooth function defined on an open neighborhood U of the rest point x0 of
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the autonomous system ẋ = f(x) such that V (x0) = 0 and V̇ (x) > 0 on U \{x0}.
If for each neighborhood of x0 there is a point where V has a positive value, then
x0 is not stable.

1.7 Introduction to Invariant Manifolds

In this section we will define the concept of a manifold as a generalization
of a linear subspace of R

n, and we will begin our discussion of the central
role that manifolds play in the theory of differential equations.

Let us note that the fundamental definitions of the calculus are local in
nature. For example, the derivative of a function at a point is determined
once we know the values of the function in some neighborhood of the point.
This fact is the basis for the manifold concept: Informally, a manifold is a
subset of R

n such that, for some fixed integer k ≥ 0, each point in the subset
has a neighborhood that is essentially the same as the Euclidean space
R

k. To make this definition precise we will have to define what is meant
by a neighborhood in the subset, and we will also have to understand the
meaning of the phrase “essentially the same as R

k.” However, these notions
should be intuitively clear: In effect, a neighborhood in the manifold is an
open subset that is diffeomorphic to R

k.
Points, lines, planes, arcs, spheres, and tori are examples of manifolds.

Some of these manifolds have already been mentioned. Let us recall that a
curve is a smooth function from an open interval of real numbers into R

n.
An arc is the image of a curve. Every solution of a differential equation is a
curve; the corresponding orbit is an arc. Thus, every orbit of a differential
equation is a manifold. As a special case, let us note that a periodic orbit
is a one-dimensional torus.

Consider the differential equation

ẋ = f(x), x ∈ R
n, (1.17)

with flow φt, and let S be a subset of R
n that is a union of orbits of this

flow. If a solution has its initial condition in S, then the corresponding orbit
stays in S for all time, past and future. The concept of a set that is the
union of orbits of a differential equation is formalized in the next definition.

Definition 1.39. A set S ⊆ R
n is called an invariant set for the differen-

tial equation (1.17) if, for each x ∈ S, the solution t �→ φt(x), defined on its
maximal interval of existence, has its image in S. Alternatively, the orbit
passing through each x ∈ S lies in S. If, in addition, S is a manifold, then
S is called an invariant manifold.

We will illustrate the notion of invariant manifolds for autonomous dif-
ferential equations by describing two important examples: the stable, un-
stable, and center manifolds of a rest point; and the energy surfaces of
Hamiltonian systems.
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Stable ManifoldUnstable Manifold

FIGURE 1.11. Stable and unstable manifolds for the linear saddle at the origin
for the system ẋ = −x, ẏ = y.

Center Manifold

Stable Manifold

FIGURE 1.12. Phase portrait for a linear system with a one-dimensional stable
and a two-dimensional center manifold.
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The stable manifold concept is perhaps best introduced by discussing a
concrete example. Thus, let us consider the planar first order system

ẋ = −x, ẏ = y,

and note that the x-axis and the y-axis are invariant one-dimensional man-
ifolds. The invariance of these sets follows immediately by inspection of
the solution of the uncoupled linear system. Note that a solution with ini-
tial value on the x-axis approaches the rest point (x, y) = (0, 0) as time
increases to +∞. On the other hand, a solution with initial value on the
y-axis approaches the rest point as time decreases to −∞. Solutions on
the x-axis move toward the rest point; solutions on the y-axis move away
from the rest point. For this example, the x-axis is called the stable man-
ifold of the rest point, and the y-axis is called the unstable manifold (see
Figure 1.11).

Similar invariant linear subspaces exist for all linear systems ẋ = Ax,
x ∈ R

n. In fact, the space R
n can always be decomposed as a direct sum of

linear subspaces: the stable eigenspace (stable manifold) defined to be the
A-invariant subspace of R

n such that the eigenvalues of the restriction of
A to this space are exactly the eigenvalues of A with negative real parts,
the unstable eigenspace (unstable manifold) corresponding similarly to the
eigenvalues of A with positive real parts, and the center eigenspace (center
manifold) corresponding to the eigenvalues with zero real parts. It turns out
that these linear subspaces are also invariant sets for the linear differential
equation ẋ = Ax. Thus, they determine its phase portrait. For example,
Figure 1.12 shows the phase portrait of a linear system on R

3 with a one-
dimensional stable manifold and a two-dimensional center manifold. Of
course, some of these invariant sets might be empty. In particular, if A
is infinitesimally hyperbolic (equivalently, if the rest point at the origin is
hyperbolic), then the linear system has an empty center manifold at the
origin.

Exercise 1.40. Discuss the existence of stable, unstable, and center manifolds
for the linear systems with the following system matrices:


−1 1 0

0 −1 0
0 0 2


 ,


1 2 3

4 5 6
7 8 9


 ,


 0 1 0

−1 0 0
0 0 −2


 .

Two very important theorems in the subject of differential equations, the
stable manifold theorem and the center manifold theorem, will be proved
in Chapter 4.

The stable manifold theorem states the existence of unique invariant
stable and unstable manifolds that pass through a hyperbolic rest point
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tangent to the corresponding stable and unstable eigenspaces of the corre-
sponding linearized system. Let us note that the Hartman–Grobman theo-
rem implies that a hyperbolic rest point has stable and unstable invariant
sets that are homeomorphic images of the corresponding invariant man-
ifolds for the corresponding linearized system, but it gives no indication
that these invariant sets are smooth manifolds.

The existence of stable and unstable invariant manifolds is important.
However, at this point in our study only a glimpse into their essential role in
the analysis of differential equations is possible. For example, their existence
provides a theoretical basis for determining the analytic properties of the
flow of a differential equation in the neighborhood of a hyperbolic rest
point. They also serve to bound other invariant regions in the phase space.
Thus, the network of all stable and unstable manifolds forms the “skeleton”
for the phase portrait. Finally, the existence of the stable and unstable
manifolds in the phase space, especially their intersection properties, lies
at the heart of an explanation of the complex motions associated with many
nonlinear ordinary differential equations. In particular, this phenomenon is
fundamental in the study of deterministic chaos (see Chapter 6).

For rest points of a differential equation that are not hyperbolic, the cen-
ter manifold theorem states the existence of an invariant manifold tangent
to the corresponding center eigenspace. This center manifold is not nec-
essarily unique, but the differential equation has the same phase portrait
when restricted to any one of the center manifolds at the same rest point.
Analysis using center manifolds is often required to understand many of
the most delicate problems that arise in the theory and applications of
differential equations. For example, the existence and smoothness proper-
ties of center manifolds are foundational results in bifurcation theory (see
Chapter 8).

Invariant manifolds, called energy surfaces, are useful in the study of
Hamiltonian systems of differential equations. To define this important
class of differential equations, let H : R

n × R
n → R be a smooth func-

tion given by

(q1, . . . , qn, p1, . . . , pn) �→ H(q1, . . . , qn, p1, . . . , pn),

and define the associated Hamiltonian system on R
2n with Hamiltonian H

by

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, . . . , n.

Let us note that the dimension of the phase space of a Hamiltonian system
is required to be even. The reason for this restriction will soon be made
clear.

As a prototypical example of a Hamiltonian system, let H : R
2 → R be

given by H(x, y) := 1
2 (y2 + ω2x2). The associated Hamiltonian system is
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the harmonic oscillator

ẋ = y, ẏ = −ω2x.

More generally, suppose that U : R
n → R and let H : R

n × R
n → R be

given by

H(q, p) =
p2

2m
+ U(q)

where p2 := p2
1 + · · · + p2

n. A Hamiltonian in this form is called a classical
Hamiltonian. The corresponding Hamiltonian system

q̇ =
1
m

p, ṗ = − gradU(q)

is equivalent to Newton’s equation of motion for a particle influenced by
a conservative force (see Exercise 1.34). The vector quantity p := mq̇ is
called the (generalized) momentum, the function U is called the potential
energy, and the function p �→ 1

2mp2 = m
2 q̇2 is called the kinetic energy.

The configuration space for the classical mechanical system is the space
consisting of all possible positions of the system. If the configuration space is
locally specified by n coordinates (q1, . . . , qn), then the Hamiltonian system
is said to have n degrees of freedom. For example, for the pendulum, the
configuration space can be taken to be R with the coordinate q1 specifying
the angular position of the bob relative to the downward vertical. It is a
system with one degree of freedom. Of course, for this example, the physical
positions are specified by the angular coordinate q1 modulo 2π. Thus, the
configuration space can also be viewed as a nonlinear manifold—namely,
the unit circle in the plane. This is yet another way in which manifolds
arise in the study of mechanical systems.

The phase space of a Hamiltonian system is the subset of R
n × R

n of all
positions and momenta specified by the coordinates (q1, . . . , qn, p1, . . . , qn).
The dimension of the phase space is therefore even; it is the space in which
the Hamiltonian system evolves. The state space is also a subset of R

n ×
R

n, but it is the space of positions and velocities with the coordinates
(q1, . . . , qn, q̇1, . . . , q̇n) (see Chapter 3).

For c ∈ R and the Hamiltonian H : R
n × R

n → R, the corresponding
energy surface with energy c is defined to be the set

Sc = {(q, p) ∈ R
n × R

n : H(q, p) = c}.

If gradH(p, q) �= 0 for each (p, q) ∈ Sc, then the set Sc is called a regular
energy surface.

Note that the vector field given by

gradH = (
∂H

∂q
,
∂H

∂p
)
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is orthogonal to the Hamiltonian vector field given by

(
∂H

∂p
,−∂H

∂q
)

at each point in the phase space. Thus, the Hamiltonian vector field is
everywhere tangent to each regular energy surface. As a consequence of
this fact—a proof will be given later in this section—every energy surface
Sc is an invariant set for the flow of the corresponding Hamiltonian system.
Moreover, every regular energy surface is an invariant manifold.

The structure of energy surfaces and their invariance is important. In-
deed, the phase space of a Hamiltonian system is the union of its energy
surfaces. Or, as we say, the space is foliated by its energy surfaces. More-
over, each regular energy surface of a Hamiltonian system with n degrees
of freedom has “dimension” 2n − 1. Thus, we can reduce the dimension of
the phase space by studying the flow of the original Hamiltonian system
restricted to each of these invariant subspaces. For example, the analysis
of a Hamiltonian system with one degree of freedom can be reduced to
the consideration of just one space dimension where the solution of the
Hamiltonian differential equation can be reduced to a quadrature. To see
what this means, consider the classical Hamiltonian H(q, p) = 1

2p2 + U(q)
and a regular energy surface of H with energy h. Notice that, if we use the
Hamiltonian differential equations and the energy relation, then we can
derive the following scalar differential equations

q̇ = p =
dq

dt
= ±(2(h − U(q)))1/2

for solutions whose initial conditions are on this energy surface. By separa-
tion of variables and a specification of the initial condition, the ambiguous
sign is determined and the solution of the corresponding scalar differential
equation is given implicitly by the integral (=quadrature)∫ q(t)

q(0)
(2(h − U(q)))−1/2 dq = ±t.

This result “solves” the original system of Hamiltonian differential equa-
tions. The same idea works for systems with several degrees of freedom,
only the equations are more complicated.

Let us also note that the total energy of a Hamiltonian system might not
be the only conserved quantity. In fact, if F is a function on the phase space
with the property that the dot product of gradF (q, p) is orthogonal to the
Hamiltonian vector field at every (q, p) in an open subset of the phase space,
then the level sets of F are also invariant sets. In this case F is called an
integral, or first integral, of the Hamiltonian system. Thus, the intersection
of an energy surface and a level set of F must also be invariant, and, as
a consequence, the space is foliated with (2n − 2)-dimensional invariant
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FIGURE 1.13. A rigid body and its three axes of symmetry

sets. If there are enough first integrals, then the solution of the original
system can be expressed in quadratures. In fact, for an n-degree-of-freedom
Hamiltonian system, it suffices to determine n “independent” first integrals
(see [10, §49]). We will not prove this fact. However, it should be clear
that energy surfaces, or more generally, level sets of first integrals, are
important objects that are worthy of study. They are prime examples of
smooth manifolds.

While the notion of an energy surface is naturally associated with Hamil-
tonian systems, the underlying idea for proving the invariance of energy
surfaces easily extends to general autonomous systems. In fact, if ẋ = f(x)
is an autonomous system with x ∈ R

n and the function G : R
n → R is

such that the vector grad G(x) is orthogonal to f(x) for all x in some open
subset of R

n, then every level set of G that is contained in this open set
is invariant. Thus, just as for Hamiltonian systems, some of the dynamical
properties of the differential equation ẋ = f(x) can be studied by restrict-
ing attention to a level set of G, a set that has codimension one in the
phase space (see Exercise 1.44).

Exercise 1.41. Find the Hamiltonian for a first order system equivalent to the
model equation for the pendulum given by θ̈+k sin θ = 0 where k is a parameter.
Describe the energy surfaces.

Exercise 1.42. Reduce the solution of the harmonic oscillator H(q, p) = 1
2 (p2+

ω2q2) where ω > 0 to a quadrature on each of its regular energy surfaces and carry
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out the integration explicitly. (This is not the simplest way to solve the equations
of motion, but you will learn a valuable method that is used, for example, in the
construction of the solution of the equations of motion for the Hamiltonian system
mentioned in the previous exercise.)

Exercise 1.43. [Gradient Systems] If H is a Hamiltonian, then the vector field
grad H is everywhere orthogonal to the corresponding Hamiltonian vector field.
However, the vector field grad H defines a differential equation in its own right
that has many interesting and useful properties. More generally, for a smooth
function G : R

n → R (maybe n is odd), let us define the associated gradient
system

ẋ = grad G(x).

Because a conservative force is the negative gradient of a potential, many authors
define the gradient system with potential G to be

ẋ = − grad G(x).

While our definition is the usual one for mathematical studies, the definition
with the negative sign is perhaps more natural for physical applications. Prove
the following facts: A gradient system has no periodic orbits. If a gradient system
has a rest point, then all of the eigenvalues of the linearization at the rest point are
real. If n = 2, then the orbits of the gradient system are orthogonal trajectories
for the orbits of the Hamiltonian system with Hamiltonian G. If x ∈ R

n is an
isolated maximum of the function G : R

n → R, then x is an asymptotically stable
rest point of the corresponding gradient system.

Exercise 1.44. [Rigid Body Motion] A system that is not Hamiltonian, but
closely related to this class, is given by Euler’s equations for rigid body motion.
The angular momentum M = (M1, M2, M3) of a rigid body, relative to a coordi-
nate frame rotating with the body with axes along the principal axes of the body
and with origin at its center of mass, is related to the angular velocity vector Ω
by M = AΩ, where A is a symmetric matrix called the inertia matrix. Euler’s
equation is Ṁ = M × Ω. Equivalently, the equation for the angular velocity is
AΩ̇ = (AΩ) × Ω. If A is diagonal with diagonal components (moments of iner-
tia) (I1, I2, I3), show that Euler’s equations for the components of the angular
momentum are given by

Ṁ1 = −( 1
I2

− 1
I3

)
M2M3,

Ṁ2 =
( 1
I1

− 1
I3

)
M1M3,

Ṁ3 = −( 1
I1

− 1
I2

)
M1M2.

Assume that 0 < I1 ≤ I2 ≤ I3. Find some invariant manifolds for this system. Can
you use your results to find a qualitative description of the motion? As a physical
example, take this book and hold its covers together with a rubber band. Then,
toss the book vertically three times, imparting a rotation in turn about each of
its axes of symmetry (see Figure 1.13). Are all three rotary motions Lyapunov
stable? Do you observe any other interesting phenomena associated with the
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motion? For example, pay attention to the direction of the front cover of the
book after each toss. Hint: Look for invariant quadric surfaces; that is, manifolds
defined as level sets of quadratic polynomials (first integrals) in the variables
(M1, M2, M3). For example, show that the kinetic energy given by 1

2 〈AΩ, Ω〉
is constant along orbits. The total angular momentum (length of the angular
momentum) is also conserved. For a complete mathematical description of rigid
body motion, see [10]. For a mathematical description of the observed “twist”
in the rotation of the tossed book, see [16]. One aspect of this problem worth
mentioning is the fact that Euler’s equations do not describe the motion of the
book in space. To do so would require a functional relationship between the
coordinate system rotating with the body and the position coordinates relative
to a fixed coordinate frame in space.

1.7.1 Smooth Manifolds
Because the modern definition of a smooth manifold can appear quite
formidable at first sight, we will formulate a simpler equivalent definition
for the class of manifolds called the submanifolds of R

n. Fortunately, this
class is rich enough to contain the manifolds that are met most often in the
study of differential equations. In fact, every manifold can be “embedded”
as a submanifold of some Euclidean space. Thus, the class that we will
study can be considered to contain all manifolds.

Recall that a manifold is supposed to be a set that is locally the same as
R

k. Thus, whatever is meant by “locally the same,” every open subset of
R

k must be a manifold.
If W ⊆ R

k is an open set and g : W → R
n−k is a smooth function, then

the graph of g is the subset of R
n defined by

graph(g) := {(w, g(w)) ∈ R
n : w ∈ W}.

The set graph(g) is the same as W ⊆ R
k up to a nonlinear change of

coordinates. By this we mean that there is a smooth map G with domain
W and image graph(g) such that G has a smooth inverse. In fact, such a
map G : W → graph(g) is given by G(w) = (w, g(w)). Clearly, G is smooth.
Its inverse is the linear projection on the first k coordinates of the point
(w, g(w)) ∈ graph(g); that is, G−1(w, g(w)) = w. Thus, G−1 is smooth as
well.

Open subsets and graphs of smooth functions are the prototypical exam-
ples of what we will call submanifolds. However, these classes are too re-
strictive; they include objects that are in fact globally the same as some Eu-
clidean space. The unit circle T in the plane, also called the one-dimensional
torus, is an example of a submanifold that is not of this type. Indeed,
T := {(x, y) : x2 + y2 = 1} is not the graph of a scalar function defined on
an open subset of R. However, every point of T is contained in a neighbor-
hood in T that is the graph of such a function. In fact, each point in T is
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FIGURE 1.14. A chart for a two-dimensional submanifold in R
3.

in one of the four sets

S± := {(x, y) ∈ R
2 : y = ±

√
1 − x2, |x| < 1},

S± := {(x, y) ∈ R
2 : x = ±

√
1 − y2, |y| < 1}.

Submanifolds of R
n are subsets with the same basic property: Every point

in the subset is in a neighborhood that is the graph of a smooth function.
To formalize the submanifold concept for subsets of R

n, we must deal
with the problem that, in the usual coordinates of R

n, not all graphs are
given by sets of the form

{(x1, . . . , xk, gk+1(x1, . . . , xk), . . . , gn(x1, . . . , xk)) :

(x1, . . . , xk) ∈ W ⊆ R
k}.

Rather, we must allow, as in the example provided by T, for graphs of func-
tions that are not functions of the first k coordinates of R

n. To overcome
this technical difficulty we will build permutations of the variables into our
definition.

Definition 1.45. If S ⊆ R
n and x ∈ S, then the pair (W, G) where W is

an open subset of R
k for some k ≤ n and G : W → R

n is a smooth function
is called a k-dimensional submanifold chart for S at x (see Figure 1.14) if
there is an open set U ⊆ R

n with x ∈ U ∩ S such that U ∩ S = G(W ) and
one of the following two properties is satisfied:
1) The integer k is equal to n and G is the identity map.
2) The integer k is less than n and G has the form

G(w) = A
( w

g(w)

)
where g : W → R

n−k is a smooth function and A is a nonsingular n × n
matrix.
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Definition 1.46. The set S ⊆ R
n is called a k-dimensional smooth sub-

manifold of R
n if there is a k-dimensional submanifold chart for S at every

point x in S.

If (W, G) is a submanifold coordinate chart, then the map G is called a
submanifold coordinate map. If S is a submanifold of R

n, then, even though
we have not defined the concept, let us also call S a smooth manifold.

As an example, let us show that T is a one-dimensional manifold. Con-
sider a point in the subset S+ = {(x, y) : x =

√
1 − y2, |y| < 1} of T. Define

the set W := {t ∈ R : |t| < 1}, the function g : W → R by g(t) =
√

1 − t2,
the set U := {(x, y) ∈ R

2 : (x − 1)2 + y2 <
√

2}, and the matrix

A :=
(

0 1
1 0

)
.

Then we have

T ∩ U =
{(x

y

)
∈ R

2 :
(x

y

)
=

(
0 1
1 0

)(
t

g(t)

)
, t ∈ W

}
.

Similarly, T is locally the graph of a smooth function at points in the subsets
S− and S±, as required.

A simple but important result about submanifold coordinate charts is
the following proposition.

Proposition 1.47. If (W, G) is a submanifold coordinate chart for a k-
dimensional submanifold of R

n, then the function G : W → S is invertible.
Moreover, the inverse of G is the restriction of a smooth function that is
defined on all of R

n.

Proof. The result is obvious if k = n. If k < n, then define Π : R
n → R

k to
be the linear projection on the first k-coordinates; that is, Π(x1, . . . , xn) =
(x1, . . . , xk), and define

F : G(W ) → W

by
F (s) = ΠA−1s.

Clearly, F is smooth as a function defined on all of R
n. Also, if w ∈ W ,

then

F ◦ G(w) = F
(
A
(

w
g(w)

))
= ΠA−1A

( w
g(w)

)
= w.

If s ∈ G(W ), then s = A
(

w
g(w)

)
for some w ∈ W . Hence, we also have

G(F (s)) = G(w) = s.

This proves that F is the inverse of G. �



1.7 Introduction to Invariant Manifolds 39

If S is a submanifold, then we can use the submanifold coordinate charts
to define the open subsets of S.

Definition 1.48. If S is a submanifold, then the open subsets of S are all
possible unions of all sets of the form G(W ) where (W, G) is a submanifold
chart for S.

The next proposition is an immediate consequence of the definitions.

Proposition 1.49. If S is a submanifold of R
n and if V is an open subset

of S, then there is an open set U of R
n such that V = S ∩ U ; that is, the

topology defined on S using the submanifold charts agrees with the subspace
topology on S.

As mentioned above, one of the main reasons for defining the manifold
concept is to distinguish those subsets of R

n on which we can use the
calculus. To do so, let us first make precise the notion of a smooth function.

Definition 1.50. Suppose that S1 is a submanifold of R
m, S2 is a subman-

ifold of R
n, and F is a function F : S1 → S2. We say that F is differentiable

at x1 ∈ S1 if there are submanifold coordinate charts (W1, G1) at x1 and
(W2, G2) at F (x1) such that the map G−1

2 ◦ F ◦ G1 : W1 → W2 is differ-
entiable at G−1

1 (x1) ∈ W1. If F is differentiable at each point of an open
subset V of S1, then we say that F is differentiable on V .

Definition 1.51. Suppose that S1 and S2 are manifolds. A smooth func-
tion F : S1 → S2 is called a diffeomorphism if there is a smooth function
H : S2 → S1 such that H(F (s)) = s for every s ∈ S1 and F (H(s)) = s for
every s ∈ S2. The function H is called the inverse of F and is denoted by
F−1.

With respect to the notation in Definition 1.50, we have defined the
concept of differentiability for the function F : S1 → S2, but we have not
yet defined what we mean by its derivative! However, we have determined
the derivative relative to the submanifold coordinate charts used in the
definition. Indeed, the local representative of the function F is given by
G−1

2 ◦F ◦G1, a function defined on an open subset of a Euclidean space with
range in another Euclidean space. By definition, the local representative of
the derivative of F relative to the given submanifold charts is the usual
derivative in Euclidean space of this local representative of F . In the next
subsection, we will interpret the derivative of F without regard to the choice
of a submanifold coordinate chart; that is, we will give a coordinate-free
definition of the derivative of F (see also Exercise 1.52).

Exercise 1.52. Prove: The differentiability of a function defined on a manifold
does not depend on the choice of submanifold coordinate chart.



40 1. Introduction to Ordinary Differential Equations

We have used the phrase “smooth function” to refer to a function that is
continuously differentiable. In view of Definition 1.50, the smoothness of a
function defined on a manifold is determined by the smoothness of its local
representatives—functions that are defined on open subsets of Euclidean
spaces. It is clear that smoothness of all desired orders can be defined in
the same manner by imposing the requirement on local representatives.
More precisely, if F is a function defined on a manifold S, then we will
say that F is an element of Cr(S), for r a nonnegative integer, r = ∞,
or r = ω, provided that at each point of S there is a local representative
of F all of whose partial derivatives up to and including those of order r
are continuous. If r = ∞, then all partial derivatives are required to be
continuous. If r = ω, then all local representatives are all required to have
convergent power series representations valid in a neighborhood of each
point of their domains. A function in Cω is called real analytic.

In the subject of differential equations, specifying the minimum number
of derivatives of a function required to obtain a result often obscures the
main ideas that are being illustrated. Thus, as a convenient informality,
we will often use the phrase “smooth function” to mean that the function
in question has as many continuous derivatives as needed. However, there
are instances where the exact requirement for the number of derivatives
is essential. In these cases, we will refer to the appropriate class of Cr

functions.
The next definition formalizes the concept of a coordinate system.

Definition 1.53. Suppose that S is a k-dimensional submanifold. If V
is an open subset of S, W is an open subset of R

k, and Ψ : V → W
is a diffeomorphism, then the pair (V, Ψ) is called a coordinate system or
coordinate chart on S.

Exercise 1.54. Prove: If (W, G) is a submanifold coordinate chart for a man-
ifold S, then (G(W ), G−1) is a coordinate chart on S.

The abstract definition of a manifold is based on the concept of coordi-
nate charts. Informally, a set S together with a collection of subsets S is
defined to be a k-dimensional manifold if every point of S is contained in at
least one set in S and if, for each member V of S, there is a corresponding
open subset W of R

k and a function Ψ : V → W that is bijective. If two
such subsets V1 and V2 overlap, then the domain of the map

Ψ1 ◦ Ψ−1
2 : Ψ2(V1 ∩ V2) → W1

is an open subset of R
k whose range is contained in an open subset of

R
k. The set S is called a manifold provided that all such “overlap maps”

are smooth (see [92] for the formal definition). This abstract notion of a
manifold has the advantage that it does not require a manifold to be a
subset of a Euclidean space.
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Exercise 1.55. Prove: If F : R
m → R

n is smooth and F (S1) ⊆ S2 for subman-
ifolds S1 and S2, then the restriction of F to S1 is differentiable.

Exercise 1.56. Prove: If α ∈ R, then the map T → T given by

(x, y) �→ (x cos α − y sin α, x sin α + y cos α)

is a diffeomorphism.

Now that we know the definition of a manifold, we are ready to prove
that linear subspaces of R

n and regular level sets of smooth functions are
manifolds.

Proposition 1.57. A linear subspace of R
n is a submanifold.

Proof. Let us suppose that S is the span of the k linearly independent vec-
tors v1, . . . , vk in R

n. We will show that S is a k-dimensional submanifold
of R

n.
Let e1, . . . , en denote the standard basis of R

n. By a basic result from
linear algebra, there is a set consisting of n − k standard basis vectors
fk+1, . . . , fn such that the vectors

v1, . . . , vk, fk+1, . . . , fn

are a basis for R
n. (Why?) Let us denote the remaining set of standard

basis vectors by f1, . . . , fk. For each j = 1, . . . , k, there are scalars λj
i and

µj
i such that

fj =
k∑

i=1

λj
ivi +

n∑
i=k+1

µj
ifi.

Hence, if (t1, . . . , tk) ∈ R
k, then the vector

k∑
j=1

tjfj −
k∑

j=1

tj

( n∑
i=k+1

µj
ifi

)
=

k∑
j=1

tj

( k∑
i=1

λj
ivi

)
is in S. Hence, relative to the basis f1, · · · , fn, the vector

(t1, . . . , tk,−
k∑

j=1

tjµ
j
k+1, . . . ,−

k∑
j=1

tjµ
j
n)

is in S.
Define g : R

k → R
n−k by

g(t1, . . . , tk) :=
(

−
k∑

j=1

tjµ
j
k+1, . . . ,−

k∑
j=1

tjµ
j
n

)
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and let A denote the permutation matrix that maps the vectors f1, . . . , fn

to their standard order e1, . . . , en; that is, Afi = ei for i = 1, . . . , n. It
follows that the pair (Rk, G), where G : R

k → R
n is defined by

G(w) = A
( w

g(w)

)
,

is a k-dimensional submanifold chart such that G(Rk) = R
n ∩ S. In fact,

by the construction, it is clear that the image of G is a linear subspace of
S. Moreover, because the image of G has dimension k as a vector space,
the subspace G(Rk) is equal to S. �

As mentioned previously, linear subspaces often arise as invariant mani-
folds of differential equations. For example, consider the differential equa-
tion given by ẋ = Ax where x ∈ R

n and A is an n × n matrix. If S is
an invariant subspace for the matrix A, for example, one of its generalized
eigenspaces, then, by Proposition 1.57, S is a submanifold of R

n. Also, S is
an invariant set for the linear system of differential equations. A complete
proof of this proposition requires some results from linear systems theory
that will be presented in Chapter 2. However, the essential features of the
proof can be simply illustrated in the special case where the linear trans-
formation A restricted to S has a complete set of eigenvectors. In other
words, S is a k-dimensional subspace of R

n spanned by k linearly indepen-
dent eigenvectors v1, . . . , vk of A. Under this assumption, if Avi = λivi,
then t → eλitvi is a solution of ẋ = Ax. Also, note that eλitvi is an eigen-
vector of A for each t ∈ R. Therefore, if x0 ∈ S, then there are scalars
(a1, . . . , ak) such that x0 =

∑k
i=1 aivi and

t �→
k∑

i=1

eλitaivi

is the solution of the ordinary differential equation with initial condition
x(0) = x0. Clearly, the corresponding orbit stays in S for all t ∈ R.

Linear subspaces can be invariant sets for nonlinear differential equations.
For example, consider the Volterra–Lotka system

ẋ = x(a − by), ẏ = y(cx − d).

In case a, b, c, and d are all positive, this system models the interaction
of the population y of a predator and the population x of its prey. For
this system, the x-axis and the y-axis are each invariant sets. Indeed, sup-
pose that (0, y0) is a point on the y-axis corresponding to a population of
predators with no prey, then t �→ (0, e−dty0) is the solution of the system
starting at this point that models this population for all future time. This
solution stays on the y-axis for all time, and, as there are is no spontaneous
generation of prey, the predator population dies out in positive time.
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Let us now discuss level sets of functions. Recall that if H : R
n → R is a

smooth function, then the level set of H with energy c is the set

Sc := {x ∈ R
n : H(x) = c}.

Moreover, if gradH(x) �= 0 for each x ∈ Sc, then Sc is called a regular level
set.

Proposition 1.58. If H : R
n → R is a smooth function, then each of its

regular level sets is an (n − 1)-dimensional submanifold of R
n.

It is instructive to outline a proof of this result because it provides our
first application of a nontrivial and very important theorem from advanced
calculus, namely, the implicit function theorem.

Suppose that Sc is a regular level set of H, choose a ∈ Sc, and define
F : R

n → R by
F (x) = H(x) − c.

Let us note that F (a) = 0. Also, because gradH(a) �= 0, there is at least one
integer 1 ≤ i ≤ n such that the corresponding partial derivative ∂F/∂xi

does not vanish when evaluated at a. For notational convenience let us
suppose that i = 1. All other cases can be proved in a similar manner.

We are in a typical situation: We have a function F : R × R
n−1 → R

given by (x1, x2, . . . , xn) �→ F (x1, . . . , xn) such that

F (a1, . . . , an) = 0,
∂F

∂x1
(a1, a2, . . . , an) �= 0.

This calls for an application of the implicit function theorem. A preliminary
version of the theorem is stated here; a more general version will be proved
later (see Theorem 1.182).

If f : R
� × R

m → R
n is given by (p, q) �→ f(p, q), then, for fixed b ∈ R

m,
consider the function R

� → R
n defined by p �→ f(p, b). Its derivative at

a ∈ R
� will be denoted by fp(a, b). Of course, with respect to the usual

bases of R
� and R

n, this derivative is represented by an n × � matrix of
partial derivatives.

Theorem 1.59 (Implicit Function Theorem). Suppose that F : R
m ×

R
k → R

m is a smooth function given by (p, q) �→ F (p, q). If (a, b) is in
R

m × R
k such that F (a, b) = 0 and Fp(a, b) �= 0, then there exist two open

metric balls U ⊆ R
m and V ⊆ R

k with (a, b) ∈ U × V together with a
smooth function g : V → U such that g(b) = a and F (g(v), v) = 0 for each
v ∈ V . Moreover, if (u, v) ∈ U × V and F (u, v) = 0, then u = g(v).

Continuing with our outline of the proof of Proposition 1.58, let us ob-
serve that, by an application of the implicit function theorem to F , there
is an open set Z ⊆ R with a1 ∈ Z, an open set W ⊆ R

n−1 contain-
ing the point (a2, . . . , an), and a smooth function g : W → Z such that
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g(a2, . . . , an) = a1 and

H(g(x2, . . . , xn), x2, . . . , xn) − c ≡ 0.

The set

U := {(x1, . . . , xn) ∈ R
n : x1 ∈ Z and (x2, . . . , xn) ∈ W} = Z × W

is open. Moreover, if x = (x1, . . . , xn) ∈ Sc ∩ U , then x1 = g(x2, . . . , xn).
Thus, we have that

Sc ∩ U = {(g(x2, . . . , xn), x2, . . . , xn) : (x2, . . . , xn) ∈ W}

= {u ∈ R
n : u = A

( w
g(w)

)
for some w ∈ W}

where A is the permutation of R
n given by

(y1, . . . , yn) �→ (yn, y1, . . . , yn−1).

In particular, it follows that Sc is an (n − 1)-dimensional manifold.

Exercise 1.60. Show that S
n := {(x1, . . . , xn) ∈ R

n : x1
2 + · · · + xn

2 = 1} is
an (n − 1)-dimensional manifold.

Exercise 1.61. Show that the surface of revolution S obtained by rotating
the circle given by (x − 2)2 + y2 = 1 around the y-axis is a two-dimensional
manifold. This manifold is homeomorphic to a (two-dimensional) torus T

2 :=
T×T. Construct a homeomorphism. This exercise points out the weakness of our
definition of a manifold. The set T

2 is not defined as a subset of some R
n. This

leads to the question “Is T
2 a manifold?” The answer is that T

2 can be given the
structure of a smooth two-dimensional manifold that is diffeomorphic to S, but
this requires the abstract definition of a manifold.

Exercise 1.62. Suppose that J is an interval in R and γ : J → R
n is a smooth

function. The image C of γ is, by definition, a curve in R
n. Is C a one-dimensional

manifold? Formulate and prove a theorem that gives sufficient conditions for C to
be a manifold. Hint: Consider the function t �→ (t2, t3) for t ∈ R and the function
t �→ (1 − t2, t − t3) for two different domains: t ∈ R and t ∈ (−∞, 1).

Exercise 1.63. Show that the closed unit disk in R
2 is not a manifold. Actually,

it is a manifold with boundary. How should this concept be formalized?

1.7.2 Tangent Spaces
We have used, informally, the following proposition: If S is a manifold in
R

n, and (x, f(x)) is tangent to S for each x ∈ S, then S is an invariant
manifold for the differential equation ẋ = f(x). To make this proposition
precise, we will give a definition of the concept of a tangent vector on a
manifold. This definition is the main topic of this section.
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Let us begin by considering some examples where the proposition on
tangents and invariant manifolds can be applied.

The vector field on R
3 associated with the system of differential equations

given by

ẋ = x(y + z),
ẏ = −y2 + x cos z,

ż = 2x + z − sin y (1.18)

is “tangent” to the linear two-dimensional submanifold S := {(x, y, z) :
x = 0} in the following sense: If (a, b, c) ∈ S, then the value of the vector
function

(x, y, z) �→ (x(y + z), y2 + x cos z, 2x + z − sin y)

at (a, b, c) is a vector in the linear space S. Note that the vector assigned
by the vector field depends on the point in S. For this reason, we will view
the vector field as the function

(x, y, z) �→ (x, y, z, x(y + z),−y2 + x cos z, 2x + z − sin y)

where the first three component functions specify the base point, and the
last three components, called the principal part, specify the vector that is
assigned at the base point.

Is S an invariant set? To answer this question, choose (0, b, c) ∈ S, con-
sider the initial value problem

ẏ = −y2, ż = z − sin y, y(0) = b, z(0) = c,

and note that if its solution is given by t �→ (y(t), z(t)), then the function
t �→ (0, y(t), z(t)) is the solution of system (1.18) starting at the point
(0, b, c). In particular, the orbit corresponding to this solution is contained
in S. However, our definition of an invariant set requires that every solution
that starts in S has its image in S for all t ∈ R. This requirement is not
satisfied for S. (Why?) Thus, the proposition on invariance is not valid. In
fact, an additional hypothesis is needed to preclude the possibility of blow
up in finite time. For example, the following proposition is valid: If S is
a compact manifold in R

n and (x, f(x)) is tangent to S for each x ∈ S,
then S is an invariant manifold for the differential equation ẋ = f(x) (see
Proposition 1.70). Indeed, if S is compact, then it is bounded. Thus, a
solution with initial point on S cannot blow up in finite time.

The following system of differential equations,

ẋ = x2 − (x3 + y3 + z3)x,

ẏ = y2 − (x3 + y3 + z3)y,

ż = z2 − (x3 + y3 + z3)z (1.19)
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has a nonlinear invariant submanifold; namely, the unit sphere

S
2 := {(x, y, z) ∈ R

3 : x2 + y2 + z2 = 1}.

This fact follows from our proposition, provided that the vector field asso-
ciated with the differential equation is everywhere tangent to the sphere.
To prove this requirement, recall from Euclidean geometry that a vector
in space is defined to be tangent to the sphere if it is orthogonal to the
normal line passing through the base point of the vector. Moreover, the
normal lines to the sphere are generated by the outer unit normal field
given by the restriction of the vector field

η(x, y, z) := (x, y, z, x, y, z)

to S
2. By a simple computation, it is easy to check that the vector field

associated with the differential equation is everywhere orthogonal to η on
S

2; that is, at each base point on S
2 the corresponding principal parts of

the two vector fields are orthogonal, as required.
We will give a definition for tangent vectors on a manifold that generalizes

the definition given in Euclidean geometry for linear subspaces and spheres.
Let us suppose that S is a k-dimensional submanifold of R

n and (G, W )
is a submanifold coordinate chart at p ∈ S. Our objective is to define the
tangent space to S at p.

Definition 1.64. If w ∈ R
k, then the tangent space to R

k with base point
at w is the set

TwR
k := {w} × R

k.

We have the following obvious proposition: If w ∈ R
k, then the tangent

space TwR
k, with addition defined by

(w, ξ) + (w, ζ) := (w, ξ + ζ)

and scalar multiplication defined by

a(w, ξ) := (w, aξ),

is a vector space that is isomorphic to the vector space R
k.

To define the tangent space of the submanifold S at p ∈ S, denoted
TpS, we simply move the space TwR

k, for an appropriate choice of w, to S
with a submanifold coordinate map. More precisely, suppose that (W, G) is
a submanifold coordinate chart at p. By Proposition 1.47, the coordinate
map G is invertible. If q = G−1(p), then define

TpS := {p} × {v ∈ R
n : v = DG(q)ξ, ξ ∈ R

k}. (1.20)

Note that the set

S := {v ∈ R
n : v = DG(q)ξ, ξ ∈ R

k}



1.7 Introduction to Invariant Manifolds 47

is a k-dimensional subspace of R
n. If k = n, then DG(q) is the identity

map. If k < n, then DG(q) = AB where A is a nonsingular matrix and the
n × k block matrix

B :=
( Ik

Dg(q)

)
is partitioned by rows with Ik the k × k identity matrix and g a map from
W to R

n−k. Thus, we see that S is just the image of a linear map from R
k

to R
n whose rank is k.

Proposition 1.65. If S is a manifold and p ∈ S, then the vector space
TpS is well-defined.

Proof. If K is a second submanifold coordinate map at p, say K : Z → S
with K(r) = p, then we must show that the tangent space defined using
K agrees with the tangent space defined using G. To prove this fact, let us
suppose that (p, v) ∈ TpS is given by

v = DG(q)ξ.

Using the chain rule, it follows that

v =
d

dt
G(q + tξ)

∣∣∣
t=0

.

In other words, v is the directional derivative of G at q in the direction ξ.
To compute this derivative, we simply choose a curve, here t �→ q + tξ, that
passes through q with tangent vector ξ at time t = 0, move this curve to
the manifold by composing it with the function G, and then compute the
tangent to the image curve at time t = 0.

The curve t �→ K−1G(q+tξ) is in Z (at least this is true for |t| sufficiently
small). Thus, we have a vector α ∈ R

k given by

α :=
d

dt
K−1G(q + tξ)

∣∣∣
t=0

.

We claim that DK(r)α = v. In fact, we have

K−1G(q) = K−1p = r,

and

DK(r)α =
d

dt
K(K−1G(q + tξ))

∣∣∣
t=0

=
d

dt
G(q + tξ)

∣∣∣
t=0

= v.

In particular, TpS, as originally defined, is a subset of the “tangent space
at p defined by K.” But this means that this subset, which is itself a k-
dimensional affine subspace (the translate of a subspace) of R

n, must be
equal to TpS, as required. �
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Exercise 1.66. Prove: If p ∈ S
2, then the tangent space TpS

2, as in Defini-
tion 1.20, is equal to

{p} × {v ∈ R
3 : 〈p, v〉 = 0}.

Definition 1.67. The tangent bundle TS of a manifold S is the union of
its tangent spaces; that is, TS :=

⋃
p∈S TpS. Also, for each p ∈ S, the

vector space TpS is called the fiber of the tangent bundle over the base
point p.

Definition 1.68. Suppose that S1 and S2 are manifolds, and F : S1 → S2
is a smooth function. The derivative, also called the tangent map, of F is
the function F∗ : TS1 → TS2 defined as follows: For each (p, v) ∈ TpS1, let
(W1, G1) be a submanifold chart at p in S1, (W2, G2) a submanifold chart at
F (p) in S2, (G−1

1 (p), ξ) the vector in TG−1
1 (p)W1 such that DG1(G−1

1 (p))ξ =
v, and (G−1

2 (F (p)), ζ) the vector in TG−1
2 (F (p))W2 such that

ζ = D(G−1
2 ◦ F ◦ G1)(G−1

1 (p))ξ.

The tangent vector F∗(p, v) in TF (p)S2 is defined by

F∗(p, v) =
(
F (p), DG2(G−1

2 (F (p))ζ
)
.

Definition 1.68 certainly seems to be rather complex. However, it is also
very natural. We simply use the local representatives of the function F and
the definition of the tangent bundle to define the derivative F∗ as the map
with two component functions. The first component is F (to ensure that
base points map to base points) and the second component is defined by
the derivative of a local representative of F at each base point.

The following proposition is obvious from the definitions.

Proposition 1.69. The tangent map is well-defined and it is linear on
each fiber of the tangent bundle.

The derivative, or tangent map, of a function defined on a manifold has
a geometric interpretation that is the key to understanding its applications
in the study of differential equations. We have already discussed this inter-
pretation several times for various special cases. However, because it is so
important, let us consider the geometric interpretation of the derivative in
the context of the notation introduced in Definition 1.68. If t �→ γ(t) is a
curve—a smooth function defined on an open set of R—with image in the
submanifold S1 ⊆ R

m such that γ(0) = p, and if

v = γ̇(0) =
d

dt
γ(t)

∣∣∣
t=0

,
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then t �→ F (γ(t)) is a curve in the submanifold S2 ⊆ R
n such that

F (γ(0)) = F (p) and

F∗(p, v) =
(
F (p),

d

dt
F (γ(t))

∣∣∣
t=0

)
.

We simply find a curve that is tangent to the vector v at p and move the
curve to the image of the function F to obtain a curve in the range. The
tangent vector to the new curve at F (p) is the image of the tangent map.

Proposition 1.70. A compact submanifold S of R
n is an invariant man-

ifold for the ordinary differential equation ẋ = f(x), x ∈ R
n if and only

if
(x, f(x)) ∈ TxS

for each x ∈ S. In particular, each orbit on S is defined for all t ∈ R.

Proof. Suppose that S is k-dimensional, p ∈ S, and (W, G) is a sub-
manifold coordinate chart for S at p. The idea of the proof is to change
coordinates to obtain an ordinary differential equation on W .

Recall that the submanifold coordinate map G is invertible and G−1 is
the restriction of a linear map defined on R

n. In particular, we have that
w ≡ G−1(G(w)) for w ∈ W . If we differentiate both sides of this equation
and use the chain rule, then we obtain the relation

I = DG−1(G(w))DG(w) (1.21)

where I denotes the identity transformation of R
n. In particular, for each

w ∈ W , we have that DG−1(G(w)) is the inverse of the linear transforma-
tion DG(w).

Under the hypothesis, we have that (x, f(x)) ∈ TxS for each x ∈ S.
Hence, the vector f(G(w)) is in the image of DG(w) for each w ∈ W .
Thus, it follows that

(w, DG−1(G(w))f(G(w))) ∈ TwR
k,

and, as a result, the map

w �→ (w, DG−1(G(w))f(G(w)))

defines a vector field on W ⊆ R
n. The associated differential equation on

W is given by

ẇ = DG−1(G(w))f(G(w)). (1.22)

Suppose that G(q) = p, and consider the initial value problem on W
given by the differential equation (1.22) together with the initial condition
w(0) = q. By the existence theorem, this initial value problem has a unique
solution t �→ ω(t) that is defined on an open interval containing t = 0.
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Define φ(t) = G(ω(t)). We have that φ(0) = p and, using equation (1.21),
that

dφ

dt
(t) = DG(ω(t))ω̇(t)

= DG(ω(t)) · DG−1(G(ω(t)))f(G(ω(t)))

= f(φ(t)).

Thus, t �→ φ(t) is the solution of ẋ = f(x) starting at p. Moreover, this
solution is in S because φ(t) = G(ω(t)). The solution remains in S as long
as it is defined in the submanifold coordinate chart. But S was assumed
to be compact. By the extensibility theorem, if a solution on S does not
exist for all time, for example, if it exists for 0 ≤ t < β < ∞, then it
approaches the boundary of the submanifold coordinate chart or its norm
increases without bound as t → β. The second possibility is excluded by
the compactness of S and the continuity of φ. If the solution approaches
a point r on the boundary of the submanifold coordinate chart as t → β,
then there is a new submanifold coordinate chart at r where the argument
can be repeated. Thus, it follows that all solutions on S exist for all time.

If S is invariant, p ∈ S and t �→ γ(t) is the solution of ẋ = f(x) with
γ(0) = p, then the curve t → G−1(γ(t)) in R

k has a tangent vector ξ at
t = 0 given by

ξ :=
d

dt
G−1(γ(t))

∣∣∣
t=0

.

As before, it is easy to see that DG(q)ξ = f(p). Thus, (p, f(p)) ∈ TpS, as
required. �

Exercise 1.71. State and prove a proposition that is analogous to Proposi-
tion 1.70 for the case where the submanifold S is not compact.

Exercise 1.72. We have mentioned several times the interpretation of the
derivative of a function whereby a curve tangent to a given vector at a point
is moved by the function to obtain a new curve whose tangent vector is the direc-
tional derivative of the function applied to the original vector. This interpretation
can also be used to define the tangent space at a point on a manifold. In fact, let
us say that two curves t �→ γ(t) and t �→ ν(t), with image in the same manifold
S, are equivalent if γ(0) = ν(0) and γ̇(0) = ν̇(0). Prove that this is an equiv-
alence relation. A tangent vector at p ∈ S is defined to an equivalence class of
curves all with value p at t = 0. As a convenient notation, let us write [γ] for the
equivalence class containing the curve γ. The tangent space at p in S is defined
to be the set of all equivalence classes of curves that have value p at t = 0. Prove
that the tangent space at p defined in this manner can be given the structure of
a vector space and this vector space has the same dimension as the manifold S.
Also prove that this definition gives the same tangent space as defined in equa-
tion 1.20. Finally, for manifolds S1 and S2 and a function F : S1 → S2, prove
that the tangent map F∗ is given by F∗[γ] = [F ◦ γ].
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FIGURE 1.15. The left panel depicts a heteroclinic saddle connection and a
locally supported perturbation. The right panel depicts the phase portrait of the
perturbed vector field.

Exercise 1.73. [Structural Stability] Let H(x, y, z) be a homogeneous polyno-
mial of degree n and η the outer unit normal on the unit sphere S

2 ⊂ R
3. Show

that the vector field XH = grad H − nHη is tangent to S
2.

Call a rest point isolated if it is the unique rest point in some open set. Prove
that if n is fixed, then the number of isolated rest points of XH is uniformly
bounded over all homogeneous polynomials H of degree n. Suppose that n = 3,
the uniform bound for this case is B, and m is an integer such that 0 ≤ m ≤ B.
What is B? Is there some H such that XH has exactly m rest points? If not,
then for which m is there such an H? What if n > 3?

Note that the homogeneous polynomials of degree n form a finite dimensional
vector space Hn. What is its dimension? Is it true that for an open and dense
subset of Hn the corresponding vector fields on S

2 have only hyperbolic rest
points?

In general, if X is a vector field in some class of vector fields H, then X is
called structurally stable with respect to H if X is contained in some open subset
U ⊂ H such that the phase portrait of every vector field in U is the same; that is,
if Y is a vector field in U , then there is a homeomorphism of the phase space that
maps orbits of X to orbits of Y . Let us define Xn to be the set of all vector fields
on S

2 of the form XH for some H ∈ Hn. It is an interesting unsolved problem to
determine the structurally stable vector fields in Xn with respect to Xn.

One of the key issues that must be resolved to determine the structural stability
of a vector field on a two-dimensional manifold is the existence of heteroclinic
orbits. A heteroclinic orbit is an orbit that is contained in the stable manifold
of a saddle point q and in the unstable manifold of a different saddle point p. If
p = q, such an orbit is called homoclinic. A basic fact from the theory of structural
stability is that if two saddle points are connected by a heteroclinic orbit, then
the local phase portrait near this orbit can be changed by an arbitrarily small
smooth perturbation. In effect, a perturbation can be chosen such that, in the
phase portrait of the perturbed vector field, the saddle connection is broken (see
Figure 1.15). Thus, in particular, a vector field with two saddle points connected
by a heteroclinic orbit is not structurally stable with respect to the class of all
smooth vector fields. Prove that a vector field XH in Xn cannot have a homoclinic
orbit. Also, prove that XH cannot have a periodic orbit. Construct a homogeneous
polynomial H ∈ H3 such that XH has hyperbolic saddle points p and q connected
by a heteroclinic orbit.

Is every heteroclinic orbit of a vector field XH ∈ X3 an arc of a great circle? The
answer to this question is not known. However, if it is true that all heteroclinic
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FIGURE 1.16. The “push forward” of a vector field f by a diffeomorphism
g : S → M .

orbits are arcs of great circles, then the structurally stable vector fields, with
respect to the class X3, are exactly those vector fields with all their rest points
hyperbolic and with no heteroclinic orbits. Moreover, this set is open and dense
in Xn. A proof of these facts requires some work. However, the main point is
that if XH has a heteroclinic orbit that is an arc of a great circle, then there is
a homogeneous polynomial K of degree n = 3 such that the perturbed vector
field XH+εK has no heteroclinic orbits for |ε| sufficiently small. In fact, K can be
chosen to be of the form

K(x, y, z) = (ax + by + cz)(x2 + y2 + z2)

for suitable constants a, b, and c. (Why?) Of course, the conjecture that hetero-
clinic orbits of vector fields in H3 lie on great circles is just one approach to the
structural stability question for X3. Can you find another approach?

There is an extensive and far-reaching literature on the subject of structural
stability (see, for example, [150] and [160]).

Exercise 1.74. Prove: The diagonal

{(x, y) ∈ R
n × R

n : x = y}

in R
n × R

n is an invariant set for the system

ẋ = f(x) + h(y − x), ẏ = f(y) + g(x − y)

where f, g, h : R
n → R

n.

1.7.3 Change of Coordinates
The proof of Proposition 1.70 contains an important computation that is
useful in many other contexts; namely, the formula for changing coordinates
in an autonomous differential equation. To reiterate this result, suppose
that we have a differential equation ẋ = f(x) where x ∈ R

n, and S ⊆ R
n is

an invariant k-dimensional submanifold. If g is a diffeomorphism from S to
some k-dimensional submanifold M ⊆ R

m, then the ordinary differential
equation (or, more precisely, the vector field associated with the differential
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FIGURE 1.17. The flow of a differential equation is rectified by a change of
coordinates g : U → V .

equation) can be “pushed forward” to M . In fact, if g : S → M is the
diffeomorphism, then

ẏ = Dg(g−1(y))f(g−1(y)) (1.23)

is a differential equation on M . Since g is a diffeomorphism, the new differ-
ential equation is the same as the original one up to a change of coordinates
as schematically depicted in Figure 1.16.

Example 1.75. Consider ẋ = x − x2, x ∈ R. Let S = {x ∈ R : x > 0},
M = S, and let g : S → M denote the diffeomorphism defined by g(x) =
1/x. Here, g−1(y) = 1/y and

ẏ = Dg(g−1(y))f(g−1(y))

= −
(1

y

)−2(1
y

− 1
y2

)
= −y + 1.

The diffeomorphism g is just the change of coordinates, y = 1/x used
to solve Bernoulli’s equation; it is encountered in elementary courses on
differential equations.

Coordinate transformations are very useful in the study of differential
equations. New coordinates can reveal unexpected features. As a dramatic
example of this phenomenon, we will show that all autonomous differential
equations are the same, up to a smooth change of coordinates, near each
of their regular points. Here, a regular point of ẋ = f(x) is a point p ∈ R

n,
such that f(p) �= 0. The following precise statement of this fact, which is
depicted in Figure 1.17, is called the rectification lemma, the straightening
out theorem, or the flow box theorem.

Lemma 1.76 (Rectification Lemma). Suppose that ẋ = f(x), x ∈ R
n.

If p ∈ R
n and f(p) �= 0, then there are open sets U , V in R

n with p ∈ U ,
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and a diffeomorphism g : U → V such that the differential equation in the
new coordinates, that is, the differential equation

ẏ = Dg(g−1(y))f(g−1(y)),

is given by (ẏ1, . . . , ẏn) = (1, 0, 0, . . . , 0).

Proof. The idea of the proof is to “rectify” at one point, and then to
extend the rectification to a neighborhood of this point.

Let e1, . . . , en denote the usual basis of R
n. There is an invertible (affine)

map H1 : R
n → R

n such that H1(p) = 0 and DH1(p)f(p) = e1. (Why?)
Here, an affine map is just the sum of a linear map and a translation. Let us
also note that e1 is the transpose of the vector (1, 0, 0, . . . , 0) ∈ R

n. If the
formula (1.23) is used with g = H1, then the differential equation ẋ = f(x)
is transformed to the differential equation denoted by ż = f1(z) where
f1(0) = e1. Thus, we have “rectified” the original differential equation at
the single point p.

Let ϕt denote the flow of ż = f1(z), define H2 : R
n → R

n by

(s, y2, . . . , yn) �→ ϕs(0, y2, . . . , yn),

and note that H2(0) = 0. The action of the derivative of H2 at the origin
on the standard basis vectors is

DH2(0, . . . , 0)e1 =
d

dt
H2(t, 0, . . . , 0)

∣∣∣
t=0

=
d

dt
ϕt(0, . . . , 0)

∣∣∣
t=0

= e1,

and, for j = 2, . . . , n,

DH2(0, . . . , 0)ej =
d

dt
H2(tej)

∣∣∣
t=0

=
d

dt
tej

∣∣∣
t=0

= ej .

In particular, DH2(0) is the identity, an invertible linear transformation of
R

n.
To complete the proof we will use the inverse function theorem.

Theorem 1.77 (Inverse Function Theorem). Suppose that F : R
n →

R
n is a smooth function. If F (p) = q and DF (p) is an invertible linear

transformation of R
n, then there exist two open sets U and V in R

n with
(p, q) ∈ U × V , together with a smooth function G : V → U , such that
G(q) = p and G = F−1; that is, F ◦ G : V → V and G ◦ F : U → U are
identity functions.

Proof. Consider the function H : R
n × R

n → R
n given by H(x, y) =

F (x) − y. Note that H(p, q) = 0 and that Hx(p, q) = DF (p) is invertible.
By the implicit function theorem, there are open balls Ũ and V contained in
R

n, and a smooth function G : V → Ũ such that (p, q) ∈ Ũ × V , G(q) = p,
and F (G(y)) = y for all y ∈ V . In particular, the function F ◦ G : V → V
is the identity.



1.7 Introduction to Invariant Manifolds 55

In view of the fact that F is continuous, the set U := F−1(V ) ∩ Ũ is an
open subset of Ũ with p ∈ U and F (U) ⊂ V . If x ∈ U , then (x, F (x)) ∈
Ũ×V and H(x, F (x)) = 0. Thus, by the uniqueness of the implicit solution,
as stated in the implicit function theorem, G(F (x)) = x for all x ∈ U . In
other words G ◦ F : U → U is the identity function. �

By the inverse function theorem, there are two neighborhoods U and V of
the origin such that H2 : U → V is a diffeomorphism. The new coordinate,
denoted y, on U is related to the old coordinate, denoted z, on V by the
relation y = H−1

2 (z). The differential equation in the new coordinates has
the form

ẏ = (DH2(y))−1f1(H2(y)) := f2(y).

Equivalently, at each point y ∈ U , we have f1(H2(y)) = DH2(y)f2(y).
Suppose that y = (s, y2, . . . , yn) and consider the tangent vector

(y, e1) ∈ TyR
n.

Also, note that (y, e1) is tangent to the curve γ(t) = (s + t, y2, . . . , yn) in
R

n at t = 0 and

DH2(y)e1 =
d

dt
H2(γ(t))

∣∣∣
t=0

=
d

dt
ϕt(ϕs(0, y2, . . . , yn))

∣∣∣
t=0

= f1(H2(s, y2, . . . , yn)) = f1(H2(y)).

In view of the fact that DH2(y) is invertible, it follows that f2(y) = e1.
The map g := H−1

2 ◦ H1 gives the required change of coordinates. �

The idea that a change of coordinates may simplify a given problem is a
far-reaching idea in many areas of mathematics; it certainly plays a central
role in the study of differential equations.

Exercise 1.78. Show that the implicit function theorem is a corollary of the
inverse function theorem.

Exercise 1.79. [Flow Box with Section] Prove the following modification of the
rectification lemma. Suppose that ẋ = f(x), x ∈ R

2. If p ∈ R
2, the vector f(p) is

not zero, and there is a curve Σ in R
2 such that p ∈ Σ and f(p) is not tangent

to Σ, then there are open sets U , V in R
2 with p ∈ U and a diffeomorphism

g : U → V such that the differential equation in the new coordinates, that is, the
differential equation

ẏ = Dg(g−1(y))f(g−1(y)),

is given by (ẏ1, ẏ2) = (1, 0). Moreover, the image of Σ ∩ U under g is the line
segment {(y1, y2) ∈ V : y1 = 0}. Generalize the result to differential equations on
R

n.
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Exercise 1.80. Prove that the function given by

(x, y) �→ x2 + 2y + 1
(x2 + y + 1)2

is constant on the trajectories of the differential equation

ẋ = −y, ẏ = x + 3xy + x3.

Show that the function

(x, y) �→
( x

x2 + y + 1
,

x2 + y

x2 + y + 1

)

is birational—that is, the function and its inverse are both defined by rational
functions. Finally, show that the change of coordinates given by this birational
map linearizes the differential equation (see [155]).

1.7.4 Polar Coordinates
There are several special “coordinate systems” that are important in the
analysis of differential equations, especially, polar coordinates, cylindrical
coordinates, and spherical coordinates. In this section we will consider the
meaning of these coordinates in the language of differentiable manifolds,
and we will also explore a few applications, especially blowup of a rest point
and compactification at infinity. However, the main purpose of this section
is to provide a deeper understanding and appreciation for the manifold
concept in the context of the study of differential equations.

What are polar coordinates?
Perhaps the best way to understand the meaning of polar coordinates

is to recall the “angular wrapping function” definition of angular measure
from elementary trigonometry. We have proved that the unit circle T is a
one-dimensional manifold. The wrapping function P : R → T is given by

P (θ) = (cos θ, sin θ).

Clearly, P is smooth and surjective. But P is not injective. In particular,
P is not a diffeomorphism (see Exercise 1.81).

The function P is a covering map; that is, each point of T is contained
in an open set on which a local inverse of P is defined. Each such open set,
together with its corresponding inverse function, is a coordinate system, as
defined in Definition 1.53, that we will call an angular coordinate system.
The image of a point of T under an angular coordinate map is called its
angular coordinate, or simply its angle, relative to the angular coordinate
system. For example, the pair (V, Ψ) where

V := {(x, y) ∈ T : x > 0}

and Ψ : V → (−π
2 , π

2 ) is given by Ψ(x, y) = arctan(y/x) is an angular
coordinate system. The number θ = Ψ(x, y) is the angle assigned to (x, y)
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FIGURE 1.18. The polar wrapping function P : R
2 → R

2 and a polar coordinate
system Ψ : V → W on the upper half plane.

in this angular coordinate system. Of course, there are infinitely many dif-
ferent angular coordinate systems defined on the same open set V . For
example, the function given by (x, y) �→ 4π + arctan(y/x) on V also de-
termines an angular coordinate system on T for which the corresponding
angles belong to the interval ( 7π

2 , 9π
2 ).

As we have just seen, each point of T is assigned infinitely many angles.
However, all angular coordinate systems are compatible in the sense that
they all determine local inverses of the wrapping function P . The totality
of these charts might be called the angular coordinates on T.

Exercise 1.81. Prove that T is not diffeomorphic to R.

Exercise 1.82. Find a collection of angular coordinate systems that cover the
unit circle.

Let us next consider coordinates on the plane compatible with the polar
wrapping function P : R

2 → R
2 given by

P (r, θ) = (r cos θ, r sin θ).

The function P is a smooth surjective map that is not injective. Thus, P
is not a diffeomorphism. Also, this function is not a covering map. For
example, P has no local inverse at the origin of its range. However, P
does have a local inverse at every point of the punctured plane; that is,
the set R

2 with the origin removed. Thus, in analogy with the definition
of the angular coordinate on T we have the following definition of polar
coordinates.

Definition 1.83. A polar coordinate system on the punctured plane is
a coordinate system (V, Ψ) where V ⊂ R

2 \ {0, 0}, the range W of the
coordinate map Ψ is contained in R

2, and Ψ : V → W is the inverse of
the polar wrapping function P restricted to the set W . The collection of
all polar coordinate systems is called polar coordinates.
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If

V := {(x, y) ∈ R
2 : y > 0}, W := {(r, θ) ∈ R

2 : r > 0, 0 < θ < π},

and Ψ : V → W is given by

Ψ(x, y) =
(√

x2 + y2 ,
π

2
− arctan

(x

y

))
,

then (V, Ψ) is a polar coordinate system on the punctured plane (see Fig-
ure 1.18). By convention, the two slot functions defined by Ψ are named as
follows

Ψ(x, y) = (r(x, y), θ(x, y)),

and the point (x, y) is said to have polar coordinates r = r(x, y) and θ =
θ(x, y).

The definition of cylindrical and spherical coordinates is similar to Defi-
nition 1.83 where the respective wrapping functions are given by

(r, θ, z) �→ (r cos θ, r sin θ, z),
(ρ, φ, θ) �→ (ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ). (1.24)

To obtain covering maps, the z-axis must be removed in the target plane in
both cases. Moreover, for spherical coordinates, the second variable must
be restricted so that 0 ≤ φ ≤ π.

Let us now consider a differential equation u̇ = f(u) defined on R
2 with

the usual Cartesian coordinates u := (x, y). If (V, Ψ) is a polar coordinate
system on the punctured plane such that Ψ : V → W , then we can push
forward the vector field f to the open set W by the general change of
variables formula ẏ = Dg(g−1))f(g−1(y)) (see page 53). The new differ-
ential equation corresponding to the push forward of f is then said to be
expressed in polar coordinates.

Specifically, the (principal part of the) new vector field is given by

F (r, θ) = DΨ(P (r, θ))f(P (r, θ)).

Of course, because the expressions for the components of the Jacobian
matrix corresponding to the derivative DΨ are usually more complex than
those for the matrix DP , the change to polar coordinates is usually easier
to compute if we use the chain rule to obtain the identity

DΨ(P (r, θ)) = [DP (r, θ)]−1 =
1
r

(
r cos θ r sin θ
− sin θ cos θ

)
and recast the formula for F in the form

F (r, θ) = [DP (r, θ)]−1f(P (r, θ)).



1.7 Introduction to Invariant Manifolds 59

In components, if f(x, y) = (f1(x, y), f2(x, y)), then

F (r, θ) =

(
cos θf1(r cos θ, r sin θ) + sin θf2(r cos θ, r sin θ)

− sin θ
r f1(r cos θ, r sin θ) + cos θ

r f2(r cos θ, r sin θ)

)
. (1.25)

Note that the vector field F obtained by the push forward of f in for-
mula (1.25) does not depend on the choice of the polar coordinate system;
that is, it does not depend on the choice of the local inverse Ψ. Thus, the
vector field F is globally defined except on the line in the coordinate plane
given by {(r, θ) ∈ R

2 : r = 0}. In general this is the best that we can do
because the second component of the vector field F has a singularity at
r = 0.

In practice, perhaps the simplest way to change to polar coordinates is
to first differentiate in the formulas r2 = x2 + y2 and θ = arctan(y/x) to
obtain the components of F in the form

rṙ = xẋ + yẏ = xf1(x, y) + yf2(x, y),
r2θ̇ = xẏ − yẋ = xf2(x, y) − yf1(x, y),

and then substitute for x and y using the identities x = r cos θ and y =
r sin θ.

Exercise 1.84. Change the differential equations to polar coordinates:

1. ẋ = −y + x(1 − x2 − y2), ẏ = x + y(1 − x2 − y2).

2. ẋ = 1 − y2, ẏ = x.

The fact that changing to polar coordinates in a planar differential equa-
tion introduces a singularity on the line {(r, θ) ∈ R

2 : r = 0} is unavoidable.
However, the next proposition states that if the differential equation has a
rest point at the origin, then the singularity is removable (see [59]).

Proposition 1.85. If u̇ = f(u) is a differential equation on the plane and
f(0) = 0, then the corresponding differential equation in polar coordinates
has a removable singularity. Also, if f is class Cr, then the desingularized
vector field in polar coordinates is in class Cr−1.

Proof. Apply Taylor’s theorem to the Taylor expansions of the compo-
nents of the vector field f at the origin. �

Even if Proposition 1.85 applies, and we do obtain a smooth vector field
defined on the whole polar coordinate plane, the desingularized vector field
is not the push forward of the original vector field; that is, the desingular-
ized vector field is not obtained merely by a change of coordinates. Remem-
ber that there is no polar coordinate system at the origin of the Cartesian



60 1. Introduction to Ordinary Differential Equations

r

x

y
R

�

Q

�

r

�

FIGURE 1.19. The polar wrapping function factored through the phase cylinder.

plane. In fact, the desingularized vector field in polar coordinates is an ex-
tension of the push forward of the original vector field to the singular line
{(r, θ) ∈ R

2 : r = 0}.
It is evident from formula (1.25) that the desingularized vector field is

2π periodic in θ; that is, for all (r, θ) we have

F (r, θ + 2π) = F (r, θ).

In particular, the phase portrait of this vector field is periodic with period
2π. For this reason, let us change the point of view one last time and
consider the vector field to be defined on the phase cylinder; that is, on
T × R with θ the angular coordinate on T and r the Cartesian coordinate
on R.

The phase cylinder can be realized as a two-dimensional submanifold in
R

3; for example, as the set

C := {(x, y, z) ∈ R
3 : x2 + y2 = 1}.

For this realization, the map Q : R
2 → C defined by Q(r, θ) = (cos θ, sin θ, r)

is a covering map. Here, R
2 is viewed as the “polar coordinate plane.” Thus,

we can use the map Q to push forward the vector field F to the phase
cylinder (see Exercise 1.88). There is also a natural covering map R, from
the phase cylinder minus the set {(x, y, z) ∈ C : z = 0} onto the punctured
Cartesian plane, defined by

R(x, y, z) = (xz, yz). (1.26)

If the original vector field f vanishes at the origin, then it can be pushed
forward by Ψ to F on the polar plane, and F can be pushed forward by
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Q to a vector field h on the phase cylinder. If finally, h is pushed forward
by R to the punctured Cartesian plane, then we recover the original vector
field f . In fact, by Exercise 1.88, the composition R ◦ Q ◦ Ψ, depicted in
Figure 1.19, is the identity map.

Even though the phase cylinder can be realized as a manifold in R
3, most

often the best way to consider a vector field in polar coordinates is to view
the polar coordinates abstractly as coordinates on the cylinder; that is, to
view θ as the angular variable on T and r as the Cartesian coordinate on
R.

Exercise 1.86. Prove the following statements. If F is the push forward to the
polar coordinate plane of a smooth vector field on the Cartesian plane, then F
has the following symmetry:

F (−r, θ + π) = −F (r, θ).

If F can be desingularized, then its desingularization retains the symmetry.

Exercise 1.87. Prove that the cylinder {(x, y, z) ∈ R
3 : x2 + y2 = 1} is a

two-dimensional submanifold of R
3.

Exercise 1.88. Suppose that F is the push forward to the polar coordinate
plane of a smooth vector field on the Cartesian plane that vanishes at the origin.
Find the components of the push forward h of F to the phase cylinder realized
as a submanifold in R

3. Show that the push forward of h to the Cartesian plane
via the natural map (1.26) is the original vector field f .

Exercise 1.89. [Hamiltonians and Gradients on Manifolds] Let

G : R
3 → R

be a smooth map and consider its gradient. We have tacitly assumed that the
definition of the gradient in R

3 is

grad G =
(∂G

∂x
,
∂G

∂y
,
∂G

∂z

)
. (1.27)

However, this expression for the gradient of a function is correct only on Eu-
clidean space, that is, R

3 together with the usual inner product. The definition
of the gradient for a scalar function defined on a manifold, to be given below, is
coordinate-free, but it does depend on the choice of the inner product.

Recall that if G : R
n → R, then its derivative can be viewed as a function from

the tangent bundle TR
n to TR. If TR is identified with R, then on each tangent

space of R
n, the derivative of G is a linear functional. In fact, if we work locally

at p ∈ R
n, then DG(p) is a map from the vector space R

n to R. Moreover, the
assignment of the linear functional corresponding to the derivative of G at each
point of the manifold varies smoothly with the base point. From this point of
view, the derivative of the scalar-valued function G is a differential 1-form on R

n

that we will denote by dG. Finally, the derivative of G may be interpreted as the

Administrator
ferret
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the differential of G. In this interpretation, if V is a tangent vector at p ∈ R
n

and γ is a curve such that γ(0) = p and γ̇(0) = V , then

dG(V ) =
d

ds
G(γ(s))

∣∣∣
s=0

.

If G is a scalar function defined on a manifold, then all of our interpretations for
the derivative of G are still viable.

The definition of the gradient requires a new concept: A Riemannian metric on
a manifold is a smooth assignment of an inner product in each tangent space of
the manifold. Of course, the usual inner product assigned in each tangent space of
R

n is a Riemannian metric for R
n. Moreover, the manifold R

n together with this
Riemannian metric is called Euclidean space. Note that the Riemannian metric
can be used to define length. For example, the norm of a vector is the square root
of the inner product of the vector with itself. It follows that the shortest distance
between two points is a straight line. Thus, the geometry of Euclidean space is
Euclidean geometry, as it should be. More generally, if γ is a curve in Euclidean
space connecting two points p and q; that is, γ(0) = p and γ(1) = q, then the
length of the curve

∫ 1

0

√
〈γ̇(t), γ̇(t)〉 dt,

where the angle brackets denote the usual inner product, is minimized over all
such curves defined on the unit interval by the curve γ(t) = tq + (1 − t)p that
parametrizes the straight line joining the points. Similarly, suppose that g is a
Riemannian metric on a manifold M and p, q ∈ M . Roughly speaking, a curve
defined on the unit interval that joins the points p and q is called a geodesic if it
minimizes the integral

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t)) dt

where, in general, the symbolism gr(v, w) denotes the inner product of the two
vectors (r, v) and (r, w) in TrM . The “Riemannian geometry” on a manifold
where geodesics play the role of lines is determined by the choice of a Riemannian
metric.

The gradient of G : M → R with respect to the Riemannian metric g is the
vector field, denoted by grad G, such that

dGp(V ) = gp(V, grad G) (1.28)

for each point p ∈ M and every tangent vector V ∈ TpM . The associated gradient
system on the manifold is the differential equation ṗ = grad G(p).

Prove: The gradient vector field is uniquely defined. Prove: If the Riemannian
metric g on R

3 is the usual inner product at each point of R
3, then the invariant

definition (1.28) of gradient agrees with the Euclidean gradient.
Consider the upper half plane of R

2 with the Riemannian metric

g(x,y)(V, W ) = y−2〈V, W 〉 (1.29)

where the angle brackets denote the usual inner product. The upper half plane
with the metric g is called the Poincaré or Lobachevsky plane; its geodesics are
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vertical lines and arcs of circles whose centers are on the x-axis. The geometry
is non-Euclidean; for example, if p is a point not on such a circle, then there
are infinitely many such circles passing through p that are parallel to (do not
intersect) the given circle.

Find the gradient of the function G(x, y) = x2 + y2 with respect to the Rie-
mannian metric (1.29) and draw the phase portrait of the corresponding gradient
system on the upper half plane. Compare this phase portrait with the phase por-
trait of the gradient system with respect to the usual metric on the plane.

If S is a submanifold of R
n, then S inherits a Riemannian metric from the

usual inner product on R
n. Suppose that F : R

n → R. What is the relationship
between the gradient of F on R

n and the gradient of the function F restricted to
S with respect to the inherited Riemannian metric (see Exercise 1.73)?

Hamiltonian systems on manifolds are defined in essentially the same way as
gradient systems except that the Riemannian metric is replaced by a symplectic
form. In order to properly define and analyze symplectic forms, the calculus of
differential forms is required (see [10], [68], and [167]). However, for completeness,
a symplectic form on a manifold is a smooth assignment of a bilinear, skew-
symmetric, nondegenerate 2-form in each tangent space. A 2-form ω on a vector
space X is nondegenerate provided that y = 0 is the only element of X such that
ω(x, y) = 0 for all x ∈ X. Prove: If a manifold has a symplectic form, then the
dimension of the manifold is even.

Suppose that M is a manifold and ω is a symplectic form on M . The Hamilto-
nian vector field associated with a smooth scalar function H defined on M is the
unique vector field XH such that, for every point p ∈ M and all tangent vectors
V at p, the following identity holds:

dHp(V ) = ωp(XH , V ). (1.30)

Suppose that M := R
2n, view R

2n as R
n × R

n so that each tangent vector V
on M is decomposed as V = (V1, V2) with V1, V2 ∈ R

n, and define

ω(V, W ) := (V1, V2)
(

0 I
−I 0

) (W1

W2

)
.

Show that ω is a symplectic form on M and Hamilton’s equations are produced
by the invariant definition (1.30) of the Hamiltonian vector field.

Push forward the Euclidean gradient (1.27) of the function G : R
3 → R to the

image of a cylindrical coordinate map, define

G(r, θ, z) = G(r cos θ, r sin θ, z),

and show that the push forward gives the result

grad G =
(∂G

∂r
,

1
r2

∂G
∂θ

,
∂G
∂z

)
. (1.31)

(In practice, the function G is usually again called G! These two functions are
local representations of the same function in two different coordinate systems.)
Recall the formula for the gradient in cylindrical coordinates from vector analysis;
namely,

grad G =
∂G
∂r

er +
1
r

∂G
∂θ

eθ +
∂G
∂z

ez. (1.32)
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Show that the gradient vector fields (1.31) and (1.32) coincide.
Express the usual inner product in cylindrical coordinates, and use the invari-

ant definition of the gradient to determine the gradient in cylindrical coordinates.
Repeat the exercise for spherical coordinates.

Exercise 1.90. [Electrostatic Dipole Potential] Suppose that two point charges
with opposite signs, each with charge q, placed a units apart and located symmet-
rically with respect to the origin on the z-axis in space, produce the electrostatic
potential

G0(x, y, z) = kq
[
(x2 + y2 + (z − a

2
)2)−1/2 − (x2 + y2 + (z +

a

2
)2)−1/2]

where k > 0 is a constant and q > 0. If we are interested only in the field far
from the charges, the “far field,” then a is relatively small and therefore the first
nonzero term of the Taylor series of the electrostatic potential with respect to a
at a = 0 gives a useful approximation of G0. This approximation, an example of
a “far field approximation,” is called the dipole potential in Physics (see [66, Vol.
II, 6-1]). Show that the dipole potential is given by

G(x, y, z) = kqaz(x2 + y2 + z2)−3/2.

By definition, the electric field E produced by the dipole potential associated with
the two charges is E := − grad G. Draw the phase portrait of the differential
equation u̇ = E(u) whose orbits are the “dipole” lines of force. Discuss the
stability of all rest points. Hint: Choose a useful coordinate system that reduces
the problem to two dimensions.

Blow Up at a Rest Point

As an application of polar coordinates, let us determine the phase portrait
of the differential equation in the Cartesian plane given by

ẋ = x2 − 2xy, ẏ = y2 − 2xy, (1.33)

(see [59]). This system has a unique rest point at the origin that is not
hyperbolic. In fact, the system matrix for the linearization at the origin
vanishes. Thus, linearization provides no information about the phase por-
trait of the system near the origin.

Because the polar coordinate representation of a plane vector field is
always singular at the origin, we might expect that the polar coordinate
representation of a planar vector field is not particularly useful to determine
the phase portrait near the origin. However, this is not the case. Often
polar coordinates are the best way to analyze the vector field near the
origin. The reason is that the desingularized vector field in polar coordinates
is a smooth extension to the singular line represented as the equator of
the phase cylinder. All points on the equator are collapsed to the single
rest point at the origin in the Cartesian plane. Or, as we say, the equator
is the blowup of the rest point. This extension is valuable because the
phase portrait of the vector field near the original rest point corresponds
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FIGURE 1.20. Phase portrait for the differential equation (1.34) on the upper
half of the phase cylinder and its “blowdown” to the Cartesian plane.

to the phase portrait on the phase cylinder near the equatorial circle. Polar
coordinates and desingularization provide a mathematical microscope for
viewing the local behavior near the “Cartesian” rest point.

The desingularized polar coordinate representation of system (1.33) is

ṙ = r2(cos3 θ − 2 cos2 θ sin θ − 2 cos θ sin2 θ + sin3 θ),
θ̇ = 3r(cos θ sin2 θ − cos2 θ sin θ). (1.34)

For this particular example, both components of the vector field have r
as a common factor. From our discussion of reparametrization, we know
that the system with this factor removed has the same phase portrait as
the original differential equation in the portion of the phase cylinder where
r > 0. Of course, when we “blow down” to the Cartesian plane, the push
forward of the reparametrized vector field has the same phase portrait as
the original vector field in the punctured plane; exactly the set where the
original phase portrait is to be constructed.

Let us note that after division by r, the differential equation (1.34) has
several isolated rest point on the equator of the phase cylinder. In fact,
because this differential equation restricted to the equator is given by

θ̇ = 3 cos θ sin θ(sin θ − cos θ),

we see that it has six rest points with the following angular coordinates:

0,
π

4
,

π

2
, π,

5π

4
,

3π

2
.

The corresponding rest points for the reparametrized system are all hy-
perbolic. For example, the system matrix at the rest point (r, θ) = (0, π

4 )
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is

1√
2

(
−1 0
0 3

)
.

It has the negative eigenvalue −1/
√

2 in the positive direction of the Carte-
sian variable r on the cylinder and the positive eigenvalue 3/

√
2 in the posi-

tive direction of the angular variable. This rest point is a hyperbolic saddle.
If each rest point on the equator is linearized in turn, the phase portrait
on the cylinder and the corresponding blowdown of the phase portrait on
the Cartesian plane are found to be as depicted in Figure 1.20. Hartman’s
theorem can be used to construct a proof of this fact.

The analysis of differential equation (1.33) is very instructive, but per-
haps somewhat misleading. Often, unlike this example, the blowup proce-
dure produces a vector field on the phase cylinder where some or all of the
rest points are not hyperbolic. Of course, in these cases, we can treat the
polar coordinates near one of the nonhyperbolic rest points as Cartesian
coordinates; we can translate the rest point to the origin; and we can blow
up again. If, after a finite number of such blowups, all rest points of the
resulting vector field are hyperbolic, then the local phase portrait of the
original vector field at the original nonhyperbolic rest point can be deter-
mined. For masterful treatments of this subject and much more, see [58],
[59], and [173].

The idea of blowup and desingularization are far-reaching ideas in math-
ematics. For example, these ideas seem to have originated in algebraic ge-
ometry, where they play a fundamental role in understanding the structure
of algebraic varieties [24].

Compactification at Infinity

The orbits of a differential equation on R
n may be unbounded. One way

to obtain some information about the behavior of such solutions is to (try
to) compactify the Cartesian space, so that the vector field is extended
to a new manifold that contains the “points at infinity.” This idea, due
to Henri Poincaré [143], has been most successful in the study of planar
systems given by polynomial vector fields, also called polynomial systems
(see [5, p. 219] and [76]). In this section we will give a brief description of
the compactification process for such planar systems. We will again use the
manifold concept and the idea of reparametrization.

Let us consider a plane vector field, which we will write in the form

ẋ = f(x, y), ẏ = g(x, y). (1.35)

To study its phase portrait “near” infinity, let us consider the unit sphere
S

2; that is, the two-dimensional submanifold of R
3 defined by

S
2 := {(x, y, z) : x2 + y2 + z2 = 1},
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and the tangent plane Π at its north pole; that is, the point with coordi-
nates (0, 0, 1). The push forward of system (1.35) to Π by the natural map
(x, y) �→ (x, y, 1) is

ẋ = f(x, y), ẏ = g(x, y), ż = 0. (1.36)

The idea is to “project” differential equation (1.36) to the unit sphere by
central projection; then the behavior of the system near infinity is the same
as the behavior of the projected system near the equator of the sphere.

Central projection is defined as follows: A point p ∈ Π is mapped to
the sphere by assigning the unique point on the sphere that lies on the
line segment from the origin in R

3 to the point p. To avoid a vector field
specified by three components, we will study the projected vector field
restricted to a coordinate system on the sphere where the vector field is
again planar. Also, to obtain the desired compactification, we will choose
local coordinates defined in open sets that contain portions of the equator
of the sphere.

The central projection map Q : Π → S
2 is given by

Q(x, y, 1) = (x(x2 + y2 + 1)−1/2, y(x2 + y2 + 1)−1/2, (x2 + y2 + 1)−1/2).

One possibility for an appropriate coordinate system on the Poincaré sphere
is a spherical coordinate system; that is, one of the coordinate charts that
is compatible with the map

(ρ, φ, θ) �→ (ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ) (1.37)

(see display (1.24)). For example, if we restrict to the portion of the sphere
where x > 0, then one such coordinate map is given by

Ψ(x, y, z) := (arccos(z), arctan
(y

x

)
).

The transformed vector field on the sphere is the push forward of the vector
field X that defines the differential equation on Π by the map Ψ ◦ Q. In
view of equation (1.37) and the restriction to the sphere, the inverse of this
composition is the transformation P given by

P (φ, θ) =
( sin φ

cos φ
cos θ,

sin φ

cos φ
sin θ

)
.

Thus, the push forward of the vector field X is given by

DP (φ, θ)−1X(P (φ, θ)).

Of course, we can also find the transformed vector field simply by differen-
tiating with respect to t in the formulas

φ = arccos((x2 + y2 + 1)−1/2), θ = arctan
(y

x

)
.
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If the vector field is polynomial with maximal degree k, then after we
evaluate the polynomials f and g in system (1.36) at P (φ, θ) and take
into account multiplication by the Jacobian matrix, the denominator of
the resulting expressions will contain cosk−1 φ as a factor. Note that φ = π

2
corresponds to the equator of the sphere and cos(π

2 ) = 0. Thus, the vector
field in spherical coordinates is desingularized by a reparametrization of
time that corresponds to multiplication of the vector field defining the
system by cosk−1 φ. This desingularized system ([46])

φ̇ = (cosk+1 φ)(cos θf + sin θ g), θ̇ =
cosk φ

sin φ
(cos θ g − sin θf) (1.38)

is smooth at the equator of the sphere, and it has the same phase portrait
as the original centrally projected system in the upper hemisphere. There-
fore, we can often determine the phase portrait of the original vector field
“at infinity” by determining the phase portrait of the desingularized vec-
tor field on the equator. Note that because the vector field corresponding
to system (1.38) is everywhere tangent to the equator, the equator is an
invariant set for the desingularized system.

Spherical coordinates are global in the sense that all the spherical coor-
dinate systems have coordinate maps that are local inverses for the fixed
spherical wrapping function (1.37). Thus, the push forward of the original
vector field will produce system (1.38) in every spherical coordinate system.
However, there are other coordinate systems on the sphere that have also
proved useful for the compactification of plane vector fields.

For example, the right hemisphere of S
2; that is, the subset {(x, y, z) :

y > 0} is mapped diffeomorphically to the plane by the coordinate function
defined by

Ψ1(x, y, z) =
(x

y
,

z

y

)
.

Also, the map Ψ1 ◦ Q, giving the central projection in these coordinates, is
given by

(x, y, 1) �→
(x

y
,

1
y

)
.

Thus, the local representation of the central projection in this chart is
obtained using the coordinate transformations

u =
x

y
, v =

1
y
.

Moreover, a polynomial vector field of degree k in these coordinates can
again be desingularized at the equator by a reparametrization correspond-
ing to multiplication of the vector field by vk−1. In fact, the desingularized
vector field has the form

u̇ = vk
(
f
(u

v
,

1
v

)
− ug

(u

v
,

1
v

))
, v̇ = −vk+1g

(u

v
,

1
v

)
.



1.7 Introduction to Invariant Manifolds 69

��
�
� ��

y

v

z

uxv

u

x

u

y

���

�
� ��

FIGURE 1.21. Phase portrait on the Poincaré sphere for the differential equa-
tion (1.39).

The function Ψ1 restricted to y < 0 produces the representation of the
central projection in the left hemisphere. Similarly, the coordinate map

Ψ2(x, y, z) =
(y

x
,

z

x

)
on the sphere can be used to cover the remaining points, near the equator
in the upper hemisphere, with Cartesian coordinates (x, y, z) where y = 0
but x �= 0.

The two pairs of charts just discussed produce two different local vector
fields. Both of these are usually required to analyze the phase portrait near
infinity. Also, it is very important to realize that if the degree k is even, then
multiplication by vk−1 in the charts corresponding respectively to x < 0
and y < 0 reverses the original direction of time.

As an example of compactification, let us consider the phase portrait of
the quadratic planar system given by

ẋ = 2 + x2 + 4y2, ẏ = 10xy. (1.39)

This system has no rest points in the finite plane.
In the chart corresponding to v > 0 with the chart map Ψ1, the desin-

gularized system is given by

u′ = 2v2 − 9u2 + 4, v′ = −10uv (1.40)

where the symbol “ ′ ” denotes differentiation with respect to the new inde-
pendent variable after reparametrization. The first order system (1.40) has
rest points with coordinates (u, v) = (± 2

3 , 0). These rest points lie on the
u-axis: the set in our chart that corresponds to the equator of the Poincaré
sphere. Both rest points are hyperbolic. In fact, (2

3 , 0) is a hyperbolic sink
and (− 2

3 , 0) is a hyperbolic source.
In the chart with v < 0 and chart map Ψ1, the reparametrized local

system is given by the differential equation (1.40). However, because k = 2,
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the direction of “time” has been reversed. Thus, the sink at ( 2
3 , 0) in this

chart corresponds to a source for the original vector field centrally projected
to the Poincaré sphere. The rest point (− 2

3 , 0) corresponds to a sink on the
Poincaré sphere.

We have now considered all points on the Poincaré sphere except those
on the great circle given by the equation y = 0. For these points, we must
use the charts corresponding to the map Ψ2. In fact, there is a hyperbolic
saddle point at the origin of each of these coordinate charts, and these
rest points correspond to points on the equator of the Poincaré sphere. Of
course, the other two points already discussed are also rest points in these
charts.

The phase portrait of the compactification of system (1.39) is shown in
Figure 1.21. The fact that the two saddles at infinity are connected by a
heteroclinic orbit is clear because the x-axis is an invariant manifold for
the original vector field.

Exercise 1.91. Prove that S
2 is a two-dimensional submanifold of R

3.

Exercise 1.92. Use spherical coordinates to determine the compactification of
the differential equation (1.39) on the Poincaré sphere.

Exercise 1.93. Find the compactification of the differential equation

ẋ = x + y − y3, ẏ = −x + y + x3

on the Poincaré sphere using spherical coordinates. Show that the equator is a
periodic orbit. See [46, p. 411] for a stability analysis of this periodic orbit, but
note that there is a typographical error in the formula given for the desingularized
projection of this vector field.

Exercise 1.94. Draw the phase portrait of the vector field

ẋ = x2 + y2 − 1, ẏ = 5(xy − 1).

This example is studied by Poincaré in his pioneering memoir on differential
equations ([143, Oeuvre, p. 66]; see also [107, p. 204]).

Exercise 1.95. [Singular Differential Equations] Consider the first order sys-
tem

x′ = y, y′ = z, εz′ = y2 − xz − 1,

which is equivalent to the third order differential equation in Exercise 1.7, and
suppose that the independent variable is τ ∈ R. For the new independent variable
t = τ/ε show that the system is transformed to

ẋ = εy, ẏ = εz, ż = y2 − xz − 1.

Note that a change in t of one unit is matched by a change in τ of ε units. For
this reason, if ε is small, then the variable τ is called slow and t is called fast.
Set ε = 0 in the fast time system and prove that this system has an invariant
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manifold S, called the slow manifold, that consists entirely of rest points. Identify
this manifold as a quadric surface. Draw a picture. Also, determine the stability
types of the rest points on this invariant manifold. Of course, for ε = 0 the original
slow time system is “singular.” In fact, if we set ε = 0 in the slow time system,
then we obtain two differential equations coupled with an algebraic equation,
namely,

x′ = y, y′ = z, y2 − xz − 1 = 0.

Prove that the set S := {(x, y, z) : y2 − xz − 1 = 0} is a manifold in R
3. If

W := {(x, y) : x > 0} and G(x, y) := (x, y, (y2 − 1)/x), then show that (W, G) is
a coordinate chart on S. Also, show that there is a vector field on the image of
G in S given as the push forward of the following vector field derived from the
singular system

(x, y) �→
(
x, y, y,

y2 − 1
x

)
.

Can this vector field be extended to all of S? Even though the slow time system
is singular at ε = 0, if we were to understand the behavior of the associated
fast time system and the singular system for ε = 0, then perhaps we could
draw some conclusions about the original system when ε is small. If so, then we
would have our first insight into singular perturbation theory. See Section 6.3 and
equation (6.71) for the origin of this exercise.

1.8 Periodic Solutions

We have seen that the stability of a rest point can often be determined
by linearization or by an application of Lyapunov’s direct method. In both
cases, the stability can be determined by analysis in an arbitrary open
set (no matter how “small”) containing the rest point. For this reason, we
say that the stability of a rest point is a local problem. However, it is not
possible to determine the stability of a periodic solution without considering
the ordinary differential equation in a neighborhood of the entire periodic
orbit. In other words, global methods must be employed. This fact makes
the analysis of periodic solutions much more difficult (and more interesting)
than the analysis of rest points. In this section we will introduce some of
the basic ideas that are used to study the existence and stability of periodic
solutions.

1.8.1 The Poincaré Map
A very powerful concept in the study of periodic orbits is the Poincaré map.
It is a corner stone of the “geometric theory” of Henri Poincaré [143], the
father of our subject. To define the Poincaré map, also called the return
map, let φt denote the flow of the differential equation ẋ = f(x), and
suppose that S ⊆ R

n is an (n − 1)-dimensional submanifold. If p ∈ S and
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FIGURE 1.22. A Poincaré section Σ and the corresponding Poincaré return map.
The trajectory starting at x is asymptotic to a periodic orbit Γ. The trajectory
passes through the section Σ at the point p and first returns to the section at the
point P (p).

(p, f(p)) �∈ TpS, then we say that the vector (p, f(p)) is transverse to S at
p. If (p, f(p)) is transverse to S at each p ∈ S, we say that S is a section
for φt. If p is in S, then the curve t �→ φt(p) “passes through” S as t passes
through t = 0. Perhaps there is some T = T (p) > 0 such that φT (p) ∈ S.
In this case, we say that the point p returns to S at time T . If there is
an open subset Σ ⊆ S such that each point of Σ returns to S, then Σ is
called a Poincaré section. In this case, let us define P : Σ → S as follows:
P (p) := φT (p)(p) where T (p) > 0 is the time of the first return to S. The
map P is called the Poincaré map, or the return map on Σ and T : Σ → R

is called the return time map (see Figure 1.22). Using the fact that the
solution of a differential equation is smoothly dependent on its initial value
and the implicit function theorem, it can be proved that both P and T are
smooth functions on Σ (see Exercise 1.96).

Exercise 1.96. Prove that the return time map T is smooth. Hint: Find a
function F : R

n → R so that F (u) = 0 if and only if u ∈ Σ and define G(t, u) =
F (φt(u)). If p ∈ Σ and T is the time of its first return, then apply the implicit
function theorem to G at (T, p) to solve for T as a function of p.

The following is a fundamental idea of Poincaré: Fixed points of the
return map lie on periodic orbits. More generally, periodic points of the
Poincaré map correspond to periodic solutions of the differential equation.
Here, if P denotes the return map, then we will say that p is a fixed point
of P provided that P (p) = p. A periodic point with period k is a fixed point
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of the kth iterate of P—it passes through the Poincaré section k − 1 times
before closing. In the subject of dynamical systems, P 1 := P is the first
iterate; more precisely, the first iterate map associated with P and the kth
iterate is defined inductively by P k := P ◦P k−1. Using this notation, p ∈ Σ
is a periodic point with period k if P k(p) = p.

Often, instead of studying the fixed points of the kth iterate of the
Poincaré map, it is more convenient to study the zeros of the displacement
function δ : Σ → R

n defined by δ(p) = P k(p) − p. With this definition,
the periodic solutions of period k correspond to the roots of the equation
δ(p) = 0.

If p ∈ Σ is a periodic point of the Poincaré map of period k, then the
stability of the corresponding periodic orbit of the differential equation is
determined by computing the eigenvalues of the linear map DP k(p). In
fact, an important theorem, which we will prove in Section 2.4.4, states
that if P (p) = p and DP k(p) has all its eigenvalues inside the unit circle,
then the periodic orbit with initial point p is asymptotically stable.

Exercise 1.97. Suppose that A is an 2 × 2 matrix and consider the linear
transformation of R

2 given by x �→ Ax as a dynamical system. Prove: If the
spectrum of A lies inside the unit circle in the complex plane, then Akx → 0 as
k → ∞ for every x ∈ R

2. Also, if at least one eigenvalue of A lies outside the
unit circle, then there is a point x ∈ R

2 such that ||Akx|| → ∞ as k → ∞. Define
the notion of stability and asymptotic stability for dynamical systems, and show
that the origin is asymptotically stable for the linear dynamical system associated
with A if and only if the spectrum of A lies inside the unit circle. When is the
origin stable? If you have trouble, then see Section 2.4.4 for the n × n case.

In general, it is very difficult to find a suitable Poincaré section and to
analyze the associated Poincaré map. However, there are many situations
where these ideas can be used to great advantage. For example, suppose
that there is a Poincaré section Σ and a closed ball B ⊆ Σ such that P :
B → B. Recall Brouwer’s fixed point theorem (see any book on algebraic
topology, for example, [116] or [122]). It states that every continuous map
of a closed (Euclidean) ball into itself has at least one fixed point. Thus, by
this theorem, the map P must have at least one fixed point. In other words,
the associated differential equation has a periodic orbit passing through the
set B. This idea is used in the following “toy” example.

Consider the nonautonomous differential equation

ẏ = (a cos t + b)y − y3, a > 0, b > 0 (1.41)

and note that the associated vector field is time periodic with period 2π.
To take advantage of this periodicity property, let us recast this differential
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FIGURE 1.23. The phase cylinder for the differential equation (1.41).

equation—using the standard “trick”—as the first order system

ẏ = (a cos τ + b)y − y3,

τ̇ = 1. (1.42)

Also, for each ξ ∈ R, let t �→ (τ(t, ξ), y(t, ξ)) denote the solution of sys-
tem (1.42) with the initial value

τ(0, ξ) = ξ, y(0, ξ) = 0

and note that τ(t, ξ) ≡ t. Here, the order of the variables is reversed to
conform with two conventions: The angular variable is written second in
a system of this type, but the phase portrait is depicted on a plane where
the angular coordinate axis is horizontal.

The vector field corresponding to the system (1.42) is the same in every
vertical strip of width 2π in the plane considered with coordinates (τ, y).
Thus, from our geometric point of view, it is convenient to consider sys-
tem (1.42) as a differential equation defined on the cylinder T×R obtained
by identifying the line Σ := {(τ, y) : τ = 0} with each line {(τ, y) : τ = 2π�}
where � is an integer (see Figure 1.23). On this cylinder, Σ is a section for
the flow. Moreover, if ξ ∈ R is the coordinate of a point on Σ, then the
associated Poincaré map is given by

P (ξ) = y(2π, ξ)

whenever the solution t �→ τ(t, ξ), y(t, ξ)) is defined on the interval [0, 2π].
By the definition of a Poincaré map, the fixed points of P correspond to

periodic orbits of the differential equation defined on the phase cylinder.
Let us prove that the fixed points of P correspond to periodic solutions of
the original differential equation (1.41). In fact, it suffices to show that if
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FIGURE 1.24. The Poincaré map for the system (1.42).

y(2π, ξ0) = ξ0 for some ξ0 ∈ R, then t �→ y(t, ξ0) is a 2π-periodic solution
of the differential equation (1.41).

By the extensibility theorem, there is some t∗ > 0 such that the function
t �→ z(t) given by z(t) := y(t+2π, ξ0) is defined on the interval [0, t∗). Note
that z(0) = y(2π, ξ0) = ξ0 and

ż(t) = ẏ(t + 2π, ξ0)
= (a(cos(t + 2π)) + b)y(t + 2π, ξ0) − y3(t + 2π, ξ0)
= (a cos t + b)y(t + 2π, ξ0) − y3(t + 2π, ξ0)
= (a cos t + b)z(t) − z3(t).

Thus, t �→ z(t) is a solution of the differential equation (1.41) with the
same initial value as the solution t �→ y(t, ξ0). By the uniqueness theorem,
it follows that z(t) = y(t, ξ0) for 0 ≤ t < t∗. Hence, if t �→ y(t + 2π, ξ0)
blows up on the interval t∗ ≤ t ≤ 2π, then so does the function t �→ y(t, ξ0),
contrary to the hypothesis. Thus, t �→ y(t, ξ0) is defined on the interval
[0, 4π] and y(t+2π, ξ0) = y(t, ξ0) for 0 ≤ t ≤ 2π. By repeating the argument
inductively with z(t) = y(t+k2π, ξ0) for the integers k = 2, 3, . . . , it follows
that t �→ y(t, ξ0) is a 2π-periodic solution of the differential equation (1.41),
as required.

Using the fact that y(t, 0) ≡ 0, it follows immediately that P (0) = 0;
that is, the point ξ = 0 corresponds to a periodic orbit. To find a nontrivial
periodic solution, note that a cos t + b ≤ a + b, and consider the line given
by y = a+ b+1 in the phase cylinder. The y-component of the vector field
on this line is

(a + b + 1)(a cos τ + b − (a + b + 1)2).



76 1. Introduction to Ordinary Differential Equations

Since

a cos τ + b − (a + b + 1)2 ≤ (a + b + 1) − (a + b + 1)2 < 0,

the vector field corresponding to the first order system “points” into the
region that lies below the line. In particular, if 0 ≤ ξ ≤ a + b + 1, then
0 ≤ P (ξ) ≤ a + b + 1; that is, P maps the closed interval [0, a + b + 1] into
itself. Hence, the Brouwer fixed point theorem can be applied to prove the
existence of a periodic orbit (see also Exercise 1.98). But, because P (0) = 0,
this application of the Brouwer fixed point theorem gives no information
about the existence of nontrivial periodic solutions. The remedy, as we will
soon see, is to construct a P invariant closed interval that does not contain
ξ = 0.

Suppose that P ′(0) > 1; that is, the trivial periodic solution is unstable.
Then, there is some c > 0 such that 0 < c < a + b + 1 and P ′(ξ) > 1 as
long as 0 ≤ ξ ≤ c. By the mean value theorem, P (c) = P ′(ξ)c for some
ξ, 0 < ξ < c. Thus, P (c) > c. Using this inequality and the fact that P
is a Poincaré map, it is easy to see that the interval c ≤ ξ ≤ a + b + 1 is
mapped into itself by P and, as a result, there is at least one fixed point
in this interval. This fixed point corresponds to a periodic solution of the
differential equation (1.41).

To prove that P ′(0) > 1 we will use a variational equation. This method
is employed very often in the analysis of differential equations. The present
elementary example is a good place to learn the basic technique. The idea is
simple: The derivative of the solution of a differential equation with respect
to its initial value is itself the solution of a differential equation.

Recall that P (ξ) = y(2π, ξ). Since

d

dt
y(t, ξ) = (a cos t + b)y(t, ξ) − y3(t, ξ)

we have that

d

dt
yξ(t, ξ) = (a cos t + b)yξ(t, ξ) − 3y2(t, ξ)yξ(t, ξ).

Because y(0, ξ) = ξ, we also have the initial condition yξ(0, ξ) = 1. More-
over, at the point ξ = 0 the function t �→ y(t, ξ) is identically zero. Thus, if
t → w(t) is the solution of the variational initial value problem

ẇ = (a cos t + b)w, w(0) = 1,

then P ′(0) = w(2π).
Note that the variational differential equation is linear. Its solution is

given by

w(t) = e
∫ t
0 (a cos t+b) dt = ea sin t+bt.
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In particular, we have

P ′(0) = w(2π) = e2πb > 1,

as required. Moreover, this computation shows that the periodic solution
given by y(t) ≡ 0 is unstable. (Why?)

Exercise 1.98. Prove Brouwer’s fixed point theorem for a closed interval in R.
Hint: Use the intermediate value theorem.

Exercise 1.99. Find the initial point for the nontrivial periodic solution in the
interval 0 < ξ < a + b + 1 for (1.41) as a function of a and b. Are there exactly
two periodic solutions?

Exercise 1.100. Find conditions on a(t) and on f that ensure the existence of
at least one (nontrivial) periodic solution for a differential equation of the form

ẏ = a(t)y + f(y).

Exercise 1.101. Consider the differential equation (1.41) on the cylinder, and
the transformation given by u = (y + 1) cos τ , v = (y + 1) sin τ that maps the
portion of the cylinder defined by the inequality y > −1 into the plane. What
is the image of this transformation? Find the differential equation in the new
coordinates, and draw its phase portrait.

We have proved that there is at least one 2π-periodic solution of the
differential equation (1.41) with initial condition in the interval 0 < ξ <
a + b + 1. But even more is true: This periodic orbit is stable and unique.
To prove this fact, let us suppose that 0 < ξ0 < a + b + 1 and P (ξ0) = ξ0,
so that the corresponding solution t �→ y(t, ξ0) is 2π-periodic.

To determine the stability type of the solution with initial value ξ0, it
suffices to compute P ′(ξ0). As before, P ′(ξ0) = w(2π) where t �→ w(t) is
the solution of the variational initial value problem

ẇ = [(a cos t + b) − 3y2(t, ξ0)]w, w(0) = 1.

It follows that

P ′(ξ0) = w(2π)

= e
∫ 2π
0 a cos t+b−3y2(t,ξ0) dt

= e2πb−3
∫ 2π
0 y2(t,ξ0) dt.

To compute
∫ 2π

0 y2 dt, note that because y(t, ξ0) > 0 for all t, we have
the following equality

ẏ(t, ξ0)
y(t, ξ0)

= a cos t + b − y2(t, ξ0).
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Using this formula and the periodicity of the solution t �→ y(t, ξ0), we have
that ∫ 2π

0
y2(t, ξ0) dt = 2πb −

∫ 2π

0

ẏ(t, ξ0)
y(t, ξ0)

dt = 2πb,

and, as a result,

P ′(ξ0) = e2πb−3(2πb) = e−4πb < 1.

Hence, every periodic solution in the interval [0, a + b + 1] is stable. The
uniqueness of the periodic solution is a consequence of this result. In fact,
the map P is real analytic. Thus, if P has infinitely many fixed points
in a compact interval, then P is the identity. This is not true, so P has
only a finite number of fixed points. If ξ0 and ξ1 are the coordinates of
two consecutive fixed points, then the displacement function, that is, ξ �→
P (ξ) − ξ, has negative slope at two consecutive zeros, in contradiction.

Exercise 1.102. Find an explicit formula for the solution of the differential
equation (1.41) and use it to give a direct proof for the existence of a nontrivial
periodic solution.

Exercise 1.103. Is it possible for the Poincaré map for a scalar differential
equation not to be the identity map on a fixed compact interval and at the same
time have infinitely many fixed points in the interval?

Exercise 1.104. Show that the (stroboscopic) Poincaré map for the differential
equation (1.41) has exactly one fixed point on the interval (0, ∞). How many fixed
points are there on (−∞, ∞)?

Exercise 1.105. Consider the second order differential equation

ẍ + f(x)ẋ + g(x) = 0

where f and g are 2π-periodic functions. Determine conditions on f and g that
ensure the existence of a periodic solution.

Exercise 1.106. Compute the time required for the solution of the system

ẋ = x(1 − y), ẏ = y(x − 1)

with initial condition (x, y) = (1, 0) to arrive at the point (x, y) = (2, 0). Note
that this system has a section map y �→ h(y) defined from a neighborhood of
(x, y) = (1, 0) on the line given by x = 1 to the line given by x = 2. Compute
h′(0).

Exercise 1.107. Observe that the x-axis is invariant for the system

ẋ = 1 + xy, ẏ = 2xy2 + y3,

and the trajectory starting at the point (1, 0) crosses the line x = 3 at (3, 0).
Thus, there is a section map h and a time-of-flight map T from the line x = 1 to
the line x = 3 with both functions defined on some open interval about the point
(1, 0) on the line x = 1. Compute T ′(0) and h′(0).
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1.8.2 Limit Sets and Poincaré–Bendixson Theory
The general problem of finding periodic solutions for differential equations
is still an active area of mathematical research. Perhaps the most well
developed theory for periodic solutions is for differential equations defined
on the plane. But, even in this case, the theory is far from complete. For
example, consider the class of planar differential equations of the form

ẋ = f(x, y), ẏ = g(x, y)

where f and g are quadratic polynomials. There are examples of such
“quadratic systems” that have four isolated periodic orbits—“isolated”
means that each periodic orbit is contained in an open subset of the plane
that contains no other periodic orbits (see Exercise 1.132). However, no
one knows at present if there is a quadratic system with more than four
isolated periodic orbits. The general question of the number of isolated
periodic orbits for a polynomial system in the plane has been open since
1905; it is called Hilbert’s 16th problem (see [47], [97], [145], and [154]).

While there are certainly many difficult issues associated with periodic
orbits of planar systems, an extensive theory has been developed that has
been successfully applied to help determine the dynamics of many mathe-
matical models. Some of the basic results of this theory will be explained
later in this section after we discuss some important general properties of
flows of autonomous, not necessarily planar, systems.

The properties that we will discuss enable us to begin to answer the
question “What is the long term behavior of a dynamical system?” This
is often the most important question about a mathematical model. Ask
an engineer what he wants to know about a model ordinary differential
equation. Often his response will be the question “What happens if we
start the system running and then wait for a long time?” or, in engineering
jargon, “What is the steady state behavior of the system?” We already
know how to answer these questions in some special circumstances where
the steady state behavior corresponds to a rest point or periodic orbit.
However, we need the following definitions to precisely describe the limiting
behavior of an orbit.

Definition 1.108. Suppose that φt is a flow on R
n and p ∈ R

n. A point x
in R

n is called an omega limit point (ω-limit point) of the orbit through p if
there is a sequence of numbers t1 ≤ t2 ≤ t3 ≤ · · · such that limi→∞ ti = ∞
and limi→∞ φti

(p) = x. The collection of all such omega limit points is
denoted ω(p) and is called the omega limit set (ω-limit set) of p. Similarly,
the α-limit set α(p) is defined to be the set of all limits limi→∞ φti

(p) where
t1 ≥ t2 ≥ t3 ≥ · · · and limi→∞ ti = −∞.

Definition 1.109. The orbit of the point p with respect to the flow φt is
called forward complete if t → φt(p) is defined for all t ≥ 0. Also, in this
case, the set {φt(p) : t ≥ 0} is called the forward orbit of the point p. The
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orbit is called backward complete if t → φt(p) is defined for all t ≤ 0 and
the backward orbit is {φt(p) : t ≤ 0}.

Proposition 1.110. If p ∈ R
n and the orbit of the flow φt through the

point p is forward complete, then ω(p) is a closed invariant set.

Proof. Suppose that x ∈ ω(p) and consider φT (x) for some fixed T > 0.
There is a sequence t1 ≤ t2 ≤ t3 ≤ · · · with ti → ∞ and φti(p) → x as
i → ∞. Note that t1 + T ≤ t2 + T ≤ t3 + T ≤ · · · and that φti+T (p) =
φT (φti(p)). By the continuity of the flow, we have that φT (φti(p)) → φT (x)
as i → ∞. Thus, φT (x) ∈ ω(p), and therefore ω(p) is an invariant set.

To show ω(p) is closed, it suffices to show that ω(p) is the intersection of
closed sets. In fact, we have that

ω(p) =
⋂
τ≥0

closure {φt(p) : t ≥ τ}. �

Proposition 1.111. Suppose that p ∈ R
n and the orbit of the flow φt

through the point p is forward complete. If the forward orbit of p has com-
pact closure, then ω(p) is nonempty, compact, and connected.

Proof. The sequence {φn(p)}∞
n=1 is contained in the compact closure of

the orbit through p. Thus, it has at least one limit point x. In fact, there
is an infinite sequence of integers n1 ≤ n2 ≤ · · · such that φni(p) → x as
i → ∞. Hence, x ∈ ω(p), and therefore ω(p) �= ∅.

Since ω(p) is a closed subset of the compact closure of the orbit through
p, the set ω(p) is compact.

To prove that ω(p) is connected, suppose to the contrary that there
are two disjoint open sets U and V whose union contains ω(p) such that
ω(p) ∩ U �= ∅ and ω(p) ∩ V �= ∅. There is some t1 > 0 such that φt1(p) ∈ U
and some t2 > t1 such that φt2(p) ∈ V . But the set K = {φt(p) : t1 ≤ t ≤
t2} is the continuous image of an interval, hence a connected set. Thus K
cannot be contained in U ∪ V . In particular, there is at least one τ1 > 0
such that φτ1(p) is not in this union.

Similarly we can construct a sequence τ1 ≤ τ2 ≤ · · · such that

lim
i→∞

τi = ∞

and for each i the point φτi
(p) is in the complement of U ∪ V . By the

compactness, the sequence {φτi
(p)}∞

i=1 has a limit point x. Clearly, x is
also in ω(p) and in the complement of U ∪ V . This is a contradiction. �

Exercise 1.112. Construct examples to show that the compactness hypothesis
of Proposition 1.111 is necessary.

Exercise 1.113. Suppose that x0 is a rest point for the differential equation
ẋ = f(x) with flow φt, and V is a Lyapunov function at x0. If, in addition, there
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FIGURE 1.25. A positively invariant annular region for a flow in the plane.

is a neighborhood W of the rest point x0 such that, for each point p ∈ W \ {x0},
the function V is not constant on the forward orbit of p, then x0 is asymptotically
stable. Hint: The point x0 is Lyapunov stable. If it is not asymptotically stable,
then there is a point p in the domain of V whose omega limit set ω(p) is also
in the domain of V such that ω(p) �= {x0}. Show that V is constant on this
omega limit set (the constant is the greatest lower bound of the range of V on
the forward orbit through p).

The ω-limit set of a point for a flow in R
n with n ≥ 3 can be very

complicated; for example, it can be a fractal. However, the situation in R
2

is much simpler. The reason is the deep fact about the geometry of the
plane stated in the next theorem.

Theorem 1.114 (Jordan Curve Theorem). A simple closed (continu-
ous) curve in the plane divides the plane into two connected components,
one bounded and one unbounded, each with the curve as boundary.

Proof. Modern proofs of this theorem use algebraic topology (see for ex-
ample [166]). �

This result will play a central role in what follows.
The fundamental result about limit sets for planar differential equations

is the Poincaré–Bendixson theorem. There are several versions of this the-
orem; we will state two of them.

Theorem 1.115 (Poincaré–Bendixson). If Ω is a nonempty compact
ω-limit set of a flow in R

2, and if Ω does not contain a rest point, then Ω
is a periodic orbit.
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FIGURE 1.26. A limit cycle in the plane.

A set S that contains the forward orbit of each of its elements is called
positively invariant. An orbit whose α-limit set is a rest point p and whose
ω-limit is a rest point q is said to connect p and q.

Theorem 1.116. Suppose that φt is a flow on R
2 and S ⊆ R

2 is a pos-
itively invariant set with compact closure. If p ∈ S and φt has at most a
finite number of rest points in S, then ω(p) is either (i) a rest point, (ii) a
periodic orbit, or (iii) a union of finitely many rest points and perhaps a
countably infinite set of connecting orbits.

Exercise 1.117. Illustrate possibility (iii) of the last theorem with an example
having an infinite set of connecting orbits.

Exercise 1.118. We have generally assumed that our flows are smooth. Is this
hypothesis required for the theorems in this section on ω-limit sets?

Definition 1.119. A limit cycle is a periodic orbit that is either the ω-
limit set or the α-limit set of some point in the phase space with the periodic
orbit removed.

A “conceptual” limit cycle is illustrated in Figure 1.26. In this figure,
the limit cycle is the ω-limit set of points in its interior (the bounded
component of the plane with the limit cycle removed) and its exterior
(the corresponding unbounded component of the plane). A limit cycle that
is generated by numerically integrating a planar differential equation is
depicted in Figure 1.27 (see [28]).
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FIGURE 1.27. Two orbits are numerically computed for the system
ẋ = 0.5x − y + 0.1(x2 − y2)(x − y), ẏ = x + 0.5y + 0.1(x2 − y2)(x + y): one
with initial value (x, y) = (0.5, 0), the other with initial value (x, y) = (0, 5).
Both orbits approach a stable limit cycle.

Sometimes the following alternative definition of a limit cycle is given. A
“limit cycle” is an isolated periodic orbit; that is, the unique periodic orbit
in some open subset of the phase space. This definition is not equivalent
to Definition 1.119 in general. However, the two definitions are equivalent
for real analytic systems (see Exercise 1.123).

An annular region is a subset of the plane that is homeomorphic to the
open annulus bounded by the unit circle at the origin and the concentric
circle whose radius is two units in length.

The following immediate corollary of the Poincaré–Bendixson theorem
is often applied to prove the existence of limit cycles for planar systems.

Theorem 1.120. If a flow in the plane has a positively invariant annular
region S that contains no rest points of the flow, then S contains at least
one periodic orbit. If in addition, some point in S is in the forward orbit
of a point on the boundary of S, then S contains at least one limit cycle.

We will discuss two applications of Theorem 1.120 where the main idea
is to find a rest-point free annular region as depicted in Figure 1.25.

The first example is provided by the differential equation

ẋ = −y + x(1 − x2 − y2), ẏ = x + y(1 − x2 − y2). (1.43)

Note that the annulus S bounded by the circles with radii 1
2 and 2, respec-

tively, contains no rest points of the system. Let us show that S is posi-
tively invariant. To prove this fact, consider the normal vector N(x, y) =
(x, y, x, y) on ∂S and compute the dot product of N and the vector field
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corresponding to the differential equation. In fact, the dot product

x2(1 − x2 − y2) + y2(1 − x2 − y2) = (x2 + y2)(1 − x2 − y2)

is positive on the circle with radius 1
2 and negative on the circle with radius

2. Therefore, S is positively invariant and, by Theorem 1.120, there is at
least one limit cycle in S.

The differential equation (1.43) is so simple that we can find a formula
for its flow. In fact, by changing to polar coordinates (r, θ), the transformed
system

ṙ = r(1 − r2), θ̇ = 1

decouples, and its flow is given by

φt(r, θ) =
(( r2e2t

1 − r2 + r2e2t

) 1
2
, θ + t

)
. (1.44)

Note that φt(1, θ) = (1, θ + t) and, in particular, φ2π(1, θ) = (1, θ + 2π).
Thus, the unit circle in the plane is a periodic orbit with period 2π. Here,
of course, we must view θ as being defined modulo 2π, or, better yet, we
must view the polar coordinates as coordinates on the cylinder T × R (see
Section 1.7.4).

If the formula for the flow (1.44) is rewritten in rectangular coordinates,
then the periodicity of the unit circle is evident. In fact, the periodic solu-
tion starting at the point (cos θ, sin θ) ∈ R

2 (in rectangular coordinates) at
t = 0 is given by

t �→ (x(t), y(t)) = (cos(θ + t), sin(θ + t)).

It is easy to see that if r �= 0, then the ω-limit set ω((r, θ)) is the entire
unit circle. Thus, the unit circle is a limit cycle.

If we consider the positive x-axis as a Poincaré section, then we have

P (x) =
( x2e4π

1 − x2 + x2e4π

) 1
2
.

Here P (1) = 1 and P ′(1) = e−4π < 1. In other words, the intersection point
of the limit cycle with the Poincaré section is a hyperbolic fixed point of
the Poincaré map; that is, the linearized Poincaré map has no eigenvalue
on the unit circle of the complex plane. In fact, here the single eigenvalue
of the linear transformation of R given by x �→ P ′(1)x is inside the unit
circle. It should be clear that in this case the limit cycle is an asymptotically
stable periodic orbit. We will also call such an orbit a hyperbolic stable limit
cycle. (The general problem of the stability of periodic orbits is discussed
in Chapter 2.)
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As a second example of the application of Theorem 1.120, let us consider
the very important differential equation,

θ̈ + λθ̇ + sin θ = µ

where λ > 0 and µ are constants, and θ is an angular variable; that is, θ is
defined modulo 2π. This differential equation is a model for an unbalanced
rotor or pendulum with viscous damping λθ̇ and external torque µ.

Consider the equivalent first order system

θ̇ = v, v̇ = − sin θ + µ − λv, (1.45)

and note that, since θ is an angular variable, the natural phase space for
this system is the cylinder T × R. With this interpretation we will show
the following result: If |µ| > 1, then system (1.45) has a globally attracting
limit cycle. The phrase “globally attracting limit cycle” means that there
is a limit cycle Γ on the cylinder and Γ is the ω-limit set of every point on
the cylinder. In other words, the steady state behavior of the unbalanced
rotor, with viscous damping and sufficiently large torque, is stable periodic
motion. (See [109] for the existence of limit cycles for the case |µ| ≥ 1.)

The system (1.45) with |µ| > 1 has no rest points. (Why?) Also the
quantity − sin θ + µ − λv is negative for sufficiently large positive values
of v, and it is positive for negative values of v that are sufficiently large
in absolute value. Therefore, there are numbers v− < 0 and v+ > 0 such
that every forward orbit is contained in the compact subset of the cylinder
A := {(r, θ) : v− ≤ v ≤ v+}. In addition, A is diffeomorphic to a closed
annular region in the plane. It follows that the Poincaré–Bendixson theorem
is valid in A, and therefore the ω-limit set of every point on the cylinder is
a limit cycle.

There are several ways to prove that the limit cycle is unique. However,
let us consider a proof based on the following propositions: (i) If the diver-
gence of a vector field is everywhere negative, then the flow of the vector
field contracts volume (see Exercise 1.131). (ii) Every periodic orbit in the
plane surrounds a rest point (see Exercise 1.127). (A replacement for the
first proposition is given in Exercise 1.137.)

To apply the propositions, note that the divergence of the vector field for
system (1.45) is the negative number −λ. Also, if |µ| > 1, then this system
has no rest points. By the second proposition, no periodic orbit of the
system is contractable on the cylinder (see panel (a) of Figure 1.28). Thus,
if there are two periodic orbits, they must bound an invariant annular
region on the cylinder as in panel (b) of Figure 1.28. But this contradicts
the fact that the area of the annular region is contracted by the flow. It
follows that there is a unique periodic orbit on the cylinder that is a globally
attracting limit cycle.
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FIGURE 1.28. Panel (a) depicts a contractable periodic orbit on a cylinder. Note
that the region Ω in panel (a) is simply connected. Panel (b) depicts two periodic
orbits that are not contractable; they bound a multiply connected region Ω on
the cylinder.

Exercise 1.121. Give a direct proof that the point (1/
√

2, 1/
√

2) on the unit
circle is an ω-limit point of the point (3, 8) for the flow of system (1.43).

Exercise 1.122. Discuss the phase portrait of system (1.45) for |µ| < 1.

Exercise 1.123. Show that the set containing “limit cycles” defined as isolated
periodic orbits is a proper subset of the set of limit cycles. Also, if the differential
equation is real analytic, then the two concepts are the same. Hint: Imagine a
closed annular region consisting entirely of periodic orbits. The boundary of the
annulus consists of two periodic orbits that might be limit cycles, but neither
of them is isolated. To prove that an isolated periodic orbit Γ is a limit cycle,
show that every section of the flow at a point p ∈ Γ has a subset that is a
Poincaré section at p. For an analytic system, again consider a Poincaré section
and the associated Poincaré map P . Zeros of the analytic displacement function
ξ �→ P (ξ) − ξ correspond to periodic orbits.

Exercise 1.124. Consider the differential equation

ẋ = −ax(x2 + y2)−1/2, ẏ = −ay(x2 + y2)−1/2 + b

where a and b are positive parameters. The model represents the flight of a
projectile, with speed a and heading toward the origin, that is moved off course
by a constant force with strength b. Determine conditions on the parameters that
ensure the solution starting at the point (x, y) = (p, 0), for p > 0, reaches the
origin. Hint: Change to polar coordinates and study the phase portrait of the
differential equation on the cylinder. Explain your result geometrically. Discuss
the fact that the differential equation is not defined at the origin.

The next lemma is an easy corollary of the Jordan curve theorem.
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Lemma 1.125. If Σ is a section for the flow φt and if p ∈ Σ, then the
orbit through the point p intersects Σ in a monotone sequence; that is, if
φt1(p), φt2(p), φt3(p) all lie on Σ and if t1 < t2 < t3, then φt2(p) lies
between φt1(p) and φt3(p) on Σ.

Proof. The proof is left as an exercise. Hint: Consider the curve formed
by the union of {φt(p) : t1 ≤ t ≤ t2} and the subset of Σ between φt1(p)
and φt2(p). Draw a picture. �

Corollary 1.126. If Σ is a section for the flow φt and if p ∈ Σ, then
ω(p) ∩ Σ contains at most one point.

Proof. The proof is by contradiction. Suppose that ω(p) ∩ Σ contains at
least two points, x1 and x2. By rectification of the flow at x1 and at x2, that
is, by the rectification lemma (Lemma 1.76), it is easy to see that there are
sequences {φti

(p)}∞
i=1 and {φsi

(p)}∞
i=1 in Σ such that limi→∞ φti

(p) = x1
and limi→∞ φsi(p) = x2. The fact that such sequences can be found in Σ
follows from the rectification lemma in Exercise 1.79. Indeed, we can choose
the rectifying neighborhood so that the image of the Poincaré section is a
line segment transverse to the rectified flow. In this case, it is clear that
if an orbit has one of its points in the rectifying neighborhood, then this
orbit passes through the Poincaré section.

By choosing a local coordinate on Σ, let us assume that Σ is an open
interval. Working in this local chart, there are open subintervals J1 at x1
and J2 at x2 such that J1∩J2 = ∅. Moreover, by the definition of limit sets,
there is an integer m such that φtm

(p) ∈ J1; an integer n such that sn > tm
and φsn

(p) ∈ J2; and an integer � such that t� > sn and φt�
(p) ∈ J1. By

Lemma 1.125, the point φsn(p) must be between the points φtm(p) and
φt�

(p) on Σ. But this is impossible because the points φtm(p) and φt�
(p)

are in J1, whereas φsn
(p) is in J2. �

We are now ready to prove the Poincaré–Bendixson theorem (Theo-
rem 1.115): If Ω is a nonempty compact ω-limit set of a flow in R

2, and
if Ω does not contain a rest point, then Ω is a periodic orbit.

Proof. Suppose that ω(p) is compact and contains no rest points. Choose
a point q ∈ ω(p). We will show first that the orbit through q is closed.

Consider ω(q). Note that ω(q) ⊆ ω(p) and let x ∈ ω(q). Since x is not
a rest point, there is a section Σ at x and a sequence on Σ consisting of
points on the orbit through q that converges to x. These points are in ω(p).
But, by the last corollary, this is impossible unless this sequence consists
of the singleton point x. Since q is not a rest point, this implies that q lies
on a closed orbit Γ, as required. In particular, the limit set ω(p) contains
the closed orbit Γ.

To complete the proof we must show ω(p) ⊆ Γ. If ω(p) �= Γ, then we will
use the connectedness of ω(p) to find a sequence {pn}∞

n=1 ⊂ ω(p) \ Γ that
converges to a point z on Γ. To do this, consider the union A1 of all open
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balls with unit radius centered at some point in Γ. The set A1 \ Γ must
contain a point in ω(p). If not, consider the union A1/2, (respectively A1/4)
of all open balls with radius 1

2 (respectively 1
4 ) centered at some point in

Γ. Then the set A1/4 together with the complement of the closure of A1/2
“disconnects” ω(p), in contradiction. By repeating the argument with balls
whose radii tend to zero, we can construct a sequence of points in ω(p) \ Γ
whose distance from Γ tends to zero. Using the compactness of ω(p), there
is a subsequence, again denoted by {pn}∞

n=1, in ω(p) \ Γ that converges to
a point z ∈ Γ.

Let U denote an open set at z such that the flow is rectified in a diffeo-
morphic image of U . There is some integer n such that pn ∈ U . But, by
using the rectification lemma, it is easy to see that the orbit through pn

has a point y of intersection with some Poincaré section Σ at z. Because
pn is not in Γ, the points y and z are distinct elements of the set ω(p) ∩ Σ,
in contradiction to Corollary 1.126. �

Exercise 1.127. Suppose that γ is a periodic orbit of a smooth flow defined
on R

2. Prove that γ surrounds a rest point of the flow. That is, the bounded
component of the plane with the periodic orbit removed contains a rest point.

Exercise 1.128. Use Exercise 1.127 to prove the Brouwer fixed point theorem
for the closed unit disk D in R

2. Hint: First prove the result for a smooth func-
tion f : D → D by considering the vector field f(x) − x, and then use the fact
that a continuous transformation of D is the uniform limit of smooth transfor-
mations [95, p. 253].

Exercise 1.129. Construct an example of a differential equation defined on all
of R

3 that has a periodic orbit but no rest points.

Exercise 1.130. Prove: The ω-limit set of an orbit of a gradient system con-
sists entirely of rest points.

Exercise 1.131. Prove: The flow of a vector field whose divergence is every-
where negative contracts volume. Hint: If a vector field F on R

n with the usual
Euclidean structure is given in components by F = (F1, F2, . . . , Fn), then

div F =
n∑

i=1

∂Fi

∂xi
.

Apply the change of variables formula for multiple integrals to an integral that
represents the volume of a region in R

n.

Exercise 1.132. Is a limit cycle isolated from all other periodic orbits? Hint:
Consider planar vector fields of class C1 and those of class C ω—real analytic
vector fields. Study the Poincaré map on an associated transversal section.

Let us consider a result that can often be used to show that no periodic
orbits exist.
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Proposition 1.133 (Bendixson’s Criterion). Consider a smooth dif-
ferential equation on the plane

ẋ = g(x, y), ẏ = h(x, y)

and let f(x, y) := (g(x, y), h(x, y)). If the divergence of f given by

div f(x, y) := gx(x, y) + hy(x, y)

is not identically zero and of fixed sign in a simply connected region Ω, then
the system has no periodic orbits in Ω.

Proof. Suppose that Γ is a closed orbit in Ω and let G denote the bounded
region of the plane bounded by Γ. Note that the line integral of the one
form g dy−h dx over Γ vanishes. (Why?) However, by Green’s theorem, the
integral can be computed by integrating the two-form (div f)dxdy over G.
Since, by the hypothesis, the divergence of f does not vanish, the integral
of the two-form over G does not vanish, in contradiction. Thus, no such
periodic orbit can exist. �

Theorem 1.134. Consider a smooth differential equation on the plane

ẋ = g(x, y), ẏ = h(x, y)

that has the origin as a rest point. Let J denote the Jacobian matrix for
the transformation (x, y) �→ (g(x, y), h(x, y)), and let φt denote the flow of
the differential equation. If the following three conditions are satisfied, then
the origin is globally asymptotically stable.

Condition 1. For each (x, y) ∈ R
2, the trace of J given by gx(x, y) +

hy(x, y) is negative.
Condition 2. For each (x, y) ∈ R

2, the determinant of J given by
gx(x, y)hy(x, y) − gy(x, y)hx(x, y) is positive.

Condition 3. For each (x, y) ∈ R
2, the forward orbit {φt(x, y) : 0 ≤

t < ∞} is bounded.

Proof. From the hypotheses on the Jacobian matrix, if there is a rest point,
the eigenvalues of its associated linearization all have negative real parts.
Therefore, each rest point is a hyperbolic attractor; that is, the basin of
attraction of the rest point contains an open neighborhood of the rest point.
This fact follows from Hartman’s theorem (Theorem 1.27) or Theorem 2.34.
In particular, the origin is a hyperbolic attractor.

By the hypotheses, the trace of the Jacobian (the divergence of the vector
field) is negative over the entire plane. Thus, by Bendixson’s criterion, there
are no periodic solutions.

Let Ω denote the basin of attraction of the origin. Using the continuity
of the flow, it is easy to prove that Ω is open. In addition, it is easy to
prove that the boundary of Ω is closed and contains no rest points.
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We will show that the boundary of Ω is positively invariant. If not, then
there is a point p in the boundary and a time T > 0 such that either φT (p)
is in Ω or such that φT (p) is in the complement of the closure of Ω in
the plane. In the first case, since φT (p) is in Ω, it is clear that p ∈ Ω, in
contradiction. In the second case, there is an open set V in the complement
of the closure of Ω that contains φT (p). The inverse image of V under the
continuous map φT is an open set U containing the boundary point p. By
the definition of boundary, U contains a point q ∈ Ω. But then, q is mapped
to a point in the complement of the closure of Ω, in contradiction to the
fact that q is in the basin of attraction of the origin.

If the boundary of Ω is not empty, consider one of its points. The
(bounded) forward orbit through the point is precompact and contained
in the (closed) boundary of Ω. Thus, its ω-limit set is contained in the
boundary of Ω. Since the boundary of Ω contains no rest points, an ap-
plication of the Poincaré–Bendixson theorem shows this ω-limit set is a
periodic orbit, in contradiction. Thus, the boundary is empty and Ω is the
entire plane. �

Theorem 1.134 is a (simple) special case of the “Markus-Yamabe prob-
lem.” In fact, the conclusion of the theorem is true without assuming Con-
dition 3 (see [81]).

Exercise 1.135. Prove: If δ > 0, then the origin is a global attractor for the
system

u̇ = (u − v)3 − δu, v̇ = (u − v)3 − δv.

Also, the origin is a global attractor of orbits in the first quadrant for the system

u̇ = uv(u − v)(u + 1) − δu, v̇ = vu(v − u)(v + 1) − δv.

(Both of these first order systems are mentioned in [181].)

Exercise 1.136. [Dulac’s Criterion] Recall the notation used in the state-
ment of Bendixson’s criterion (Proposition 1.133). Prove Dulac’s generalization
of Bendixson’s criterion: If there is a smooth function B(x, y) defined on Ω such
that the quantity (Bg)x + (Bh)y is not identically zero and of fixed sign on Ω,
then there are no periodic orbits in Ω. Use Dulac’s criterion to prove a result due
to Nikolai N. Bautin: The system

ẋ = x(a + bx + cy), ẏ = y(α + βx + γy)

has no limit cycles. Hint: Look for a Dulac function of the form xrys.

Exercise 1.137. [Uniqueness of Limit Cycles] Prove the following proposition:
If the divergence of a plane vector field is of fixed sign in an annular region Ω of
the plane, then the associated differential equation has at most one periodic orbit
in Ω. Hint: Use Green’s theorem. Also, recall Dulac’s criterion from Exercise 1.136
and note that if the divergence of the plane vector field F is not of fixed sign in



1.8 Periodic Solutions 91

Ω, then it might be possible to find a nonnegative function B : Ω → R such that
the divergence of BF does have fixed sign in Ω. As an example, consider the van
der Pol oscillator,

ẋ = y, ẏ = −x + λ(1 − x2)y

and the “Dulac function” B(x, y) = (x2 + y2 − 1)−1/2. Show that van der Pol’s
system has at most one limit cycle in the plane. (The remarkable Dulac function B
was discovered by L. A. Cherkas.) Can you prove that the van der Pol oscillator
has at least one limit cycle in the plane? Hint: Change coordinates using the
Liénard transformation

u = x, v = y − λ(x − 1
3
x3)

to obtain the Liénard system

u̇ = v + λ(u − 1
3
u3), v̇ = −u.

In Chapter 5 we will prove that the van der Pol system has a limit cycle if λ > 0
is sufficiently small. However, this system has a limit cycle for each λ > 0. For
this result, and for more general results about limit cycles of the important class
of planar systems of the form

ẋ = y − F (x), ẏ = −g(x),

see [78, p. 154], [95, p. 215], [107, p. 267], and [141, p. 250].

Exercise 1.138. Prove that the system

ẋ = x − y − x3, ẏ = x + y − y3

has a unique globally attracting limit cycle on the punctured plane. Find all rest
points of the system

ẋ = x − y − xn, ẏ = x + y − yn,

where n is a positive odd integer and determine their stability. Prove that the
system has a unique stable limit cycle. What is the limiting shape of the limit
cycle as n → ∞?

Exercise 1.139. [Rigid Body Motion] The Euler equations for rigid body mo-
tion are presented in Exercise 1.44. Recall that the momentum vector is given by
M = AΩ where A is a symmetric matrix and Ω is the angular velocity vector,
and Euler’s equation is given by Ṁ = M ×Ω. For ν a positive definite symmetric
matrix and F a constant vector, consider the differential equation

Ṁ = M × Ω + F − νM.

Here, the function M �→ νM represents viscous friction and F is the external
force (see [14]). Prove that all orbits of the differential equation are bounded,
and therefore every orbit has a compact ω-limit set.
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Exercise 1.140. Prove that the origin is a center for the system ẍ+ẋ2+x = 0.
Also, show that this system has unbounded orbits. Is there a separatrix between
the bounded and unbounded solutions?

Exercise 1.141. Draw the phase portrait for the system ẍ = x2 − x3. Is the
solution with initial conditions x(0) = 1

2 and ẋ(0) = 0 periodic?

Exercise 1.142. Draw the phase portrait of the Hamiltonian system ẍ + x −
x2 = 0. Give an explicit formula for the Hamiltonian and use it to justify the
features of the phase portrait.

Exercise 1.143. Let t �→ x(t) denote the solution of the initial value problem

ẍ + ẋ + x + x3 = 0, x(0) = 1, ẋ(0) = 0.

Determine lim
t→∞

x(t).

Exercise 1.144. Show that the system

ẋ = x − y − (x2 +
3
2
y2)x, ẏ = x + y − (x2 +

1
2
y2)y

has a unique limit cycle.

Exercise 1.145. Find the rest points in the phase plane of the differential
equation ẍ+(ẋ2 +x2 −1)ẋ+x = 0 and determine their stability. Also, show that
the system has a unique stable limit cycle.

Exercise 1.146. Determine the ω-limit set of the solution of the system

ẋ = 1 − x + y3, ẏ = y(1 − x + y)

with initial condition x(0) = 10, y(0) = 0.

Exercise 1.147. Show that the system

ẋ = −y + xy, ẏ = x +
1
2
(x2 − y2)

has periodic solutions, but no limit cycles.

Exercise 1.148. Consider the van der Pol equation

ẍ + (x2 − ε)ẋ + x = 0,

where ε is a real parameter. How does the stability of the trivial solution change
with ε. Show that the van der Pol equation has a unique stable limit cycle for
ε = 1. What would you expect to happen to this limit cycle as ε shrinks to ε = 0.
What happens for ε < 0?

Exercise 1.149. Find an explicit nonzero solution of the differential equation

t2x2ẍ + ẋ = 0.

Define new variables u = 2(3tx2)−1/2, v = −4ẋ(3x3)−1/2 and show that

dv

du
=

3v(v − u2)
2u(v − u)

.

Draw the phase portrait of the corresponding first order system

u̇ = 2u(v − u), v̇ = 3v(v − u2).
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1.9 Review of Calculus

The basic definitions of the calculus extend easily to multidimensional
spaces. In fact, these definitions are essentially the same when extended
to infinite dimensional spaces. Thus, we will begin our review with the
definition of differentiation in a Banach space.

Definition 1.150. Let U be an open subset of a Banach space X, let Y
denote a Banach space, and let the symbol ‖ ‖ denote the norm in both
Banach spaces. A function f : U → Y is called (Fréchet) differentiable at
a ∈ U if there is a bounded linear operator Df(a) : X → Y , called the
derivative of f , such that

lim
h→0

1
‖h‖‖f(a + h) − f(a) − Df(a)h‖ = 0.

If f is differentiable at each point in U , then function f is called differen-
tiable.

Using the notation of Definition 1.150, let L(X, Y ) denote the Banach
space of bounded linear transformations from X to Y , and note that the
derivative of f : U → Y is the function Df : U → L(X, Y ) given by
x �→ Df(x).

The following proposition is a special case of the chain rule.

Proposition 1.151. Suppose that U is an open subset of a Banach space
and f : U → Y . If f is differentiable at a ∈ U and v ∈ U , then

d

dt
f(a + tv)

∣∣
t=0 = Df(a)v.

Proof. The proof is obvious for v = 0. Assume that v �= 0 and consider
the scalar function given by

α(t) := ‖1
t
(f(a + tv) − f(a)) − Df(a)v)‖

=
1
|t| ‖f(a + tv) − f(a) − Df(a)tv‖

for t �= 0. It suffices to show that limt→0 α(t) = 0.
Choose ε > 0. Since f is differentiable, there is some δ > 0 such that

1
‖h‖‖f(a + h) − f(a) − Df(a)h‖ < ε

whenever 0 < ‖h‖ < δ. If |t| < δ‖v‖−1, then ‖tv‖ < δ and

1
|t|‖v‖‖f(a + tv) − f(a) − Df(a)tv‖ < ε.

In particular, we have that α(t) ≤ ‖v‖ε whenever |t| < δ‖v‖−1, as required.

�
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The following is a list of standard facts about the derivative; the proofs
are left as exercises. For the statements in the list, the symbols X, Y , Xi,
and Yi denote Banach spaces.

(i) If f : X → Y is differentiable at a ∈ X, then f is continuous at a.

(ii) If f : X → Y and g : Y → Z are both differentiable, then h = g ◦ f
is differentiable, and its derivative is given by the chain rule

Dh(x) = Dg(f(x))Df(x).

(iii) If f : X → Y1 × · · · × Yn is given by f(x) = (f1(x), . . . , fn(x)), and if
fi is differentiable for each i, then so is f and, in fact,

Df(x) = (Df1(x), . . . , Dfn(x)).

(iv) If the function f : X1×X2×· · ·×Xn → Y is given by (x1, . . . , xn) �→
f(x1, . . . , xn), then the ith partial derivative of f at a1, . . . , an ∈
X1 × · · ·×Xn is the derivative of the function g : Xi → Y defined by
g(xi) = f(a1, . . . , ai−1, xi, ai+1, . . . , an). This derivative is denoted
Dif(a). Of course, if f is differentiable, then its partial derivatives
all exist and, if we define h = (h1, . . . , hn), we have

Df(x)h =
n∑

i=1

Dif(x)hi.

Conversely, if all the partial derivatives of f exist and are continuous
in an open set

U ⊂ X1 × X2 × · · · × Xn,

then f is continuously differentiable in U .

(v) If f : X → Y is a bounded linear map, then Df(x) = f for all x ∈ X.

The Cr-norm of an r-times continuously differentiable function f : U →
Y , defined on an open subset U of X, is defined by

‖f‖r = ‖f‖0 + ‖Df‖0 + · · · ‖Drf‖0

where ‖ ‖0 denotes the usual supremum norm, as well as the operator
norms over U ; for example,

‖f‖0 = sup
u∈U

‖f(u)‖

and

‖Df‖0 = sup
u∈U

(
sup

‖x‖=1
‖Df(u)x‖

)
.
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Also, let us use Cr(U, Y ) to denote the set of all functions f : U → Y such
that ‖f‖r < ∞. Of course, the set Cr(U, Y ) is a Banach space of functions
with respect to the Cr-norm.

Although the basic definitions of differential calculus extend unchanged
to the Banach space setting, this does not mean that there are no new
phenomena in infinite dimensional spaces. The following examples and ex-
ercises illustrate some of the richness of the theory. The basic idea is that
functions can be defined on function spaces in ways that are not available
in the finite dimensional context. If such a function is defined, then its dif-
ferentiability class often depends on the topology of the Banach space in a
subtle manner.

Example 1.152. Let X = C([0, 1]) and define F : X → X by

F (g)(t) := sin g(t)

(see [49]). We have the following proposition: The function F is continu-
ously differentiable and

(DF (g)h)(t) = (cos g(t))h(t).

To prove it, let us first compute

|F (g + h)(t) − F (g)(t) − DF (g)h(t)|
= | sin(g(t) + h(t)) − sin g(t) − (cos g(t))h(t)|
= | sin g(t) cos h(t) + cos g(t) sin h(t) − sin g(t) − (cos g(t))h(t)|
= |(−1 + cos h(t)) sin g(t) + (−h(t) + sin h(t)) cos g(t)|
≤ ‖F (g)‖| − 1 + cos h(t)| + ‖ cos ◦g‖| − h(t) + sin h(t)|

≤ 1
2
(
‖F (g)‖ ‖h‖2 + ‖ cos ◦g‖ ‖h‖2).

This proves that F is differentiable.
The function DF : X → L(X, X) given by g �→ DF (g) is clearly contin-

uous, in fact,

‖DF (g1) − DF (g2)‖ = sup
‖h‖=1

‖DF (g1)h − DF (g2)h‖

= sup
‖h‖=1

sup
t

|(cos g1(t))h(t) − (cos g2(t))h(t)|

≤ sup
‖h‖=1

sup
t

|h(t)||g1(t) − g2(t)|

= ‖g1 − g2‖.

Thus F is continuously differentiable, as required.

Example 1.153. Let X := L2([0, 1]) and define F : X → X by

F (g)(t) = sin g(t).
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The function F is Lipschitz, but not differentiable.
To prove that F is Lipschitz, simply recall that | sin x − sin y| ≤ |x − y|

and estimate as follows:

‖F (g1) − F (g2)‖2 =
∫ 1

0
| sin g1(t) − sin g2(t)|2 dt

≤
∫ 1

0
|g1(t) − g2(t)|2 dt

≤ ‖g1 − g2‖2.

We will show that F is not differentiable at the origin. To this end, let
us suppose that F is differentiable at the origin with derivative DF (0). We
have that F (0) = 0, and, by Proposition (1.151), all directional derivatives
of F at the origin exist. Therefore, it follows that

lim
s→0

F (sg) − F (0)
s

= lim
s→0

F (sg)
s

= DF (0)g

for all g ∈ L2([0, 1]).
To reach a contradiction, we will first prove that DF (0) is the identity

map on L2([0, 1]). To do this, it suffices to show that DF (0)g = g for every
continuous function g ∈ L2([0, 1]). Indeed, this reduction follows because
the (equivalence classes of) continuous functions are dense in L2([0, 1]).

Let us assume that g is continuous and square integrable. We will show
that the directional derivative of F at the origin in the direction g exists
and is equal to g. In other words, we will show that

lim
s→0

F (sg)
s

= g;

that is,

lim
s→0

∫ 1

0

∣∣∣ sin(sg(t))
s

− g(t)
∣∣∣2 ds = 0. (1.46)

Indeed, let us define

ψs(t) :=
∣∣∣ sin(sg(t))

s
− g(t)

∣∣∣2, s > 0

and note that

ψs(t) ≤
(∣∣∣ sin(sg(t))

s

∣∣∣ + |g(t)|
)2

.

Because | sin x| ≤ |x| for all x ∈ R, we have the estimates

ψs(t) ≤
( |sg(t)|

|s| + |g(t)|
)2

≤ 4|g(t)|2.
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Moreover, the function t �→ 4|g(t)|2 is integrable, and therefore the function
t �→ ψs(t) is dominated by an integrable function.

If t is fixed, then
lim
s→0

ψs(t) = 0.

To prove this fact, let us observe that |g(t)| < ∞. If g(t) = 0, then ψs(t) = 0
for all s and the result is clear. If g(t) �= 0, then

ψs(t) =
∣∣∣g(t)

( sin(sg(t))
sg(t)

− 1
)∣∣∣2

=
∣∣∣g(t)

∣∣∣2∣∣∣ sin(sg(t))
sg(t)

− 1
∣∣∣2

and again ψs(t) → 0 as s → 0.
We have proved that the integrand of the integral in display (1.46) is

dominated by an integrable function and converges to zero. Hence, the
required limit follows from the dominated convergence theorem and, more-
over, DF (0)g = g for all g ∈ L2([0, 1]).

Because DF (0) is the identity map, it follows that

lim
h→0

‖F (h) − h‖
‖h‖ = 0.

But let us consider the sequence of functions {hn}∞
n=1 ⊂ L2([0, 1]) defined

by

hn(t) :=
{

π/2, 0 ≤ t ≤ 1/n,
0, t > 1/n.

Since

‖hn‖ =
(∫ 1

0
(hn(t))2dt

)1/2
=

( 1
n

π2

4

)1/2
=

1√
n

π

2
,

it follows that hn → 0 as n → ∞. Also, let us note that

‖F (hn) − hn‖ =
(∫ 1

0
| sin hn(t) − hn(t)|2dt

)1/2

=
( 1

n

∣∣∣1 − π

2

∣∣∣2)1/2

and therefore

lim
n→∞

‖F (hn) − hn‖
‖hn‖ = lim

n→∞

1√
n
(1 − π

2 )
1√
n

π
2

=
1 − π

2
π
2

�= 0.

This contradiction proves that F is not differentiable at the origin. Is F
differentiable at any other point?
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Exercise 1.154. Consider the evaluation map

eval : Cr(U, Y ) × U → Y

defined by (f, u) �→ f(u). Prove that eval is a Cr map. Also, compute its deriva-
tive.

Exercise 1.155. Suppose that f : R → R is a C2 function such that the
quantity supx∈R

|f ′′(x)| is bounded. Prove that F : X → X as in Example 1.153
is C1. The assumption that f is C2 can be replaced by the weaker hypothesis
that f is C1. This is a special case of the omega lemma (see [2, p. 101]). If
M is a compact topological space, U is an open subset of a Banach space X,
and g is in Cr(U, Y ) where Y is a Banach space and r > 1, then the map
Ωg : C0(M, U) → C0(M, Y ) given by Ωg(f) = g ◦ f is Cr and its derivative
is given by

(DΩg(f)h)(m) = Dg(f(m))h(m).

1.9.1 The Mean Value Theorem
The mean value theorem for functions of several variables is very important.
However, the proof is somewhat more delicate than the usual proof for the
case of a scalar function of one variable. Let us begin with a special case.

Theorem 1.156. Suppose that [a, b] is a closed interval, Y is a Banach
space, and f : [a, b] → Y is a continuous function. If f is differentiable
on the open interval (a, b) and there is some number M > 0 such that
‖f ′(t)‖ ≤ M for all t ∈ (a, b), then

‖f(b) − f(a)‖ ≤ M(b − a).

Proof. Let ε > 0 be given and define φ : [a, b] → R by

φ(t) = ‖f(t) − f(a)‖ − (M + ε)(t − a).

Clearly, φ is a continuous function such that φ(a) = 0. We will show that
φ(b) ≤ ε.

Define S := {t ∈ [a, b] : φ(t) ≤ ε}. Since φ(a) = 0, we have that a ∈ S.
In particular S �= ∅. By the continuity of φ, there is some number c such
that a < c < b and [a, c) ⊆ S. Moreover, since φ is continuous φ(t) → φ(c)
as t → c. Thus, since φ(t) ≤ ε for a ≤ t < c, we must have φ(c) ≤ ε and, in
fact, [a, c] ⊆ S.

Consider the supremum c∗ of the set of all c such that a ≤ c ≤ b and
[a, c] ⊆ S. Let us show that c∗ = b. If c∗ < b, then consider the derivative
of f at c∗ and note that because

lim
‖h‖→0

‖f(c∗ + h) − f(c∗) − f ′(c∗)h‖
‖h‖ = 0,
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there is some h such that c∗ < c∗ + h < b and

‖f(c∗ + h) − f(c∗) − f ′(c∗)h‖ ≤ ε‖h‖.

Set d = c∗ + h and note that

‖f(d) − f(c∗)‖ ≤ ‖f(c∗ + h) − f(c∗) − f ′(c∗)h‖ + ‖f ′(c∗)h‖
≤ ε‖h‖ + M‖h‖
≤ (ε + M)(d − c∗).

Moreover, since

‖f(d) − f(a)‖ ≤ ‖f(d) − f(c∗)‖ + ‖f(c∗) − f(a)‖
≤ (ε + M)(d − c∗) + (M + ε)(c∗ − a) + ε

≤ (ε + M)(d − a) + ε,

we have that
‖f(d) − f(a)‖ − (ε + M)(d − a) ≤ ε,

and, as a result, d ∈ S, in contradiction to the fact that c∗ is the supremum.
Thus, c∗ = b, as required.

Use the equality c∗ = b to conclude that

‖f(b) − f(a)‖ ≤ (ε + M)(b − a) + ε

≤ M(b − a) + ε(1 + (b − a))

for all ε > 0. By passing to the limit as ε → 0, we obtain the inequality

‖f(b) − f(a)‖ ≤ M(b − a),

as required. �

Theorem 1.157 (Mean Value Theorem). Suppose that f : X → Y is
differentiable on an open set U ⊆ X with a, b ∈ U and a + t(b − a) ∈ U for
0 ≤ t ≤ 1. If there is some M > 0 such that

sup
0≤t≤1

‖Df(a + t(b − a))‖ ≤ M,

then
‖f(b) − f(a)‖ ≤ M‖b − a‖.

Proof. Define g(t) := f(a + t(b − a)). Clearly, g is differentiable on [0, 1]
and, by the chain rule, g′(t) = Df(a + t(b − a))(b − a). In particular,

‖g′(t)‖ ≤ ‖Df(a + t(b − a))‖‖b − a‖ ≤ M‖b − a‖.

Here, g : [0, 1] → Y and ‖g′(t)‖ ≤ M‖b − a‖ for 0 ≤ t ≤ 1. By the previous
theorem,

‖g(1) − g(0)‖ ≤ M‖b − a‖,

that is,
‖f(b) − f(a)‖ ≤ M‖b − a‖. �
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1.9.2 Integration in Banach Spaces
This section is a brief introduction to integration on Banach spaces follow-
ing the presentation in [106]. As an application, we will give an alternative
proof of the mean value theorem and a proof of a version of Taylor’s theo-
rem.

Let I denote a closed interval of real numbers and X a Banach space with
norm ‖ ‖. A simple function f : I → X is a function with the following
property: There is a finite cover of I consisting of disjoint subintervals such
that f restricted to each subinterval is constant. Here, each subinterval can
be open, closed, or half open.

A sequence {fn}∞
n=1 of not necessarily simple functions, each mapping I

to X, converges uniformly to a function f : I → X if for each ε > 0 there
is an integer N > 0 such that ‖fn(t) − fm(t)‖ < ε whenever n, m > N and
t ∈ I.

Definition 1.158. A regulated function is a uniform limit of simple func-
tions.

Lemma 1.159. Every continuous function f : I → X is regulated.

Proof. The function f is uniformly continuous. To see this, consider F :
I × I → X defined by F (x, y) = f(y)−f(x) and note that F is continuous.
Since the diagonal D = {(x, y) ∈ I × I : x = y} is a compact subset of
I × I (Why?), its image F (D) is compact in X. Hence, for each ε > 0,
a finite number of ε-balls in X cover the image of D. Taking the inverse
images of the elements of some such covering, we see that there is an open
cover V1, . . . , Vn of the diagonal in I × I such that if (x, y) ∈ Vi, then
‖F (x, y)‖ < ε. For each point (x, x) ∈ D, there is a ball centered at (x, x)
and contained in I × I that is contained in some Vi. By compactness, a
finite number of such balls cover D. Let δ denote the minimum radius of
the balls in this finite subcover. If |x − y| < δ, then (x, y) ∈ Bδ(x, x) and
in fact ‖(x, y) − (x, x)‖ = |y − x| < δ. Thus, (x, y) ∈ Vi for some i in
the set {1, . . . , n}, and, as a result, we have that ‖F (x, y)‖ < ε; that is,
‖f(y) − f(x)‖ = ‖F (x, y)‖ < ε, as required.

Let us suppose that I = {x ∈ R : a ≤ x ≤ b}. For each natural number
n, there is some δ > 0 such that if |x − y| < δ, then ‖f(x) − f(y)‖ < 1

n .
Let us define a corresponding simple function fn by fn(x) = f(a) for a ≤
x ≤ a + δ

2 , fn(x) = f(a + δ
2 ) for a + δ

2 < x ≤ a + δ, fn(x) = f(a + δ) for
a + δ < x ≤ a + 3δ

2 , and so on until a + k δ
2 ≥ b. This process terminates

after a finite number of steps because I has finite length. Also, we have the
inequality ‖fn(x) − f(x)‖ < 1

n for all x ∈ I. Thus, the sequence of simple
functions {fn}∞

n=1 converges uniformly to f . �
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Definition 1.160. The integral of a simple function f : I → X over the
interval I = [a, b] is defined to be∫ b

a

f(t) dt :=
n∑

j=1

µ(Ij)vj

where I1, . . . , In is a partition of I, f |Ij (t) ≡ vj , and µ(Ij) denotes the
length of the interval Ij .

Proposition 1.161. If f is a simple function on I, then the integral of f
over I is independent of the choice of the partition of I.

Proof. The proof is left as an exercise. �

Proposition 1.162. If f is a regulated function defined on the interval
I = [a, b], and if {fn}∞

n=1 is a sequence of simple functions converging
uniformly to f , then the sequence defined by n �→

∫ b

a
fn(t) dt converges

in X. Moreover, if in addition {gn}∞
n=1 is a sequence of simple functions

converging uniformly to f , then

lim
n→∞

∫ b

a

fn(t) dt = lim
n→∞

∫ b

a

gn(t) dt.

Proof. We will show that the sequence n �→
∫ b

a
fn(t) dt is Cauchy. For this,

consider the quantity

‖
∫ b

a

fn(t) dt −
∫ b

a

fm(t) dt‖.

Using χL to denote the characteristic function on the interval L, we have
that, for some partitions of I and vectors {vi} and {wi},

fn(x) =
k∑

i=1

χIi
(x)vi, fm(x) =

l∑
i=1

χJi
(x)wi.

The partitions I1, . . . , Ik and J1, . . . , Jl have a common refinement; that
is, there is a partition of the interval I such that each subinterval in the
new partition is contained in one of the subintervals I1, . . . , Ik, J1, . . . , Jl.
Let this refinement be denoted by K1, . . . , Kp and note that

fn(x) =
p∑

i=1

χKi
(x)αi, fm(x) =

p∑
i=1

χKi
(x)βi.

Also, we have the inequality

‖
∫ b

a

fn(t) dt −
∫ b

a

fm(t) dt‖ = ‖
p∑

i=1

µ(Ki)αi −
p∑

i=1

µ(Ki)βi‖

≤
p∑

i=1

µ(Ki)‖αi − βi‖.
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There are points ti ∈ Ki so that
p∑

i=1

µ(Ki)‖αi − βi‖ =
p∑

i=1

µ(Ki)‖fn(ti) − fm(ti)‖

and, because
∑p

i=1 µ(Ki) = b − a,
p∑

i=1

µ(Ki)‖fn(ti) − fm(ti)‖ ≤ (b − a) max
i

‖fn(ti) − fm(ti)‖

≤ (b − a) max
x∈I

‖fn(x) − fm(x)‖.

By combining the previous inequalities and using the fact that the sequence
{fn}∞

n=1 converges uniformly, it follows that the sequence n �→
∫ b

a
fn(t) dt

is a Cauchy sequence and thus converges to an element of X.
Suppose that {gn}∞

n=1 is a sequence of simple functions that converges
uniformly to f , and let us suppose that∫ b

a

fn(t) dt → F,

∫ b

a

gn(t) dt → G.

We have the estimates

‖F − G‖ ≤ ‖F −
∫ b

a

fn(t) dt‖ + ‖
∫ b

a

fn dt −
∫ b

a

gn dt‖ + ‖
∫ b

a

gn dt − G‖

and

‖
∫ b

a

fn dt −
∫ b

a

gn dt‖ ≤ (b − a) max
x∈I

‖fn(x) − gn(x)‖

≤ (b − a) max
x∈I

(‖fn(x) − f(x)‖ + ‖f(x) − gn(x)‖).

The desired result, the equality F = G, follows by passing to the limit on
both sides of the previous inequality. �

In view of the last proposition, we have the following basic definition:

Definition 1.163. Let f be a regulated function on the interval [a, b] and
{fn}∞

n=1 a sequence of simple functions converging uniformly to f in X.
The integral of f denoted

∫ b

a
f(t) dt is defined to be the limit of the sequence

n �→
∫ b

a
fn dt in X.

Proposition 1.164. The functional f �→
∫ b

a
f(t) dt, defined on the space

of regulated functions, is linear.

Proof. If f and g are regulated on the interval [a, b], with sequences of
simple functions fn → f and gn → g, then cfn + dgn → cf + dg and∫ b

a

(cf + dg)(t) dt =
∫ b

a

(cfn + dgn)(t) dt.
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But, for these simple functions, after a common refinement,∫ b

a

cfn + dgn dt =
n∑

i=1

µ(Ii)(cvi + dwi) = c

n∑
i=1

µ(Ii)vi + d

n∑
i=1

µ(Ii)wi. �

Proposition 1.165. If λ : X → R is a continuous linear functional and
if f : I → X is regulated, then the composition λf := λ ◦ f : I → R is
regulated, and

λ

∫ b

a

f(t) dt =
∫ b

a

(λf)(t) dt.

Proof. If {fn}∞
n=1 is a sequence of simple functions converging uniformly

to f and
fn(x) =

∑
i

χIi
(x)vi,

then
λ(fn(x)) =

∑
i

χIi
(x)λ(vi)

and, in particular, λfn is a simple function for each n. Moreover, λ ◦ f is
regulated by λfn.

A continuous linear functional, by definition, has a bounded operator
norm. Therefore, we have that

|λfn(x) − λf(x)| = |λ(fn(x) − f(x))|
≤ ‖λ‖‖fn(x) − f(x)‖

and∣∣∣λ ∫ b

a

f(t) dt −
∫ b

a

λf(t) dt
∣∣∣

≤
∣∣∣λ ∫ b

a

f(t) dt − λ

∫ b

a

fn(t) dt
∣∣∣ +

∣∣∣λ ∫ b

a

fn(t) dt −
∫ b

a

λf(t) dt
∣∣∣

≤ ‖λ‖‖
∫ b

a

f(t) dt −
∫ b

a

fn(t) dt‖ +
∣∣∣ ∫ b

a

λfn(t) dt −
∫ b

a

λf(t) dt
∣∣∣.

The result follows by passing to the limit as n → ∞. �

Proposition 1.166. If f : [a, b] → X is regulated, then

‖
∫ b

a

f(t) dt‖ ≤ (b − a) sup
t∈[a,b]

‖f(t)‖. (1.47)

Proof. Note that the estimate (1.47) is true for simple functions; in fact,
we have

‖
∑

µ(Ii)vi‖ ≤
∑

µ(Ii) sup(vi) ≤ (b − a)‖f‖.
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Because f is regulated, there is a sequence {fn}∞
n=1 of simple functions

converging to f and, using this sequence, we have the following estimates:

‖
∫ b

a

f(t) dt‖ ≤ ‖
∫ b

a

f(t) dt −
∫ b

a

fn(t) dt‖ + ‖
∫ b

a

fn(t) dt‖

≤ ‖
∫ b

a

f(t) dt −
∫ b

a

fn(t) dt‖ + (b − a) sup
x

‖fn(x)‖

≤ ‖
∫ b

a

f(t) dt −
∫ b

a

fn(t) dt‖

+(b − a) sup
x

‖fn(x) − f(x)‖ + (b − a) sup
x

‖f(x)‖.

The desired result is obtained by passing to the limit as n → ∞. �

Let us now apply integration theory to prove the mean value theorem. We
will use the following proposition.

Proposition 1.167. Suppose that U is an open subset of X. If f : U → Y
is a smooth function, and x + ty ∈ U for 0 ≤ t ≤ 1, then

f(x + y) − f(x) =
∫ 1

0
Df(x + ty)y dt. (1.48)

Proof. Let λ : Y → R be a continuous linear functional and consider the
function F : [0, 1] → R given by

F (t) = λ(f(x + ty)) =: λf(x + ty).

The functional λ is C1 because it is linear. Also, the composition of smooth
maps is smooth. Thus, F is C1.

By the fundamental theorem of calculus, we have that

F (1) − F (0) =
∫ 1

0
F ′(t) dt,

or, equivalently,

λ(f(x + y) − f(x)) = λf(x + y) − λf(x)

=
∫ 1

0
λ(Df(x + ty)y) dt

= λ

∫ 1

0
Df(x + ty)y dt.

Here, f(x + y) − f(x) and
∫ 1
0 Df(x + ty)y dt are elements of Y , and λ has

the same value on these two points. Moreover, by our construction, this
is true for all continuous linear functionals. Thus, it suffices to prove the
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following claim: If u, v are in X and λ(u) = λ(v) for all continuous linear
functionals, then u = v. To prove the claim, set w = u − v and note that
Z := {tw : t ∈ R} is a closed subspace of Y . Moreover, λ0 : Z → R

defined by λ0(tw) = t‖w‖ is a linear functional on Z such that ‖λ0(tw)‖ =
|t|‖w‖ = ‖tw‖. Thus, ‖λ0‖ = 1, and λ0 is continuous. By the Hahn–Banach
theorem, λ0 extends to a continuous linear functional λ on all of Y . But for
this extension we have, λ(w) = λ(1 · w) = ‖w‖ = 0. Thus, we have w = 0,
and u = v. �

With the same hypotheses as in Proposition 1.167, the mean value the-
orem (Theorem 1.157) states that if x + t(z − x) ∈ U for 0 ≤ t ≤ 1, then

‖f(z) − f(x)‖ ≤ ‖z − x‖ sup
t∈[0,1]

‖Df(x + t(z − x))‖. (1.49)

Proof. By Proposition 1.167 we have that

‖f(z) − f(x)‖ = ‖
∫ 1

0
Df(x + t(z − x))(z − x) dt‖.

Also, the function t �→ Df(x + t(z − x))(z − x) is continuous. Thus, the
desired result is an immediate consequence of Lemma 1.159 and Proposi-
tion 1.166. �

The next theorem is a special case of Taylor’s theorem (see [2, p. 93] and
Exercise 1.169).

Theorem 1.168 (Taylor’s Theorem). Suppose that U is an open subset
of X. If f : U → Y is C1 and x + th ∈ U for 0 ≤ t ≤ 1, then

f(x + h) = f(x) + Df(x)h +
∫ 1

0
(Df(x + th)h − Df(x)h) dt.

Proof. By Proposition 1.167 we have

f(x + h) = f(x) +
∫ 1

0
Df(x + th)h dt

= f(x) +
∫ 1

0
((Df(x + th)h − Df(x)h) + Df(x)h) dt

= f(x) + Df(x)h +
∫ 1

0
(Df(x + th)h − Df(x)h) dt,

as required. �

Exercise 1.169. Prove the following generalization of Theorem 1.168. Suppose
that U is an open subset of X. If f : U → Y is Cr and x + th ∈ U for 0 ≤ t ≤ 1,
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then

f(x + h) = f(x) + Df(x)h + D2f(x)h2 + · · · Drf(x)hr

+
∫ 1

0

(1 − t)r−1

(r − 1)!
(Drf(x + th)hr − Drf(x)hr) dt.

1.9.3 The Contraction Principle
In this section, let us suppose that (X, d) is a metric space. A point x0 ∈ X
is a fixed point of a function T : X → X if T (x0) = x0. The fixed point x0
is called globally attracting if limn→∞ Tn(x) = x0 for each x ∈ X.

Definition 1.170. Suppose that T : X → X, and λ is a real number such
that 0 ≤ λ < 1. The function T is called a contraction (with contraction
constant λ) if

d(T (x), T (y)) ≤ λd(x, y)
whenever x, y ∈ X.

The next theorem is fundamental; it states that a contraction, viewed as
a dynamical system, has a globally attracting fixed point.

Theorem 1.171 (Contraction Mapping Theorem). If the function T
is a contraction on the complete metric space (X, d) with contraction con-
stant λ, then T has a unique fixed point x0 ∈ X. Moreover, if x ∈ X, then
the sequence {Tn(x)}∞

n=0 converges to x0 as n → ∞ and

d(Tn(x), x0) ≤ λn

1 − λ
d(x, x0).

Proof. Let us prove first that fixed points of T are unique. Indeed, if
T (x0) = x0 and T (x1) = x1, then, by virtue of the fact that T is a contrac-
tion, d(T (x0), T (x1)) ≤ λd(x0, x1), and, by virtue of the fact that x0 and
x1 are fixed points, d(T (x0), T (x1)) = d(x0, x1). Thus, we have that

d(x0, x1) ≤ λd(x0, x1).

If x0 �= x1, then d(x0, x1) �= 0 and therefore λ ≥ 1, in contradiction.
To prove the existence of a fixed point, let x ∈ X and consider the

corresponding sequence of iterates {Tn(x)}∞
n=1. By repeated applications

of the contraction property, it follows that

d(Tn+1(x), Tn(x)) ≤ λd(Tn(x), Tn−1(x)) ≤ · · · ≤ λnd(T (x), x).

Also, by using the triangle inequality together with this result, we obtain
the inequalities

d(Tn+p(x), Tn(x)) ≤ d(Tn+p(x), Tn+p−1(x)) + · · · + d(Tn+1(x), Tn(x))
≤ (λn+p−1 + · · · + λn)d(T (x), x)
≤ λn(1 + λ + · · · + λp−1)d(T (x), x)

≤ λn

1 − λ
d(T (x), x). (1.50)
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Since 0 ≤ λ < 1, the sequence {λn}∞
n=1 converges to zero, and therefore

{Tn(x)}∞
n=1 is a Cauchy sequence. Thus, this sequence converges to some

point x0 ∈ X.
We will prove that x0 is a fixed point of the map T . Let us first note

that, because the sequences {Tn+1(x)}∞
n=0 and {Tn(x)}∞

n=1 are identical,
limn→∞ Tn+1(x) = x0. Also, by the contraction property, it follows that T
is continuous and

d(Tn+1(x), T (x0)) = d(T (Tn(x)), T (x0)) ≤ λd(Tn(x), x0).

Therefore, using the continuity of T , we have the required limit

lim
n→∞ Tn+1(x) = lim

n→∞ T (Tn(x)) = T (x0).

To prove the estimate in the theorem, pass to the limit as p → ∞ in the
inequality (1.50) to obtain

d(x0, T
n(x)) ≤ λn

1 − λ
d(T (x), x). �

Exercise 1.172. Suppose that X is a set and n is a positive integer. Prove: If
T is a function, T : X → X, and if T n has a unique fixed point, then T has a
unique fixed point.

For a contraction mapping depending on parameters, there is a uniform
version of the contraction principle.

Definition 1.173. Suppose that A is a set, T : X × A → X, and λ ∈ R is
such that 0 ≤ λ < 1. The function T is a uniform contraction if

d(T (x, a), T (y, a)) ≤ λd(x, y)

whenever x, y ∈ X and a ∈ A.

For uniform contractions in a Banach space where the metric is defined
in terms of the Banach space norm by d(x, y) = ‖x − y‖, we have the
following result (see [49]).

Theorem 1.174 (Uniform Contraction Theorem). Suppose that X
and Y are Banach spaces, U ⊆ X and V ⊆ Y are open subsets, Ū denotes
the closure of U , the function T : Ū ×V → Ū is a uniform contraction with
contraction constant λ, and, for each y ∈ V , let g(y) denote the unique
fixed point of the contraction x �→ T (x, y) in Ū . If k is a non-negative in-
teger and T ∈ Ck(Ū × V,X), then g : V → X is in Ck(V,X). Also, if T is
real analytic, then so is g.
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Proof. We will prove the theorem for k = 0, 1.
By the definition of g given in the statement of the theorem, the identity

T (g(y), y) = g(y) holds for all y ∈ Y . If k = 0, then

‖g(y + h) − g(y)‖ = ‖T (g(y + h), y + h) − T (g(y), y)‖

≤ ‖T (g(y + h), y + h) − T (g(y), y + h)‖
+ ‖T (g(y), y + h) − T (g(y), y)‖

≤ λ‖g(y + h) − g(y)‖ + ‖T (g(y), y + h) − T (g(y), y)‖,

and therefore

‖g(y + h) − g(y)‖ ≤ 1
1 − λ

‖T (g(y), y + h) − T (g(y), y)‖.

But T is continuous at the point (g(y), y). Thus, if ε > 0 is given, there is
some δ > 0 such that

‖T (g(y), y + h) − T (g(y), y)‖ < ε whenever ‖h‖ < δ.

In other words, g is continuous, as required.
Suppose that k = 1 and consider the function g : V → Ū given by

g(y) = T (g(y), y). We will prove that g is C1.
The first observation is simple. If g is C1, then, by the chain rule,

Dg(y) = Tx(g(y), y)Dg(y) + Ty(g(y), y).

In other words, if Dg(y) exists, we expect it to be a solution of the equation

z = Tx(g(y), y)z + Ty(g(y), y). (1.51)

We will prove that, for each y ∈ V , the mapping

z �→ Tx(g(y), y)z + Ty(g(y), y),

on the Banach space of bounded linear transformations from Y to X, is a
contraction. In fact, if z1 and z2 are bounded linear transformations from
Y to X, then

‖Tx(g(y), y)z1 + Ty(g(y), y) − (Tx(g(y), y)z2 + Ty(g(y), y))‖
≤ ‖Tx(g(y), y)‖‖z1 − z2‖.

Thus, the map is a contraction whenever ‖Tx(g(y), y)‖ < 1. In fact, as we
will soon see, ‖Tx(g(y), y)‖ ≤ λ. Once this inequality is proved, it follows
from the contraction principle that for each y ∈ V the equation (1.51) has
a unique solution z(y). The differentiability of the the function y �→ g(y) is
then proved by verifying the limit

lim
‖h‖→0

‖g(y + h) − g(y) − z(y)h‖
‖h‖ = 0. (1.52)
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To obtain the required inequality ‖Tx(g(y), y)‖ ≤ λ, let us use the fact
that T is C1. In particular, the partial derivative Tx is a continuous function
and

lim
‖h‖→0

‖T (x + h, y) − T (x, y) − Tx(x, y)h‖
‖h‖ = 0.

Let ξ ∈ X be such that ‖ξ‖ = 1 and note that for each ε > 0, if we set
h = εξ, then we have

‖Tx(x, y)ξ‖ = ‖1
ε
Tx(x, y)h‖

≤ 1
ε

(
‖T (x + h, y) − T (x, y) − Tx(x, y)h‖

+ ‖T (x + h, y) − T (x, y)‖
)

=
‖T (x + h, y) − T (x, y) − Tx(x, y)h‖

‖h‖ +
λ‖h‖
‖h‖ .

Passing to the limit as ε → 0, we obtain ‖Tx(x, y)ξ‖ ≤ λ, as required.
To prove (1.52), set γ = γ(h) := g(y + h) − g(y). Since, g(y) is a fixed

point of the contraction mapping T , we have

γ = T (g(y) + γ, y + h) − T (g(y), y).

Set

∆ := T (g(y) + γ, y + h) − T (g(y), y) − Tx(g(y), y)γ − Ty(g(y), y)h

and note that

γ = T (g(y) + γ, y + h) − T (g(y), y) − Tx(g(y), y)γ
−Ty(g(y), y)h + Tx(g(y), y)γ + Ty(g(y), y)h

= Tx(g(y), y)γ + Ty(g(y), y)h + ∆.

Also, since T is C1, we have for each ε > 0 a δ > 0 such that ‖∆‖ <
ε(‖γ‖ + ‖h‖) whenever ‖γ‖ < δ and ‖h‖ < δ.

The function h �→ γ(h) is continuous. This follows from the first part of
the proof since T ∈ C0. Thus, we can find δ1 > 0 so small that δ1 < δ and
‖γ(h)‖ < δ whenever ‖h‖ < δ1, and therefore

‖∆(γ(h), h)‖ ≤ ε(‖γ(h)‖ + ‖h‖) whenever ‖h‖ < δ1.

For ‖h‖ < δ1, we have

‖γ(h)‖ = ‖Tx(g(y), y)γ + Ty(g(y), y)h + ∆(γ, y)‖

≤ λ‖γ‖ + ‖Ty(g(y), y)‖‖h‖ + ε(‖γ(h)‖ + ‖h‖)
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and, as a result,

(1 − λ − ε)‖γ(h)‖ ≤ (‖Ty(g(y), y)‖ + ε)‖h‖.

If we take ε < 1 − λ, then

‖γ(h)‖ ≤ 1
1 − λ − ε

(‖Ty(g(y), y)‖ + ε)‖h‖ := ψ‖h‖,

and it follows that

‖∆(γ(h), h)‖ ≤ ε(1 + ψ)‖h‖, ‖h‖ < δ1, 0 < ε < 1 − λ.

Finally, recall equation (1.51),

z = Tx(g(y), y)z + Ty(g(y), y),

and note that

(I − Tx(g(y), y))(γ(h) − z(y)h) = γ(h) − Tx(g(y), y)γ(h) − Ty(g(y), y)h
= ∆(γ(h), h).

Also, since ‖Tx(g(y), y)‖ < λ < 1, we have

(I − Tx(g(y), y))−1 = I +
∞∑

j=1

T j
x

and
‖(I − Tx(g(y), y))−1‖ ≤ 1

1 − ‖Tx‖ ≤ 1
1 − λ

.

This implies the inequality

‖γ(h) − z(y)h‖ ≤ ε

1 − λ
(1 + ψ)‖h‖,

and the limit (1.52) follows.
By our previous result about solutions of contractions being continuously

dependent on parameters, y �→ z(y) is continuous. This completes the proof
of the theorem for the case k = 1. �

Let us extend the contraction principle to bundles. The result of this
extension, called the fiber contraction theorem [93], is useful in proving the
smoothness of functions that are defined as fixed points of contractions.

Let X and Y denote metric spaces. A map Γ : X × Y → X × Y of the
form

Γ(x, y) = (Λ(x), Ψ(x, y))

where Λ : X → X, and Ψ : X × Y → Y is called a bundle map over
the base Λ with principal part Ψ. Here, the triple (X × Y, X, π), where
π : X × Y → X given by the projection π(x, y) = x, is called the trivial
bundle over X with fiber Y .
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Definition 1.175. Suppose that µ ∈ R is such that 0 ≤ µ < 1. The
bundle map Γ : X ×Y → X ×Y is called a fiber contraction if the function
y �→ Γ(x, y) is a contraction with contraction constant µ for every y ∈ Y .

Theorem 1.176 (Fiber Contraction Theorem). Suppose that X and
Y denote metric spaces, and that Γ : X ×Y → X ×Y is a continuous fiber
contraction over Λ : X → X with principal part Ψ : X × Y → Y . If Λ has
a globally attracting fixed point x∞, and if y∞ is a fixed point of the map
y �→ Ψ(x∞, y), then (x∞, y∞) is a globally attracting fixed point of Γ.

Remark: The proof does not require the metric spaces X or Y to be
complete.

Proof. Let dX denote the metric for X, let dY denote the metric for Y ,
and let the metric on X × Y be defined by d := dX + dY . We must show
that for each (x, y) ∈ X × Y we have limn→∞ Γn(x, y) = (x∞, y∞) where
the limit is taken with respect to the metric d.

For notational convenience, let us denote the map y �→ Ψ(x, y) by Ψx.
Then, for example, we have

Γn(x, y) = (Λn(x), ΨΛn(x) ◦ ΨΛn−1(x) ◦ · · · ◦ Ψx(y)),

and, using the triangle inequality, the estimate

d(Γn(x, y), (x∞, y∞)) ≤ d(Γn(x, y), Γn(x, y∞)) + d(Γn(x, y∞), (x∞, y∞)).
(1.53)

Note that

d(Γn(x, y), Γn(x, y∞)) = dY (ΨΛn(x) ◦ ΨΛn−1(x) ◦ · · · ◦ Ψx(y),
ΨΛn+1(x) ◦ ΨΛn(x) ◦ · · · ◦ Ψx(y∞)).

Moreover, if µ is the contraction constant for the fiber contraction Γ, then
we have

d(Γn(x, y), Γn(x, y∞)) ≤ µndY (y, y∞).

Thus, d(Γn(x, y), Γn(x, y∞)) → 0 as n → ∞.
For the second summand of (1.53), we have

d(Γn(x, y∞), (x∞, y∞)) ≤ dX(Λn(x), x∞) + dY (ΨΛn(x) ◦ · · · ◦ Ψx(y∞), y∞).

By the hypothesis that x∞ is a global attractor, the first summand on the
right hand side of the last inequality converges to zero as n → ∞. Thus, to
complete the proof, it suffices to verify the limit

lim
n→∞ dY (ΨΛn(x) ◦ ΨΛn−1(x) ◦ · · · ◦ Ψx(y∞), y∞) = 0. (1.54)
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Let us observe that

dY (ΨΛn(x) ◦ · · · ◦ Ψx(y∞), y∞) ≤ dY (ΨΛn(x) ◦ · · · ◦ Ψx(y∞), ΨΛn(x)(y∞))
+dY (ΨΛn(x)(y∞), y∞)

≤ µdY (ΨΛn−1(x) ◦ · · · ◦ Ψx(y∞), y∞)
+dY (ΨΛn(x)(y∞), y∞),

and by induction that

dY (ΨΛn(x) ◦ ΨΛn−1(x) ◦ · · · ◦ Ψx(y∞), y∞) ≤
n∑

j=0

µn−jdY (ΨΛj(x)(y∞), y∞).

For each nonnegative integer m, define am := dY (ΨΛm(x)(y∞), y∞). Each
am is nonnegative and

am = dY (Ψ(Λm(x), y∞), Ψ(x∞, y∞)).

Using the continuity of Ψ and the hypothesis that x∞ is a globally attract-
ing fixed point, it follows that the sequence {am}∞

m=0 converges to zero
and is therefore bounded. If A is an upper bound for the elements of this
sequence, then for each m = 0, 1, . . . ,∞ we have 0 ≤ am < A.

Let ε > 0 be given. There is some K > 0 so large that

0 ≤ 1
2
ak < (1 − µ)ε

whenever k ≥ K. Hence, if n ≥ K, then

n∑
j=0

µn−jaj =
K−1∑
j=0

µn−jaj +
n∑

j=K

µn−jaj

≤ A
K−1∑
j=0

µn−j +
1
2
(1 − µ)ε

n∑
j=K

µn−j

≤ A
µn−K−1

1 − µ
+

1
2
ε.

Moreover, there is some N ≥ K such that

µn−K−1 <
(1 − µ)ε

2A

whenever n ≥ N . In other words, limn→∞
∑n

j=0 µn−jaj = 0. �

As mentioned above, the fiber contraction principle is often used to prove
that functions obtained as fixed points of contractions are smooth. We will
use this technique as one method to prove that the flow defined by a smooth
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differential equation is smooth, and we will use a similar argument again
when we discuss the smoothness of invariant manifolds. Thus, it seems
appropriate to codify the ideas that are used in these proofs to apply the
fiber contraction principle. We will discuss a general guide to the analysis
and a simple result to illustrate the procedure.

The setting for our analysis is given by a contraction Λ : C → C, where C
denotes a closed subset of a Banach space of continuous functions that map
a Banach space X to a Banach space Y . Let α∞ ∈ C denote the unique
fixed point of Λ, and recall that α∞ is globally attracting; that is, if α ∈ C,
then Λn(α) → α∞ as n → ∞.

Define the Banach space of all (supremum norm) bounded continuous
functions from X to the linear maps from X to Y and denote this space
by C(X, L(X, Y )). Elements of C(X, L(X, Y )) are the candidates for the
derivatives of functions in C. Also, let C1 denote the subset of C consisting
of all continuously differentiable functions with bounded derivatives.

The first step of the method is to show that if α ∈ C1, then the derivative
of Λ has the form

((DΛ)(α))(ξ) = Ψ(α, Dα)(ξ)

where ξ ∈ X and where Ψ is a map

Ψ : C × C(X, L(X, Y )) → C(X, L(X, Y )).

Next, define the bundle map

Λ� : C × C(X, L(X, Y )) → C × C(X, L(X, Y ))

by

(α,Φ) �→ (Λ(α), Ψ(α,Φ))

and prove that Λ� is a fiber contraction.
Finally, pick a point α0 ∈ C1 so that (α0, Dα0) ∈ C(X, L(X, Y )), let

(φ0, Φ0) = (α0, Dα0), and define

(φn+1, Φn+1) = Λ�(φn, Φn).

By the fiber contraction principle, the sequence given by (φn, Φn) converges
to (α∞, Φ∞) where Φ∞ ∈ C(X, L(X, Y )). By the construction of Ψ, if
n ≥ 0, then D(φn) = Φn. If the convergence is uniform (or at least uniform
on compact subsets of X), then we obtain the desired result, D(α∞) = Φ∞,
as an application of the following theorem from advanced calculus (see
Exercise 1.181).

Theorem 1.177. If a sequence of differentiable functions is uniformly
convergent and if the corresponding sequence of their derivatives is uni-
formly convergent, then the limit function of the original sequence is dif-
ferentiable and its derivative is the limit of the corresponding sequence of
derivatives.
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Moreover, we have Φ∞ ∈ C(X, L(X, Y )), and therefore Φ∞ is continuous.
In particular, the fixed point α∞ is continuously differentiable.

We will state a simple result to illustrate a typical application of the fiber
contraction principle. For this, let us consider specifically the linear space
C0(RM , RN ) consisting of all continuous functions f : R

M → R
N and let

C0(RM , RN ) denote the subspace consisting of all f ∈ C0(RM , RN ) such
that the supremum norm is finite; that is,

‖f‖ := sup
ξ∈RM

|f(ξ)| < ∞.

Of course, C0(RM , RN ) is a Banach space with the supremum norm. Also,
let B0

ρ(RM , RN ) denote the subset of C0(RM , RN ) such that, for

f ∈ B0
ρ(RM , RN ),

the Lipschitz constant of f is bounded by ρ; that is,

Lip(f) := sup
ξ1 
=ξ2

|f(ξ1) − f(ξ2)|
|ξ1 − ξ2|

≤ ρ.

It can be proved (see Exercise 1.180) that B0
ρ(RM , RN ) is a closed subset of

C0(RM , RN ). It follows that B0
ρ(RM , RN ) is a complete metric space with

respect to the supremum norm.
If f ∈ C0(RM , RN ) and f is continuously differentiable with derivative

Df , then recall that Df is an element of the space C0(RM , L(RM , RN )),
the space of continuous functions from R

M to the bounded linear maps
from R

M to R
N . The subspace F of all such maps that are bounded with

respect to the norm

‖Φ‖ := sup
ξ∈RN

(
sup
|v|=1

|Φ(ξ)v|
)
,

is a Banach space. The subset Fρ of this space given by the closed metric
ball of radius ρ > 0 (that is, all Φ such that ‖Φ‖ ≤ ρ) is again a complete
metric space relative to the norm just defined.

Theorem 1.178. If 0 < δ < 1 and F : R
N → R

N is a continuously
differentiable function such that ‖F‖ < ∞ and ‖DF‖ < δ, then for each
number ρ with 0 < ρ < 1, the functional equation f = F ◦ f has a unique
solution α in B0

ρ(RM , RN ). Moreover, α is continuously differentiable with
‖Dα‖ < δ.

Proof. If f ∈ B0
ρ(RM , RN ), then the function F ◦ f is continuous. Also,

we have that

‖F ◦ f‖ ≤ sup
ξ∈RM

|F (f(ξ))| ≤ sup
ζ∈RN

|F (ζ)| < ∞,



1.9 Review of Calculus 115

and, by the mean value theorem,

|F (f(ξ1)) − F (f(ξ2))| ≤ ‖DF‖|f(ξ1) − f(ξ2)| < δ Lip(f)|ξ1 − ξ2|;

that is, Lip(F ◦f) < δ Lip(f) ≤ δρ < ρ. In other words, F ◦f is an element
of the space B0

ρ(RM , RN ).
Let us define Λ : B0

ρ(RM , RN ) → B0
ρ(RM , RN ) by

Λ(f)(ξ) := F (f(ξ)),

and note that if f1 and f2 are in B0
ρ(RM , RN ), then

|Λ(f1)(ξ) − Λ(f2)(ξ)| < δ‖f1 − f2‖;

that is, Λ is a contraction on the complete metric space B0
ρ(RM , RN ). There-

fore, there is a unique function α ∈ B0
ρ(RM , RN ) such that α = F ◦ α.

Moreover, if f ∈ B0
ρ(RM , RN ), then limn→∞ Λn(f) = α.

It remains to prove that the function α is continuously differentiable. To
this end, let us note that if φ ∈ B0

ρ(RM , RN ) and Φ ∈ Fρ, then

‖DF (φ(ξ))Φ(ξ)‖ < δρ < ρ.

Also, let us define a function Ψ : B0
ρ(RM , RN ) × Fρ → Fρ by

Ψ(φ,Φ)(ξ) := DF (φ(ξ))Φ(ξ).

It follows that the function Φ �→ Ψ(φ,Φ) is a contraction on Fρ; in fact,

‖Ψ(φ,Φ1)(ξ) − Ψ(φ,Φ2)(ξ)‖ < δ‖Φ1 − Φ2‖.

In other words, the function

Λ� : B0
ρ(RM , RN ) × Fρ → B0

ρ(RM , RN ) × Fρ

given by

Λ�(φ,Φ) := (Λ(φ),Ψ(φ,Φ))

is a fiber contraction.
Let Φ∞ denote the unique fixed point of the contraction Φ �→ Ψ(α,Φ)

over the fixed point α. Also, let us define a sequence in B0
ρ(RM , RN ) × Fρ

as follows: (φ0, Φ0) = (0, 0) and, for each positive integer n,

(φn+1, Φn+1) := Λ�(φn, Φn).

Note that Dφ0 = Φ0 and, proceeding by induction, if Dφn = Φn, then

Dφn+1 = DΛ(φn) = DF (φn)Dφn = Ψ(φn, Dφn) = Ψ(φn, Φn) = Φn+1;
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that is, Dφn = Φn for all integers n ≥ 0.
By the fiber contraction theorem, we have that

lim
n→∞ φn = α, lim

n→∞ Dφn = Φ∞.

The sequence {φn}∞
n=0 converges uniformly to α and the sequence of its

derivatives converges uniformly to a limit. By Theorem 1.177 we have that
α is differentiable with derivative Φ∞. Thus, α is continuously differen-
tiable. �

Exercise 1.179. Let U denote an open ball in R
n or the entire space, and V

an open ball in R
m. Prove that the set of bounded continuous functions from U

to R
n is a Banach space, hence a complete metric space. Also, prove that the set

of continuous functions from U into V̄ as well as the set of continuous functions
from V̄ to R

n are Banach spaces.

Exercise 1.180. Prove that B0
ρ(RM , R

N ) is a closed subset of the Banach space
C0(RM , R

N ).

Exercise 1.181. Prove Theorem 1.177.

1.9.4 The Implicit Function Theorem
The implicit function theorem is one of the most useful theorems in analysis.
We will prove it as a corollary of the uniform contraction theorem.

Theorem 1.182 (Implicit Function Theorem). Suppose that X, Y ,
and Z are Banach spaces, U ⊆ X, V ⊆ Y are open sets, F : U×V → Z is a
C1 function, and (x0, y0) ∈ U×V with F (x0, y0) = 0. If Fx(x0, y0) : X → Z
has a bounded inverse, then there is a product neighborhood U0×V0 ⊆ U×V
with (x0, y0) ∈ U0×V0 and a C1 function β : V0 → U0 such that β(y0) = x0.
Moreover, if F (x, y) = 0 for (x, y) ∈ U0 × V0, then x = β(y).

Proof. Define L : Z → X by Lz = [Fx(x0, y0)]−1z and G : U × V → X
by G(x, y) = x − LF (x, y). Note that G is C1 on U × V and F (x, y) = 0
if and only if G(x, y) = x. Moreover, we have that G(x0, y0) = x0 and
Gx(x0, y0) = I − LFx(x0, y0) = 0.

Since G is C1, there is a product neighborhood U0 × V1 whose factors
are two metric balls, U0 ⊆ U centered at x0 and V1 ⊆ V centered at y0,
such that

‖Gx(x, y)‖ <
1
2

whenever (x, y) ∈ U0 × V1.
Let us suppose that the ball U0 has radius δ > 0. Note that the function

given by y �→ F (x0, y) is continuous and vanishes at y0. Thus, there is a
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metric ball V0 ⊆ V1 centered at y0 such that

‖L‖‖F (x0, y)‖ <
δ

2

for every y ∈ V0. With this choice of V0, if (x, y) ∈ U0 × V0, then, by the
mean value theorem,

‖G(x, y) − x0‖ = ‖G(x, y) − G(x0, y) + G(x0, y) − x0‖
≤ ‖G(x, y) − G(x0, y)‖ + ‖LF (x0, y)‖

≤ sup
u∈U1

‖Gx(u, y)‖‖x − x0‖ +
δ

2
≤ δ.

In other words, G(x, y) ∈ Ū0; that is, G : Ū0 × V0 → Ū0.
Again, by the mean value theorem, it is easy to see that G is a uniform

contraction; in fact,

‖G(x1, y) − G(x2, y)‖ ≤ sup
u∈U1

‖Gx(u, y)‖‖x1 − x2‖

≤ 1
2
‖x1 − x2‖.

Thus, there is a unique smooth function y �→ β(y) defined on the open ball
V0 such that β(y0) = x0 and G(β(y), y) ≡ β(y). In particular,

β(y) = β(y) − LF (β(y), y)

and therefore F (β(y), y) ≡ 0, as required. �

1.10 Existence, Uniqueness, and Extensibility

In this section we will prove the basic existence and uniqueness theorems for
differential equations. We will also prove a theorem on extensibility of so-
lutions. While the theorems on existence, uniqueness, and extensibility are
the foundation for theoretical study of ordinary differential equations, there
is another reason to study their proofs. In fact, the techniques used in this
section are very important in the modern development of our subject. In
particular, the implicit function theorem is used extensively in perturbation
theory, and the various extensions of the contraction principle are funda-
mental techniques used to prove the existence and smoothness of invariant
manifolds. We will demonstrate these tools by proving the fundamental
existence theorem for differential equations in two different ways.

Suppose that J ⊆ R, Ω ⊆ R
n, and Λ ⊆ R

m are all open sets, and

f : J × Ω × Λ → R
n
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given by (t, x, λ) �→ f(t, x, λ) is a continuous function. Recall that if λ ∈ Λ,
then a solution of the ordinary differential equation

ẋ = f(t, x, λ) (1.55)

is a differentiable function σ : J0 → Ω defined on some open subinterval
J0 ⊆ J such that

dσ

dt
(t) = f(t, σ(t), λ)

for all t ∈ J0. For t0 ∈ J , x0 ∈ Ω, and λ0 ∈ Λ, the initial value problem
associated with the differential equation (1.55) is given by the differential
equation together with an initial value for the solution as follows:

ẋ = f(t, x, λ0), x(t0) = x0. (1.56)

If σ is a solution of the differential equation as defined above such that in
addition σ(t0) = x0, then we say that σ is a solution of the initial value
problem (1.56).

Theorem 1.183. If the function f : J × Ω × Λ → R
n in the differential

equation (1.55) is continuously differentiable, t0 ∈ J , x0 ∈ Ω, and λ0 ∈
Λ, then there are open sets J0 ⊆ J , Ω0 ⊆ Ω, and Λ0 ⊆ Λ such that
(t0, x0, λ0) ∈ J0×Ω0×Λ0, and a unique C1 function σ : J0×Ω0×Λ0 → R

n

given by (t, x, λ) → σ(t, x, λ) such that t �→ σ(t, x0, λ0) is a solution of the
initial value problem (1.56).

Proof. The proof we will give is due to Joel Robbin [148]. Suppose that
σ is a solution of the initial value problem (1.56), δ > 0, and σ is defined
on the interval [t0 − δ, t0 + δ]. In this case, if we define τ := (t − t0)/δ and
z(τ) = σ(δτ + t0) − x0, then z(0) = 0 and for −1 ≤ τ ≤ 1,

dz

dτ
(τ) = δσ̇(δτ + t0) = δf(δτ + t0, z + x0, λ0). (1.57)

Conversely, if the differential equation (1.57) has a solution defined on
a subinterval of −1 ≤ τ ≤ 1, then the differential equation (1.55) has
a solution. Thus, it suffices to show the following proposition: If δ > 0 is
sufficiently small, then the differential equation (1.57) has a solution defined
on the interval −1 ≤ τ ≤ 1.

Define the Banach spaces

X := {φ ∈ C1([−1, 1], Rn) : φ(0) = 0}, Y := C([−1, 1], Rn)

where the norm on Y is the usual supremum norm, the norm on X is given
by

‖φ‖1 = ‖φ‖ + ‖φ′‖,

and φ′ denotes the first derivative of φ. Also, define the function

F : K × J × Ω × Λ × X → Y
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by
F (δ, t, x, λ, φ)(τ) = φ′(τ) − δf(δτ + t, φ(τ) + x, λ).

We will apply the implicit function theorem to F .
We will show that the function F is C1. Since the second summand in

the definition of F is C1, it suffices to show that the map d given by φ �→ φ′

is a C1 map from X to Y .
Note that φ′ ∈ Y for each φ ∈ X and d is a linear transformation.

Because
‖dφ‖ ≤ ‖dφ‖ + ‖φ‖ = ‖φ‖1,

the linear transformation d is continuous. Since the map d : X → Y is
linear and bounded, it is its own derivative. In particular, d is continuously
differentiable.

If (t0, x0, λ0) ∈ J × Ω × Λ, then F (0, t0, x0, λ0, 0)(τ) = 0. Also, if we set
δ = 0 before the partial derivative is computed, then it is easy to see that

Fφ(0, t0, x0, λ0, 0) = d.

In order to show that Fφ(0, t0, x0, λ0, 0) has a bounded inverse, it suffices
to show that d has a bounded inverse. To this end, define L : Y → X by

(Ly)(τ) =
∫ τ

0
y(s)ds.

Clearly,
(d ◦ L) (y) = y and (L ◦ d) (ψ) = ψ.

Thus, L is an inverse for d. Moreover, since

‖Ly‖1 = ‖Ly‖ + ‖(d ◦ L)y‖

≤ ‖y‖ + ‖y‖ ≤ 2‖y‖,

it follows that L is bounded.
By an application of the implicit function theorem to F , we have proved

the existence of a unique smooth function (δ, t, x, λ) �→ β(δ, t, x, λ), with
domain an open set K0 × J0 × Ω0 × Λ0 containing the point (0, t0, x0, λ0)
and range in X such that β(0, t0, x0, λ0) = 0 and

F (δ, t, x, λ, β(δ, t, x, λ)) ≡ 0.

Thus, there is some δ > 0 such that

τ �→ z(τ, t0, x0, λ0) := β(δ, t0, x0, λ0)(τ)

is the required solution of the differential equation (1.57). Of course, this
solution depends smoothly on τ and all of its parameters. �
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We will now consider a proof of Theorem 1.183 that uses the contraction
principle and the fiber contraction theorem. For this, it is convenient to
make a minor change in notation and to introduce a few new concepts.

Instead of working directly with the initial value problem (1.56), we will
study the solutions of initial value problems of the form

ẋ = F (t, x), x(t0) = x0 (1.58)

where there is no dependence on parameters. In fact, there is no loss of gen-
erality in doing so. Note that the initial value problem (1.56) is “equivalent”
to the following system of differential equations:

ẏ = f(t, y, λ), λ̇ = 0, y(t0) = y0. (1.59)

In particular, if we define x = (y, λ) and F (t, (y, λ)) := (f(t, y, λ), 0), then
solutions of the initial value problem (1.56) can be obtained from solutions
of the corresponding initial value problem (1.58) in the obvious manner.
Moreover, smoothness is preserved. Thus, it suffices to work with the initial
value problem (1.58).

The existence of a local solution for the initial value problem (1.58) can
be proved using only the continuity of the function F . However, is F is
merely continuous, then a solution of the initial value problem may not be
unique. A sufficient condition for uniqueness is the requirement that F is
Lipschitz with respect to its second argument; that is, there is a constant
λ > 0 such that for each t ∈ J and for all x1, x2 ∈ Ω,

|f(t, x1) − f(t, x2)| ≤ λ|x1 − x2|

where |x| is the usual norm of x ∈ R
n. We will not prove the most general

possible result; rather we will prove the following version of Theorem 1.183.

Theorem 1.184. If the function F : J × Ω → R
n in the initial value

problem (1.58) is continuous and Lipschitz (with respect to its second ar-
gument), t0 ∈ J , and x0 ∈ Ω, then there are open sets J0 ⊆ J and
Ω0 ⊆ Ω such that (t0, x0) ∈ J0 × Ω0 and a unique continuous function
σ : J0 × Ω0 → R

n given by (t, x) → σ(t, x) such that t �→ σ(t, x0) is a
solution of the initial value problem (1.58). If, in addition, F is C1, then
so is the function σ.

Proof. The function t �→ x(t) is a solution of the initial value problem if
and only if it is a solution of the integral equation

x(t) = x0 +
∫ t

t0

F (s, x(s)) ds.

In fact, if dx/dt = F (t, x), then, by integration, we obtain the integral
equation. On the other hand, if t �→ x(t) satisfies the integral equation,
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then, by the fundamental theorem of calculus

dx

dt
= F (t, x(t)).

Fix (t0, x0) ∈ J×Ω. Let b(t0, δ) and B(x0, ν) denote metric balls centered
at t0 and x0 with positive radii, respectively δ and ν, such that

b̄(t0, δ) × B̄(x0, ν) ⊆ J × Ω.

Since F is continuous on J × Ω, there is some number M > 0 such that

sup
(t,x)∈b(t0,δ)×B(x0,ν)

|F (t, x)| ≤ M.

Since F is Lipschitz on J × Ω, there is some number λ > 0 such that, for
each t ∈ J and all x1, x2 ∈ Ω,

|F (t, x1) − F (t, x2)| ≤ λ|x1 − x2|.

If F ∈ C1 on J × Ω, then there is some number K > 0 such that

sup
(t,x)∈b(t0,δ)×B(x0,ν)

‖DF (t, x)‖ ≤ K, (1.60)

where, recall, DF (t, x) is the derivative of the map x �→ F (t, x) and

‖DF (t, x)‖ := sup
{v∈Rn:|v|=1}

|DF (t, x)v|

with |x| the usual norm of x ∈ R
n.

Choose δ > 0 so that δλ < min(1, ν
2 ) and δM < ν

2 , and define the Banach
space

X := C(b(t0, δ) × B(x0,
ν

2
), B̄(x0, ν))

with norm given by

‖φ‖ = sup
(t,x)∈b(t0,δ)×B(x0, ν

2 )
|φ(t, x)|.

In case F is C1, let us agree to choose δ as above, but with the additional
restriction that δK < 1. Finally, define the operator Λ on X by

Λ(φ)(t, x) = x +
∫ t

t0

F (s, φ(s, x)) ds. (1.61)

Let us prove that Λ : X → X. Clearly, we have Λ(φ) ∈ C(b(t0, δ) ×
B(x0,

ν
2 ), Rn). In view of the inequality

|Λ(φ)(t, x) − x0| ≤ |x − x0| +
∫ t

t0

|F (s, φ(s, x))| ds

≤ |x − x0| + δM

<
1
2
ν +

1
2
ν,
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the range of the operator Λ is in B̄(x0, ν), as required.
The operator Λ is a contraction. In fact, if φ1, φ2 ∈ X, then

|Λ(φ1)(t, x) − Λ(φ2)(t, x)| ≤
∫ t

t0

|F (s, φ1(s, x)) − F (s, φ2(s, x))| ds

≤ δλ‖φ1 − φ2‖,

and therefore
‖Λ(φ1) − Λ(φ2)‖ ≤ δM‖φ1 − φ2‖,

as required. By the contraction principle, Λ has a unique fixed point. This
function is a solution of the initial value problem (1.58) and it is continu-
ously dependent on the initial condition.

If φ∞ denotes the fixed point of Λ, then d
dtφ∞(t, x) = F (t, φ∞(t, x)). In

view of the fact that the functions φ∞ and F are continuous, it follows
that, for each fixed x ∈ B(x0,

ν
2 ), the function t �→ φ∞(t, x) is C1. To

show that φ∞ is C1, it suffices to show that for each fixed t ∈ b(t0, δ)
the function x �→ φ∞(t, x) is C1. We will prove this fact using the fiber
contraction principle. The idea for this part of the proof is due to Jorge
Sotomayor [165].

Let us define a Banach space consisting of the “candidates” for the deriva-
tives of functions in X with respect to their second arguments. To this end,
let L(Rn, Rn) denote the set of linear transformations of R

n and define the
Banach space

Y := C(b(t0, δ) × B(x0,
ν

2
), L(Rn, Rn))

consisting of all indicated functions that are bounded with respect to the
norm on Y given by

‖Φ‖ := sup
(t,x)∈b(t0,δ)×B(x0, ν

2 )
‖Φ(t, x)‖,

where, as defined above,

‖Φ(t, x)‖ := sup
{v∈Rn:|v|=1}

|Φ(t, x)v|.

Let I denote the identity transformation on R
n, DF (t, x) the derivative

of the map x �→ F (t, x), and define Ψ : X × Y → Y by

Ψ(φ,Φ)(t, x) := I +
∫ t

t0

DF (s, φ(s, x))Φ(s, x) ds.

Also, define Γ : X × Y → X × Y by

Γ(φ,Φ) := (Λ(φ),Ψ(φ,Φ)).
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To prove that Γ is a bundle map, is suffices to check that Γ is continuous.
The proof of this fact uses the compactness of the interval b̄(t0, δ); the
details are left to the reader.

Let us prove that Γ is a fiber contraction. Recall that we have chosen the
radius of the time interval, δ > 0, so small that δK < 1, where the number
K is defined in equation (1.60). Using this fact, we have

‖Ψ(φ,Φ1)(t, x) − Ψ(φ,Φ2)(t, x)‖

= ‖
∫ t

t0

DF (s, φ(s, x))(Φ1(s, x) − Φ2(s, x)) ds‖

< δK‖Φ1 − Φ2‖,

as required.
Let φ0(t, x) ≡ x and note that (φ0, I) ∈ X × Y . By the fiber contraction

theorem (Theorem 1.176), the iterates of the point (φ0, I) under Γ converge
to a globally attracting fixed point, namely, (φ∞, Φ∞), where in this case
φ∞ is the solution of the initial value problem (the fixed point of Λ) and
Φ∞ is the unique fixed point of the contraction Φ �→ Ψ(φ∞, Φ) on Y .

We will prove that Dφ∞(t, ·) = Φ∞(t, ·). (The derivative denoted by
D is the partial derivative with respect to the second variable.) Let us
start with the equation Dφ0(t, x) = I, and for each integer n > 1 define
(φn, Φn) := Γn(φ0, I) so that

Φn+1(t, x) = Ψ(φn, Φn)(t, x) := I +
∫ t

t0

DF (s, φn(s, x))Φn(s, x) ds,

φn+1(t, x) = x +
∫ t

t0

F (s, φn(s, x)) ds.

Let us show the identity Dφn(t, ·) = Φn(t, ·) for each integer n ≥ 0. The
equation is true for n = 0. Proceeding by induction on n, let us assume
that the equation is true for some fixed integer n ≥ 0. Then, using the fact
that we can “differentiate under the integral,” the derivative

Dφn+1(t, x) =
∂

∂x
(x +

∫ t

t0

F (s, φn(s, x)) ds)

is clearly equal to

I +
∫ t

t0

DF (s, φn(s, x))Φn(s, x) ds = Φn+1(t, x),

as required. Thus, we have proved that the sequence {Dφn(t, ·)}∞
n=0 con-

verges to Φ∞(t, ·). Finally, by Theorem 1.177 we have that Dφ∞(t, ·) =
Φ∞(t, ·). �
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Exercise 1.185. It is very easy to show that a C2 differential equation has a
C1 flow. Why? We have proved above the stronger result that a C1 differential
equation has a C1 flow. Show that a Cr differential equation has a Cr flow for
r = 2, 3, . . . , ∞. Also, show that a real analytic differential equation has a real
analytic flow.

So far we have proved that initial value problems have unique solutions
that exist on some (perhaps small) interval containing the initial time. If we
wish to find a larger interval on which the solution is defined, the following
problem arises. Suppose that the initial value problem

ẋ = f(t, x), x(t0) = x0

has a solution t �→ φ(t) defined on some interval J containing t0. Maybe
the solution is actually defined on some larger time interval J1 ⊇ J . If we
have a second solution ψ(t) defined on J1, then, by our local uniqueness
result, ψ(t) = φ(t) on J . But, we may ask, does ψ(t) = φ(t) on J1? The
answer is yes.

To prove this fact, consider all the open intervals containing J . The union
of all such intervals on which φ(t) = ψ(t) is again an open interval J∗; it
is the largest open interval on which φ and ψ agree. Let us prove that
J∗ ⊇ J1. If not, then the interval J∗ has an end point t1 ∈ J1 that is not
an endpoint of J1. Suppose that t1 is the right hand endpoint of J∗. By
continuity,

φ(t1) = ψ(t1).

Thus, by our local existence theorem, there is a unique solution of the
initial value problem

ẋ = f(t, x), x(t1) = φ(t1)

defined in some neighborhood of t1. It follows that φ(t) = ψ(t) on some
larger interval. This contradiction implies that J∗ ⊇ J1, as required. In
particular, if a solution extends, then it extends uniquely.

Our existence theorem for solutions of initial value problems gives no
information about the length of the maximal interval of existence. In fact,
the exact domain on which a given solution is defined is usually very difficult
to determine. We will formulate and prove an abstract theorem in this
direction that is often useful. However, before formulating this result, let
us recall that even if the vector field associated with a differential equation
has no singularities, solutions of the differential equation may not exist
for all t ∈ R. The classic example (already mentioned) is the initial value
problem

ẋ = x2, x(0) = 1.

The maximal interval of existence of the solution x(t) = (1 − t)−1 is the
interval (−∞, 1). Moreover, this solution blows up in finite time, that is,
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x(t) → ∞ as t → 1−. Following the presentation in [95], the next theorem
shows that our example illustrates the typical behavior.

Theorem 1.186. Let U ⊆ R
n and J ⊆ R be open sets such that the open

interval (α, β) is contained in J . Also, let x0 ∈ U . If f : J × U → R
n is a

C1 function and the maximal interval of existence of the solution t → φ(t)
of the initial value problem ẋ = f(t, x), x(t0) = x0 is α < t0 < β with
β < ∞, then for each compact set K ⊂ U there is some t ∈ (α, β) such that
φ(t) �∈ K. In particular, either |φ(t)| becomes unbounded or φ(t) approaches
the boundary of U as t → β.

Proof. Suppose that the solution φ has maximal interval of existence (α, β)
with β < ∞ and K is a compact subset of U such that φ(t) ∈ K for all
t ∈ (α, β). We will show that under these assumptions the interval (α, β)
is not maximal.

The set [t0, β] × K is compact. Thus, there is some M > 0 such that
|f(t, x)| < M for each (t, x) ∈ [t0, β] × K. Moreover, the function φ :
[t0, β) → K is continuous.

We will show that the function φ extends continuously to the interval
[t0, β]. Note first that φ is uniformly continuous on [t0, β). In fact, if s1, s2 ∈
[t0, β) and s1 < s2, then

|φ(s2) − φ(s1)| =
∣∣∣ ∫ s2

s1

f(t, φ(t)) dt
∣∣∣ ≤ M |s2 − s1|. (1.62)

A standard theorem from advanced calculus states that φ extends contin-
uously to [t0, β]. However, for completeness we will prove this fact for our
special case.

Construct a sequence {tn}∞
n=1 of numbers in the interval [t0, β) that

converges to β, and recall that a convergent sequence is Cauchy. By in-
equality (1.62), the sequence {φ(tn)}∞

n=1 is also Cauchy. Hence, there is
some ω ∈ R such that φ(tn) → ω as n → ∞.

Let us extend the function φ to the closed interval [t0, β] by defining
φ(β) = ω. We will prove that this extension is continuous. For this, it
suffices to show that if {sj}∞

n=1 is a sequence in [t0, β) that converges to β,
then limj→∞ φ(sj) = ω. (Why?)

We have that

|φ(sj) − ω| ≤ |φ(sj) − φ(tj)| + |φ(tj) − ω|.

Let ε > 0 be given. If δ = ε/(2M), then |φ(s) − φ(t)| < ε/2 whenever
s, t ∈ [t0, β) and |s − t| < δ. Also, because

|sj − tj | ≤ |sj − β| + |tj − β|,

there is some integer N such that |sj − tj | < δ whenever j ≥ N , and
therefore

|φ(sj) − ω| ≤ ε

2
+ |φ(tj) − ω|
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whenever j ≥ N . Moreover, since φ(tj) → ω as j → ∞, there is some
N1 ≥ N such that |φ(tj) − ω| < ε/2 whenever j ≥ N1. In particular, for
j ≥ N1, we have |φ(sj) − ω| < ε, and it follows that φ(sj) → ω. In other
words, φ extends continuously to β.

For t0 ≤ t < β, the function φ is a solution of the differential equation. In
particular, φ is continuously differentiable on [t0, β) and, on this interval,

φ(t) = φ(t0) +
∫ t

t0

f(s, φ(s)) ds.

Moreover, since f is continuous and φ has a continuous extension, the map
s �→ f(s, φ(s)) is continuous on [t0, β]. Thus, if follows that

φ(β) = φ(t0) + lim
t→β−

∫ t

t0

f(s, φ(s)) ds

= φ(t0) +
∫ β

t0

f(s, φ(s)) ds. (1.63)

By the existence theorem for differential equations, there is a number
δ > 0 such that the initial value problem

ẋ = f(t, x), x(β) = φ(β)

has a solution t �→ ψ(t) defined on the interval (β − δ, β + δ) ⊆ J . Let us
use this fact to define the continuous function γ : [t0, β + δ) → R

n by

γ(t) =

{
φ(t), if t0 ≤ t ≤ β,

ψ(t), if β < t < β + δ.

For t0 ≤ t ≤ β, we have that

γ(t) = φ(t0) +
∫ t

t0

f(s, γ(s)) ds. (1.64)

Also, in view of equation (1.63), if β < t < β + δ, then

γ(t) = φ(β) +
∫ t

β

f(s, γ(s)) ds

= φ(t0) +
∫ t

t0

f(s, γ(s)) ds.

In other words, the equality (1.64) is valid on the interval [t0, β + δ). It
follows that γ is a solution of the differential equation that extends the
solution φ. This violates the maximality of β—there is some t such that
φ(t) is not in K. �



2
Linear Systems and Stability

In this chapter we will study the differential equation

ẋ = A(t)x + f(x, t), x ∈ R
n

where A is a smooth n × n matrix-valued function and f is a smooth
function such that f(0, t) = fx(0, t) ≡ 0. Note that if f has this form, then
the associated homogeneous linear system ẋ = A(t)x is the linearization of
the differential equation along the zero solution t �→ φ(t) ≡ 0.

One of the main objectives of the chapter is the proof of the basic results
related to the principle of linearized stability. For example, we will prove
that if the matrix A is constant and all of its eigenvalues have negative real
parts, then the zero solution (also called the trivial solution) is asymptoti-
cally stable. However, much of the chapter is devoted to the general theory
of homogeneous linear systems; that is, systems of the form ẋ = A(t)x. In
particular, we will study the important special cases where A is a constant
or periodic function.

In case t �→ A(t) is a constant function, we will show how to reduce
the solution of the system ẋ = Ax to a problem in linear algebra. Also, by
defining the matrix exponential, we will discuss the flow of this autonomous
system as a one-parameter group with generator A.

The nonautonomous system ẋ = A(t)x is not completely understood.
However, the solution of the system for the special case where t �→ A(t) is
a periodic matrix-valued function is reducible to the constant matrix case.
We will develop a useful theory of periodic matrix systems, called Floquet
theory, and use it to prove this basic result. The Floquet theory will ap-
pear again later when we discuss the stability of periodic nonhomogeneous
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systems. In particular, we will use Floquet theory in a stability analysis of
the inverted pendulum (see Section 3.5).

Because linear systems theory is so well developed, it is used extensively
in many areas of applied science. For example, linear systems theory is an
essential tool for electromagnetics, circuit theory, and the theory of vibra-
tion. In addition, the results of this chapter are a fundamental component
of control theory.

2.1 Homogeneous Linear Differential Equations

This section is devoted to a general discussion of the homogeneous linear
system

ẋ = A(t)x, x ∈ R
n

where t �→ A(t) is a smooth function from some open interval J ⊆ R to the
space of n × n matrices. Here, the continuity properties of matrix-valued
functions are determined by viewing the space of n × n matrices as R

n2
;

that is, every matrix is viewed as an element in the Cartesian space by
simply listing the rows of the matrix consecutively to form a row vector of
length n2. We will prove an important general inequality and then use it
to show that solutions of linear systems cannot blow up in finite time. We
will discuss the basic result that the set of solutions of a linear system is a
vector space, and we will exploit this fact by showing how to construct the
general solution of a linear homogeneous system with constant coefficients.

2.1.1 Gronwall’s Inequality
The important theorem proved in this section does not belong to the theory
of linear differential equations per se, but it is presented here because it will
be used to prove the global existence of solutions of homogeneous linear
systems.

Theorem 2.1 (Gronwall’s Inequality). Suppose that a < b and let α,
φ, and ψ be nonnegative continuous functions defined on the interval [a, b].
Moreover, suppose that either α is a constant function, or α is differentiable
on [a, b] with positive derivative α̇, If, for all t ∈ [a, b],

φ(t) ≤ α(t) +
∫ t

a

ψ(s)φ(s) ds, (2.1)

then

φ(t) ≤ α(t)e
∫ t

a
ψ(s) ds (2.2)

for all t ∈ [a, b].
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Proof. In case α is a constant function, let us assume for the moment that
α > 0. If α is not constant, then, because α̇ > 0 and α is nonnegative, we
have that α is positive on the interval (a, b]. However, let us also assume
for the moment that α(a) > 0.

The function on the interval [a, b] defined by t �→ α(t) +
∫ t

a
ψ(s)φ(s) ds

is positive and exceeds φ. Thus, we have that

φ(t)

α(t) +
∫ t

a
ψ(s)φ(s) ds

≤ 1.

Multiply both sides of this inequality by ψ(t), add and subtract α̇(t) in the
numerator of the resulting fraction, rearrange the inequality, and use the
obvious estimate to obtain the inequality

α̇(t) + ψ(t)φ(t)

α(t) +
∫ t

a
ψ(s)φ(s) ds

≤ α̇(t)
α(t)

+ ψ(t),

which, when integrated over the interval [a, t], yields the inequality

ln
(
α(t) +

∫ t

a

ψ(s)φ(s) ds
)

− ln(α(a)) ≤
∫ t

a

ψ(s) ds + ln(α(t)) − ln(α(a)).

After we exponentiate both sides of this last inequality and use hypothe-
sis (2.1), we find that, for each t in the interval [a, b],

φ(t) ≤ α(t)e
∫ t

a
ψ(s) ds ≤ α(t)e

∫ t
a

ψ(s) ds. (2.3)

Finally, if α ≡ 0 or α(a) = 0, then for each ε > 0 we have the inequality

φ(t) ≤ (α(t) + ε) +
∫ t

a

ψ(s)φ(s) ds,

and, as a result of what we have just proved, we have the estimate

φ(t) ≤ (α(t) + ε)e
∫ t

a
ψ(s) ds.

The desired inequality follows by passing to the limit (for each fixed t ∈
[a, b]) as ε → 0. �

Exercise 2.2. What can you say about a continuous function f : R → [0, ∞)
if

f(x) ≤
∫ x

0
f(t) dt?
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Exercise 2.3. Prove the “specific Gronwall lemma” [157]: If, for t ∈ [a, b],

φ(t) ≤ δ2(t − a) + δ1

∫ t

a

φ(s) ds + δ3,

where φ is a nonnegative continuous function on [a, b], and δ1 > 0, δ2 ≥ 0, and
δ3 ≥ 0 are constants, then

φ(t) ≤
(δ2

δ1
+ δ3

)
eδ1(t−a) − δ2

δ1
.

2.1.2 Homogeneous Linear Systems: General Theory
Consider the homogeneous linear system

ẋ = A(t)x, x ∈ R
n. (2.4)

By our general existence theory, the initial value problem

ẋ = A(t)x, x(t0) = x0 (2.5)

has a unique solution that exists on some open interval containing t0. How-
ever, for this linear system a stronger statement is true.

Theorem 2.4. If t �→ A(t) is continuous on the interval α < t < β and
if α < t0 < β (maybe α = −∞ or β = ∞), then the solution of the initial
value problem (2.5) is defined on the open interval (α, β).

Proof. If x0 = 0, then φ(t) ≡ 0 is a solution of the initial value problem
that is defined on the interval (α, β).

Suppose that x0 �= 0. Because the continuous function t �→ A(t) is
bounded on each compact subinterval of (α, β), it is easy to see that the
function (t, x) �→ A(t)x is locally Lipschitz with respect to its second ar-
gument. Consider the solution t �→ φ(t) of the initial value problem (2.5)
given by the general existence theorem (Theorem 1.184) and let J0 denote
its maximal interval of existence. Suppose that J0 does not contain (α, β).
For example, suppose that the right hand end point b of J0 is less than β.
We will show that this assumption leads to a contradiction. The proof for
the left hand end point is similar.

If t ∈ J0, then we have

φ(t) − φ(t0) =
∫ t

t0

A(s)φ(s) ds.

By the continuity of A and the compactness of [t0, b], there is some M > 0
such that ‖A(t)‖ ≤ M for all t ∈ [t0, b]. (The notation ‖ ‖ is used for the
matrix norm corresponding to some norm ‖ ‖ on R

n.) Thus, for t ∈ J0, we
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have the following inequality:

‖φ(t)‖ ≤ ‖x0‖ +
∫ t

t0

‖A(s)‖‖φ(s)‖ ds

≤ ‖x0‖ +
∫ t

t0

M‖φ(s)‖ ds.

In addition, by Gronwall’s inequality, with ψ(t) := M , we have

‖φ(t)‖ ≤ ‖x0‖e
M

∫ t
t0

ds = ‖x0‖eM(t−t0).

Thus, ‖φ(t)‖ is uniformly bounded on [t0, b).
By the extensibility theorem and the fact that the boundary of R

n is
empty, we must have ‖φ(t)‖ → ∞ as t → b−, in contradiction to the
existence of the uniform bound. �

Exercise 2.5. Use Gronwall’s inequality to prove the following important in-
equality: If t �→ β(t) and t �→ γ(t) are solutions of the smooth differential equation
ẋ = f(x) and both are defined on the time interval [0, T ], then there is a constant
L > 0 such that

|β(t) − α(t)| ≤ |β(0) − α(0)|eLt.

Thus, two solutions diverge from each other at most exponentially fast. Also,
if the solutions have the same initial condition, then they coincide. Therefore,
the result of this exercise provides an alternative proof of the general uniqueness
theorem for differential equations.

2.1.3 Principle of Superposition
The foundational result about linear homogeneous systems is the principle
of superposition: The sum of two solutions is again a solution. A precise
statement of this principle is the content of the next proposition.

Proposition 2.6. If the homogeneous system (2.4) has two solutions φ1(t)
and φ2(t), each defined on some interval (a, b), and if λ1 and λ2 are num-
bers, then t → λ1φ1(t) + λ2φ2(t) is also a solution defined on the same
interval.

Proof. To prove the proposition, we use the linearity of the differential
equation. In fact, we have

d

dt
(λ1φ1(t) + λ2φ2(t)) = λ1φ̇1(t) + λ2φ̇2(t)

= λ1A(t)φ1(t) + λ2A(t)φ2(t)

= A(t)(λ1φ1(t) + λ2φ2(t)).

�
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As a natural extension of the principle of superposition, we will prove
that the set of solutions of the homogeneous linear system (2.4) is a finite
dimensional vector space of dimension n.

Definition 2.7. A set of n solutions of the homogeneous linear differen-
tial equation (2.4), all defined on the same open interval J , is called a
fundamental set of solutions on J if the solutions are linearly independent
functions on J .

Proposition 2.8. If t → A(t) is defined on the interval (a, b), then the
system (2.4) has a fundamental set of solutions defined on (a, b).

Proof. If c ∈ (a, b) and e1, . . . , en denote the usual basis vectors in R
n,

then there is a unique solution t �→ φi(t) such that φi(c) = ei for i =
1, . . . , n. Moreover, by Theorem 2.4, each function φi is defined on the
interval (a, b). Let us assume that the set of functions {φi : i = 1, . . . , n} is
linearly dependent and derive a contradiction. In fact, if there are scalars αi,
i = 1, . . . , n, not all zero, such that

∑n
i=1 αiφi(t) ≡ 0, then

∑n
i=1 αiei ≡ 0.

In view of the linear independence of the usual basis, this is the desired
contradiction. �

Proposition 2.9. If F is a fundamental set of solutions of the linear sys-
tem (2.4) on the interval (a, b), then every solution defined on (a, b) can be
expressed as a linear combination of the elements of F .

Proof. Suppose that F = {φ1, . . . , φn}. Pick c ∈ (a, b). If t �→ φ(t) is
a solution defined on (a, b), then φ(c) and φi(c), for i = 1, . . . , n, are all
vectors in R

n. We will show that the set B := {φi(c) : i = 1, . . . , n}
is a basis for R

n. If not, then there are scalars αi, i = 1, . . . , n, not all
zero, such that

∑n
i=1 αiφi(c) = 0. Thus, y(t) :=

∑n
i=1 αiφi(t) is a solution

with initial condition y(c) = 0. But the zero solution has the same initial
condition. Thus, y(t) ≡ 0, and therefore

∑n
i=1 αiφi(t) ≡ 0. This contradicts

the hypothesis that F is a linearly independent set, as required.
Using the basis B, there are scalars β1, . . . , βn ∈ R such that φ(c) =∑n
i=1 βiφi(c). It follows that both φ and

∑n
i=1 βiφi are solutions with the

same initial condition, and, by uniqueness, φ =
∑n

i=1 βiφi. �

Definition 2.10. An n × n matrix function t �→ Ψ(t), defined on an open
interval J , is called a matrix solution of the homogeneous linear system (2.4)
if each of its columns is a (vector) solution. A matrix solution is called
a fundamental matrix solution if its columns form a fundamental set of
solutions. In addition, a fundamental matrix solution t �→ Ψ(t) is called
the principal fundamental matrix at t0 ∈ J if Ψ(t0) = I.

If t �→ Ψ(t) is a matrix solution of the system (2.4) on the interval J ,
then Ψ̇(t) = A(t)Ψ(t) on J . By Proposition 2.8, there is a fundamental
matrix solution. Moreover, if t0 ∈ J and t �→ Φ(t) is a fundamental matrix
solution on J , then (by the linear independence of its columns) the matrix
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Φ(t0) is invertible. It is easy to see that the matrix solution defined by
Ψ(t) := Φ(t)Φ−1(t0) is the principal fundamental matrix solution at t0.
Thus, system (2.4) has a principal fundamental matrix solution at each
point in J .

Definition 2.11. The state transition matrix for the homogeneous linear
system (2.4) on the open interval J is the family of fundamental matrix
solutions t �→ Ψ(t, τ) parametrized by τ ∈ J such that Ψ(τ, τ) = I, where
I denotes the n × n identity matrix.

Proposition 2.12. If t �→ Φ(t) is a fundamental matrix solution for the
system (2.4) on J , then Ψ(t, τ) := Φ(t)Φ−1(τ) is the state transition ma-
trix. Also, the state transition matrix satisfies the Chapman–Kolmogorov
identities

Ψ(τ, τ) = I, Ψ(t, s)Ψ(s, τ) = Ψ(t, τ)

and the identities

Ψ(t, s)−1 = Ψ(s, t),
∂Ψ
∂s

(t, s) = −Ψ(t, s)A(s).

Proof. See Exercise 2.13. �

A two-parameter family of operator-valued functions that satisfies the
Chapman–Kolmogorov identities is called an evolution family.

In the case of constant coefficients, that is, in case t �→ A(t) is a constant
function, the corresponding homogeneous linear system is autonomous,
and therefore its solutions define a flow. This result also follows from the
Chapman–Kolmogorov identities.

To prove the flow properties, let us show first that if t �→ A(t) is a
constant function, then the state transition matrix Ψ(t, t0) depends only
on the difference t−t0. In fact, since t �→ Ψ(t, t0) and t �→ Ψ(t+s, t0+s) are
both solutions satisfying the same initial condition at t0, they are identical.
In particular, with s = −t0, we see that Ψ(t, t0) = Ψ(t − t0, 0). If we define
φt := Ψ(t, 0), then using the last identity together with the Chapman–
Kolmogorov identities we find that

Ψ(t + s, 0) = Ψ(t, −s) = Ψ(t, 0)Ψ(0,−s) = Ψ(t, 0)Ψ(s, 0).

Thus, we recover the group property φt+s = φtφs. Since, in addition, φ0 =
Ψ(0, 0) = I, the family of operators φt defines a flow. In this context, φt is
also called an evolution group.

If t �→ Φ(t) is a fundamental matrix solution for the linear system (2.4)
and v ∈ R

n, then t �→ Φ(t)v is a (vector) solution. Moreover, every solution
is obtained in this way. In fact, if t �→ φ(t) is a solution, then there is
some v such that Φ(t0)v = φ(t0). (Why?) By uniqueness, we must have
Φ(t)v = φ(t). Also, note that Ψ(t, t0)v has the property that Ψ(t0, t0)v = v.
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In other words, Ψ “transfers” the initial state v to the final state Ψ(t, t0)v.
Hence, the name “state transition matrix.”

Exercise 2.13. Prove Proposition 2.12.

Exercise 2.14. Suppose u̇ = f(u) is a differential equation on R
n with flow

φt. Show that the family of principal fundamental matrix solutions Φ(t, u) of the
family of variational equations ẇ = Df(φt(u))w is a linear cocycle over the flow
φt; that is, a family of functions, each mapping from R × R

n to the set of linear
transformations of R

n such that Φ(0, u) = I and Φ(t+ s, u) = Φ(t, φs(u))Φ(s, u).
(To learn why cocycles are important, see [39].)

The linear independence of a set of solutions of a homogeneous linear
differential equation can be determined by checking the independence of a
set of vectors obtained by evaluating the solutions at just one point. This
useful fact is perhaps most clearly expressed by Liouville’s formula.

Proposition 2.15 (Liouville’s formula). Suppose that t �→ Φ(t) is a
matrix solution of the homogeneous linear system (2.4) on the open interval
J . If t0 ∈ J , then

det Φ(t) = det Φ(t0)e
∫ t

t0
tr A(s) ds

where det denotes determinant and tr denotes trace. In particular, Φ(t) is a
fundamental matrix solution if and only if the columns of Φ(t0) are linearly
independent.

Proof. The matrix solution t �→ Φ(t) is a differentiable function. Thus, we
have that

lim
h→0

1
h

[Φ(t + h) − (I + hA(t))Φ(t)] = 0.

In other words, using the “little oh” notation,

Φ(t + h) = (I + hA(t))Φ(t) + o(h). (2.6)

(Formally, the little oh has the following meaning: f(x) = g(x)+ o(h(x)) if

lim
x→0+

|f(x) − g(x)|
h(x)

= 0.

Thus, we should write o(±h) in equation (2.6), but this technicality is not
important in this proof.)

Using the definition of the determinant of an n × n matrix, that is, if
B := (bij), then

det B =
∑

σ

sgn(σ)
n∏

i=1

bi,σ(i),
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and by the fact that the determinant of a product of matrices is the product
of their determinants, we have

det Φ(t + h) = det(I + hA(t)) det Φ(t) + o(h)
= (1 + h trA(t)) det Φ(t) + o(h),

and therefore
d

dt
det Φ(t) = trA(t) det Φ(t).

Integration of this last differential equation gives the desired result. �

Exercise 2.16. Find a fundamental matrix solution of the system

ẋ =
(

1 −1/t
1 + t −1

)
x, t > 0.

Hint: x(t) =
(

1
t

)
is a solution.

2.1.4 Linear Equations with Constant Coefficients
In this section we will consider the homogeneous linear system

ẋ = Ax, x ∈ R
n (2.7)

where A is a real n × n (constant) matrix. We will show how to reduce
the problem of constructing a fundamental set of solutions of system (2.7)
to a problem in linear algebra. In addition, we will see that the principal
fundamental matrix solution at t = 0 is given by the exponential of the
matrix tA just as the fundamental scalar solution at t = 0 of the scalar
differential equation ẋ = ax is given by t �→ eat.

Let us begin with the essential observation of the subject: The solutions of
system (2.7) are intimately connected with the eigenvalues and eigenvectors
of the matrix A. To make this statement precise, let us recall that a complex
number λ is an eigenvalue of A if there is a complex nonzero vector v such
that Av = λv. In general, the vector v is called an eigenvector associated
with the eigenvalue λ if Av = λv. Moreover, the set of all eigenvectors
associated with an eigenvalue forms a vector space. Because a real matrix
can have complex eigenvalues, it is convenient to allow for complex solutions
of the differential equation (2.7). Indeed, if t �→ u(t) and t �→ v(t) are real
functions, and if t �→ φ(t) is defined by φ(t) := u(t)+ iv(t), then φ is called
a complex solution of system (2.7) provided that u̇ + iv̇ = Au + iAv. Of
course, if φ is a complex solution, then we must have u̇ = Au and v̇ = Av.
Thus, it is clear that φ is a complex solution if and only if its real and
imaginary parts are real solutions. This observation is used in the next
proposition.
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Proposition 2.17. Let A be a real n×n matrix and consider the ordinary
differential equation (2.7).

(1) The function given by t �→ eλtv is a real solution if and only if λ ∈ R,
v ∈ R

n, and Av = λv.

(2) If v �= 0 is an eigenvector for A with eigenvalue λ = α + iβ such
that β �= 0, then the imaginary part of v is not zero. In this case, if
v = u + iw ∈ C

n, then there are two real solutions

t → eαt[(cos βt)u − (sin βt)w],

t → eαt[(sinβt)u + (cos βt)w].

Moreover, these solutions are linearly independent.

Proof. If Av = λv, then

d

dt
(eλtv) = λeλtv = eλtAv = Aeλtv.

In particular, the function t → eλtv is a solution.
If λ = α + iβ and β �= 0, then, because A is real, v must be of the form

v = u + iw for some u, w ∈ R
n with w �= 0. The real and imaginary parts

of the corresponding solution

eλtv = e(α+iβ)t(u + iw)
= eαt(cos βt + i sin βt)(u + iw)
= eαt[(cos βt)u − (sin βt)w + i((sinβt)u + (cos βt)w)]

are real solutions of the system (2.7). To show that these real solutions
are linearly independent, suppose that some linear combination of them
with coefficients c1 and c2 is identically zero. Evaluation at t = 0 and at
t = π/(2β) yields the equations

c1u + c2w = 0, c2u − c1w = 0.

By elimination of u we find that (c2
1 + c2

2)w = 0. Since w �= 0, both coeffi-
cients must vanish. This proves (2).

Finally, we will complete the proof of (1). Suppose that λ = α + iβ and
v = u+ iv. If eλtv is real, then β = 0 and w = 0. Thus, in fact, λ and v are
real. On the other hand, if λ and v are real, then eλtv is a real solution. In
this case,

λeλtv = Aeλtv,

and we have that λv = Av. �
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A fundamental matrix solution of system (2.7) can be constructed explic-
itly if the eigenvalues of A and their multiplicities are known. To illustrate
the basic idea, let us suppose that C

n has a basis B := {v1, . . . , vn} con-
sisting of eigenvectors of A, and let {λ1, . . . , λn} denote the corresponding
eigenvalues. For example, if A has n distinct eigenvalues, then the set con-
sisting of one eigenvector corresponding to each eigenvalue is a basis of C

n.
At any rate, if B is a basis of eigenvectors, then there are n corresponding
solutions given by

t �→ eλitvi, i = 1, . . . , n,

and the matrix

Φ(t) = [eλ1tv1, . . . e
λntvn],

which is partitioned by columns, is a matrix solution. Because det Φ(0) �=
0, this solution is a fundamental matrix solution, and moreover Ψ(t) :=
Φ(t)Φ−1(0) is the principal fundamental matrix solution of (2.7) at t =
0. Let us note that a principal fundamental matrix for a real system is
necessarily real. In fact, if Λ(t) denotes the imaginary part of a principal
fundamental matrix solution, then Λ(0) = 0. But then, by the uniqueness
of solutions of initial value problems, Λ(t) ≡ 0. Thus, even if some of the
eigenvalues of A are complex, the fundamental matrix solution t �→ Φ(t)
defined above is real.

Continuing under the assumption that A has a basis B of eigenvectors,
let us show that there is a change of coordinates that transforms the system
ẋ = Ax, x ∈ R

n, to a decoupled system of n scalar differential equations.
To prove this result, let us first define the matrix B := [v1, . . . , vn] whose
columns are the eigenvectors in B. The matrix B is invertible. Indeed,
consider the action of B on the usual basis vectors and recall that the vector
obtained by multiplication of a vector by a matrix is a linear combination of
the columns of the matrix; that is, if w = (w1, . . . , wn) is (the transpose of)
a vector in C

n, then the product Bw is equal to
∑n

i=1 wivi. In particular,
we have Bei = vi, i = 1, . . . , n. This proves that B is invertible. In fact,
B−1 is the unique linear map such that B−1vi = ei.

Using the same idea, let us compute

B−1AB = B−1A[v1, . . . , vn]

= B−1[λ1v1, . . . , λnvn]

= [λ1e1, . . . , λnen]

=

λ1 0
. . .

0 λn

 .

In other words, D := B−1AB is a diagonal matrix with the eigenvalues
of A as its diagonal elements. The diffeomorphism of C

n given by the
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linear transformation x = By transforms the system (2.7) to ẏ = Dy, as
required. Or, using our language for general coordinate transformations,
the push forward of the vector field with principal part x �→ Ax by the
diffeomorphism B−1 is the vector field with principal part y �→ Dy. In
particular, the system ẏ = Dy is given in components by

ẏ1 = λ1y1, . . . , ẏn = λnyn.

Note that if we consider the original system in the new coordinates, then
it is obvious that the functions

yi(t) := eλitei, i = 1, . . . , n

are a fundamental set of solutions for the differential equation ẏ = Dy.
Moreover, by transforming back to the original coordinates, it is clear that
the solutions

xi(t) := eλitBei = eλitvi, i = 1, . . . , n

form a fundamental set of solutions for the original system (2.7). Thus,
we have an alternative method to construct a fundamental matrix solu-
tion: Change coordinates to obtain a new differential equation, construct
a fundamental set of solutions for the new differential equation, and then
transform these new solutions back to the original coordinates. Even if A
is not diagonalizable, a fundamental matrix solution of the associated dif-
ferential equation can still be constructed using this procedure. Indeed, we
can use a basic fact from linear algebra: If A is a real matrix, then there is
a nonsingular matrix B such that D := B−1AB is in (real) Jordan canoni-
cal form [51], [95]. Then, as before, the system (2.7) is transformed by the
change of coordinates x = By into the linear system ẏ = Dy.

We will eventually give a detailed description of the Jordan form and also
show that the corresponding canonical system of differential equations can
be solved explicitly. This solution can be transformed back to the original
coordinates to construct a fundamental matrix solution of ẋ = Ax.

Instead of writing out the explicit, perhaps complicated, formulas for the
components of the fundamental matrix solution of an n × n linear system
of differential equations, it is often more useful, at least for theoretical
considerations, to treat the situation from a more abstract point of view. In
fact, we will show that there is a natural generalization of the exponential
function to a function defined on the set of square matrices. Using this
matrix exponential function, the solution of a linear homogeneous system
with constant coefficients is given in a form that is analogous to the solution
t �→ etax0 of the scalar differential equation ẋ = ax.

Recall that the set of linear transformations L(Rn) (respectively L(Cn))
on R

n (respectively C
n) is an n2-dimensional Banach space with respect

to the operator norm
‖A‖ = sup

‖v‖=1
‖Av‖.
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Most of the theory we will develop is equally valid for either of the vector
spaces R

n or C
n. When the space is not at issue, we will denote the Banach

space of linear transformations by L(E) where E may be taken as either
R

n or C
n. The theory is also valid for the set of (operator norm) bounded

linear transformations of an arbitrary Banach space.

Exercise 2.18. Prove: L(E) is a finite dimensional Banach space with respect
to the operator norm.

Exercise 2.19. The space of n×n matrices is a topological space with respect
to the operator topology. Prove that the set of matrices with n distinct eigenvalues
is open and dense. A property that is defined on the countable intersection of
open dense sets is called generic.

Proposition 2.20. If A ∈ L(E), then the series I +
∑∞

n=1
1
n!A

n is abso-
lutely convergent.

Proof. It suffices to show that the sequence of partial sums {SN}∞
N=1 for

the series 1 +
∑∞

n=1
1
n!‖An‖ is a Cauchy sequence. Let us define

SN := 1 + ‖A‖ +
1
2!

‖A2‖ + · · · +
1

N !
‖AN‖.

Note that the partial sums of the convergent series

∞∑
n=0

‖A‖n

n!
= e‖A‖

form a Cauchy sequence. Using this fact, the estimate ‖An‖ ≤ ‖A‖n, and
the triangle inequality, it follows that SN is a Cauchy sequence in L(E). �

Define the exponential map exp : L(E) → L(E) by

exp(A) := I +
∞∑

n=1

1
n!

An.

Also, let us use the notation eA := exp(A).
The main properties of the exponential map are summarized in the fol-

lowing proposition.

Proposition 2.21. Suppose that A, B ∈ L(E).

(0) If A ∈ L(Rn), then eA ∈ L(Rn).

(1) If B is nonsingular, then B−1eAB = eB−1AB.

(2) If AB = BA, then eA+B = eAeB.
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(3) e−A = (eA)−1. In particular, the image of exp is in the general linear
group GL(E) consisting of the invertible elements of L(E).

(4) d
dt (e

tA) = AetA = etAA. In particular, t �→ etA is the fundamental
matrix solution of the system (2.7) at t = 0.

(5) ‖eA‖ ≤ e‖A‖.

Proof. The proof of (0) is obvious.
To prove (1), define

SN := I + A +
1
2!

A2 + · · · +
1

N !
AN ,

and note that if B is nonsingular, then B−1AnB = (B−1AB)n. Thus, we
have that

B−1SNB = I + B−1AB +
1
2!

(B−1AB)2 + · · · +
1

N !
(B−1AB)N ,

and, by the definition of the exponential map,

lim
N→∞

B−1SNB = eB−1AB .

Using the continuity of the linear map on L(E) defined by C �→ B−1CB,
it follows that

lim
N→∞

B−1SNB = B−1eAB,

as required.
As the first step in the proof of (4), consider the following proposition: If

s, t ∈ R, then e(s+t)A = esAetA. To prove it, let us denote the partial sums
for the series representation of etA by

SN (t) := I + tA +
1
2!

(tA)2 + · · · +
1

N !
(tA)N

= I + tA +
1
2!

t2A2 + · · · +
1

N !
tNAN .

We claim that

SN (s)SN (t) = SN (s + t) +
2N∑

n=N+1

Pn(s, t)An (2.8)

where Pn(s, t) is a homogeneous polynomial of degree n such that

|Pn(s, t)| ≤ (|s| + |t|)n

n!
.
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To obtain this identity, note that the nth order term of the product, at
least for 0 ≤ n ≤ N , is given by( n∑

j=0

1
(n − j)!j!

sn−jtj
)
An =

( 1
n!

n∑
j=0

n!
(n − j)!j!

sn−jtj
)
An =

1
n!

(s + t)nAn.

Also, for N + 1 ≤ n ≤ 2N , the nth order term is essentially the same, only
some of the summands are missing. In fact, these terms all have the form( n∑

j=0

δ(j)
(n − j)!j!

sn−jtj
)
An

where δ(j) has value zero or one. Each such term is the product of An

and a homogeneous polynomial in two variables of degree n. Moreover, the
required estimate for the polynomial follows from the fact that |δ(j)| ≤ 1.
This proves the claim.

Using equation (2.8), we have the following inequality

‖SN (s)SN (t) − SN (s + t)‖ ≤
2N∑

n=N+1

|Pn(s, t)| ‖A‖n

≤
2N∑

n=N+1

(|s| + |t|)n

n!
‖A‖n.

Also, using the fact that the series
∞∑

n=0

(|s| + |t|)n

n!
‖A‖n

is convergent, it follows that its partial sums, denoted QN , form a Cauchy
sequence. In particular, if ε > 0 is given, then for sufficiently large N we
have

|Q2N − QN | < ε.

Moreover, since

Q2N − QN =
2N∑

n=N+1

(|s| + |t|)n

n!
‖A‖n,

it follows that
lim

N→∞
‖SN (s)SN (t) − SN (s + t)‖ = 0.

Using this fact and passing to the limit as N → ∞ on both sides of the
inequality

‖esAetA − e(s+t)A‖ ≤ ‖esAetA − SN (s)SN (t)‖

+ ‖SN (s)SN (t) − SN (s + t)‖

+ ‖SN (s + t) − e(s+t)A‖,
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we see that

esAetA = e(s+t)A, (2.9)

as required.
In view of the identity (2.9), the derivative of the function t �→ etA is

given by

d

dt
etA = lim

s→0

1
s
(e(t+s)A − etA)

= lim
s→0

1
s
(esA − I)etA

=
(

lim
s→0

1
s
(esA − I)

)
etA

=
(

lim
s→0

(A + R(s))
)
etA

where

‖R(s)‖ ≤ 1
|s|

∞∑
n=2

|s|n
n!

‖A‖n ≤ |s|
∞∑

n=2

|s|n−2

n!
‖A‖n.

Moreover, if |s| < 1, then ‖R(s)‖ ≤ |s|e‖A‖. In particular, R(s) → 0 as
s → 0 and as a result,

d

dt
etA = AetA.

Since ASN (t) = SN (t)A, it follows that AetA = etAA. This proves the
first statement of part (4). In particular t �→ etA is a matrix solution of
the system (2.7). Clearly, e0 = I. Thus, the columns of e0 are linearly
independent. It follows that t �→ etA is the fundamental matrix solution at
t = 0, as required.

To prove (2), suppose that AB = BA and consider the function t �→
et(A+B). By (4), this function is a matrix solution of the initial value prob-
lem

ẋ = (A + B)x, x(0) = I.

The function t �→ etAetB is a solution of the same initial value problem. To
see this, use the product rule to compute the derivative

d

dt
etAetB = AetAetB + etABetB ,

and use the identity AB = BA to show that etAB = BetA. The desired
result is obtained by inserting this last identity into the formula for the
derivative. By the uniqueness of the solution of the initial value problem,
the two solutions are identical.
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To prove (3), we use (2) to obtain I = eA−A = eAe−A or, in other words,
(eA)−1 = e−A.

The result (5) follows from the inequality

‖I +A+
1
2!

A2 + · · ·+ 1
N !

AN‖ ≤ ‖I‖+ ‖A‖+
1
2!

‖A‖2 + · · ·+ 1
N !

‖A‖N . �

We have defined the exponential of a matrix as an infinite series and
used this definition to prove that the homogeneous linear system ẋ = Ax
has a fundamental matrix solution, namely, t �→ etA. This is a strong result
because it does not use the existence theorem for differential equations.
Granted, the uniqueness theorem is used. But it is an easy corollary of
Gronwall’s inequality (see Exercise 2.5). An alternative approach to the
exponential map is to use the existence theorem and define the function
t �→ etA to be the principal fundamental matrix solution at t = 0. The
properties of the exponential function given in Proposition 2.21 can then
be proved by using the fact that it is a solution of a homogeneous differential
equation.

To obtain a matrix representation for etA, let us recall that there is a real
matrix B that transforms A to real Jordan canonical form. Of course, to
construct the matrix B, we must at least be able to find the eigenvalues of A.
However, this requires finding the roots of a polynomial of degree n. Thus,
for n ≥ 5, it is generally impossible to construct the matrix B explicitly.
However, if B is known, then by using part (1) of Proposition 2.21, we have
that

B−1etAB = etB−1AB .

Thus, the problem of constructing a principal fundamental matrix is solved
as soon as we find a matrix representation for etB−1AB .

The Jordan canonical matrix B−1AB is block diagonal, where each block
corresponding to a real eigenvalue has the form “diagonal + nilpotent,”
and, each block corresponding to a complex eigenvalue with nonzero imag-
inary part has the form “block diagonal + block nilpotent.” In view of this
block structure, it suffices to determine the matrix representation for etJ

where J denotes a single Jordan block.
Consider a block of the form

J = λI + N

where N is the nilpotent matrix with zero components except on the super
diagonal, where each component is unity and note that Nk = 0. We have
that

etJ = et(λI+N) = etλIetN = etλ(I + tN +
t2

2!
N2 + · · · +

tk−1

(k − 1)!
Nk−1)

where k is the dimension of the block.



144 2. Linear Systems and Stability

If J is a Jordan block with diagonal 2 × 2 subblocks given by

R =
(

α −β
β α

)
(2.10)

with β �= 0, then etJ is block diagonal with each block given by etR. To
obtain an explicit matrix representation for etR, define

P :=
(

0 −β
β 0

)
, Q(t) :=

(
cos βt − sin βt
sin βt cos βt

)
,

and note that t �→ etP and t �→ Q(t) are both solutions of the initial value
problem

ẋ =
(

0 −β
β 0

)
x, x(0) = I.

Thus, we have that etP = Q(t) and

etR = eαtetP = eαtQ(t).

Finally, if the Jordan block J has the 2 × 2 block matrix R along its
block diagonal and the 2 × 2 identity along its super block diagonal, then

etJ = eαtS(t)etN (2.11)

where S(t) is block diagonal with each block given by Q(t), and N is the
nilpotent matrix with 2 × 2 identity blocks on its super block diagonal. To
prove this fact, note that J can be written as a sum J = αI + K where K
has diagonal blocks given by P and super diagonal blocks given by the 2×2
identity matrix. Since the n × n matrix αI commutes with every matrix,
we have that

etJ = eαtetK .

The proof is completed by observing that the matrix K can also be written
as a sum of commuting matrices; namely, the block diagonal matrix with
each diagonal block equal to P and the nilpotent matrix N .

We have outlined a procedure to find a matrix representation for etA. In
addition, we have proved the following result.

Proposition 2.22. If A is an n × n matrix, then etA is a matrix whose
components are sums of terms of the form p(t)eαt sin βt and p(t)eαt cos βt
where α and β are real numbers such that α + iβ is an eigenvalue of A,
and p(t) is a polynomial of degree at most n − 1.

Exercise 2.23. Find the real Jordan canonical forms for all 2 × 2 real matri-
ces and construct the corresponding fundamental matrix solutions for all 2 × 2
real homogeneous linear systems of differential equations. Also, draw the phase
portraits for each canonical system. Repeat the exercise for 3 × 3 real matrices.
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In this section we have defined the exponential map on bounded linear
operators in order to construct the matrix solution t �→ etA of the homoge-
neous system ẋ = Ax in analogy with the solution of the scalar differential
equation ẋ = ax. Let us note that the scalar nonautonomous homogeneous
linear differential equation ẋ = a(t)x has the solution

t �→ x0e
∫ t
0 a(s) ds.

This fact suggests a construction for the solution of matrix nonautonomous
homogeneous systems. However, you must resist the temptation to construct
the fundamental matrix solution of the differential equation ẋ = A(t)x by
exponentiating an integral of the function t �→ A(t) (see Exercise 2.27).

As a final application of the methods developed in this section we will for-
mulate and prove a special case of the Lie–Trotter product formula for the
exponential of a sum of two matrices when the matrices do not necessarily
commute (see [175] for the general case).

Theorem 2.24. If A and B are matrices, then

et(A+B) = lim
n→∞

(
e

t
n Ae

t
n B

)n

.

Proof. We will work with k × k matrix-valued functions defined on the
real line. Of course all such functions can be interpreted as functions from
R to R

k2
.

Define

fn(t) :=
(
e

t
n Ae

t
n B

)n

,

and note that the first derivative of fn is given by

f ′
n(t) = fn(t)gn(t) (2.12)

where

gn(t) := e− t
n B(A + B)e

t
n A.

Let us show that

lim
n→∞ gn = A + B (2.13)

uniformly on compact subsets of R—the right hand side of the limit is to
be interpreted as the constant function with value A + B.

If the independent variable t is restricted to a compact subset of R, then
there is some number T ≥ 0 such that |t| ≤ T . Also, to obtain the uniform
convergence, it suffices to consider only n > T . With these assumptions in
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force, consider the estimate

‖e− t
n B(A + B)e

t
n A − (A + B)‖

≤ e
|t|
n ‖B‖‖(A + B)e

t
n B − (A + B) + (A + B) − e

t
n B(A + B)‖

≤ e
|T |
n ‖B‖(‖A + B‖‖e

t
n B − I‖ + ‖I − e

t
n B‖‖A + B‖

)
and note that

‖e
t
n B − I‖ ≤ T

n
e‖B‖.

The uniform convergence follows immediately because T/n can be made
arbitrarily small by taking n sufficiently large.

We will use the limit (2.13) to show that the sequence of functions
{fn}∞

n=1 converges uniformly on compact sets.
Let us show first that the required convergence is uniform on the interval

[0, T ]. To prove this fact, integrate both sides of equation (2.12) to obtain
the equality

fn(t) = I +
∫ t

0
fn(s)gn(s) ds,

and, in turn, the estimate

‖fm(t) − fn(t)‖ =
∫ t

0
‖fm(s)gm(s) − fm(s)gn(s)

+fm(s)gn(s) − fn(s)gn(s)‖ ds

≤
∫ t

0
‖fm(s)‖‖gm(s) − gn(s)‖ ds

+
∫ t

0
‖fm(s) − fn(s)‖‖gn(s)‖ ds. (2.14)

Because the sequence of functions {gn}∞
n=1 converges uniformly on [0, T ], it

is uniformly bounded. Also, by using the definition of fn and the properties
of the norm, we have the uniform bound

‖fn(t)‖ ≤ eT‖A‖eT‖B‖.

Hence, there is a constant M ≥ 0 such that, for the uniform (supremum)
norm on the interval [0, T ], we have the inequalities ‖fn‖ ≤ M and ‖gn‖ ≤
M for each positive integer n. Moreover, since the sequence of functions
{gn}∞

n=1 converges uniformly on [0, T ], there is some integer N > 0 such
that

‖gm − gn‖ < ε
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whenever n ≥ N and m ≥ M .
Let ε > 0 be given. Using the inequality (2.14) and the uniform estimates

given in the last paragraph, it follows that

‖fm(t) − fn(t)‖ ≤ Mεt + M

∫ t

0
‖fm(s) − fn(s)‖ ds,

and, by Gronwall’s inequality,

‖fm − fn‖ ≤ εMTeMT .

Thus, we have proved that {fn}∞
n=1 is a Cauchy sequence in the uniform

norm on the interval [0, T ].
For the required uniform convergence on the interval [−T, 0], apply the

result just obtained to the sequence of functions {hn}∞
n=1 defined by

hn(t) := fn(−t) =
(
e

t
n (−A)e

t
n (−B)

)n

.

Because {fn}∞
n=1 is a Cauchy sequence in the uniform norm, there is a

continuous function f , defined on the interval [−T, T ], such that

lim
n→∞ fn = f.

Also, the sequence {gn}∞
n=1 converges to the constant function with value

A + B. Using these facts together with the identity f ′
n(t) = fn(t)gn(t),

let us note that the sequence {f ′
n}∞

n=1 converges uniformly to the function
defined by t �→ f(t)(A + B). Thus, the function f is differentiable, f ′(t) =
f(t)(A + B) (see the proof of Theorem 1.176), and f(0) = I. The solution
of this initial value problem is

f(t) = et(A+B),

that is, the limit function f is as required in the statement of the theorem.

�

Exercise 2.25. Compute the fundamental matrix solution at t = 0 for the
system ẋ = Ax where

A :=


1 2 3

0 1 4
0 0 1


 .

Exercise 2.26. Determine the phase portrait for the system(
ẋ
ẏ

)
=

(
0 1

−1 −k

) (
x
y

)
.

Make sure you distinguish the cases k < −2, k > 2, k = 0, 0 < k < 2, and
−2 < k < 0.
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Exercise 2.27. Find a matrix function t �→ A(t) such that

t �→ exp
( ∫ t

0
A(s) ds

)

is not a matrix solution of the system ẋ = A(t)x. However, show that the given
exponential formula is a solution in the scalar case. When is it a solution for the
matrix case?

Exercise 2.28. [Lie Groups and Lax Pairs] Is the map

exp : L(E) → GL(E)

injective? Is this map surjective? Do the answers to these questions depend on
the choice of E as R

n or C
n? Prove that the general linear group is a submanifold

of R
N with N = n2 in case E = R

n, and N = 2n2 in case E = C
n. Show that the

general linear group is a Lie group; that is, the group operation (matrix product),
is a differentiable map from GL(E) × GL(E) → GL(E). Consider the tangent
space at the identity element of GL(E). Note that, for each A ∈ L(E), the map
t �→ exp(tA) is a curve in GL(E) passing through the origin at time t = 0. Use
this fact to prove that the tangent space can be identified with L(E). It turns out
that L(E) is a Lie algebra. More generally, a vector space is called a Lie algebra
if for each pair of vectors A and B, a product, denoted by [A, B], is defined on
the vector space such that the product is bilinear and also satisfies the following
algebraic identities: (skew-symmetry) [A, B] = −[B, A], and (the Jacobi identity)

[[A, B], C] + [[B, C], A] + [[C, A], B] = 0.

Show that L(E) is a Lie algebra with respect to the product [A, B] := AB −BA.
For an elementary introduction to the properties of these structures, see [91].

The delicate interplay between Lie groups and Lie algebras leads to a far-
reaching theory. To give a flavor of the relationship between these structures,
consider the map Ad : GL(E) → L(L(E)) defined by Ad(A)(B) = ABA−1. This
map defines the adjoint representation of the Lie group into the automorphisms
of the Lie algebra. Prove this. Also, Ad is a homomorphism of groups: Ad(AB) =
Ad(A) Ad(B). Note that we may as well denote the automorphism group of L(E)
by GL(L(E)). Also, define ad : L(E) → L(L(E)) by ad(A)(B) = [A, B]. The map
ad is a homomorphism of Lie algebras. Now, ϕt := Ad(etA) defines a flow in L(E).
The associated differential equation is obtained by differentiation. Show that ϕt

is the flow of the differential equation

ẋ = Ax − xA = ad(A)x. (2.15)

This differential equation is linear; thus, it has the solution t �→ et ad(A). By the
usual argument it now follows that et ad(A) = Ad(etA). In particular, we have the
commutative diagram

L(E) ad−→ L(L(E))�exp
�exp

GL(E) Ad−→ GL(L(E)).
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The adjoint representation of GL(E) is useful in the study of the subgroups of
GL(E), and it is also used to identify the Lie group that is associated with a given
Lie algebra. But consider instead the following application to spectral theory. A
curve t �→ L(t) in L(E) is called isospectral if the spectrum of L(t) is the same as
the spectrum of L(0) for all t ∈ R. We have the following proposition: Suppose
that A ∈ L(E). If t �→ L(t) is a solution of the differential equation (2.15), then
the solution is isospectral. The proof is just a restatement of the content of the
commutative diagram. In fact, L(t) is similar to L(0) because

L(t) = Ad(etA)L(0) = etAL(0)e−tA.

A pair of curves t �→ L(t) and t �→ M(t) is called a Lax pair if

L̇ = LM − ML.

The sign convention aside, the above proposition shows that if (L, M) is a Lax
pair and if M is constant, then L is isospectral. Prove the more general result: If
(L, M) is a Lax pair, then L is isospectral.

Finally, prove that

d

dt

(
etAetBe−tAe−tB)∣∣∣

t=0
= 0

and

d

dt

(
e

√
tAe

√
tBe−√

tAe−√
tB)∣∣∣

t=0
= AB − BA. (2.16)

As mentioned above, [A, B] is in the tangent space at the identity of GL(E).
Thus, there is a curve γ(t) in GL(E) such that γ(0) = I and γ̇(0) = [A, B]. One
such curve is t �→ et[A,B]. However, since the Lie bracket [A, B] is an algebraic
object computed from the tangent vectors A and B, it is satisfying that there is
another such curve formed from the curves t �→ etA and t �→ etB whose respective
tangent vectors at t = 0 are A and B.

Exercise 2.29. Prove that if α is a real number and A is an n × n real matrix
such that 〈Av, v〉 ≤ α‖v‖2 for all v ∈ R

n, then ‖etA‖ ≤ eαt for all t ≥ 0. Hint:
Consider the differential equation ẋ = Ax and the inner product 〈ẋ, x〉. Prove the
following more general result suggested by Weishi Liu. Suppose that t �→ A(t)
and t �→ B(t) are smooth n × n matrix valued functions defined on R such that
〈A(t)v, v〉 ≤ α(t)‖v‖2 and 〈B(t)v, v〉 ≤ 0 for all t ≥ 0 and all v ∈ R

n. If t �→ x(t)
is a solution of the differential equation ẋ = A(t)x + B(t)x, then

‖x(t)‖ ≤ e
∫ t
0 α(s) ds‖x(0)‖

for all t ≥ 0.

Exercise 2.30. Let v ∈ R
3, assume v �= 0, and consider the differential equa-

tion

ẋ = v × x, x(0) = x0
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where × denotes the cross product in R
3. Show that the solution of the differential

equation is a rigid rotation of the initial vector x0 about the direction v. If the
differential equation is written as a matrix system

ẋ = Sx

where S is a 3 × 3 matrix, show that S is skew symmetric and that the flow
φt(x) = etSx of the system is a group of orthogonal transformations. Show that
every solution of the system is periodic and relate the period to the length of v.

Exercise 2.31. [An infinite dimensional ODE] Let E denote the Banach space
C([0, 1]) given by the set of all continuous functions f : [0, 1] → R with the
supremum norm

‖f‖ = sup
s∈[0,1]

|f(s)|

and consider the operator U : E → E given by (Uf)(s) = f(as) where 0 ≤ a ≤ 1.
Also, let g ∈ E denote the function given by s → bs where b is a fixed real
number. Find the solution of the initial value problem

ẋ = Ux, x(0) = g.

This is a simple example of an ordinary differential equation on an infinite di-
mensional Banach space (see Section 3.6).

Exercise 2.32. Prove the following generalization of the Lie-Trotter product
formula. If γ : R → L(E) is a smooth function and A := γ̇(0), then

etA = lim
n→∞

(γ(t/n))n.

The Lie-Trotter formula is recovered by inserting γ(t) = etAetB . For exam-
ple, et[A,B] can be approximated using the generalized product formula and for-
mula (2.16).

Exercise 2.33. Write a report on the application of the Lie-Trotter formula
to obtain numerical approximations of the solution of the initial value problem
ẋ = (A + B)x, x(0) = v with expressions of the form

T (t, n)v = (e(t/n)Ae(t/n)B)nv.

For example, approximate x(1) for such systems where

A :=
(

a 0
0 b

)
, B :=

(
c −d
d c

)
.

Compare the results of numerical experiments using your implementation(s) of
the “Lie-Trotter method” and your favorite choice of alternative method(s) to
compute x(1). Note that etA and etB can be input explicitly for the suggested
example. Can you estimate the error ‖T (1, n)v − eA+Bv‖? Generalizations of
this scheme are sometimes used to approximate differential equations where the
“vector field” can be split into two easily solved summands. Try the same idea
to solve nonlinear ODE of the form ẋ = f(x) + g(x) where etA is replaced by the
flow of ẋ = f(x) and etB is replaced by the flow of ẋ = g(x).
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2.2 Stability of Linear Systems

A linear homogeneous differential equation has a rest point at the origin. We
will use our results about the solutions of constant coefficient homogeneous
linear differential equations to study the stability of this rest point. The
next result is fundamental.

Theorem 2.34. Suppose that A is an n × n (real) matrix. The following
statements are equivalent:

(1) There is a norm | |a on R
n and a real number λ > 0 such that for

all v ∈ R
n and all t ≥ 0,

|etAv|a ≤ e−λt|v|a.

(2) If | |g denotes a norm on R
n, there is a constant C ≥ 1 and a real

number λ > 0 such that for all v ∈ R
n and all t ≥ 0,

|etAv|g ≤ Ce−λt|v|g.

(3) Every eigenvalue of A has negative real part.

Moreover, if −λ exceeds the largest of all the real parts of the eigenvalues of
A, then λ can be taken to be the decay constant in (1) or (2). Also, if every
eigenvalue of A has negative real part, then the zero solution of ẋ = Ax is
asymptotically stable.

Proof. We will show that (1) ⇒ (2) ⇒ (3) ⇒ (1).
To show (1) ⇒ (2), let | |a be the norm in statement (1) and | |g

the norm in statement (2). Because these norms are defined on the finite
dimensional vector space R

n, they are equivalent. In particular, there are
constants K1 > 0 and K2 > 0 such that for all x ∈ R

n we have

K1|x|g ≤ |x|a ≤ K2|x|g.

(Prove this!)
If t ≥ 0 and x ∈ R

n, then

|etAx|g ≤ 1
K1

|etAx|a ≤ 1
K1

e−λt|x|a ≤ K2

K1
e−λt|x|g,

as required.
To show (2) ⇒ (3), suppose that statement (2) holds but statement (3)

does not. In particular, A has an eigenvalue µ ∈ C, say µ = α + iβ with
α ≥ 0. Moreover, there is at least one eigenvector v �= 0 corresponding to
this eigenvalue. As we have seen, this implies that ẋ = Ax has a solution
t �→ γ(t) of the form t → eαt((cos βt)u − (sin βt)w) where v = u + iw,
u ∈ R

n and w ∈ R
n. As α ≥ 0 and at least one of the vectors u and v is
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not zero, it is clear that limt→∞ γ(t) �= 0. But if statement (2) holds, then
limt→∞ γ(t) = 0, in contradiction.

To finish the proof we will show (3) ⇒ (1). Let us assume that state-
ment (3) holds. Since A has a finite set of eigenvalues and each of its
eigenvalues has negative real part, there is a number λ > 0 such that the
real part of each eigenvalue of A is less than −λ.

By Proposition 2.22, the components of etA are sums of terms of the form
p(t)eαt sin βt or p(t)eαt cos βt where α is the real part of an eigenvalue of
A and p(t) is a polynomial of degree at most n − 1. In particular, if the
matrix etA, partitioned by columns, is given by [c1(t), . . . , cn(t)], then each
component of each vector ci(t) is a sum of such terms.

If v = (v1, . . . , vn) is a vector in R
n, then with respect to the usual norm

of R
n we have

|etAv| ≤
n∑

i=1

|ci(t)||vi|.

Because

|vi| ≤
( n∑

i=1

|vi|2
)1/2 = |v|,

it follows that

|etAv| ≤ |v|
n∑

i=1

|ci(t)|.

If β1, . . . , β� are the nonzero imaginary parts of the eigenvalues of A and
if α denotes the largest real part of an eigenvalue of A, then using the
structure of the components of the vector ci(t) it follows that

|ci(t)|2 ≤ e2αt
2n−2∑
k=0

|dki(t)||t|k

where each coefficient dki(t) is a quadratic form in

sin β1t, . . . , sin β�t, cos β1t, . . . , cos β�t.

There is a constant M > 0 that does not depend on i or k such that the
supremum of |dki(t)| for t ∈ R does not exceed M2. In particular, for each
i = 1, . . . , n, we have

|ci(t)|2 ≤ e2αtM2
2n−2∑
k=0

|t|k,

and as a result

|etAv| ≤ |v|
n∑

i=1

|ci(t)| ≤ eαtnM |v|
( 2n−2∑

k=0

|t|k
)1/2

.
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Because α < −λ < 0, there is some τ > 0 such that for t ≥ τ , we have
the inequality

e(λ+α)tnM
( 2n−2∑

k=0

|t|k
)1/2 ≤ 1,

or equivalently

eαtnM
( 2n−2∑

k=0

|t|k
)1/2 ≤ e−λt.

In particular, if t ≥ τ , then for each v ∈ R
n we have

|etAv| ≤ e−λt|v|. (2.17)

To finish the proof, we will construct a new norm for which the same
inequality is valid for all t ≥ 0. In fact, we will prove that

|v|a :=
∫ τ

0
eλs|esAv| ds

is the required norm.
The easy proof required to show that | |a is a norm on R

n is left to
the reader. To obtain the norm estimate, note that for each t ≥ 0 there
is a nonnegative integer m and a number T such that 0 ≤ T < τ and
t = mτ + T . Using this decomposition of t, we find that

|etAv|a =
∫ τ

0
eλs|esAetAv| ds

=
∫ τ−T

0
eλs|e(s+t)Av| ds +

∫ τ

τ−T

eλs|e(s+t)A| ds

=
∫ τ−T

0
eλs|emτAe(s+T )Av| ds

+
∫ τ

τ−T

eλs|e(m+1)τAe(T−τ+s)Av| ds.
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Let u = T + s in the first integral and u = T − τ + s in the second integral
and use the inequality (2.17), to obtain

|etAv|a =
∫ τ

T

eλ(u−T )|e(mτ+u)Av| du +
∫ T

0
eλ(u+τ−T )|e((m+1)τ+u)Av| du

≤
∫ τ

T

eλ(u−T )e−λ(mτ)|euAv| du

+
∫ T

0
eλ(u+τ−T )e−λ(m+1)τ |euAv| du

≤
∫ τ

0
eλue−λ(mτ+T )|euAv| du

= e−λt

∫ τ

0
eλu|euAv| du

≤ e−λt|v|a,

as required. �

Recall that a matrix is infinitesimally hyperbolic if all of its eigenvalues
have nonzero real parts. The following corollary of Theorem 2.34 is the
basic result about the dynamics of hyperbolic linear systems.

Corollary 2.35. If A is an n × n (real) infinitesimally hyperbolic matrix,
then there are two A-invariant subspaces Es and Eu of R

n such that R
n =

Es ⊕ Eu. Moreover, if | |g is a norm on R
n, then there are constants

λ > 0, µ > 0, C > 0, and K > 0 such that for all v ∈ Es and all t ≥ 0

|etAv|g ≤ Ce−λt|v|g,

and for all v ∈ Eu and all t ≤ 0

|etAv|g ≤ Keµt|v|g.

Also, there exists a norm on R
n such that the above inequalities hold for

C = K = 1 and λ = µ.

Proof. The details of the proof are left as an exercise. However, let us note
that if A is infinitesimally hyperbolic, then we can arrange for the Jordan
form J of A to be a block matrix

J =
(

As 0
0 Au

)
where the eigenvalues of As all have negative real parts and the eigenval-
ues of Au have positive real parts. Thus, there is an obvious J-invariant
splitting of the vector space R

n into a stable space and an unstable space.
By changing back to the original coordinates, it follows that there is a
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corresponding A-invariant splitting. The hyperbolic estimate on the stable
space follows from Theorem 2.34 applied to the restriction of A to its stable
subspace; the estimate on the unstable space follows from Theorem 2.34
applied to the restriction of −A to the unstable subspace of A. Finally, an
adapted norm on the entire space is obtained as follows:

|(vs, vu)|2a = |vs|2a + |vu|2a. �

The basic result of this section—if all eigenvalues of the matrix A are
in the left half plane, then the zero solution of the corresponding homoge-
neous system is asymptotically stable—is a special case of the principle of
linearized stability. In effect, we have a method to determine the stability
of the zero solution that does not require knowledge of the solutions of the
system. As we will see, this idea works in a more general context. However,
for most generalizations, additional hypotheses are required.

Exercise 2.36. Find Es, Eu, C, K, λ as in Corollary 2.35 (relative to the usual
norm) for the matrix

A :=
(

2 1
0 −3

)
.

2.3 Stability of Nonlinear Systems

Theorem 2.34 states that the zero solution of a constant coefficient ho-
mogeneous linear system is asymptotically stable if the spectrum of the
coefficient matrix lies in the left half of the complex plane. The principle
of linearized stability states that the same result is true for steady state
solutions of nonlinear equations provided that the system matrix of the
linearized system along the steady state solution has its spectrum in the
left half plane. As stated, this principle is not a theorem. However, in this
section we will formulate and prove a theorem on linearized stability which
is strong enough for most applications. In particular, we will prove that
a rest point of an autonomous differential equation ẋ = f(x) in R

n is
asymptotically stable if all eigenvalues of the Jacobian matrix at the rest
point have negative real parts. Our stability result is also valid for some
nonhomogeneous nonautonomous differential equations of the form

ẋ = A(t)x + g(x, t), x ∈ R
n (2.18)

where g : R
n × R → R

n is a smooth function.
A fundamental tool used in our stability analysis is the formula, called

the variation of constants formula, given in the next proposition.
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Proposition 2.37 (Variation of Constants Formula). Consider the
initial value problem

ẋ = A(t)x + g(x, t), x(t0) = x0 (2.19)

and let t �→ Φ(t) be a fundamental matrix solution for the homogeneous
system ẋ = A(t)x that is defined on some interval J0 containing t0. If t �→
φ(t) is the solution of the initial value problem defined on some subinterval
of J0, then

φ(t) = Φ(t)Φ−1(t0)x0 + Φ(t)
∫ t

t0

Φ−1(s)g(φ(s), s) ds. (2.20)

Proof. Define a new variable z by x = Φ(t)z. (The name “variation of
constants” derives from this change of variables. If z were a constant vector,
then t �→ Φ(t)z would be a solution of the homogeneous system. A solution
of the initial value problem is sought by “variation” of this constant vector.)
We have

ẋ = A(t)Φ(t)z + Φ(t)ż.

Thus,
A(t)x + g(x, t) = A(t)x + Φ(t)ż

and
ż = Φ−1(t)g(x, t).

Also note that z(t0) = Φ−1(t0)x0.
By integration,

z(t) − z(t0) =
∫ t

t0

Φ−1(s)g(φ(s), s) ds,

or, in other words,

x(t) = Φ(t)Φ−1(t0)x0 + Φ(t)
∫ t

t0

Φ−1(s)g(φ(s), s) ds. �

Let us note that in the special case where the function g in the differential
equation (2.19) is a constant with respect to its first variable, the variation
of constants formula solves the initial value problem once a fundamental
matrix solution of the associated homogeneous system is determined.

Exercise 2.38. Consider the linear system

u̇ = −δ2u + v + δw, v̇ = −u − δ2v + δw, ẇ = −δw

where δ is a parameter. Find the general solution of this system using matrix
algebra and also by using the substitution z = u+ iv. Describe the phase portrait
for the system for each value of δ. Find an invariant line and determine the rate
of change with respect to δ of the angle this line makes with the positive w-axis.
Also, find the angular velocity of the “twist” around the invariant line.
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Exercise 2.39. The product Φ(t)Φ−1(s) appears in the variation of constants
formula where Φ(t) is the principal fundamental matrix for the system ẋ = A(t)x.
Show that if A is a constant matrix or A is 1 × 1, then Φ(t)Φ−1(s) = Φ(t − s).
Prove that this formula does not hold in general for homogeneous linear systems.

x�T� ��

O����

V

��

�

U

x�T� ���

FIGURE 2.1. Local stability as in Proposition 2.41. For every open set U con-
taining the orbit segment O(ξ0), there is an open set V containing ξ0 such that
orbits starting in V stay in U on the time interval 0 ≤ t ≤ T .

The next proposition states an important continuity result for the so-
lutions of nonautonomous systems with respect to initial conditions. To
prove it, we will use the following lemma.

Lemma 2.40. Consider a smooth function f : R
n × R → R

n. If K ⊆ R
n

and A ⊆ R are compact sets, then there is a number L > 0 such that

‖f(x, t) − f(y, t)‖ ≤ L‖x − y‖

for all (x, t), (y, t) ∈ K × A.

Proof. The proof of the lemma uses compactness, continuity, and the mean
value theorem. The details are left as an exercise. �

Recall that a function f as in the lemma is called Lipschitz with respect to
its first argument on K × A with Lipschitz constant L.

Proposition 2.41. Consider, for each ξ ∈ R
n, the solution t �→ x(t, ξ) of

the differential equation ẋ = f(x, t) such that x(0, ξ) = ξ. If ξ0 ∈ R
n is

such that the solution t �→ x(t, ξ0) is defined for 0 ≤ t ≤ T , and if U ⊆ R
n

is an open set containing the orbit segment O(ξ0) = {x(t, ξ0) : 0 ≤ t ≤ T},
then there is an open set V ⊆ U , as in Figure 2.1, such that ξ0 ∈ V and
{x(t, ξ) : ξ ∈ V, 0 ≤ t ≤ T} ⊆ U ; that is, the solution starting at each
ξ ∈ V exists on the interval [0, T ], and its values on this interval are in U .

Proof. Let ξ ∈ R
n, and consider the two solutions of the differential equa-

tion given by t �→ x(t, ξ0) and t �→ x(t, ξ). For t in the intersection of the
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intervals of existence of these solutions, we have that

x(t, ξ) − x(t, ξ0) = ξ − ξ0 +
∫ t

0
f(x(s, ξ), s) − f(x(s, ξ0), s) ds

and

‖x(t, ξ) − x(t, ξ0)‖ ≤ ‖ξ − ξ0‖ +
∫ t

0
‖f(x(s, ξ), s) − f(x(s, ξ0), s)‖ ds.

We can assume without loss of generality that U is bounded, hence its
closure is compact. It follows from the lemma that the smooth function f
is Lipschitz on U × [0, T ] with a Lipschitz constant L > 0. Thus, as long as
(x(t, ξ), t) ∈ U × [0, T ], we have

‖x(t, ξ) − x(t, ξ0)‖ ≤ ‖ξ − ξ0‖ +
∫ t

0
L‖x(s, ξ) − x(s, ξ0)‖ ds

and by Gronwall’s inequality

‖x(t, ξ) − x(t, ξ0)‖ ≤ ‖ξ − ξ0‖eLt.

Let δ > 0 be such that δeLT is less than the distance from O(ξ0) to the
boundary of U . Since, on the intersection J of the domain of definition of
the solution t �→ x(t, ξ) with [0, T ] we have

‖x(t, ξ) − x(t, ξ0)‖ ≤ ‖ξ − ξ0‖eLT ,

the vector x(t, ξ) is in the bounded set U as long as t ∈ J and ‖ξ − ξ0‖ < δ.
By the extensibility theorem, the solution t �→ x(t, ξ) is defined at least on
the interval [0, T ]. Thus, the desired set V is {ξ ∈ U : ‖ξ − ξ0‖ < δ}. �

We are now ready to formulate a theoretical foundation for Lyapunov’s
indirect method, that is, the method of linearization. The idea should be
familiar: If the system has a rest point at the origin, the linearization of
the system has an asymptotically stable rest point at the origin, and the
nonlinear part is appropriately bounded, then the nonlinear system also
has an asymptotically stable rest point at the origin.

Theorem 2.42. Consider the initial value problem (2.19) for the case
where A := A(t) is a (real) matrix of constants. If all eigenvalues of A
have negative real parts and there are positive constants a > 0 and k > 0
such that ‖g(x, t)‖ ≤ k‖x‖2 whenever ‖x‖ < a, then there are positive con-
stants C, b, and α that are independent of the choice of the initial time t0
such that the solution t �→ x(t) of the initial value problem satisfies

‖x(t)‖ ≤ C‖x0‖e−α(t−t0) (2.21)

for t ≥ t0 whenever ‖x0‖ ≤ b. In particular, the function t �→ x(t) is
defined for all t ≥ t0, and the zero solution (the solution with initial value
x(t0) = 0), is asymptotically stable.
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Proof. By Theorem 2.34 and the hypothesis on the eigenvalues of A, there
are constants C > 1 and λ > 0 such that

‖etA‖ ≤ Ce−λt (2.22)

for t ≥ 0. Fix δ > 0 such that δ < a and Ckδ − λ < 0, define α := λ − Ckδ
and b := δ/C, and note that α > 0 and 0 < b < δ < a.

If ‖x0‖ < b, then there is some half open interval J = {t ∈ R : t0 ≤ t < τ}
such that the solution t → x(t) of the differential equation with initial
condition x(t0) = x0 exists and satisfies the inequality

‖x(t)‖ < δ (2.23)

on the interval J .
For t ∈ J , use the estimate

‖g(x(t), t)‖ ≤ kδ‖x(t)‖,

the estimate (2.22), and the variation of constants formula

x(t) = e(t−t0)Ax0 + e(t−t0)A
∫ t

t0

e(t0−s)Ag(x(s), s) ds

to obtain the inequality

‖x(t)‖ ≤ Ce−λ(t−t0)‖x0‖ +
∫ t

t0

Ce−λ(t−s)kδ‖x(s)‖ ds.

Rearrange the inequality to the form

eλ(t−t0)‖x(t)‖ ≤ C‖x0‖ + Ckδ

∫ t

t0

eλ(s−t0)‖x(s)‖ ds

and apply Gronwall’s inequality to obtain the estimate

eλ(t−t0)‖x(t)‖ ≤ C‖x0‖eCkδ(t−t0);

or equivalently

‖x(t)‖ ≤ C‖x0‖e(Ckδ−λ)(t−t0) ≤ C‖x0‖e−α(t−t0). (2.24)

Thus, if ‖x0‖ < b and ‖x(t)‖ < δ for t ∈ J , then the required inequal-
ity (2.21) is satisfied for t ∈ J .

If J is not the interval [t0,∞), then the set of all numbers τ > t0 such
that the solution t �→ x(t) with initial condition x(t0) = x0 is defined for
t0 ≤ t < τ and ‖x(t)‖ < δ has a finite supremum that we again denote by
τ . In this case, because ‖x0‖ < δ/C and in view of the inequality (2.24),
we have that

‖x(t)‖ < δe−α(t−t0) (2.25)



160 2. Linear Systems and Stability

for t0 ≤ t < τ . In particular, the solution is bounded by δ on the inter-
val [t0, τ). Therefore, by the extensibility theorem there is some number
ε > 0 such that the solution is defined on the interval K := [t0, τ + ε).
Using the fact that the function t �→ ‖x(t)‖ is continuous on K and the
inequality (2.25), it follows that

‖x(τ)‖ < δe−α(τ−t0) < δ.

By using this inequality and again using the continuity of the function
t �→ ‖x(t)‖ on K, there is a number η > 0 such that t �→ x(t) is defined on
the interval [t0, τ + η), and, on this interval, ‖x(t)‖ < δ. This contradicts
the fact that τ is maximal. �

Corollary 2.43. If f : R
n → R

n is smooth, f(ξ) = 0, and and all eigen-
values of Df(ξ) have negative real parts, then the differential equation
ẋ = f(x) has an asymptotically stable rest point at ξ. Moreover, if −α
is a number larger than every real part of an eigenvalue of Df(x0), and φt

is the flow of the differential equation, then there is a neighborhood U of ξ
and a constant C > 0 such that

‖φt(x) − ξ‖ ≤ C‖x‖e−αt

whenever x ∈ U and t ≥ 0.

Proof. It suffices to prove the corollary for the case ξ = 0. By Taylor’s
theorem (Theorem 1.168), we can rewrite the differential equation in the
form ẋ = Df(0)x + g(x) where

g(x) :=
∫ 1

0
(Df(sx) − Df(0))x ds.

The function ξ �→ Df(ξ) is smooth. Thus, by the mean value theorem
(Theorem 1.49),

‖Df(sx) − Df(0)‖ ≤ ‖sx‖ sup
τ∈[0,1]

‖D2f(τsx)‖

≤ ‖x‖ sup
τ∈[0,1]

‖D2f(τx)‖.

Again, by the smoothness of f , there is an open ball B centered at the
origin and a constant k > 0 such that

sup
τ∈[0,1]

‖D2f(τx)‖ < k

for all x ∈ B. Moreover, by an application of Proposition 1.166 and the
above estimates we have that

‖g(x)‖ ≤ sup
s∈[0,1]

‖x‖‖Df(sx) − Df(0)‖ ≤ k‖x‖2
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whenever x ∈ B. The desired result now follows directly from Theorem 2.42.

�

Exercise 2.44. Generalize the previous result to the Poincaré–Lyapunov The-
orem: Let

ẋ = Ax + B(t)x + g(x, t), x(t0) = x0, x ∈ R
n

be a smooth initial value problem. If

(1) A is a constant matrix with spectrum in the left half plane,

(2) B(t) is the n×n matrix, continuously dependent on t such that ‖B(t)‖ → 0
as t → ∞,

(3) g(x, t) is smooth and there are constants a > 0 and k > 0 such that

‖g(x, t)‖ ≤ k‖x‖2

for all t ≥ 0 and ‖x‖ < a,

then there are constants C > 1, δ > 0, λ > 0 such that

‖x(t)‖ ≤ C‖x0‖e−λ(t−t0), t ≥ t0

whenever ‖x0‖ ≤ δ/C. In particular, the zero solution is asymptotically stable.

Exercise 2.45. This exercise gives an alternative proof of the principle of lin-
earized stability for autonomous systems using Lyapunov’s direct method. Con-
sider the system

ẋ = Ax + g(x), x ∈ R
n

where A is a real n × n matrix and g : R
n → R

n is a smooth function. Suppose
that every eigenvalue of A has negative real part, and that for some a > 0, there
is a constant k > 0 such that, using the usual norm in R

n,

|g(x)| ≤ k|x|2

whenever |x| < a. Prove that the origin is an asymptotically stable rest point by
constructing a quadratic Lyapunov function. For this, let 〈·, ·〉 denote the usual
inner product on R

n, and let A∗ denote the transpose of the real matrix A.
Suppose that there is a real symmetric positive definite n × n matrix that also
satisfies Lyapunov’s equation

A∗B + BA = −I

and define V : R
n → R by

V (x) = 〈x, Bx〉.
Show that the restriction of V to a sufficiently small neighborhood of the origin is
a strict Lyapunov function. To do this, you will have to estimate a certain inner
product using the Schwarz inequality. Also, show that

B :=
∫ ∞

0
etA∗

etA dt
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is a symmetric positive definite n × n matrix that satisfies Lyapunov’s equation.
Use the fact that A∗ and A have the same eigenvalues together with the exponen-
tial estimates for a hyperbolic matrix to prove that the integral converges. Note
that Lyapunov’s equation gives a purely algebraic way to construct a Lyapunov
function from the system matrix A. Finally, prove that the origin is asymptoti-
cally stable for the system ẋ = Ax + g(x) where

A :=


−1 2 0

−2 −1 0
0 0 −3


 , g(u, v, w) :=


u2 + uv + v2 + wv2

w2 + uvw
w3


 .

Exercise 2.46. Suppose that f : R
n → R

n is conservative; that is, there is
some function g : R

n → R and f(x) = grad g(x). Also, suppose that M and ∆
are symmetric positive definite n×n matrices. Consider the differential equation

Mẍ + ∆ẋ + f(x) = 0, x ∈ R
n

and note that, in case M and ∆ are diagonal, the differential equation can be
viewed as a model of n particles each moving according to Newton’s second
law in a conservative force field with viscous damping. Prove that the function
V : R

n → R defined by

V (x, y) :=
1
2
〈My, y〉 +

∫ 1

0
〈f(tx), x〉 dt

decreases along orbits of the associated first order system

ẋ = y, Mẏ = −∆y − f(x);

in fact, V̇ = −〈∆y, y〉. Conclude that the system has no periodic orbits. Also,
prove that if f(0) = 0 and Df(0) is positive definite, then the system has an
asymptotically stable rest point at the origin. Prove this fact in two ways: using
the function V and by the method of linearization.

2.4 Floquet Theory

In this section, we will begin the study of linear systems of the form

ẋ = A(t)x, x ∈ R
n (2.26)

where t → A(t) is a T -periodic continuous matrix-valued function. The
main theorem in this section, Floquet’s theorem, gives a canonical form for
each fundamental matrix solution. This result will be used to show that
there is a periodic time-dependent change of coordinates that transforms
system (2.26) into a homogeneous linear system with constant coefficients.

Floquet’s theorem is a corollary of the following result about the range
of the exponential map.
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Theorem 2.47. If C is a nonsingular n×n matrix, then there is an n×n
matrix B, possibly complex, such that eB = C. If C is a nonsingular real
n × n matrix, then there is a real n × n matrix B such that eB = C2.

Proof. If S is a nonsingular n × n matrix such that S−1CS = J is in
Jordan canonical form, and if eK = J , then SeKS−1 = C. As a result,
eSKS−1

= C and B = SKS−1 is the desired matrix. Thus, it suffices to
consider the nonsingular matrix C or C2 to be a Jordan block.

For the first statement of the theorem, assume that C = λI + N where
N is nilpotent; that is, Nm = 0 for some integer m with 0 ≤ m < n.
Because C is nonsingular, λ �= 0 and we can write C = λ(I + (1/λ)N). A
computation using the series representation of the function t �→ ln(1 + t)
at t = 0 shows that, formally (that is, without regard to the convergence
of the series), if B = (lnλ)I + M where

M =
m−1∑
j=1

(−1)j+1

jλj
N j ,

then eB = C. But because N is nilpotent, the series are finite. Thus, the
formal series identity is an identity. This proves the first statement of the
theorem.

If C is real, note that the real eigenvalues of C2 are all positive. Consider
in turn four types of real Jordan blocks: rI where r > 0; rI + N where
r > 0 and N is real nilpotent; block diagonal with 2 × 2 subblocks of the
form R as in equation (2.10) corresponding to eigenvalues with nonzero
imaginary parts; and “block diagonal plus block nilpotent.” Because the
real eigenvalues are positive, a real “logarithm” for the first two types of
blocks is obtained by the matrix formula given above. For the third block
type, write

R = r

(
cos θ − sin θ
sin θ cos θ

)
where r > 0, and note that a real logarithm is given by

ln rI +
(

0 −θ
θ 0

)
.

Finally, for a “block diagonal plus block nilpotent” Jordan block, factor
the Jordan block as follows:

R(I + N )

where R is block diagonal with R along the diagonal and N has 2 × 2
blocks on its super diagonal all given by R−1. Note that we have already
obtained logarithms for each of these factors. Moreover, it is not difficult
to check that the two logarithms commute. Thus, a real logarithm of the
Jordan block is obtained as the sum of real logarithms of the factors. �
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Theorem 2.48 (Floquet’s Theorem). If Φ(t) is a fundamental matrix
solution of the T -periodic system (2.26), then, for all t ∈ R,

Φ(t + T ) = Φ(t)Φ−1(0)Φ(T ).

In addition, for each possibly complex matrix B such that

eTB = Φ−1(0)Φ(T ),

there is a possibly complex T -periodic matrix function t �→ P (t) such that
Φ(t) = P (t)etB for all t ∈ R. Also, there is a real matrix R and a real
2T -periodic matrix function t → Q(t) such that Φ(t) = Q(t)etR for all
t ∈ R.

Proof. Since the function t �→ A(t) is periodic, it is defined for all t ∈ R.
Thus, by Theorem 2.4, all solutions of the system are defined for t ∈ R.

If Ψ(t) := Φ(t + T ), then Ψ is a matrix solution. Indeed, we have that

Ψ̇(t) = Φ̇(t + T ) = A(t + T )Φ(t + T ) = A(t)Ψ(t),

as required.
Define

C := Φ−1(0)Φ(T ) = Φ−1(0)Ψ(0),

and note that C is nonsingular. The matrix function t �→ Φ(t)C is clearly
a matrix solution of the linear system with initial value Φ(0)C = Ψ(0). By
the uniqueness of solutions, Ψ(t) = Φ(t)C for all t ∈ R. In particular, we
have that

Φ(t + T ) = Φ(t)C = Φ(t)Φ−1(0)Φ(T ),
Φ(t + 2T ) = Φ((t + T ) + T ) = Φ(t + T )C = Φ(t)C2.

By Theorem 2.47, there is a matrix B, possibly complex, such that

eTB = C.

Also, there is a real matrix R such that

e2TR = C2.

If P (t) := Φ(t)e−tB and Q(t) := Φ(t)e−tR, then

P (t + T ) = Φ(t + T )e−TBe−tB = Φ(t)Ce−TBe−tB = Φ(t)e−tB = P (t),

Q(t + 2T ) = Φ(t + 2T )e−2TRe−tR = Φ(t)e−tR = Q(t).

Thus, we have P (t + T ) = P (t), Q(t + 2T ) = Q(t), and

Φ(t) = P (t)etB = Q(t)etR,

as required. �
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FIGURE 2.2. The figure depicts the geometry of the monodromy operator for
the system ẋ = A(t)x in the extended phase space. The vector v in R

n at t = τ
is advanced to the vector Φ(T + τ)Φ−1(τ)v at t = τ + T .

The representation Φ(t) = P (t)etB in Floquet’s theorem is called a Flo-
quet normal form for the fundamental matrix Φ(t). We will use this normal
form to study the stability of the zero solution of periodic homogeneous lin-
ear systems.

Let us consider a fundamental matrix solution Φ for the periodic sys-
tem (2.26) and a vector v ∈ R

n. The vector solution of the system starting
at time t = τ with initial condition x(τ) = v is given by

t �→ Φ(t)Φ−1(τ)v.

If the initial vector is moved forward over one period of the system, then
we again obtain a vector in R

n given by Φ(T + τ)Φ−1(τ)v. The operator

v �→ Φ(T + τ)Φ−1(τ)v

is called a monodromy operator (see Figure 2.2). However, if we view the
periodic differential equation (2.26) as the autonomous system

ẋ = A(ψ)x, ψ̇ = 1

on the phase cylinder R
n×T where ψ is an angular variable modulo T , then

each monodromy operator is a (stroboscopic) Poincaré map for our periodic
system. If, for example, τ = 0, then the Poincaré section is the fiber R

n

on the cylinder at ψ = 0. Of course, each fiber R
n at ψ = mT where m

is an integer is identified with the fiber at ψ = 0, and the corresponding
Poincaré map is given by

v �→ Φ(T )Φ−1(0)v.
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The eigenvalues of a monodromy operator are called characteristic multi-
pliers of the corresponding time-periodic homogeneous system (2.26). The
next proposition states that characteristic multipliers are nonzero complex
numbers that are intrinsic to the periodic system—they do not depend on
the choice of the fundamental matrix or the initial time.

Proposition 2.49. The following statements are valid for the periodic lin-
ear homogeneous system (2.26).

(1) Every monodromy operator is invertible. In particular, every charac-
teristic multiplier is nonzero.

(2) If M1 and M2 are monodromy operators, then they have the same
eigenvalues. In particular, there are exactly n characteristic multipli-
ers, counting multiplicities.

Proof. The first statement of the proposition is obvious from the defini-
tions.

To prove statement (2), let us consider the principal fundamental matrix
Φ(t) at t = 0. If Ψ(t) is a fundamental matrix, then Ψ(t) = Φ(t)Ψ(0). Also,
by Floquet’s theorem,

Φ(t + T ) = Φ(t)Φ−1(0)Φ(T ).

Consider the monodromy operator M given by

v �→ Ψ(T + τ)Ψ−1(τ)v

and note that

Ψ(T + τ)Ψ−1(τ) = Φ(T + τ)Ψ(0)Ψ−1(0)Φ−1(τ)
= Φ(T + τ)Φ−1(τ)
= Φ(τ)Φ−1(0)Φ(T )Φ−1(τ)
= Φ(τ)Φ(T )Φ−1(τ).

In particular, the eigenvalues of the operator Φ(T ) are the same as the
eigenvalues of the monodromy operator M. Thus, all monodromy operators
have the same eigenvalues. �

Because

Φ(t + T ) = Φ(t)Φ−1(0)Φ(T ),

some authors define characteristic multipliers to be the eigenvalues of the
matrices defined by Φ−1(0)Φ(T ) where Φ(t) is a fundamental matrix. How-
ever, both definitions gives the same characteristic multipliers. To prove this
fact, let us consider the Floquet normal form Φ(t) = P (t)etB and note that
Φ(0) = P (0) = P (T ). Thus, we have that

Φ−1(0)Φ(T ) = eTB .
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Also, by using the Floquet normal form,

Φ(T )Φ−1(0) = P (T )eTBΦ−1(0)
= Φ(0)eTBΦ−1(0)
= Φ(0)(Φ−1(0)Φ(T ))Φ−1(0),

and therefore Φ−1(0)Φ(T ) has the same eigenvalues as the monodromy
operator given by

v �→ Φ(T )Φ−1(0)v.

In particular, the traditional definition agrees with our geometrically mo-
tivated definition.

Returning to the Floquet normal form P (t)etB for the fundamental ma-
trix Φ(t) and the monodromy operator

v �→ Φ(T + τ)Φ−1(τ)v,

we have that

Φ(T + τ)Φ−1(τ) = P (τ)eTBP−1(τ).

Thus, the characteristic multipliers of the system are the eigenvalues of eTB .
The complex number µ is called a characteristic exponent (or a Floquet
exponent) of the system, if ρ is a characteristic multiplier and eµT = ρ.
Note that if eµT = ρ, then µ + 2πik/T is also a Floquet exponent for
each integer k. Thus, although the characteristic multipliers are uniquely
defined, the Floquet exponents are not.

Exercise 2.50. Suppose that a : R → R is a T -periodic function. Find the
characteristic multiplier and a Floquet exponent of the T -periodic system ẋ =
a(t)x. Also, find the Floquet normal form for the principal fundamental matrix
solution of this system at t = t0.

Exercise 2.51. For the autonomous linear system ẋ = Ax a fundamental ma-
trix solution t �→ Φ(t) satisfies the identity Φ(T − t) = Φ(T )Φ−1(t). Show that,
in general, this identity does not hold for nonautonomous homogeneous linear
systems. Hint: Write down a Floquet normal form matrix Φ(t) = P (t)etB that
does not satisfy the identity and then show that it is the solution of a (periodic)
nonautonomous homogeneous linear system.

Let us suppose that a fundamental matrix for the system (2.26) is repre-
sented in Floquet normal form by P (t)etB . We have seen that the charac-
teristic multipliers of the system are the eigenvalues of eTB . However, the
definition of the Floquet exponents does not mention the eigenvalues of
B. Are the eigenvalues of B Floquet exponents? This question is answered
affirmatively by the following general theorem about the exponential map.
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Theorem 2.52. If A is an n×n matrix and if λ1, . . . , λn are the eigenval-
ues of A repeated according to their algebraic multiplicity, then λk

1 , . . . , λk
n

are the eigenvalues of Ak and eλ1 , . . . , eλn are the eigenvalues of eA.

Proof. We will prove the theorem by induction on the dimension n.
The theorem is clearly valid for 1 × 1 matrices. Suppose that it is true

for all (n − 1) × (n − 1) matrices. Define λ := λ1, and let v �= 0 denote a
corresponding eigenvector so that Av = λv. Also, let e1, . . . , en denote the
usual basis of C

n. There is a nonsingular n×n matrix S such that Sv = e1.
(Why?) Thus,

SAS−1e1 = λe1,

and it follows that the matrix SAS−1 has the block form

SAS−1 =
(

λ ∗
0 Ã

)
.

The matrix SAkS−1 has the same block form, only with the block di-
agonal elements λk and Ãk. Clearly the eigenvalues of this block matrix
are λk together with the eigenvalues of Ãk. By induction, the eigenvalues
of Ãk are the kth powers of the eigenvalues of Ã. This proves the second
statement of the theorem.

Using the power series definition of exp, we see that eSAS−1
has block

form, with block diagonal elements eλ and eÃ. Clearly, the eigenvalues of
this block matrix are eλ together with the eigenvalues of eÃ. Again using
induction, it follows that the eigenvalues of eÃ are eλ2 , . . . , eλn . Thus, the
eigenvalues of eSAS−1

= SeAS−1 are eλ1 , . . . , eλn . �

Theorem 2.52 is an example of a spectral mapping theorem. If we let
σ(A) denote the spectrum of the matrix A, that is, the set of all λ ∈ C such
that λI − A is not invertible, then, for our finite dimensional matrix, σ(A)
coincides with the set of eigenvalues of A. Theorem 2.52 can be restated as
follows: eσ(A) = σ(eA).

The next result uses Floquet theory to show that the differential equa-
tion (2.26) is equivalent to a homogeneous linear system with constant
coefficients. This result demonstrates that the stability of the zero solution
can often be determined by the Floquet multipliers.

Theorem 2.53. There is a time-dependent (2T -periodic) change of coor-
dinates, x = Q(t)y, that transforms the periodic system (2.26) to a (real)
constant coefficient linear system.

(1) If the characteristic multipliers of the periodic system (2.26) all have
modulus less than one; equivalently, if all characteristic exponents
have negative real part, then the zero solution is asymptotically stable.

(2) If the characteristic multipliers of the periodic system (2.26) all have
modulus less than or equal to one; equivalently, if all characteristic
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exponents have nonpositive real part, and if the algebraic multiplic-
ity equals the geometric multiplicity of each characteristic multiplier
with modulus one; equivalently, if the algebraic multiplicity equals the
geometric multiplicity of each characteristic exponent with real part
zero, then the zero solution is Lyapunov stable.

(3) If at least one characteristic multiplier of the periodic system (2.26)
has modulus greater than one; equivalently, if a characteristic expo-
nent has positive real part, then the zero solution is unstable.

Proof. We will prove the first statement of the theorem and part (1). The
proof of the remaining two parts is left as an exercise. However, for part (2),
note that since the differential equation is linear, the Lyapunov stability
may reasonably be determined from the eigenvalues of a linearization.

There is a real matrix R and a real 2T -periodic matrix Q(t) such that
the principal fundamental matrix solution Φ(t) of the system is represented
by

Φ(t) = Q(t)etR.

Also, there is a matrix B and a T -periodic matrix P such that

Φ(t) = P (t)etB .

The characteristic multipliers are the eigenvalues of eTB . Using the fact
that Φ(0) is the identity matrix, we have that

Φ(2T ) = e2TR = e2TB ,

and in particular
(eTB)2 = e2TR.

By Theorem 2.52, the eigenvalues of e2TR are the squares of the character-
istic multipliers. These all have modulus less than one. Thus, by another
application of Theorem 2.52, all eigenvalues of the real matrix R have neg-
ative real parts.

Let us use the change of variables x = Q(t)y to compute

A(t)x = Q̇(t)y + Q(t)ẏ,

or equivalently
Q(t)ẏ = (A(t)Q(t) − Q̇(t))y

and
ẏ = Q−1(t)(A(t)Q(t) − Q̇(t))y.

Also, let us use the Floquet representation Q(t) = Φ(t)e−tR to compute

Q̇(t) = A(t)Φ(t)e−tR + Φ(t)e−tR(−R)
= A(t)Q(t) − Q(t)R.
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It follows that
ẏ = Q−1(t)(Q(t)R)y = Ry.

By our previous result about linearization (Lyapunov’s indirect method),
the zero solution of ẏ = Ry is asymptotically stable. Using the fact that Q
is periodic, hence bounded, and the relation x = Q(t)y, the zero solution
of ẋ = A(t)x is also asymptotically stable. �

The stability theorem just presented is very elegant, but, in applied prob-
lems, it is usually impossible to compute the eigenvalues of eTB explicitly.
In fact, because eTB = Φ(T ), it is not at all clear that the eigenvalues can be
found without solving the system, that is, without an explicit computation
of a fundamental matrix. However, note that we only have to approximate
finitely many numbers (the Floquet multipliers) to determine the stability
of the system. This fact is important! For example, because of this fact,
the stability problem for time-periodic systems is well suited to numerical
computations.

Exercise 2.54. If the planar system u̇ = f(u) has a limit cycle, then it is
possible to find coordinates in a neighborhood of the limit cycle so that the
differential equation has the form

ρ̇ = h(ρ, ϕ)ρ, ϕ̇ = ω

where ω is a constant and for each ρ the function ϕ �→ h(ρ, ϕ) is 2π/ω-periodic.
Prove: If the partial derivative of h with respect to ρ is identically zero, then there
is a coordinate system such that the differential equation in the new coordinates
has the form

ρ̇ = cρ, φ̇ = ω.

Hint: Use Exercise 2.50 and Theorem 2.53.

Exercise 2.55. Determine using a numerical method (or otherwise) the Lya-
punov stability of the zero solution of the time-periodic system of coupled oscil-
lators with periodic parametric excitation

ẍ + (1 + a cos ωt)x = y − x, ÿ + (1 + a cos ωt)y = x − y

for various values of the nonnegative parameters a and ω. In particular, prove
that if a = 0, then the zero solution is Lyapunov stable. What happens if viscous
damping is introduced into the system? (See Section 3.3 for a derivation of the
coupled oscillator model.)

Hint: A possible numerical experiment might be designed as follows. For each
point in a region of (ω, a)-space, mark the point green if the corresponding sys-
tem has a Lyapunov stable zero solution; otherwise, mark it red. To decide which
region of parameter space might contain interesting phenomena, recall from your
experience with second order scalar differential equations with constant coeffi-
cients (mathematical models of springs) that resonance is expected when the
frequency of the periodic excitation is rationally related to the natural frequency
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of the system. Consider resonances between the frequency ω of the excitation
and the frequency of periodic motions of the system with a = 0. Explore the re-
gion of parameter space near these parameter values. While interesting behavior
does occur at resonances, this is not the whole story. Due to the fact that the
monodromy matrix is symplectic (see [9, Sec. 42]), the characteristic multipliers
have two symmetries: If λ is a characteristic multiplier, then so is its complex
conjugate and its reciprocal. It follows that on the boundary between the sta-
ble and unstable regions a pair of characteristic exponents coalesce on the unit
circle. Thus, it is instructive to determine the values of ω, with a = 0, for those
characteristic multipliers that coalesce. These values of ω determine the points
where unstable regions have boundary points on the ω-axis.

Is there is a method to determine the characteristic exponents without
finding the solutions of the differential equation (2.26) explicitly? There
is an example of Lawrence Marcus and Hidehiko Yamabe that shows no
such method can be constructed in any obvious way from the eigenvalues
of A(t). Consider the π-periodic system ẋ = A(t)x where

A(t) =

(
−1 + 3

2 cos2 t 1 − 3
2 sin t cos t

−1 − 3
2 sin t cos t −1 + 3

2 sin2 t

)
.

It turns out that A(t) has the (time independent) eigenvalues 1
4 (−1±

√
7 i).

In particular, the real part of each eigenvalue is negative. However,

x(t) = et/2
(

− cos t
sin t

)
is a solution, and therefore the zero solution is unstable!

The situation is not hopeless. An important example (Hill’s equation)
where the stability of the zero solution of the differential equation (2.26)
can be determined in some cases is discussed in the next section.

The Floquet normal form can be used to obtain detailed information
about the solutions of the differential equation (2.26). For example, if we use
the fact that the Floquet normal form decomposes a fundamental matrix
into a periodic part and an exponential part, then it should be clear that
for some systems there are periodic solutions and for others there are no
nontrivial periodic solutions. It is also possible to have “quasi-periodic”
solutions. The next lemma will be used to prove these facts.

Lemma 2.56. If µ is a characteristic exponent for the homogeneous linear
T -periodic differential equation (2.26) and Φ(t) is the principal fundamental
matrix solution at t = 0, then Φ(t) has a Floquet normal form P (t)etB such
that µ is an eigenvalue of B.

Proof. Let P(t)etB be a Floquet normal form for Φ(t). By the definition
of characteristic exponents, there is a characteristic multiplier λ such that
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λ = eµT , and, by Theorem 2.52, there is an eigenvalue ν of B such that
eνT = λ. Also, there is some integer k �= 0 such that ν = µ + 2πik/T .

Define B := B − (2πik/T )I and P (t) = P(t)e(2πikt/T )I . Note that µ is
an eigenvalue of B, the function P is T -periodic, and

P (t)etB = P(t)etB.

It follows that Φ(t) = P (t)etB is a representation in Floquet normal form
where µ is an eigenvalue of B. �

A basic result that is used to classify the possible types of solutions that
can arise is the content of the following theorem.

Theorem 2.57. If λ is a characteristic multiplier of the homogeneous lin-
ear T -periodic differential equation (2.26) and eTµ = λ, then there is a
(possibly complex) nontrivial solution of the form

x(t) = eµtp(t)

where p is a T -periodic function. Moreover, for this solution x(t + T ) =
λx(t).

Proof. Consider the principal fundamental matrix solution Φ(t) at t = 0.
By Lemma 2.56, there is a Floquet normal form representation Φ(t) =
P (t)etB such that µ is an eigenvalue of B. Hence, there is a vector v �= 0
such that Bv = µv. Clearly, it follows that etB = eµtv, and therefore the
solution x(t) := Φ(t)v is also represented in the form

x(t) = P (t)etBv = eµtP (t)v.

The solution required by the first statement of the theorem is obtained by
defining p(t) := P (t)v. The second statement of the theorem is proved as
follows:

x(t + T ) = eµ(t+T )p(t + T ) = eµT eµtp(t) = λx(t). �

Theorem 2.58. Suppose that λ1 and λ2 are characteristic multipliers of
the homogeneous linear T -periodic differential equation (2.26) and µ1 and
µ2 are characteristic exponents such that eTµ1 = λ1 and eTµ2 = λ2. If
λ1 �= λ2, then there are T -periodic functions p1 and p2 such that

x1(t) = eµ1tp1(t) and x2(t) = eµ2tp2(t)

are linearly independent solutions.

Proof. Let Φ(t) = P (t)etB (as in Lemma 2.56) be such that µ1 is an
eigenvalue of B. Also, let v1 be a nonzero eigenvector corresponding to the
eigenvalue µ1. Since λ2 is an eigenvalue of the monodromy matrix Φ(T ), by
Theorem 2.52 there is an eigenvalue µ of B such that eTµ = λ2 = eTµ2 . It
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follows that there is an integer k such that µ2 = µ+2πik/T . Also, because
λ1 �= λ2, we have that µ �= µ1. Hence, if v2 is a nonzero eigenvector of
B corresponding to the eigenvalue µ, then the eigenvectors v1 and v2 are
linearly independent.

As in the proof of Theorem 2.57, there are solutions of the form

x1(t) = eµ1tP (t)v1, x2(t) = eµtP (t)v2.

Moreover, because x1(0) = v1 and x2(0) = v2, these solutions are linearly
independent. Finally, let us note that x2 can be written in the required
form

x2(t) =
(
eµte2πki/T

)(
e−2πki/T P (t)v2

)
. �

By Theorem 2.22 and 2.53, and the fact that the T -periodic system (2.26)
has the Floquet normal form

t �→ Q(t)etR

where Q is a real 2T -periodic function and R is real matrix, all solutions of
the system are represented as finite sums of real solutions of the two types

q(t)r(t)eαt sin βt and q(t)r(t)eαt cos βt,

where q is 2T -periodic, r is a polynomial of degree at most n−1, and α+iβ
is an eigenvalue of R. However, we will use Theorem 2.57 to give a more
detailed description of the nature of these real solutions.

If the characteristic multiplier λ is a positive real number, then there is
a corresponding real characteristic exponent µ. In this case, if the periodic
function p in Theorem 2.57 is complex, then it can be represented as p =
r + is where both r and s are real T -periodic functions. Because our T -
periodic system is real, both the real and the imaginary parts of a solution
are themselves solutions. Hence, there is a real nontrivial solution of the
form x(t) = eµtr(t) or x(t) = eµts(t). Such a solution is periodic if and only
if λ = 1 or equivalently if µ = 0. On the other hand, if λ = 1 or µ �= 0,
then the solution is unbounded either as t → ∞ or as t → −∞.

If the characteristic multiplier λ is a negative real number, then µ can
be chosen to have the form ν + πi/T where ν is real and eTµ = λ. Hence,
if we again take p = r + is, then we have the solution

eµtp(t) = eνteπit/T (r(t) + is(t))

from which real nontrivial solutions are easily constructed. For example, if
the real part of the complex solution is nonzero, then the real solution has
the form

x(t) = eνt(r(t) cos(πT/t) − s(t) sin(πT/t)).
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Such a solution is periodic if and only if λ = −1 or equivalently if ν = 0.
In this case the solution is 2T -periodic. If ν �= 0, then the solution is
unbounded.

If λ is complex, then we have µ = α+ iβ and there is a solution given by

x(t) = eαt(cos βt + i sin βt)(r(t) + is(t)).

Thus, there are real solutions

x1(t) = eαt(r(t) cos βt − s(t) sin βt),
x2(t) = eαt(r(t) sin βt + s(t) cos βt).

If α �= 0, then both solutions are unbounded. If α = 0 and if there are
relatively prime positive integers m and n such that 2πm/β = nT , then
the solution is nT -periodic. If no such integers exist, then the solution is
called quasi-periodic.

We will prove in Section 2.4.4 that the stability of a periodic orbit is de-
termined by the stability of the corresponding fixed point of a Poincaré map
defined on a Poincaré section that meets the periodic orbit. Generically, the
stability of the fixed point of the Poincaré map is determined by the eigen-
values of its derivative at the fixed point. For example, if the eigenvalues
of the derivative of the Poincaré map at the fixed point corresponding to
the periodic orbit are all inside the unit circle, then the periodic orbit is
asymptotically stable. It turns out that the eigenvalues of the derivative of
the Poincaré map are closely related to the characteristic multipliers of a
time-periodic system, namely, the variational equation along the periodic
orbit. We will have much more to say about the general case later. Here
we will illustrate the idea for an example where the Poincaré map is easy
to compute.

Suppose that

u̇ = f(u, t), u ∈ R
n (2.27)

is a smooth nonautonomous differential equation. If there is some T > 0
such that f(u, t + T ) = f(u, t) for all u ∈ R

n and all t ∈ R, then the
system (2.27) is called T -periodic.

The nonautonomous system (2.27) is made “artificially” autonomous by
the addition of a new equation as follows:

u̇ = f(u, ψ), ψ̇ = 1 (2.28)

where ψ may be viewed as an angular variable modulo T . In other words,
we can consider ψ + nT = ψ whenever n is an integer. The phase cylinder
for system (2.28) is R

n×T, where T (topologically the unit circle) is defined
to be R modulo T . This autonomous system provides the correct geometry
with which to define a Poincaré map.
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For each ξ ∈ R
n, let t �→ u(t, ξ) denote the solution of the differential

equation (2.27) such that u(0, ξ) = ξ, and note that t �→ (u(t, ξ), t) is the
corresponding solution of the system (2.28). The set Σ := {(ξ, ψ) : ψ = 0}
is a Poincaré section, and the corresponding Poincaré map is given by
ξ �→ u(T, ξ).

If there is a point p ∈ R
n such that f(p, t) = 0 for all t ∈ R, then the

function t �→ (p, t), or equivalently t �→ (u(t, p), t), is a periodic solution of
the system (2.28) with period T . Moreover, let us note that u(T, p) = p.
Thus, the periodic solution corresponds to a fixed point of the Poincaré
map as it should.

The derivative of the Poincaré map at p is the linear transformation of
R

n given by the partial derivative uξ(T, p). Moreover, by differentiating
both the differential equation (2.27) and the initial condition u(0, ξ) = ξ
with respect to ξ, it is easy to see that the matrix function t �→ uξ(t, p)
is the principal fundamental matrix solution at t = 0 of the (T -periodic
linear) variational initial value problem

Ẇ = fu(u(t, p), t)W, W (0) = I. (2.29)

If the solution of system (2.29) is represented in the Floquet normal form
uξ(t, p) = P (t)etB , then the derivative of the Poincaré map is given by
uξ(T, p) = eTB . In particular, the characteristic multipliers of the vari-
ational equation (2.29) coincide with the eigenvalues of the derivative of
the Poincaré map. Thus, whenever the principle of linearized stability is
valid, the stability of the periodic orbit is determined by the characteristic
multipliers of the periodic variational equation (2.29).

As an example, consider the pendulum with oscillating support

θ̈ + (1 + a cos ωt) sin θ = 0.

The zero solution, given by θ(t) ≡ 0, corresponds to a 2π/ω-periodic so-
lution of the associated autonomous system. A calculation shows that the
variational equation along this periodic solution is equivalent to the second
order differential equation

ẍ + (1 + a cos ωt)x = 0,

called a Mathieu equation.
Since, as we have just seen (see also Exercise 2.55), equations of Mathieu

type arise frequently in applications, the Floquet analysis of such equations
is important. In Section 2.4.2 we will show how the stability of the zero solu-
tion of the Mathieu equation, and, in turn, the stability of the zero solution
of the pendulum with oscillating support, is related in a delicate manner
to the amplitude a and the frequency ω of the periodic displacement.
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Exercise 2.59. This is a continuation of Exercise 2.30. Suppose that v : R →
R

3 is a periodic function. Consider the differential equation

ẋ = v(t) × x

and discuss the stability of its periodic solutions.

2.4.1 Lyapunov Exponents
An important generalization of Floquet exponents, called Lyapunov expo-
nents, are introduced in this section. This concept is used extensively in
the theory of dynamical systems (see, for example, [80], [114], [134], and
[185]).

Consider a (nonlinear) differential equation

u̇ = f(u), u ∈ R
n (2.30)

with flow ϕt. If ε ∈ R, ξ, v ∈ R
n, and η := ξ + εv, then the two solutions

t �→ ϕt(ξ), t �→ ϕt(ξ + εv)

start at points that are O(ε) close; that is, the absolute value of the differ-
ence of the two points in R

n is bounded by the usual norm of v times ε.
Moreover, by Taylor expansion at ε = 0, we have that

ϕt(ξ + εv) − ϕt(ξ) = εDϕt(ξ)v + O(ε2)

where Dϕt(ξ) denotes the derivative of the function u �→ ϕt(u) evaluated at
u = ξ. Thus, the first order approximation of the difference of the solutions
at time t is εDϕt(ξ)v where t �→ Dϕt(ξ) is the principal fundamental matrix
solution at t = 0 of the linearized equation

Ẇ = Df(ϕt(ξ))W

along the solution of the original system (2.30) starting at ξ. To see this
fact, just note that

ϕ̇t(u) = f(ϕt(u))

and differentiate both sides of this identity with respect to u at u = ξ.
If we view v as a vector in the tangent space to R

n at ξ, denoted TξR
n,

then Dϕt(ξ)v is a vector in the tangent space Tϕt(ξ)R
n. For each such v,

if v �= 0, then it is natural to define a corresponding linear operator L,
from the linear subspace of TξR

n generated by v to the linear subspace
of Tϕt(ξ)R

n generated by Dϕt(ξ)v, defined by L(av) = Dϕt(ξ)av where
a ∈ R. Let us note that the norm of this operator measures the relative
“expansion” or “contraction” of the vector v; that is,

‖L‖ = sup
a
=0

‖Dφt(ξ)av‖
‖av‖ =

‖Dφt(ξ)v‖
‖v‖ .
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Our two solutions can be expressed in integral form; that is,

ϕt(ξ) = ξ +
∫ t

0
f(ϕs(ξ)) ds,

ϕt(ξ + εv) = ξ + εv +
∫ t

0
f(ϕs(ξ + εv)) ds.

Hence, as long as we consider a finite time interval or a solution that is
contained in a compact subset of R

n, there is a Lipschitz constant Lip(f) >
0 for the function f , and we have the inequality

‖ϕt(ξ + εv) − ϕt(ξ)‖ ≤ ε‖v‖ + Lip(f)
∫ t

0
‖ϕs(ξ + εv) − ϕs(ξ)‖ ds.

By Gronwall’s inequality, the separation distance between the solutions is
bounded by an exponential function of time. In fact, we have the estimate

‖ϕt(ξ + εv) − ϕt(ξ)‖ ≤ ε‖v‖et Lip(f).

The above computation for the norm of L and the fact that the separation
rate between two solutions is at most exponential motivates the following
definition (see [114]).

Definition 2.60. If, for some ξ ∈ R
n, the solution t �→ ϕt(ξ) of the differ-

ential equation (2.30) is defined for all t ≥ 0, and if v ∈ R
n is a nonzero

vector, then the Lyapunov exponent at ξ in the direction v for the flow ϕt

is

χ(p, v) := lim sup
t→∞

1
t

ln
(‖Dφt(ξ)v‖

‖v‖

)
.

As a simple example, let us consider the planar system

ẋ = −ax, ẏ = by

where a and b are positive parameters, and let us note that its flow is given
by

ϕt(x, y) = (e−atx, ebty).

By an easy computation using the definition of the Lyapunov exponents,
it follows that if v is given by v = (w, z) and z �= 0, then χ(ξ, v) = b. If
z = 0 and w �= 0, then χ(ξ, v) = −a. In particular, there are exactly two
Lyapunov exponents for this system. Of course, the Lyapunov exponents
in this case correspond to the eigenvalues of the system matrix.

Although our definition of Lyapunov exponents is for autonomous sys-
tems, it should be clear that since the definition only depends on the funda-
mental matrix solutions of the associated variational equations along orbits
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of the system, we can define the same notion for solutions of abstract time-
dependent linear systems. Indeed, for a T -periodic linear system

u̇ = A(t)u, u ∈ R
n (2.31)

with principal fundamental matrix Φ(t) at t = 0, the Lyapunov exponent
defined with respect to the nonzero vector v ∈ R

n is

χ(v) := lim sup
t→∞

1
t

ln
(‖Φ(t)v‖

‖v‖

)
.

Proposition 2.61. If µ is a Floquet exponent of the system (2.31), then
the real part of µ is a Lyapunov exponent.

Proof. Let us suppose that the principal fundamental matrix Φ(t) is given
in Floquet normal form by

Φ(t) = P (t)etB .

If µ = a + bi is a Floquet exponent, then there is a corresponding vector
v such that eTBv = eµT v. Hence, using the Floquet normal form, we have
that

Φ(T )v = eµT v.

If t ≥ 0, then there is a nonnegative integer n and a number r such that
0 ≤ r < T and

1
t

ln
(‖Φ(t)v‖

‖v‖

)
=

1
T

( nT

nT + r

)( 1
n

ln
(‖P (nT + r)erBenµT v‖

‖v‖

))
=

1
T

( nT

nT + r

)( 1
n

ln |enTa| +
1
n

ln
(‖P (r)erBv‖

‖v‖

))
.

Clearly, n → ∞ as t → ∞. Thus, it is easy to see that

lim
t→∞

1
T

( nT

nT + r

)( 1
n

ln |enTa| +
1
n

ln
(‖P (r)erBv‖

‖v‖

))
= a. �

Let us suppose that a differential equation has a compact invariant set
that contains an orbit whose closure is dense in the invariant set. Then,
the existence of a positive Lyapunov exponent for this orbit ensures that
nearby orbits tend to separate exponentially fast from the dense orbit.
However, since these orbits are confined to a compact invariant set, they
must also be bounded. This suggests that each small neighborhood in the
invariant set undergoes both stretching and folding as it evolves with the
flow. The subsequent kneading of the invariant set due to this stretching
and folding would tend to mix the evolving neighborhoods so that they
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eventually intertwine in a complicated manner. For this reason, the ex-
istence of a positive Lyapunov exponent is often taken as a signature of
“chaos.” While this criterion is not always valid, the underlying idea that
the stretching implied by a positive Lyapunov exponent is associated with
complex motions is important in the modern theory of dynamical systems.

Exercise 2.62. Show that if two points are on the same orbit, then the corre-
sponding Lyapunov exponents are the same.

Exercise 2.63. Prove the “converse” of Proposition 2.61; that is, every Lya-
punov exponent for a time-periodic system is a Floquet exponent.

Exercise 2.64. If ẋ = f(x), determine the Lyapunov exponent χ(ξ, f(ξ)).

Exercise 2.65. How many Lyapunov exponents are associated with an orbit
of a differential equation in an n-dimensional phase space.

Exercise 2.66. Suppose that x is in the omega limit set of an orbit. Are the
Lyapunov exponents associated with x the same as those associated with the
original orbit?

Exercise 2.67. In all the examples in this section, the lim sup can be replaced
by lim. Are there examples where the superior limit is a finite number, but the
limit does not exist? This is (probably) a challenging exercise! For an answer
see [114] and [134].

2.4.2 Hill’s Equation
A famous example where Floquet theory applies to give good stability
results is Hill’s equation,

ü + a(t)u = 0, a(t + T ) = a(t).

This equation was introduced by George W. Hill in his study of the motions
of the moon. Roughly speaking, the motion of the moon can be viewed as
a harmonic oscillator in a periodic gravitational field. However, this model
equation arises in many areas of applied mathematics where the stability of
periodic motions is an issue. A prime example, mentioned in the previous
section, is the stability analysis of small oscillations of a pendulum whose
length varies with time.

If we define

x :=
(

u
u̇

)
,

then Hill’s equation is equivalent to the first order system ẋ = A(t)x where

A(t) =
(

0 1
−a(t) 0

)
.
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We will apply linear systems theory, especially Floquet theory, to analyze
the stability of the zero solution of this linear T -periodic system.

The first step in the stability analysis is an application of Liouville’s
formula (2.15). In this regard, you may recall from your study of scalar
second order linear differential equations that if ü + p(t)u̇ + q(t)u = 0 and
the Wronskian of the two solutions u1 and u2 is defined by

W (t) := det
(

u1(t) u2(t)
u̇1(t) u̇2(t)

)
,

then

W (t) = W (0)e− ∫ t
0 p(s) ds. (2.32)

Note that for the equivalent first order system

ẋ =
(

0 1
−q(t) −p(t)

)
x = B(t)x

with fundamental matrix Ψ(t), formula (2.32) is a special case of Liouville’s
formula

det Ψ(t) = det Ψ(0)e
∫ t
0 tr B(s)ds.

At any rate, let us apply Liouville’s formula to the principal fundamental
matrix Φ(t) at t = 0 for Hill’s system to obtain the identity det Φ(t) ≡ 1.
Since the determinant of a matrix is the product of the eigenvalues of
the matrix, we have an important fact: The product of the characteristic
multipliers of the monodromy matrix, Φ(T ), is 1.

Let the characteristic multipliers for Hill’s equation be denoted by λ1
and λ2 and note that they are roots of the characteristic equation

λ2 − (tr Φ(T ))λ + det Φ(T ) = 0.

For notational convenience let us set 2φ = tr Φ(T ) to obtain the equivalent
characteristic equation

λ2 − 2φλ + 1 = 0

whose solutions are given by

λ = φ ±
√

φ2 − 1.

There are several cases to consider depending on the value of φ.
Case 1: If φ > 1, then λ1 and λ2 are distinct positive real numbers such

that λ1λ2 = 1. Thus, we may assume that 0 < λ1 < 1 < λ2 with λ1 = 1/λ2
and there is a real number µ > 0 (a characteristic exponent) such that
eTµ = λ2 and e−Tµ = λ1. By Theorem 2.57 and Theorem 2.58, there is a
fundamental set of solutions of the form

e−µtp1(t), eµtp2(t)
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where the real functions p1 and p2 are T -periodic. In this case, the zero
solution is unstable.

Case 2: If φ < −1, then λ1 and λ2 are both real and both negative. Also,
since λ1λ2 = 1, we may assume that λ1 < −1 < λ2 < 0 with λ1 = 1/λ2.
Thus, there is a real number µ > 0 (a characteristic exponent) such that
e2Tµ = λ2

1 and e−2Tµ = λ2
2. As in Case 1, there is a fundamental set of

solutions of the form

eµtq1(t), e−µtq2(t)

where the real functions q1 and q2 are 2T -periodic. Again, the zero solution
is unstable.

Case 3: If −1 < φ < −1, then λ1 and λ2 are complex conjugates each
with nonzero imaginary part. Since λ1λ̄1 = 1, we have that |λ1| = 1, and
therefore both characteristic multipliers lie on the unit circle in the complex
plane. Because both λ1 and λ2 have nonzero imaginary parts, one of these
characteristic multipliers, say λ1, lies in the upper half plane. Thus, there is
a real number θ with 0 < θT < π and eiθT = λ1. In fact, there is a solution
of the form eiθt(r(t)+ is(t)) with r and s both T -periodic functions. Hence,
there is a fundamental set of solutions of the form

r(t) cos θt − s(t) sin θt, r(t) sin θt + s(t) cos θt.

In particular, the zero solution is stable (see Exercise 2.69) but not asymp-
totically stable. Also, the solutions are periodic if and only if there are
relatively prime positive integers m and n such that 2πm/θ = nT . If such
integers exist, all solutions have period nT . If not, then these solutions are
quasi-periodic.

We have just proved the following facts for Hill’s equation: Suppose that
Φ(t) is the principal fundamental matrix solution of Hill’s equation at t = 0.
If | tr Φ(T )| < 2, then the zero solution is stable. If | tr Φ(T )| > 2, then the
zero solution is unstable.

Case 4: If φ = 1, then λ1 = λ2 = 1. The nature of the solutions depends
on the canonical form of Φ(T ). If Φ(T ) is the identity, then e0 = Φ(T ) and
there is a Floquet normal form Φ(t) = P (t) where P (t) is T -periodic and
invertible. Thus, there is a fundamental set of periodic solutions and the
zero solution is stable. If Φ(T ) is not the identity, then there is a nonsingular
matrix C such that

CΦ(T )C−1 = I + N = eN

where N �= 0 is nilpotent. Thus, Φ(t) has a Floquet normal form Φ(t) =
P (t)etB where B := C−1( 1

T N)C. Because

etB = C−1(I +
t

T
N)C,
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the matrix function t �→ etB is unbounded, and therefore the zero solution
is unstable.

Case 5: If φ = −1, then the situation is similar to Case 4, except the
fundamental matrix is represented by Q(t)etB where Q(t) is a 2T -periodic
matrix function.

By the results just presented, the stability of Hill’s equation is reduced,
in most cases, to a determination of the absolute value of the trace of
its principal fundamental matrix evaluated after one period. While this is
a useful fact, it leaves open an important question: Can the stability be
determined without imposing a condition on the solutions of the equation?
It turns out that in some special cases this is possible (see [115] and [189]).
A theorem of Lyapunov [114] in this direction follows.

Theorem 2.68. If a : R → R is a positive T -periodic function such that

T

∫ T

0
a(t) dt ≤ 4,

then all solutions of the Hill’s equation ẍ + a(t)x = 0 are bounded. In
particular, the trivial solution is stable.

The proof of Theorem 2.68 is outlined in Exercises 2.69 and 2.74.

Exercise 2.69. Prove: If all solutions of the T -periodic system ẋ = A(t)x are
bounded, then the trivial solution is Lyapunov stable.

Exercise 2.70. Consider the second order system

ü + u̇ + cos(t) u = 0.

Prove: If ρ1 and ρ2 are the characteristic multipliers of the corresponding first
order system, then ρ1ρ2 = exp(−2π). Also, show that this result implies the
Poincaré map for the system is dissipative; that is, it contracts area.

Exercise 2.71. Prove: The equation

ü − (2 sin2 t)u̇ + (1 + sin 2t)u = 0.

does not have a fundamental set of periodic solutions.

Exercise 2.72. Discuss the stability of the trivial solution of the scalar time-
periodic system ẋ = (cos2 t)x.

Exercise 2.73. Prove: The zero solution is unstable for the system ẋ = A(t)x
where

A(t) :=
(

1/2 − cos t 12
147 3/2 + sin t

)
.

Exercise 2.74. Prove Theorem 2.68. Hint: If Hill’s equation has an unbounded
solution, then there is a real solution t �→ x(t) and a real Floquet multiplier such
that x(t + T ) = λx(t). Define a new function t �→ u(t) by

u(t) :=
ẋ(t)
x(t)

,
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and show that u is a solution of the Riccati equation

u̇ = −a(t) − u2.

Use the Riccati equation to prove that the solution x has at least one zero in the
interval [0, T ]. Also, show that x has two distinct zeros on some interval whose
length does not exceed T . Finally, use the following proposition to finish the
proof. If f is a smooth function on the finite interval [α, β] such that f(α) = 0,
f(β) = 0, and such that f is positive on the open interval (α, β), then

(β − α)
∫ β

α

|f ′′(t)|
f(t)

dt > 4.

To prove this proposition, first suppose that f attains its maximum at γ and
show that

4
β − α

≤ 1
γ − α

+
1

β − γ
=

1
f(γ)

(f(γ) − f(α)
γ − α

− f(β) − f(γ)
β − γ

)
.

Then, use the mean value theorem and the fundamental theorem of calculus to
complete the proof.

Exercise 2.75. Prove: If t �→ a(t) is negative, then the Hill’s equation ẍ +
a(t)x = 0 has an unbounded solution. Hint: Multiply by x and integrate by
parts.

2.4.3 Periodic Orbits of Linear Systems
In this section we will consider the existence and stability of periodic solu-
tions of the time-periodic system

ẋ = A(t)x + b(t), x ∈ R
n (2.33)

where t �→ A(t) is a T -periodic matrix function and t �→ b(t) is a T -periodic
vector function.

Theorem 2.76. If the number one is not a characteristic multiplier of the
T -periodic homogeneous system ẋ = A(t)x, then (2.33) has at least one
T -periodic solution.

Proof. Let us show first that if t �→ x(t) is a solution of system (2.33)
and x(0) = x(T ), then this solution is T -periodic. Define y(t) := x(t + T ).
Note that t �→ y(t) is a solution of (2.33) and y(0) = x(0). Thus, by the
uniqueness theorem x(t + T ) = x(t) for all t ∈ R.

If Φ(t) is the principal fundamental matrix solution of the homogeneous
system at t = 0, then, by the variation of constants formula,

x(T ) = Φ(T )x(0) + Φ(T )
∫ T

0
Φ−1(s)b(s) ds.
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Therefore, x(T ) = x(0) if and only if

(I − Φ(T ))x(0) = Φ(T )
∫ T

0
Φ−1(s)b(s) ds.

This equation for x(0) has a solution whenever the number one is not an
eigenvalue of Φ(T ). (Note that the map x(0) �→ x(T ) is the Poincaré map.
Thus, our periodic solution corresponds to a fixed point of the Poincaré
map).

By Floquet’s theorem, there is a matrix B such that the monodromy
matrix is given by

Φ(T ) = eTB .

In other words, by the hypothesis, the number one is not an eigenvalue of
Φ(T ). �

Corollary 2.77. If A(t) = A, a constant matrix such that A is infinitesi-
mally hyperbolic (no eigenvalues on the imaginary axis), then the differen-
tial equation (2.33) has at least one T -periodic solution.

Proof. The monodromy matrix eTA does not have 1 as an eigenvalue. �

Exercise 2.78. Discuss the uniqueness of the T -periodic solutions of the sys-
tem (2.33). Also, using Theorem 2.53, discuss the stability of the T -periodic
solutions.

In system (2.33) if b = 0, then the trivial solution is a T -periodic solution.
The next theorem states a general sufficient condition for the existence of
a T -periodic solution.

Theorem 2.79. If the T -periodic system (2.33) has a bounded solution,
then it has a T -periodic solution.

Proof. Consider the principal fundamental matrix solution Φ(t) at t = 0 of
the homogeneous system corresponding to the differential equation (2.33).
By the variation of constants formula, we have the equation

x(T ) = Φ(T )x(0) + Φ(T )
∫ T

0
Φ−1(s)b(s) ds.

Also, by Theorem 2.47, there is a constant matrix B such that Φ(T ) = eTB .
Thus, the stroboscopic Poincaré map P is given by

P (ξ) := Φ(T )ξ + Φ(T )
∫ T

0
Φ−1(s)b(s) ds

= eTB
(
ξ +

∫ T

0
Φ−1(s)b(s) ds

)
.
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If the solution with initial condition x(0) = ξ0 is bounded, then the
sequence {P j(ξ0)}∞

j=0 is bounded. Also, P is an affine map; that is, P (ξ) =
Lξ + y where L = eTB = Φ(T ) is a real invertible linear map and y is an
element of R

n.
Note that if there is a point x ∈ R

n such that P (x) = x, then the
system (2.33) has a periodic orbit. Thus, if we assume that there are no
periodic orbits, then the equation

(I − L)ξ = y

has no solution ξ. In other words, y is not in the range R of the operator
I − L.

There is some vector v ∈ R
n such that v is orthogonal to R and the

inner product 〈v, y〉 does not vanish. Moreover, because v is orthogonal to
the range, we have

〈(I − L)ξ, v〉 = 0

for each ξ ∈ R
n, and therefore

〈ξ, v〉 = 〈Lξ, v〉. (2.34)

Using the representation P (ξ) = Lξ + y and an induction argument, it
is easy to prove that if j is a nonnegative integer, then P j(ξ0) = Ljξ0 +∑j−1

k=0 Lky. By taking the inner product with v and repeatedly applying
the reduction formula (2.34), we have

〈P j(ξ0), v〉 = 〈ξ0, v〉 + (j − 1)〈y, v〉.

Moreover, because 〈v, y〉 �= 0, it follows immediately that

lim
j→∞

〈P j(ξ0), v〉 = ∞,

and therefore the sequence {P j(ξ0)}∞
j=0 is unbounded, in contradiction. �

2.4.4 Stability of Periodic Orbits
Consider a (nonlinear) autonomous system of differential equations on R

n

given by u̇ = f(u) with a periodic orbit Γ. Also, for each ξ ∈ R
n, define

the vector function t �→ u(t, ξ) to be the solution of this system with the
initial condition u(0, ξ) = ξ.

If p ∈ Γ and Σ′ ⊂ R
n is a section transverse to f(p) at p, then, as a

corollary of the implicit function theorem, there is an open set Σ ⊆ Σ′ and
a function T : Σ → R, the time of first return to Σ′, such that for each
σ ∈ Σ, we have u(T (σ), σ) ∈ Σ′. The map P, given by σ �→ u(T (σ), σ), is
the Poincaré map corresponding to the Poincaré section Σ.
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The Poincaré map is defined only on Σ, a manifold contained in R
n. It

is convenient to avoid choosing local coordinates on Σ. Thus, we will view
the elements in Σ also as points in the ambient space R

n. In particular, if
v ∈ R

n is tangent to Σ at p, then the derivative of P in the direction v is
given by

DP(p)v = (dT (p)v)f(p) + uξ(T (p), p)v. (2.35)

The next proposition relates the spectrum of DP(p) to the Floquet multi-
pliers of the first variational equation

Ẇ = Df(u(t, p))W.

Proposition 2.80. If Γ is a periodic orbit and p ∈ Γ, then the union of
the set of eigenvalues of the derivative of a Poincaré map at p ∈ Γ and the
singleton set {1} is the same as the set of characteristic multipliers of the
first variational equation along Γ. In particular, zero is not an eigenvalue.

Proof. Recall that t �→ uξ(t, ξ) is the principal fundamental matrix solu-
tion at t = 0 of the first variational equation and, since

d

dt
f(u(t, ξ)) = Df(u(t, ξ)ut(t, ξ) = Df(u(t, ξ)f(u(t, ξ)),

the vector function t �→ f(u(t, ξ)) is the solution of the variational equation
with the initial condition W (0) = f(ξ). In particular,

uξ(T (p), p)f(p) = f(u(T (p), p)) = f(p),

and therefore f(p) is an eigenvector of the linear transformation uξ(T (p), p)
with eigenvalue the number one.

Since Σ is transverse to f(p), there is a basis of R
n of the form

f(p), s1, . . . , sn−1

with si tangent to Σ at p for each i = 1, . . . , n − 1. It follows that the
matrix uξ(T (p), p) has block form, relative to this basis, given by(

1 a
0 b

)
where a is 1 × (n − 1) and b is (n − 1) × (n − 1). Moreover, each v ∈ R

n

that is tangent to Σ at p has block form (the transpose of) (0, vΣ). As a
result, we have the equality

uξ(T (p), p)v =
(

1 a
0 b

)(
0
vΣ

)
.
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Using (2.35), the block form of uξ(T (p), p), and the fact that the range
of DP(p) is tangent to Σ at p, it follows that

DP(p)v =
(

dT (p)v + avΣ
bvΣ

)
=

(
0

bvΣ

)
.

In other words, the derivative of the Poincaré map may be identified with
b and the differential of the return time map with −a. In particular, the
eigenvalues of the derivative of the Poincaré map coincide with the eigen-
values of b. �

Exercise 2.81. Prove that the characteristic multipliers of the first variational
equation along a periodic orbit do not depend on the choice of p ∈ Γ.

Most of the rest of this section is devoted to a proof of the following
fundamental theorem.

Theorem 2.82. Suppose that Γ is a periodic orbit for the autonomous
differential equation u̇ = f(u) and P is a corresponding Poincaré map
defined on a Poincaré section Σ such that p ∈ Γ ∩ Σ. If the eigenvalues of
the derivative DP(p) are inside the unit circle in the complex plane, then
Γ is asymptotically stable.

There are several possible proofs of this theorem. The approach used
here is adapted from [95].

To give a complete proof of Theorem 2.82, we will require several prelim-
inary results. Our first objective is to show that the point p is an asymptot-
ically stable fixed point of the dynamical system defined by the Poincaré
map on Σ.

Let us begin with a useful simple replacement of the Jordan normal form
theorem that is adequate for our purposes here (see [99]).

Proposition 2.83. An n×n (possibly complex) matrix A is similar to an
upper triangular matrix whose diagonal elements are the eigenvalues of A.

Proof. Let v be a nonzero eigenvector of A corresponding to the eigenvalue
λ. The vector v can be completed to a basis of C

n that defines a matrix
Q partitioned by the corresponding column vectors Q := [v, y1, . . . , yn−1].
Moreover, Q is invertible and

[Q−1v, Q−1y1, . . . , Q−1yn−1] = [e1, . . . , en]

where e1, . . . , en denote the usual basis elements.
Note that

Q−1AQ = Q−1[λv, Ay1, . . . , Ayn−1]
= [λe1, Q

−1Ay1, . . . , Q−1Ayn−1].
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In other words, the matrix Q−1AQ is given in block form by

Q−1AQ =
(

λ ∗
0 Ã

)
where Ã is an (n−1)×(n−1) matrix. In particular, this proves the theorem
for all 2 × 2 matrices.

By induction, there is an (n − 1) × (n − 1) matrix R̃ such that R̃−1ÃR̃
is upper triangular. The matrix (QR)−1AQR where

R =
(

1 0
0 R̃

)
is an upper triangular matrix with the eigenvalues of A as its diagonal
elements, as required. �

Let ρ(A) denote the spectral radius of A, that is, the maximum modulus
of the eigenvalues of A.

Proposition 2.84. Suppose that A is an n×n matrix. If ε > 0, then there
is a norm on C

n such that ‖A‖ε < ρ(A) + ε. If A is a real matrix, then the
restriction of the “ε-norm” to R

n is a norm on R
n with the same property.

Proof. The following proof is adapted from [99]. By Proposition 2.83, there
is a matrix Q such that

QAQ−1 = D + N

where D is diagonal with the eigenvalues of A as its diagonal elements, and
N is upper triangular with each of its diagonal elements equal to zero.

Let µ > 0, and define a new diagonal matrix S with diagonal elements

1, µ−1, µ−2, . . . , µ1−n.

A computation shows that

S(D + N)S−1 = D + SNS−1.

Also, it is easy to show—by writing out the formulas for the components—
that every element of the matrix SNS−1 is O(µ).

Define a norm on C
n, by the formula

‖v‖µ := ‖SQv‖ = 〈SQv, SQv〉

where the angle brackets on the right hand side denote the usual Euclidean
inner product on C

n. It is easy to verify that this procedure indeed defines
a norm on C

n that depends on the parameter µ.
Post multiplication by SQ of both sides of the equation

SQAQ−1S−1 = D + SNS−1
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yields the formula

SQA = (D + SNS−1)SQ.

Using this last identity we have that

‖Av‖2
µ = ‖SPAv‖2 = ‖(D + SNS−1)SQv‖2.

Let us define w := SQv and then expand the last norm into inner products
to obtain

‖Av‖2
µ = 〈Dw, Dw〉 + 〈SNS−1w, Dw〉

+〈Dw, SNS−1w〉 + 〈SNS−1w, SNS−1w〉.

A direct estimate of the first inner product together with an application
of the Schwarz inequality to each of the other inner products yields the
following estimate:

‖Av‖2
µ ≤ (ρ2(A) + O(µ))‖w‖2.

Moreover, we have that ‖v‖µ = ‖w‖. In particular, if ‖v‖µ = 1 then ‖w‖ =
1, and it follows that

‖A‖2
µ ≤ ρ2(A) + O(µ).

Thus, if µ > 0 is sufficiently small, then ‖A‖µ < ρ(A) + ε, as required. �

Corollary 2.85. If all the eigenvalues of the n × n matrix A are inside
the unit circle in the complex plane, then there is an “adapted norm” and
a number λ, with 0 < λ < 1, such that ‖Av‖a < λ‖v‖a for all vectors v,
real or complex. In particular A is a contraction with respect to the adapted
norm. Moreover, for each norm on R

n or C
n, there is a positive number C

such that ‖Anv‖ ≤ Cλn‖v‖ for all nonnegative integers n.

Proof. Under the hypothesis, we have ρ(A) < 1; thus, there is a number
λ such that ρ(A) < λ < 1. Using Proposition 2.84, there is an adapted
norm so that ‖A‖a < λ. This proves the first part of the corollary. To
prove the second part, recall that all norms on a finite dimensional space
are equivalent. In particular, there are positive numbers C1 and C2 such
that

C1‖v‖ ≤ ‖v‖a ≤ C2‖v‖

for all vectors v. Thus, we have

C1‖Anv‖ ≤ ‖Anv‖a ≤ ‖A‖n
a‖v‖a ≤ C2λ

n‖v‖.

After dividing both sides of the last inequality by C1 > 0, we obtain the
desired estimate. �
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We are now ready to return to the dynamics of the Poincaré map P
defined above. Recall that Γ is a periodic orbit for the differential equation
u̇ = f(u) and P : Σ → Σ′ is defined by P(σ) = u(T (σ), σ) where T is the
return time function. Also, we have that p ∈ Γ ∩ Σ.

Lemma 2.86. Suppose that V ⊆ R
n is an open set with compact closure

V̄ such that Γ ⊂ V and V̄ is contained in the domain of the function f . If
t∗ ≥ 0, then there is an open set W ⊆ V that contains Γ and is such that,
for each point ξ ∈ W , the solution t �→ u(t, ξ) is defined and stays in V on
the interval 0 ≤ t ≤ t∗. Moreover, if ξ and ν are both in W and 0 ≤ t ≤ t∗,
then there is a number L > 0 such that

‖u(t, ξ) − u(t, ν)‖ < ‖ξ − ν‖eLt∗ .

Proof. Using the fact that V̄ is a compact subset of the domain of f and
Lemma 2.40, the function f is globally Lipschitz on V with a Lipschitz
constant L > 0. Also, there is a minimum positive distance m from the
boundary of V to Γ.

An easy application of Gronwall’s inequality can be used to show that if
ξ, ν ∈ V , then

‖u(t, ξ) − u(t, ν)‖ ≤ ‖ξ − ν‖eLt (2.36)

for all t such that both solutions are defined on the interval [0, t].
Define the set

Wq := {ξ ∈ R
n : ‖ξ − q‖eLt∗ < m}

and note that Wq is open. If ξ ∈ Wq, then

‖ξ − q‖ < me−Lt∗ < m.

Thus, it follows that Wq ⊆ V .
Using the extensibility theorem (Theorem 1.186), it follows that if ξ ∈

Wq, then the interval of existence of the solution t �→ u(t, ξ) can be extended
as long as the orbit stays in the compact set V̄ . The point q is on the periodic
orbit Γ. Thus, the solution t → u(t, q) is defined for all t ≥ 0. Using the
definition of Wq and an application of the inequality (2.36) to the solutions
starting at ξ and q, it follows that the solution t �→ u(t, ξ) is defined and
stays in V on the interval 0 ≤ t ≤ t∗.

The union W :=
⋃

q∈Γ Wq is an open set in V containing Γ with the
property that all solutions starting in W remain in V at least on the time
interval 0 ≤ t ≤ t∗. �

Define the distance of a point q ∈ R
n to a set S ⊆ R

n by

dist(q, S) = inf
x∈S

|q − x|
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where the norm on the right hand side is the usual Euclidean norm. Simi-
larly, the (minimum) distance between two sets is defined as

dist(A, B) = inf{|a − b| : a ∈ A, b ∈ B}.

(Warning: dist is not a metric.)

Proposition 2.87. If σ ∈ Σ and if limn→∞ Pn(σ) = p, then

lim
t→∞ dist(u(t, σ), Γ) = 0.

Proof. Let ε > 0 be given and let Σ0 be an open subset of Σ such that
p ∈ Σ0 and such that Σ̄0, the closure of Σ0, is a compact subset of Σ. The
return time map T is continuous; hence, it is uniformly bounded on the set
Σ̄0, that is,

sup{T (η) : η ∈ Σ̄0} = T ∗ < ∞.

Let V be an open subset of R
n with compact closure V̄ such that Γ ⊂ V

and V̄ is contained in the domain of f . By Lemma 2.86, there is an open
set W ⊆ V such that Γ ⊂ W and such that, for each ξ ∈ W , the solution
starting at ξ remains in V on the interval 0 ≤ s ≤ T ∗.

Choose δ > 0 so small that the set

Σδ := {η ∈ Σ : |η − p| < δ}

is contained in W ∩ Σ0, and such that

|η − p|eLT ∗
< min{m, ε}

for all η ∈ Σδ. By Lemma 2.86, if η ∈ Σδ, then, for 0 ≤ s ≤ T ∗, we have
that

|u(s, η) − u(s, p)| < ε.

By the hypothesis, there is some integer N > 0 such that Pn(σ) ∈ Σδ

whenever n ≥ N .
Using the group property of the flow, let us note that

Pn(σ) = u(
n−1∑
j=0

T (Pj(σ)), σ).

Moreover, if t ≥
∑N−1

j=0 T (Pj(σ)), then there is some integer n ≥ N and
some number s such that 0 ≤ s ≤ T ∗ and

t =
n−1∑
j=0

T (Pj(σ)) + s.
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For this t, we have Pn(σ) ∈ Σδ and

dist(u(t, σ), Γ) = min
q∈Γ

|u(t, σ) − q|

≤ |u(t, σ) − u(s, p)|

= |u(s, u(
n−1∑
j=0

T (Pj(σ)), σ)) − u(s, p)|

= |u(s, Pn(σ)) − u(s, p)|.

It follows that dist(u(t, σ), Γ) < ε whenever t ≥
∑N−1

j=0 T (Pj(σ)). In other
words,

lim
t→∞ dist(u(t, σ), Γ) = 0,

as required. �

We are now ready for the proof of Theorem 2.82.

Proof. Suppose that V is a neighborhood of Γ. We must prove that there is
a neighborhood U of Γ such that U ⊆ V with the additional property that
every solution of u̇ = f(u) that starts in U stays in V and is asymptotic to
Γ.

We may as well assume that V has compact closure V̄ and V̄ is contained
in the domain of f . Then, by Lemma 2.86, there is an open set W that
contains Γ and is contained in the closure of V with the additional property
that every solution starting in W exists and stay in V on the time interval
0 ≤ t ≤ 2τ where τ := T (p) is the period of Γ.

Also, let us assume without loss of generality that our Poincaré section
Σ is a subset of a hyperplane Σ′ and that the coordinates on Σ′ are chosen
so that p lies at the origin. By our hypothesis, the linear transformation
DP(0) : Σ′ → Σ′ has its spectrum inside the unit circle in the complex
plane. Thus, by Corollary 2.85, there is an adapted norm on Σ′ and a
number λ with 0 < λ < 1 such that ‖DP(0)‖ < λ.

Using the continuity of the map σ → DP(σ), the return time map, and
the adapted norm, there is an open ball Σ0 ⊆ Σ centered at the origin
such that Σ0 ⊂ W , the return time map T restricted to Σ0 is bounded by
2τ , and ‖DP(σ)‖ < λ whenever σ ∈ Σ0. Moreover, using the mean value
theorem, it follows that

‖P(σ)‖ = ‖P(σ) − P(0)‖ < λ‖σ‖,

whenever σ ∈ Σ0. In particular, if σ ∈ Σ0, then P(σ) ∈ Σ0.
Let us show that all solutions starting in Σ0 are defined for all positive

time. To see this, consider σ ∈ Σ0 and note that, by our construction, the
solution t �→ u(t, σ) is defined for 0 ≤ t ≤ T (σ) because T (σ) < 2τ . We
also have that u(T (σ), σ) = P(σ) ∈ Σ0. Thus, the solution t �→ u(t, σ)
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can be extended beyond the time T (σ) by applying the same reasoning
to the solution t → u(t, P(σ)) = u(t + u(Tσ), σ)). This procedure can be
extended indefinitely, and thus the solution t → u(t, σ) can be extended
for all positive time.

Define U := {u(t, σ) : σ ∈ Σ0 and t > 0}. Clearly, Γ ⊂ U and also every
solution that starts in U stays in U for all t ≥ 0. We will show that U is
open. To prove this fact, let ξ := u(t, σ) ∈ U with σ ∈ Σ0. If we consider the
restriction of the flow given by u : (0,∞) × Σ0 → U , then, using the same
idea as in the proof of the rectification lemma (Lemma 1.76), it is easy to
see that the derivative Du(t, σ) is invertible. Thus, by the inverse function
theorem (Theorem 1.77), there is an open set in U at ξ diffeomorphic to a
product neighborhood of (t, σ) in (0,∞) × Σ0. Thus, U is open.

To show that U ⊆ V , let ξ := u(t, σ) ∈ U with σ ∈ Σ0. There is some
integer n ≥ 0 and some number s such that

t =
n−1∑
j=0

T (Pj(σ)) + s

where 0 ≤ s < T (Pn(σ)) < 2τ . In particular, we have that ξ = u(s,Pn(σ)).
But since 0 ≤ s < 2τ and Pn(σ) ∈ W it follows that ξ ∈ V .

Finally, for this same ξ ∈ U , we have as an immediate consequence of
Proposition 2.87 that limt→∞ dist(u(t, Pn(ξ)),Γ) = 0. Moreover, for each
t ≥ 0, we also have that

dist(u(t, ξ), Γ) = dist(u(t, u(s,Pn(ξ)),Γ) = dist(u(s + t, Pn(ξ)),Γ).

It follows that limt→∞ dist(u(t, ξ), Γ) = 0, as required. �

A useful application of our results can be made for a periodic orbit Γ of
a differential equation defined on the plane. In fact, there are exactly two
characteristic multipliers of the first variational equation along Γ. Since one
of these characteristic multipliers must be the number one, the product of
the characteristic multipliers is the eigenvalue of the derivative of every
Poincaré map defined on a section transverse to Γ. In view of Liouville’s
formula and the fact that the determinant of a matrix is the product of its
eigenvalues, we have the following proposition.

Proposition 2.88. If Γ is a periodic orbit of period ν of the autonomous
differential equation u̇ = f(u) on the plane, and if P is a Poincaré map
defined at p ∈ Γ, then, using the notation of this section, the eigenvalue λΓ
of the derivative of P at p is given by

λΓ = det uξ(T (p), p) = e
∫ ν
0 div f(u(t,p)) dt.

In particular, if λΓ < 1 then Γ is asymptotically stable, whereas if λΓ > 1
then Γ is unstable.
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The flow near an attracting limit cycle is very well understood. A next
proposition states that the orbits of points in the basin of attraction of the
limit cycle are “asymptotically periodic.”

Proposition 2.89. Suppose that Γ is an asymptotically stable periodic or-
bit with period T . There is a neighborhood V of Γ such that if ξ ∈ V , then
limt→∞ ‖u(t + T, ξ) − u(t, ξ)‖ = 0 where ‖ ‖ is an arbitrary norm on R

n.
(In this case, the point ξ is said to have asymptotic period T .)

Proof. By Lemma 2.86, there is an open set W such that Γ ⊂ W and the
function ξ �→ u(T, ξ) is defined for each ξ ∈ W . Using the continuity of this
function, there is a number δ > 0 such that δ < ε/2 and

‖u(T, ξ) − u(T, η)‖ <
ε

2

whenever ξ, η ∈ W and ‖ξ − η‖ < δ.
By the hypothesis, there is a number T ∗ so large that dist(u(t, ξ), Γ) < δ

whenever t ≥ T ∗. In particular, for each t ≥ T ∗, there is some q ∈ Γ such
that ‖u(t, ξ) − q‖ < δ. Using this fact and the group property of the flow,
we have that

‖u(t + T, ξ) − u(t, ξ)‖ ≤ ‖u(T, u(t, ξ)) − u(T, q)‖ + ‖q − u(t, ξ)‖
≤ ε

2
+ δ < ε

whenever t ≥ T ∗. Thus, limt→∞ ‖u(t + T, ξ) − u(t, ξ)‖ = 0, as required. �

A periodic orbit can be asymptotically stable without being hyperbolic.
In fact, it is easy to construct a limit cycle in the plane that is asymp-
totically stable whose Floquet multiplier is the number one. By the last
proposition, points in the basin of attraction of such an attracting limit
cycle have asymptotic periods equal to the period of the limit cycle. How-
ever, if the periodic orbit is hyperbolic, then a stronger result is true: Not
only does each point in the basin of attraction have an asymptotic period,
each such point has an asymptotic phase. This is the content of the next
result.

Theorem 2.90. If Γ is an attracting hyperbolic periodic orbit, then there
is a neighborhood V of Γ such that for each ξ ∈ V there is some q ∈ Γ
such that limt→∞ ‖u(t, ξ) − u(t, q)‖ = 0. (In this case, ξ is said to have
asymptotic phase q.)

Proof. Let Σ be a Poincaré section at p ∈ Γ such that Σ has compact
closure. Moreover, let us suppose, without loss of generality, that Σ has the
following additional properties: If σ ∈ Σ, then (1) limn→∞ Pn(σ) = p; (2)
T (σ) < 2T (p); and (3) ‖DT (σ)‖ < 2‖DT (p)‖ where T is the return time
function on Σ.



2.4 Floquet Theory 195

Using the implicit function theorem, it is easy to construct a neighbor-
hood V of Γ such that for each ξ ∈ V , there is a number tξ ≥ 0 with
σξ := u(tξ, ξ) ∈ Σ. Moreover, using Lemma 2.86, we can choose V such
that every solution with initial point in V is defined on the time interval
0 ≤ t ≤ 2T (p) where T (p) is the period of Γ.

We will show that if σξ ∈ Σ, then there is a point qξ ∈ Γ such that

lim
t→∞ ‖u(t, σξ) − u(t, qξ)‖ = 0.

Using this fact, it follows that if r := u(−tξ, qξ), then

lim
t→∞ ‖u(t, ξ) − u(t, r)‖ = lim

t→∞ ‖u(t − tξ, u(tξ, ξ)) − u(t − tξ, qξ)‖

= lim
t→∞ ‖u(t − tξ, σξ) − u(t − tξ, qξ)‖ = 0.

Thus, it suffices to prove the theorem for a point σ ∈ Σ.
For a point σ ∈ Σ, consider the sequence {u(nT (p), σ)}∞

n=0 and note that
if n ≥ 0, then there is some number sn such that

nT (p) =
n−1∑
j=0

T (Pj(σ)) + sn

with 0 ≤ sn ≤ T (Pn(σ)) ≤ 2T (p), and therefore

u(nT (p), σ) = u(sn,Pn(σ)).

Moreover, we have that

(n + 1)T (p) − nT (p) = T (Pn(σ)) + sn+1 − sn,

and, as a result,

|sn+1 − sn| = |T (p) − T (Pn(σ))| ≤ 2‖DT (p)‖‖p − Pn(p)‖.

By the hyperbolicity hypothesis, the spectrum of DP(p) is inside the
unit circle, and therefore there is a number λ and a positive constant C
such that 0 < λ < 1 and

‖p − Pn(σ)‖ < Cλn‖p − σ‖.

(Here we could use an adapted norm to make the computations more ele-
gant, but perhaps less instructive.) Hence, there is a positive constant C1
such that

|sn+1 − sn| < C1λ
n

whenever n ≥ 0.
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Note that because sn = s1 +
∑n−1

j=1 (sj+1 − sj) and

n−1∑
j=1

|sj+1 − sj | < C1

n−1∑
j=1

λj < C1
1

1 − λ
,

the series
∑∞

j=1(sj+1 − sj) is absolutely convergent—its absolute partial
sums form an increasing sequence that is bounded above. Thus, in fact,
there is a number s such that limn→∞ sn = s. Also, 0 ≤ s ≤ 2T (p).

Let ε > 0 be given. By the compactness of its domain, the function

u : [0, 2T (p)] × Σ̄ → R
n

is uniformly continuous. In particular, there is a number δ > 0 such that if
(t1, σ1) and (t2, σ2) are both in the domain and if |t1 − t2|+ ‖σ1 −σ2‖ < δ,
then

‖u(t1, σ1) − u(t2, σ2)‖ < ε.

In view of the equality

‖u(nT (p), σ) − u(s, p)‖ = ‖u(sn,Pn(σ)) − u(s, p)‖

and the implication that if n is sufficiently large, then

|sn − s| + ‖Pn(σ) − p‖ < ε,

it follows that

lim
n→∞ ‖u(nT (p), σ) − u(s, p)‖ = 0.

Also, for each t ≥ 0, there is an integer n ≥ 0 and a number s(t) such that
0 ≤ s(t) < T (p) and t = nT (p)+s(t). Using this fact, we have the equation

‖u(t, σ) − u(t, u(s, p))‖ = ‖u(s(t), u(nT (p), σ)) − u(s(t), u(nT (p), u(s, p))‖.

Also, using the fact that q := u(s, p) ∈ Γ and Lemma 2.86, there is a
constant L > 0 such that

‖u(t, σ) − u(t, q)‖ = ‖u(s(t), u(nT (p), σ)) − u(s(t), q))‖
≤ ‖u(nT (p), σ) − q‖eLT (p).

By passing to the limit as n → ∞, we obtain the desired result. �

Exercise 2.91. Find a periodic solution of the system

ẋ = x − y − x(x2 + y2),

ẏ = x + y − y(x2 + y2),

ż = −z,

and determine its stability type. In particular, compute the Floquet multipliers
for the monodromy matrix associated with the periodic orbit [98, p. 120].
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Exercise 2.92. Find an example of a planar system with a limit cycle such that
some nearby solutions do not have an asymptotic phase. Contrast and compare
the asymptotic phase concept for the following planar systems that are defined
in the punctured plane in polar coordinates:

1. ṙ = r(1 − r), θ̇ = r,

2. ṙ = r(1 − r)2, θ̇ = r,

3. ṙ = r(1 − r)n, θ̇ = r.

Exercise 2.93. Suppose that v �= 0 is an eigenvector for the monodromy oper-
ator with associated eigenvalue λΓ as in Proposition 2.88. If λΓ �= 1, then v and
f(p) are independent vectors that form a basis for R

2. The monodromy operator
expressed in this basis is diagonal. Express the operators a and b defined in the
proof of Proposition 2.80 in terms of this basis. What can you say about the
derivative of the transit time map along a section that is tangent to v at p?

Exercise 2.94. This exercise is adapted from [187]. Suppose that f : R
2 → R

is a smooth function and A := {(x, y) ∈ R
2 : f(x, y) = 0} is a regular level set

of f . Prove that each bounded component of A is an attracting hyperbolic limit
cycle for the differential equation

ẋ = −fy − ffx, ẏ = fx − ffy.

Moreover, the bounded components of A are the only periodic orbits of the sys-
tem. Describe the phase portrait of the system for the case where

f(x, y) = ((x − ε)2 + y2 − 1)(x2 + y2 − 9).

Exercise 2.95. Consider an attracting hyperbolic periodic orbit Γ for an au-
tonomous system u̇ = f(u) with flow ϕt, and for each point p ∈ Γ, let Γp denote
the set of all points in the phase space with asymptotic phase p. Construct Γp

for each p on the limit cycle in the planar system

ẋ = −y + x(1 − x2 − y2), ẏ = x + y(1 − x2 − y2)

and repeat the construction for the planar systems of Exercise 2.92. Prove that
F :=

⋃
p∈Γ Γp is an invariant foliation of the phase space in a neighborhood U

of Γ. Let us take this to mean that every point in U is in one of the sets in the
union F and the following invariance property is satisfied: If ξ ∈ Γp and s ∈ R,
then ϕs(ξ) ∈ Γϕs(p). The second condition states that the flow moves fibers of
the foliation (Γp is the fiber over p) to fibers of the foliation. Are the fibers of the
foliation smooth manifolds?
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Applications

Is the subject of ordinary differential equations important? The ultimate
answer to this question is certainly beyond the scope of this book. However,
two main points of evidence for an affirmative answer are provided in this
chapter:

• Ordinary differential equations arise naturally from the foundations
of physical science.

• Ordinary differential equations are useful tools for solving physical
problems.

You will have to decide if the evidence is sufficient. Warning: If you pay
too much attention to philosophical issues concerning the value of a math-
ematical subject, then you might stop producing mathematics. However,
if you pay no attention to the value of a subject, then how will you know
that it is worthy of study?

3.1 Origins of ODE: The Euler–Lagrange Equation

Let us consider a smooth function L : R
k × R

k × R → R, a pair of points
p1, p2 ∈ R

k, two real numbers t1 < t2, and the set C := C(p1, p2, t1, t2) of
all smooth curves q : R → R

k such that q(t1) = p1 and q(t2) = p2. Using
this data, there is a function Φ : C → R given by

Φ(q) =
∫ t2

t1

L(q(t), q̇(t), t) dt. (3.1)
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The Euler–Lagrange equation, an ordinary differential equation associated
with the function L—called the Lagrangian—arises from the following
problem: Find the extreme points of the function Φ. This variational prob-
lem is the basis for Lagrangian mechanics.

Recall from the calculus that an extreme point of a smooth function
is simply a point at which its derivative vanishes. To use this definition
directly for the function Φ, we would have to show that C is a manifold
and that Φ is differentiable. This can be done. However, we will bypass
these requirements by redefining the notion of extreme point. In effect, we
will define the concept of directional derivative for a scalar function on a
space of curves. Then, an extreme point is defined to be a point where all
directional derivatives vanish.

Recall our geometric interpretation of the derivative of a smooth function
on a manifold: For a tangent vector at a point in the domain of the function,
take a curve whose tangent at time t = 0 is the given vector, move the curve
to the range of the function by composing it with the function and then
differentiate the resulting curve at t = 0 to produce the tangent vector on
the range that is the image of the original vector under the derivative of
the function. In the context of the function Φ on the space of curves C, let
us consider a curve γ : R → C. Note that for s ∈ R, the point γ(s) ∈ C
is a curve γ(s) : R → R

k as defined above. So, in particular, if t ∈ R,
then γ(s)(t) ∈ R

k. Rather than use the cumbersome notation γ(s)(t), it is
customary to interpret our curve of curves as a “variation of curves” in C,
that is, as a smooth function Q : R × R → R

k with the “end conditions”

Q(s, t1) ≡ p1, Q(s, t2) ≡ p2.

In this interpretation, γ(s)(t) = Q(s, t).
Fix a point q ∈ C and suppose that γ(0) = q, or equivalently that

Q(0, t) = q(t). Then, as s varies we obtain a family of curves called a
variation of the curve q. The tangent vector to γ at q is, by definition, the
curve V : R → R

k × R
k given by t �→ (q(t), v(t)) where

v(t) :=
∂

∂s
Q(s, t)

∣∣∣
s=0

.

Of course, v is usually not in C because it does not satisfy the required
end conditions. However, v does satisfy a perhaps different pair of end
conditions, namely,

v(t1) =
∂

∂s
Q(s, t1)

∣∣∣
s=0

= 0, v(t2) =
∂

∂s
Q(s, t2)

∣∣∣
s=0

= 0.

Let us view the vector V as an element in the “tangent space of C at q.”
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What is the directional derivative DΦ(q)V of Φ at q in the direction V ?
Following the prescription given above, we have the definition

DΦ(q)V :=
∂

∂s
Φ(Q(s, t))

∣∣∣
s=0

=
∫ t2

t1

∂

∂s
L(Q(s, t),

∂

∂t
Q(s, t), t)

∣∣∣
s=0

dt

=
∫ t2

t1

(∂L

∂q

∂Q

∂s
+

∂L

∂q̇

∂2Q

∂s∂t

)∣∣∣
s=0

dt.

After evaluation at s = 0 and an integration by parts, we can rewrite the
last integral to obtain

DΦ(q)V =
∫ t2

t1

[∂L

∂q
(q(t), q̇(t), t) − d

dt

(∂L

∂q̇
(q(t), q̇(t), t)

)]∂Q

∂s
(0, t) dt

=
∫ t2

t1

[∂L

∂q
(q(t), q̇(t), t) − ∂

∂t

(∂L

∂q̇
(q(t), q̇(t), t)

)]
v(t) dt. (3.2)

If DΦ(q)V = 0 for all vectors V , then the curve q is called an extremal. In
other words, q is an extremal if the last integral in equation (3.2) vanishes
for all smooth functions v that vanish at the points t1 and t2.

Proposition 3.1. The curve q is an extremal if and only if it is a solution
of the Euler–Lagrange equation

d

dt

(∂L

∂q̇

)
− ∂L

∂q
= 0.

Proof. Clearly, if the curve q is a solution of the Euler–Lagrange equation,
then, by formula (3.2), we have that DΦ(q) = 0. Conversely, if DΦ(q) = 0,
we will show that q is a solution of the Euler–Lagrange equation. If not,
then there is some time t1 < τ < t2 such that the quantity

∂L

∂q
(q(τ), q̇(τ), τ) − ∂

∂t

(∂L

∂q̇
(q(τ), q̇(τ), τ)

)
appearing in the formula (3.2) does not vanish. In this case, this quantity
has constant sign on a closed interval containing the point τ . But there is a
smooth nonnegative function v with support in this same interval such that
v(τ) = 1. It follows that for some corresponding variation, DΦ(q)V �= 0, in
contradiction. �

When we search for the extreme points of functions we are usually inter-
ested in the maxima or minima of the function. The same is true for the
function Φ defined above. In fact, the theory for determining the maxima
and minima of Φ is similar to the usual theory in finite dimensions, but
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it is complicated by the technical problems of working in infinite dimen-
sional spaces. The general theory is explained in books on the calculus of
variations (see for example [61]).

In mechanics, the Lagrangian L is taken to be the difference between the
kinetic energy and the potential energy of a particle, the function (3.1) is
called the action, and a curve q : R → R

k is called a motion. Hamilton’s
principle states: Every motion of a physical particle is an extremal of its
action. Of course, the motions of a particle as predicted by Newton’s second
law are the same as the motions predicted by Hamilton’s principle (see
Exercise 3.2).

Exercise 3.2. Prove: The motions of a particle determined by Newton’s second
law are the same as the motions determined by Hamilton’s principle. In this
context, Newton’s law states that the time rate of change of the momentum
(mass×velocity) is equal to the negative gradient of the potential energy.

One beautiful feature of Lagrangian mechanics, which is evident from
the definition of extremals, is the fact that Lagrangian mechanics is coor-
dinate free. In particular, the form of the Euler–Lagrange equation does
not depend on the choice of the coordinate system! Thus, if we want to
describe the motion of a particle, then we are free to choose the coordi-
nates q := (q1, · · · , qk) as we please and still use the same form of the
Euler–Lagrange equation.

As an illustration, consider the prototypical example in mechanics: a free
particle. Let (x, y, z) denote the usual Cartesian coordinates in space and
t �→ q(t) := (x(t), y(t), z(t)) the position of the particle as time evolves.
The kinetic energy of a particle with mass m in Cartesian coordinates is
m
2 (ẋ2(t) + ẏ2(t) + ż2(t)). Thus, the “action functional” is given by

Φ(q) =
∫ t2

t1

m

2
(ẋ2(t) + ẏ2(t) + ż2(t)) dt,

the Euler–Lagrange equations are simply

mẍ = 0, mÿ = 0, mz̈ = 0, (3.3)

and each motion is along a straight line, as expected.
As an example of the Euler–Lagrange equations in a non-Cartesian co-

ordinate system, let us consider the motion of a free particle in cylindri-
cal coordinates (r, θ, z). To determine the Lagrangian, note that the ki-
netic energy depends on the Euclidean structure of space, that is, on the
usual inner product. A simple computation shows that the kinetic energy
of the motion t → (r(t), θ(t), z(t)) expressed in cylindrical coordinates is
m
2 (ṙ2(t) + r2θ̇2(t) + ż2(t)). For example, to compute the inner product of
two tangent vectors relative to a cylindrical coordinate chart, move them
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to the Cartesian coordinate chart by the derivative of the cylindrical co-
ordinate wrapping function (Section 1.7.4), and then compute the usual
inner product of their images. The Euler–Lagrange equations are

mr̈ − mrθ̇2 = 0, m
d

dt
(r2θ̇) = 0, mz̈ = 0. (3.4)

Clearly, cylindrical coordinates are not the best choice to determine the
motion of a free particle! But it does indeed turn out that all solutions of
system (3.4) lie on straight lines (see Exercise 3.3).

Exercise 3.3. Show that all solutions of system (3.4) lie on straight lines. Com-
pare the parametrization of the solutions of system (3.4) with the solutions of the
system (3.3). Hint: If necessary, read the next section, especially, the discussion
on the integration of the equations of motion for a particle in a central force
field—Kepler’s problem.

Exercise 3.4. Repeat Exercise 3.3 for spherical coordinates.

Exercise 3.5. Discuss the extremals for the function

Φ(q) =
∫ t2

t1

(q̇2
1(t) + q̇2

2(t) + q̇2
3(t))1/2 dt.

3.2 Origins of ODE: Classical Physics

What is classical physics? Look at Section 18–2 in Richard Feynman’s
lecture notes [66] and you might be in for a surprise. The fundamental laws
of all of classical physics can be reduced to a few formulas! For example, a
complete theory of electromagnetics is given by Maxwell’s laws

div E = ρ/ε0,

curlE = −∂B
∂t

,

div B = 0,

c2 curlB =
j
ε0

+
∂E
∂t

and the conservation of charge

div(j) = −∂ρ

∂t
.

Here E is the called electric field, B is the magnetic field, ρ is the charge
density, j is the current, ε0 is a constant, and c is the speed of light. The
fundamental law of motion is Newton’s law

dp
dt

= F
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“the rate of change of the momentum is equal to the sum of the forces.”
The (relativistic) momentum of a particle is given by

p :=
m√

1 − v2/c2
v

where, as is usual in the physics literature, v := |v| and the norm is the
Euclidean norm. For a classical particle (velocity much less than the speed
of light), the momentum is approximated by p = mv. There are two fun-
damental forces: The gravitational force

F = −GMm

r2 er

on a particle of mass m due to a second mass M where G is the univer-
sal gravitational constant and er is the unit vector at M pointing in the
direction of m; and the Lorentz force

F = q(E + v × B)

where q is the charge on a particle in an electromagnetic field. That’s it!
The laws of classical physics seem simple enough. Why then is physics,

not to mention engineering, so complicated? Of course, the answer is that
in almost all real world applications there are lots of particles and the
fundamental laws act all at once. When we try to isolate some experiment or
some physical phenomenon from all the other stuff in the universe, then we
are led to develop “constitutive” laws that approximate the true situation.
The equations of motion then contain many additional “forces.” Let us
consider a familiar example. When we model the motion of a spring, we
use Hooke’s force law to obtain the equation of motion in the form

mẍ = −ω0x.

However, Hooke’s force law is not one of the two fundamental force laws.
In reality, the particles that constitute the spring obey the electromagnetic
force law and the law of universal gravitation. However, if we attempted
to model the fundamental forces acting on each of these particles, then the
equations of motion would be so complex that we would not be able to
derive useful predictions.

What law of nature are we using when we add viscous damping to a
Hookian spring to obtain the differential equation

mẍ = −αẋ − ω0x

as a model? The damping term is supposed to model a force due to friction.
But what is friction? There are only two fundamental forces in classical
physics and only four known forces in modern physics. Friction is not a
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nuclear force and it is not due to gravitation. Thus, at a fundamental level
it must be a manifestation of electromagnetism. Is it possible to derive the
linear form of viscous damping from Maxwell’s laws? This discussion could
become very philosophical!

The important point for us is an appreciation that the law of motion—so
basic for our understanding of the way the universe works—is expressed as
an ordinary differential equation. Newton’s law, the classical force laws,
and the constitutive laws are the origin of ordinary differential equations.
Apparently, as Newton said, “Solving differential equations is useful.”

In the following subsections some applications of the theory of differential
equations to problems that arise in classical physics are presented. The first
section briefly describes the motion of a charged particle in a constant elec-
tromagnetic field. The second section is an introduction to the two-body
problem, including Kepler motion, Delaunay elements, and perturbation
forces. The analysis of two-body motion is used as a vehicle to explore a
realistic important physical problem where it is not at all obvious how to
obtain useful predictions from the complicated model system of differential
equations obtained from Newton’s law. Perturbations of two-body motion
are considered in the final sections: Satellite motion about an oblate planet
is used to illustrate the “method of averaging,” and the diamagnetic Kepler
problem—the motion of an electron of a hydrogen atom in a constant mag-
netic field—is used to illustrate some important transformation methods
for the analysis of models of mechanical systems.

3.2.1 Motion of a Charged Particle
Let us consider a few simple exercises to “feel” the Lorentz force (for more
see [66] and [104]). The equation of motion for a charged particle is

dp
dt

= q(E + v × B)

where p is the momentum vector, q is a measure of the charge, and v is the
velocity. For this section let us consider only the case where the electric field
E and the magnetic field B are constant vector fields on R

3. The problem
is to determine the motion of a charged particle (classical and relativistic)
in case B = 0 and, also, in case E = 0.

In case E = 0, let us consider the relativistic motion for a charged par-
ticle. Because the momentum is a nonlinear function of the velocity, it is
useful to notice that the motion is “integrable.” In fact, the two functions
p �→ 〈p,p〉 and p �→ 〈p,B〉 are constant along orbits. Use this fact to
conclude that v �→ 〈v,v〉 is constant along orbits, and therefore the energy

E :=
mc2√

1 − v2/c2
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is constant along orbits. It follows that the equation of motion can be recast
in the form

E
c2 v̇ = qv × B,

and the solution can be found as in Exercise 2.30. The solution of this
differential equation is important. For example, the solution can be used to
place magnetic fields in an experiment so that charged particles are moved
to a detector (see [66]). What can you say about the motion of a charged
particle if both electric and magnetic fields are present?

Exercise 3.6. Use the theory of linear differential equations with constant co-
efficients to determine the motion for a “spatial oscillator” (see [104]) in the
presence of a constant magnetic field. The equation of motion is

v̇ = −ω2
0r +

q

m
v × B

where r = (x, y, z) is the position vector, the velocity is v = (ẋ, ẏ, ż), and B =
(0, 0, B3). (This model uses Hooke’s law). By rewriting the equations of motion
in components, note that this model is a linear system with constant coefficients.
Find the general solution of the system. Determine the frequency of the motion in
the plane perpendicular to the magnetic field and the frequency in the direction
of the magnetic field.

3.2.2 Motion of a Binary System
Let us consider two point masses, m1 and m2, moving in three-dimensional
Euclidean space with corresponding position vectors R1 and R2. Also, let
us define the relative position vector R := R2 − R1 and its length r := |R|.
According to Newton’s law (using of course the usual approximation for
small velocities) and the gravitational force law, we have the equations of
motion

m1R̈1 =
G0m1m2

r3 R + F1, m2R̈2 = −G0m1m2

r3 R + F2

where F1 and F2 are additional forces acting on m1 and m2 respectively.
The relative motion of the masses is governed by the single vector equation

R̈ = −G0(m1 + m2)
r3 R +

1
m2

F2 − 1
m1

F1.

By rescaling distance and time such that R = αR̄ and t = βt̄ with
G0(m1 +m2)β2 = α3, we can recast the equations of motion in the simpler
form

R̈ = − 1
r3 R + F. (3.5)
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We will study this differential equation.
The analysis of two-body interaction plays a central role in the history

of science. This is reason enough to study the dynamics of the differential
equation (3.5) and the surrounding mathematical terrain. However, as you
will see, the intrinsic beauty, rich texture, and wide applicability of this
subject make it one of the most absorbing topics in all of mathematics.

The following glimpse into celestial mechanics is intended to introduce
an important application of ordinary differential equations, to see some of
the complexity of a real world application and to introduce a special form of
the dynamical equations that will provide some motivation for the theory
of averaging presented in Chapter 7.

There are many different approaches to celestial mechanics. However,
for a mathematician, the most satisfactory foundation for mechanics is
provided by the theory of Hamiltonian systems. While we will use Hamil-
ton’s equations in our analysis, the geometric context (symplectic geome-
try) for a modern treatment of the transformation theory for Hamiltonian
systems (see [1], [10], and [123]) is unfortunately beyond the scope of this
book. To bypass this theory, we will present an expanded explanation of
the direct change of coordinates to the Delaunay elements given in [45]
(see also [41] and [44]). In the transformation theory for Hamiltonian sys-
tems it is proved that our transformations are special coordinate transfor-
mations called canonical transformations. They have a special property:
Hamilton’s equations for the transformed Hamiltonian are exactly the dif-
ferential equations given by the push forward of the original Hamiltonian
vector field to the new coordinates. In other words, to perform a canonical
change of coordinates we need only transform the Hamiltonian, not the dif-
ferential equations; the transformed differential equations are obtained by
computing Hamilton’s equations from the transformed Hamiltonian. The
direct method is perhaps not as elegant as the canonical transformation
approach—we will simply push forward the Hamiltonian vector field in the
usual way—but the direct transformation method is effective and useful.
Indeed, we will construct special coordinates (action-angle coordinates) and
show that they transform the Kepler system to a very simple form. More-
over, the direct method applies even if a nonconservative force F acts on
the system; that is, even if the equations of motion are not Hamiltonian.

Let us begin by rewriting the second order differential equation (3.5) as
the first order system

Ṙ = V, V̇ = − 1
r3 R + F (3.6)

defined on R
3×R

3. Also, let us use angle brackets to denote the usual inner
product on R

3 so that if X ∈ R
3, then |X|2 = 〈X, X〉.

The most important feature of system (3.6) is the existence of conserved
quantities for the Kepler motion, that is, the motion with F = 0. In fact,
total energy and angular momentum are conserved. The total energy of the
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FIGURE 3.1. The osculating Kepler orbit in space.
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Kepler motion E : R
3 × R

3 → R is given by

E(X, Y ) :=
1
2
〈Y, Y 〉 − 1

〈X, X〉1/2 , (3.7)

the angular momentum by

A(X, Y ) := X × Y. (3.8)

Let us also define the total angular momentum

G(X, Y ) := |A(X, Y )|. (3.9)

Note that we are using the term “angular momentum” in a nonstandard
manner. In effect, we have defined the angular momentum to be the vec-
tor product of position and velocity ; in physics, angular momentum is the
vector product of position and momentum.

If t �→ (R(t), V (t)) is a solution of system (3.6), then

Ė =
d

dt
E(R(t), V (t)) = 〈F, V 〉, Ȧ = R × F. (3.10)

Thus, if F = 0, then E and A are constant on the corresponding orbit.
In particular, in this case the projection of the Kepler orbit into physical
space, corresponding to the curve t �→ R(t), is contained in a fixed plane
passing through the origin with normal vector given by the constant value
of A along the orbit. In this case, the corresponding plane normal to A is
called the osculating plane. At each instant of time, this plane contains the
Kepler orbit that would result if the force F were not present thereafter.
Refer to Figure 3.1 for a depiction of the curve t �→ R(t) in space and the
angles associated with the Delaunay elements.

Let us define three functions er : R
3 → R

3, and eb, en : R
3 ×R

3 → R
3 by

er(X) =
1

|X|X,

en(X, Y ) =
1

G(X, Y )
X × Y,

eb(X, Y ) = en(X, Y ) × er(X, Y ).

If X, Y ∈ R
3 are distinct nonzero points, then the vectors er(X), eb(X, Y ),

and en(X, Y ) form an orthonormal frame in R
3. Also, if these functions are

evaluated along the (perturbed) solution t �→ (R, Ṙ), then we have

er =
1
r
R, en =

1
G

R × Ṙ, eb =
1

rG
(R × Ṙ) × R =

1
rG

(r2Ṙ − 〈Ṙ, R〉R).

(3.11)
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(Note that subscripts are used in this section to denote coordinate direc-
tions, not partial derivatives.)

If ex, ey, ez are the direction vectors for a fixed right-handed usual Carte-
sian coordinate system in R

3, and if i denotes the inclination angle of the
osculating plane relative to the z-axis, then

cos i = 〈en, ez〉. (3.12)

Of course, the angle i can also be viewed as a function on R
3 × R

3 whose
value at each point on the orbit is the inclination of the osculating plane.
The idea is that we are defining new variables: They are all functions defined
on R

3 × R
3.

If the osculating plane is not coincident with the (x, y)-plane, then it
meets this plane in a line, called the line of nodes. Of course, the line of
nodes lies in the osculating plane and is orthogonal to the z-axis. Moreover,
it is generated by the vector

ean := 〈eb, ez〉er − 〈er, ez〉eb.

The angle of the ascending node h between the x-axis and the line of nodes
is given by

cos h =
1

|ean| 〈ean, ex〉. (3.13)

If the osculating plane happens to coincide with the (x, y)-plane, then there
is no natural definition of h. However, on an orbit the angle h(t) is contin-
uous. At a point where i(t) = π/2, the angle h is defined whenever there is
a continuous extension.

Let us compute the orthogonal transformation relative to the Euler an-
gles i and h. This is accomplished in two steps: rotation about the z-axis
through the angle h followed by rotation about the now rotated x-axis
through the angle i. The rotation matrix about the z-axis is

M(h) :=

cos h − sin h 0
sin h cos h 0

0 0 1

 .

To rotate about the new x-axis (after rotation by M(h)), let us rotate back
to the original coordinates, rotate about the old x-axis through the angle
i, and then rotate forward. The rotation about the x-axis is given by

M(i) :=

1 0 0
0 cos i − sin i
0 sin i cos i

 .

Thus, the required rotation is

M := (M(h)M(i)M−1(h))M(h) = M(h)M(i).
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In components, if the new Cartesian coordinates are denoted x′, y′, z′, then
the transformation M is given by

x = x′ cos h − y′ sin h cos i + z′ sin h sin i,

y = x′ sin h + y′ cos h cos i − z′ cos h sin i,

z = y′ sin i + z′ cos i. (3.14)

Also, by the construction, the normal en to the osculating plane is in the
direction of the z′-axis.

If polar coordinates are introduced in the osculating plane

x′ = r cos θ, y′ = r sin θ,

then the position vector along our orbit in the osculating coordinates is
given by

R(t) = (r(t) cos θ(t), r(t) sin θ(t), 0).

For a Kepler orbit, the osculating plane is fixed. Also, using the orthog-
onal transformation M , the vectors R and Ṙ are given in the original fixed
coordinates by

R = M

r cos θ
r sin θ

0

 , Ṙ = M

 ṙ cos θ − rθ̇ sin θ

ṙ sin θ + rθ̇ cos θ
0

 . (3.15)

If X, Y ∈ R
3, then, because M is orthogonal, we have 〈MX, MY 〉 = 〈X, Y 〉.

As a consequence of this fact and definition (3.7), it follows that the total
energy along the orbit is

E(R, Ṙ) =
1
2
(ṙ2 + r2θ̇2) − 1

r
.

Also, using the coordinate-free definition of the vector product,

X × Y := (|X||Y | sin θ)η (3.16)

where η is the unit vector orthogonal to X and Y such that the ordered
triple (X, Y, η) has positive (right hand) orientation, and the fact that M
preserves positive orientation (det M > 0); it follows that MX × MY =
X × Y and the angular momentum along the orbit is

A(R, Ṙ) = r2θ̇. (3.17)

Thus, using equation (3.10), there is a constant (angular momentum) Pθ

such that

r2θ̇ = Pθ, E =
1
2
(
ṙ2 +

P 2
θ

r2

)
− 1

r
, (3.18)
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FIGURE 3.2. Schematic phase portrait of system (3.19). There is a center sur-
rounded by a period annulus and “bounded” by an unbounded separatrix. The
period orbits correspond to elliptical Keplerian motions.

and, because Ė = 0, we also have

r2θ̇ = Pθ, ṙ
(
r̈ − P 2

θ

r3 +
1
r

)
= 0.

If ṙ ≡ 0 and Pθ �= 0, then the Kepler orbit is a circle; in fact, it is a
solution of the system ṙ = 0, θ̇ = Pθ. If ṙ is not identically zero, then the
motion is determined by Newton’s equation

r̈ = −
( 1
r2 − P 2

θ

r3

)
.

The equivalent system in the phase plane,

ṙ = Pr, Ṗr = − 1
r2 +

P 2
θ

r3 (3.19)

is Hamiltonian with energy

E =
1
2
(
P 2

r +
P 2

θ

r2

)
− 1

r
.

It has a rest point with coordinates (r, Pr) = (P 2
θ , 0) and energy −1/(2P 2

θ ).
This rest point is a center surrounded by an annulus of periodic orbits,
called a period annulus, which is “bounded” by an unbounded separatrix
with corresponding energy zero as depicted schematically in Figure 3.2.
The separatrix crosses the r-axis at r = 1

2P 2
θ . Thus, if a Kepler orbit is

bounded, it has negative energy.
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Exercise 3.7. Prove all of the statements made about the phase portrait of
system (3.19).

Exercise 3.8. The vector product is defined in display (3.16) in a coordinate-
free manner. Suppose instead that X = (x1, x2, x3) and Y = (y1, y2, y3) in Carte-
sian coordinates, and their cross product is defined to be

X × Y := det


 e1 e2 e3

x1 x2 x3

y1 y2 y3


 .

Discuss the relative utility of the coordinate-free versus coordinate-dependent
definitions. Determine the vector product for vectors expressed in cylindrical or
spherical coordinates. Think about the concept of coordinate free-definitions; it
is important!

The rest of the discussion is restricted to orbits with negative energy and
positive angular momentum Pθ > 0.

The full set of differential equations for the Kepler motion is the first
order system

ṙ = Pr, θ̇ =
Pθ

r2 , Ṗr =
1
r2

(P 2
θ

r
− 1

)
, Ṗθ = 0. (3.20)

Note that the angle θ increases along orbits because θ̇ = Pθ/r2 > 0. Also,
the bounded Kepler orbits project to periodic motions in the r–Pr phase
plane. Thus, the bounded orbits can be described by two angles: the polar
angle relative to the r-axis in the r–Pr plane and the angular variable θ.
In other words, each bounded orbit lies on the (topological) cross product
of two circles; that is, on a two-dimensional torus. The fact that the phase
space for the Kepler motion is foliated by invariant two-dimensional tori is
the underlying reason why we will eventually be able to define special coor-
dinates, called action-angle coordinates, that transform the Kepler system
to a very simple form. In fact, the special class of Hamiltonian systems
(called integrable Hamiltonian systems) that have a portion of their phase
space foliated by invariant tori can all be transformed to a simple form
by the introduction of action-angle coordinates. The construction uses the
fact that the motion on each invariant torus is periodic or quasi-periodic
where the frequencies vary with the choice of the torus. This is exactly the
underlying idea for the construction of the action-angle coordinates for the
Kepler system.

To integrate system (3.20), introduce a new variable ρ = 1/r so that

ρ̇ = −ρ2Pr, Ṗr = ρ2(ρP 2
θ − 1),

and then use θ as a time-like variable to obtain the linear system

dρ

dθ
= − 1

Pθ
Pr,

dPr

dθ
=

1
Pθ

(ρP 2
θ − 1). (3.21)
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Equivalently, we have the “harmonic oscillator model” for Kepler motion,

d2ρ

dθ2 + ρ =
1

P 2
θ

. (3.22)

It has the general solution

ρ =
1

P 2
θ

+ B cos(θ − g) (3.23)

where the numbers B and g are determined by the initial conditions.
The Kepler orbit is an ellipse. In fact, by a rearrangement of equa-

tion (3.23) we have

r =
P 2

θ

1 + P 2
θ B cos(θ − g)

.

If we introduce a new angle, the true anomaly v := θ − g, and the usual
quantities—the eccentricity e, and a, the semimajor axis of the ellipse—
then

r =
a(1 − e2)
1 + e cos v

. (3.24)

Exercise 3.9. Use the conservation of energy for system (3.20) to show that

dr

dθ
=

r

Pθ

(
2Er2 + 2r − P 2

θ

)1/2
.

Solve this differential equation for E < 0 and show that the Kepler orbit is an
ellipse.

Using the fact that the energy is constant on the Kepler orbit, if we
compute the energy at v = 0 (corresponding to its perifocus, the point on
the ellipse closest to the focus), we have the corresponding values

r = a(1 − e), ṙ = 0, E = − 1
2a

. (3.25)

Moreover, from the usual theory of conic sections, the semiminor axis is
b = a

√
1 − e2, and the area of the ellipse is

πab = πa2
√

1 − e2 = πPθa
3/2. (3.26)

Taking into account the fact that the area element in polar coordinates is
1
2ρ2 dθ, if the period of the Kepler orbit is T , then∫ T

0

r2(θ)
2

dθ = πPθa
3/2.
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Because r2θ̇ = Pθ, the integral can be evaluated. The resulting equation is
Kepler’s third law

T 2 = 4π2a3 (3.27)

where, again, T is the orbital period and a is the semimajor axis of the
corresponding elliptical orbit. For later reference, note that the frequency
of the oscillation is

ω :=
1

a3/2 . (3.28)

Exercise 3.10. Kepler’s third law is given by equation (3.27) for scaled dis-
tance and time. Show that Kepler’s third law in “unscaled” variables (with the
same names as in (3.27)) is given by

T 2 =
4π2

G0(m1 + m2)
a3.

Also, show that the magnitude of the physical angular momentum in the unscaled
variables for a Kepler orbit is

m2r
2θ̇ =

(α3

β2 a(1 − e2)
)1/2 =

(
G0(m1 + m2)a(1 − e2)

)1/2
.

3.2.3 Disturbed Kepler Motion and Delaunay Elements
In this section we will begin an analysis of the influence of a force F on
a Keplerian orbit by introducing new variables, called Delaunay elements,
such that system (3.5) when recast in the new coordinates has a useful
special form given below in display (3.52).

Recall the orthonormal frame [er, eb, en] in display (3.11), and let

F = Frer + Fbeθ + Fnen.

The functions L, G : R
3 × R

3 → R, two of the components of the Delaunay
coordinate transformation, are defined by

L(X, Y ) := (−2E(X, Y ))−1/2, G(X, Y ) := |A(X, Y )|

where E is the energy and A the angular momentum. Using the results in
display (3.10), we have that

L̇ = L3〈F, Ṙ〉, Ġ =
1
G

〈R × Ṙ, F × R〉.

Moreover, in view of the vector identities

〈α, β × γ〉 = 〈γ, α × β〉 = 〈β, γ × α〉,
(α × β) × γ = 〈γ, α〉β − 〈γ, β〉α,
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and the results in display (3.11), it follows that

Ġ =
1
G

〈F, (R × Ṙ) × R〉 =
1
G

〈F, rGeb〉 = rFb. (3.29)

Also, using the formula for the triple vector product and the equality rṙ =
〈R, Ṙ〉, which is obtained by differentiating both sides of the identity r2 =
〈R,R〉, we have

eb =
1

rG
(R × Ṙ) × R =

1
rG

(r2Ṙ − 〈R, Ṙ〉R)

and

Ṙ = ṙer +
G

r
eb. (3.30)

As a result, the Delaunay elements L and G satisfy the differential equations

L̇ = L3(ṙFr +
G

r
Fb), Ġ = rFb. (3.31)

If the force F does not vanish, then the relations found previously for the
variables related to the osculating plane of the Kepler orbit are still valid,
only now the quantities a, e, v, and Pθ > 0 all depend on time. Thus, for
example, if we use equation (3.17), then

G = Pθ =
√

a(1 − e2). (3.32)

Also, from equations (3.25), (3.30), and the definition of L we have

L =
√

a, e2 = 1 − G2

L2 , (3.33)

and

− 1
2a

=
1
2
〈Ṙ, Ṙ〉 − 1

r
=

1
2
(
ṙ2 +

a(1 − e2)
r2

)
− 1

r
. (3.34)

Let us solve for ṙ2 in equation (3.34), express the solution in the form

ṙ2 = − 1
ar2 (r − a(1 − e))(r − a(1 + e)),

and substitute for r from formula (3.24) to obtain

ṙ =
e sin v

G
. (3.35)

Hence, from equation (3.31),

L̇ = L3(Fr
e

G
sin v + Fb

G

r

)
, Ġ = rFb. (3.36)



3.2 Origins of ODE: Classical Physics 217

The Delaunay variable H is defined by

H := 〈A, ez〉 = G〈 1
G

R × Ṙ, ez〉 = G cos i (3.37)

where i is the inclination angle of the osculating plane (see equation (3.12)).
To find an expression for Ḣ, let us first recall the transformation equa-
tions (3.14). Because en has “primed” coordinates (0, 0, 1), it follows that
en has original Cartesian coordinates

en = (sinh sin i,− cos h sin i, cos i), (3.38)

and, similarly, R is given by

R = r(cos θ cos h − sin θ sin h cos i, cos θ sin h + sin θ cos h cos i, sin θ sin i).
(3.39)

Using equation (3.38) and equation (3.39), we have

eb = en × er

=
1
r
en × R

= (− sin θ cos h − cos θ sin h cos i,

− sin θ sin h + cos θ cos h cos i, cos θ sin i). (3.40)

If we now differentiate both sides of the identity Gen = A, use the fact that
er × eθ = en, and use the second identity of display (3.10), then

Gėn = Ȧ − Ġen

= rer × F − rFben

= r(Fber × eb − Fner × en) − rFben

= −rFneθ. (3.41)

The equations

di

dt
=

rFn

G
cos θ, ḣ =

rFn sin θ

G sin i
(3.42)

are found by equating the components of the vectors obtained by sub-
stitution of the identities (3.38) and (3.40) into (3.41). Finally, using the
definition (3.37) together with equations (3.36) and (3.42), we have the
desired expression for the time derivative of H, namely,

Ḣ = r(Fb cos i − Fn sin i cos θ). (3.43)

Using the formula for Ṙ given in equation (3.30), the identity 〈er, ez〉 =
sin θ sin i derived from equation (3.39), and the equation 〈eb, ez〉 = cos θ sin i
from (3.40), let us note that

〈Ṙ, ez〉 = ṙ sin i sin θ +
G

r
sin i cos θ.
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A similar expression for 〈Ṙ, ez〉 is obtained by differentiation of both sides
of the last equation in display (3.14) and substitution for di/dt from (3.42).
The following formula for θ̇ is found by equating these two expressions:

θ̇ =
G

r2 − rFn cos i sin θ

G sin i
. (3.44)

From equations (3.24) and (3.32),

r =
G2

1 + e cos v
. (3.45)

Let us solve for v̇ in the equation obtained by logarithmic differentiation of
equation (3.45). Also, if we use the identity 1 − e2 = G2/L2 to find an ex-
pression for ė, substitute for L̇ and Ġ using the equation in display (3.36),
and substitute for ṙ using (3.35), then, after some simple algebraic manip-
ulations,

v̇ =
G

r2 + Fr
G

e
cos v + Fb

G2

re sin v

(G cos v

e
− 2r

G
− r2 cos v

eL2G

)
.

A more useful expression for v̇ is obtained by substituting for r from equa-
tion (3.45) to obtain

v̇ =
G

r2 + Fr
G

e
cos v − Fb

G

e

(
1 +

r

G2

)
sin v. (3.46)

Recall equation (3.23), and define g, the argument of periastron, by g :=
θ − v. Using equations (3.44) and (3.46), the time derivative ġ is

ġ = −Fr
G

e
cos v + Fb

G

e

(
1 +

r

G2

)
sin v − Fn

r cos i

G sin i
sin(g + v). (3.47)

The last Delaunay element, �, called the mean anomaly, is defined with
the aid of an auxiliary angle u, the eccentric anomaly, via Kepler’s equation

� = u − e sin u (3.48)

where u is the unique angle such that

cos u =
e + cos v

1 + e cos v
, sin u =

1 − e cos u√
1 − e2

sin v. (3.49)

The lengthy algebraic computations required to obtain a useful expres-
sion for �̇ are carried out as follows: Differentiate both sides of Kepler’s
equation and solve for �̇ in terms of u̇ and ė. Use the relations (3.49) and
equation (3.45) to prove the identity

r = L2(1 − e cos u) (3.50)
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and use this identity to find an expression for u̇. After substitution using
the previously obtained expressions for ṙ, ė, and L̇, it is possible to show
that

�̇ =
1
L3 +

r

eL

[
(−2e + cos v + e cos2 v)Fr − (2 + e cos v) sin vFb

]
. (3.51)

In summary, the Delaunay elements (L, G, H, �, g, h) for a Keplerian mo-
tion disturbed by a force F satisfy the following system of differential equa-
tions:

L̇ = L3(Fr
e

G
sin v + Fb

G

r

)
,

Ġ = rFb,

Ḣ = r(Fb cos i − Fn sin i cos(g + v)),

�̇ =
1
L3 +

r

eL

[
(−2e + cos v + e cos2 v)Fr − (2 + e cos v) sin vFb

]
,

ġ = −Fr
G

e
cos v + Fb

G

e

(
1 +

r

G2

)
sin v − Fn

r cos i

G sin i
sin(g + v),

ḣ = rFn
sin(g + v)

G sin i
. (3.52)

Our transformation of the equations of motion for the perturbed Kepler
problem to Delaunay elements—encoded in the differential equations in
display (3.52)—is evidently not complete. Indeed, the components of the
force F , as well as the functions

r, e, cos v, sin v, cos i, sin i,

must be expressed in Delaunay elements. However, assuming that this is
done, it is still not at all clear how to extract useful information from
system (3.52). Only one fact seems immediately apparent: If the force F is
not present, then the Kepler motion relative to the Delaunay elements is a
solution of the integrable system

L̇ = 0, Ġ = 0, Ḣ = 0, �̇ =
1
L3 , ġ = 0, ḣ = 0.

In fact, by inspection of this unperturbed system, it is clear that the Ke-
plerian motion is very simple to describe in Delaunay coordinates: The
three “action” variables L, G, and H remain constant and only one of the
angular variables, namely �, is not constant. In particular, for each initial
condition, the motion is confined to a topological circle and corresponds to
uniform rotation of the variable �, that is, simple harmonic motion. The
corresponding Keplerian orbit is periodic.

The fact that two of the three angles that appear in system (3.52) remain
constant for unperturbed motions is a special, perhaps magical, feature
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of the inverse square central force law. This special degeneracy of Kepler
motion will eventually allow us to derive some rigorous results about the
perturbed system, at least in the case where the force F is “small,” that
is, where F = εF�, the function F� is bounded, and ε ∈ R is regarded as a
small parameter.

As we have just seen, a suitable change of coordinates can be used to
transform the Kepler model equations to a very simple form. The underly-
ing reason, mentioned previously, is that a region in the unperturbed phase
space is foliated by invariant tori. Due to the special nature of the inverse
square force law, each two-dimensional torus in this foliation is itself foli-
ated by periodic orbits, that is, by one-dimensional tori. In other words,
there is an open region of the unperturbed phase space filled with periodic
orbits.

In general, if there is a foliation by invariant two-dimensional tori, then
we would expect the phase flow to be quasi-periodic on “most” of them—
cut the flow with a Poincaré section, in this case a one-dimensional torus,
and suppose that the associated Poincaré map is given by a linear rota-
tion through an irrational angle. The remaining invariant tori would have
periodic flow. Note that in this scenario where the Poincaré map is either
a rational or an irrational rotation, the set of “quasi-periodic tori” and
the set of “periodic tori” are both dense. But, with respect to Lebesgue
measure, the set of quasi-periodic tori is larger. In fact, the set of quasi-
periodic tori has measure one, whereas the set of periodic tori has measure
zero. However, for the Kepler motion the flow is periodic on every torus.

The origin of many important questions in the subject of differential
equations arises from the problem of analyzing perturbations of integrable
systems; that is, systems whose phase spaces are foliated by invariant tori.
In fact, if the phase space of a system is foliated by k-dimensional tori,
then there is a new coordinate system in which the equations of motion
have the form

İ = εP (I, φ), φ̇ = Ω(I) + εQ(I, φ)

where I is a vector of “action variables,” θ is a k-dimensional vector of
“angle variables,” and both P and Q are 2π-periodic functions of the an-
gles. Poincaré called the analysis of this system the fundamental problem
of dynamics. In other words, if we start with a “completely integrable”
mechanical system in action-angle variables so that it has the form İ = 0,
θ̇ = Ω(I), and if we add a small force, then the problem is to describe
the subsequent motion. This problem has been a central theme in mathe-
matical research for over 100 years; it is still a prime source of important
problems.

Let us outline a procedure to complete the transformation of the per-
turbed Kepler system (3.52) to Delaunay elements. Use equation (3.32) and
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the definition of L to obtain the formula

G2 = L2(1 − e2),

and note that from the definition of H we have the identity

cos i =
H

G
.

From our assumption that G = Pθ > 0, and the fact that 0 ≤ i < π, we can
solve for e and i in terms of the Delaunay variables. Then, all the remaining
expressions not yet transformed to Delaunay variables in system (3.52) are
given by combinations of terms of the form rn sin mv and rn cos mv where
n and m are integers. In theory we can use Kepler’s equation to solve for
u as a function of � and e. Thus, if we invert the transformation (3.49) and
also use equation (3.50), then we can express our combinations of r and
the trigonometric functions of v in Delaunay variables.

The inversion of Kepler’s equation is an essential element of the transfor-
mation to Delaunay variables. At a more fundamental level, the inversion
of Kepler’s equation is required to find the position of a planet on its el-
liptical orbit as a function of time. The rigorous treatment of the inversion
problem seems to have played a very important role in the history of 19th
century mathematics.

Problem 3.11. Write a report on the history and the mathematics related
to Kepler’s equation. Include an account of the history of the theory of Bessel
functions ([52], [180]) and complex analysis ([13], [26]).

To invert Kepler’s equation formally, set w := u − � so that

w = e sin(w + �),

suppose that

w =
∞∑

j=1

wje
j ,

use the sum formula for the sine, and equate coefficients in Kepler’s equa-
tion for w to obtain the wj as trigonometric functions of �. One method that
can be used to make this inversion rigorous, the method used in Bessel’s
original treatment, is to expand in Fourier series.

It is easy to see, by an analysis of Kepler’s equation, that the angle � is
an odd function of u. Thus, after inverting, u is an odd function of � as is
e sin u. Thus,

e sin u =
2
π

∞∑
ν=1

(∫ π

0
e sin u sin ν� d�

)
sin ν�,
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and, after integration by parts,

e sin u =
2
π

∞∑
ν=1

(1
ν

∫ π

0
cos ν�(e cos u

du

d�
) d�

)
sin ν�.

By Kepler’s equation e cos u = 1 − d�/du. Also, we have that

e sin u =
2
π

∞∑
ν=1

(1
ν

∫ π

0
cos(ν(u − e sin u)) du

)
sin ν�.

Bessel defined the Bessel function of the first kind

Jν(x) :=
1
2π

∫ 2π

0
cos(νs − x sin s) ds =

1
π

∫ π

0
cos(νs − x sin s) ds

so that

e sin u =
∞∑

ν=1

2
ν

Jν(νe) sin ν�.

Hence, if we use the definition of the Bessel function and Kepler’s equation,
then

u = � +
∞∑

ν=1

2
ν

Jν(νe) sin ν�.

By similar, but increasingly more difficult calculations, all products of the
form

rn sin mu, rn cos mu, rn sin mv, rn cos mv,

where n and m are integers, can be expanded in Fourier series in � whose
νth coefficients are expressed as linear combinations of Jν(νe) and J ′

ν(νe)
(see [102] and [180]). Thus, we have at least one method to transform
system (3.52) to Delaunay elements.

3.2.4 Satellite Orbiting an Oblate Planet
Let us consider a perturbation problem that arises from the fact that the
shape of the earth is not a perfect sphere. The law of universal gravita-
tion states that two particles (point masses) attract by the inverse square
law. The earth is composed of lots of particles. However, if the earth is
idealized as a sphere with uniformly distributed mass, then the gravita-
tional force exerted on a satellite obeys the inverse square law for the earth
considered as a point mass concentrated at the center of the sphere. But
because the true shape of the earth is approximated by an oblate spheroid
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that “bulges” at the equator, the gravitational force exerted on a satellite
depends on the position of the satellite relative to the equator. As we will
see, the equations of motion of an earth satellite that take into account the
oblateness of the earth are quite complex. At first sight it will probably not
be at all clear how to derive useful predictions from the model. However,
as an illustration of some of the ideas introduced so far in this chapter, we
will see how to transform the model equations into action-angle variables.
Classical perturbation theory can then be used to make predictions.

Introduce Cartesian coordinates so that the origin is at the center of
mass of an idealized planet viewed as an axially symmetric oblate spheroid
whose axis of symmetry is the z-axis. The “multipole” approximation of
the corresponding gravitational potential has the form

−G0m1

r
+ U(r, z) + O

((R0

r

)3)
where

U = −1
2

G0m1J2R
2
0

r3

(
1 − 3

z2

r2

)
,

m1 is the mass of the planet, R0 is the equatorial radius, and J2 is a
constant related to the moments of inertia of the planet (see [72] and [118]).
Note that the first term of the multipole expansion is just the point mass
gravitational law that determines the Kepler motion.

The oblateness problem has been widely studied by many different meth-
ods, some more direct than our Delaunay variable approach (see [118], [142],
[72], and [157]). However, our approach serves to illustrate some general
methods that are widely applicable.

As an approximation to the gravitational potential, let us drop the higher
order terms and consider Kepler motion perturbed by the force determined
by the second term of the multipole expansion, that is, the perturbing force
per unit of mass is the negative gradient of U . Thus, in our notation, if we
let m2 denote the mass of the satellite, then F2 = −m2 gradU and the
equation of relative motion is given by

R̈ = −G0(m1 + m2)
r3 R − gradU. (3.53)

Of course, since the mass of the satellite is negligible relative to the mass
of the planet, the relative motion is essentially the same as the motion of
the satellite.

To use the general formulas for transformation to Delaunay variables
given in display (3.52), we must first rescale system (3.53). For this, let β
denote a constant measured in seconds and let α := (G0(m1 +m2))1/3β2/3,
so that α is measured in meters. Then, rescaling as in the derivation of
equation (3.5), we obtain the equation of motion

R̈ = − 1
r3 + F (3.54)
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where

Fx = − ε

r5

(
1 − 5

z2

r2

)
x,

Fy = − ε

r5

(
1 − 5

z2

r2

)
y,

Fz = − ε

r5

(
3 − 5

z2

r2

)
z, (3.55)

and

ε :=
3
2
J2

G0m1

G0(m1 + m2)
R2

0

(G0(m1 + m2))2/3β4/3

is a dimensionless parameter. It turns out that if we use parameter values
for the earth of

G0m1 ≈ 4 × 1014m3/sec2, R0 ≈ 6.3 × 106m, J2 ≈ 10−3,

then ε ≈ 2β−4/3.
By adjusting our “artificial” scale parameter β, we can make the param-

eter ε as small as we like. However, there is an immediate cost: The unit of
time in the scaled system is β seconds. In particular, if ε is small, then the
unit of time is large. At any rate, the rescaling suggests that we can treat
ε as a “small parameter.”

We have arrived at a difficult issue in the analysis of our problem that
often arises in applied mathematics. The perturbation parameter ε in our
model system is a function of β. But we don’t like this. So we will view β
as fixed, and let ε be a free variable. Acting under this assumption, let us
suppose that we are able to prove a theorem: If ε > 0 is sufficiently small,
then the system . . . . Does our theorem apply to the original unscaled
system? Strictly speaking, the answer is “no”! Maybe our sufficiently small
values of ε are smaller than the value of ε corresponding to the fixed value
of β.

There are several ways to avoid the snag. For example, if we work harder,
we might be able to prove a stronger theorem: There is a function β �→ ε0(β)
given by . . . such that if 0 ≤ ε0(β), then the corresponding system . . . .
In this case, if β is fixed and the corresponding value of ε is smaller than
ε0(β), then all is well. However, in most realistic situations the desired
stronger version of our hypothetical theorem is going to be very difficult (if
not impossible) for us to prove. Thus, we must often settle for the weaker
version of our theorem and be pleased that the conclusion of our theorem
holds for some choices of the parameters in the scaled system. This might
be good! For example, we can forget about the original model, declare
the scaled model to be the mathematical model, and use our theorems to
make a prediction from the scaled model. If our predictions are verified by
experiment, then we might be credited with an important discovery. At
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least we will be able to say with some confidence that we understand the
associated phenomena mathematically, and we can be reasonably certain
that we are studying a useful model. Of course, qualitative features of our
scaled model might occur in the original model (even if we can not prove
that they do) even for physically realistic values of the parameters. This
happens all the time. Otherwise, no one would be interested in perturbation
theory! Thus, we have a reason to seek evidence that our original model
predicts the same phenomena that are predicted by the scaled model with a
small parameter. We can gather evidence by performing experiments with
a numerical method, or we can try to prove another theorem.

Returning to our satellite, let us work with the scaled system and treat
ε as a small parameter. To express the components of the force resolved
relative to the frame [er, eb, en] in Delaunay elements, let us transform
the vector field F to this frame using the transformation M defined in
display (3.39) followed by a transformation to (r, b, n)-coordinates. In fact,
the required transformation is

N :=

cos h − sin h 0
sin h cos h 0

0 0 1

1 0 0
0 cos i − sin i
0 sin i cos i

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

Using the usual “push forward” change of coordinates formula

N−1F (N(R))

together with the fact that the angle θ is given by θ = g+v and the position
vector is given by R = (r, 0, 0) in the (r, b, n)-coordinates, it follows that
the transformed components of the force are

Fr = − ε

r4 (1 − 3 sin2(g + v) sin2 i),

Fb = − ε

r4 sin(2g + 2v) sin2 i,

Fn = − ε

r4 sin(g + v) sin 2i. (3.56)

Substitution of the force components (3.56) into system (3.52), followed
by expansion in Fourier series in �, gives the equations of motion for a satel-
lite orbiting an oblate planet. While the resulting equations are quite com-
plex, it turns out that the equation for H is very simple; in fact, Ḣ = 0. This
result provides a useful internal check for our formulas expressed in Delau-
nay elements because it can be proved directly from the definition of H as
the z-component of the angular momentum in the original Cartesian coor-
dinates: Simply differentiate in formula (3.37) and then use formula (3.10).
Indeed, the fact that H is a conserved quantity is to be expected from
the axial symmetry of the mass. Thus, we have extracted one prediction
from the equations of motion: The z-component of the angular momentum
remains constant as time evolves.
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Whereas the action H is constant, a striking feature of system (3.52) as
a system in action-angle coordinates is that the actions L and G together
with the angles g and h are changing (relatively) slowly in the scaled time
(their derivatives are order ε), while only the angle � is changing rapidly.
Of course, if ε is given, then the component � of the perturbed solution is
increasing on a time scale of 1/ε; that is, the function t �→ �(t) increases for
0 ≤ t ≤ C/ε where the constant C depends on the size of the perturbation.
Roughly speaking, if we start at � = 0 and integrate the equations of
motion, then

�(t) = L−3t + C0εt.

Thus, t must be larger than a constant multiple of 1/ε before the perturba-
tion can have a chance to “cancel” the increase in � given by the first term.
In effect, the increase in � reflects the “forward motion” of the satellite as
it orbits the planet.

Because of the slow variation of the actions, it seems natural, at least
since the time of Laplace, to study the average motion of the slow variables
relative to �. The idea is that all of the slow variables are undergoing rapid
periodic oscillations due to the change in �, at least over a long time scale.
Thus, if we average out these rapid oscillations, then the “drift” of the slow
variables will be apparent. As mentioned before, we will make this idea
precise in Chapter 7. Let us see what predictions can be made after this
averaging is performed on the equations of motion of the satellite orbiting
the oblate planet.

The averages that we wish to compute are the integral averages over �
on the interval [0, 2π] of the right hand sides of the equations of motion
in display (3.52). As we have seen, the variable � appears when we change
r, cos v, and sin v to Delaunay variables. Let us consider the procedure for
the variable G. Note that after substitution,

Ġ = −ε sin2 i
sin(2g + 2v)

r3 .

Using the sum formula for the sine, we see that we must find the average

〈 sin 2v

r3 〉 :=
1
2π

∫ 2π

0

sin 2v

r3 d�

and the average 〈(cos 2v)/r3〉. (Warning: Angle brackets are used to denote
averages and inner products. But this practice should cause no confusion if
the context is taken into account.) The procedure for computing these and
all the other required averages for the Delaunay differential equations is ev-
ident from the following example. Differentiate in Kepler’s equation (3.48)
to obtain the identity

d�

dv
= (1 − e cos u)

du

dv



3.2 Origins of ODE: Classical Physics 227

and likewise in the expression for cos u in display (3.49) to obtain

du

dv
=

1 − e cos u√
1 − e2

.

Combine these results to compute

d�

dv
=

r2

GL3

and use a change of variable in the original integral to find the average

〈 sin 2v

r3 〉 =
1

2πL3G

∫ 2π

0

sin 2v

r
dv.

Finally, substitution for r from equation (3.45) and an easy integration are
used to prove that 〈(sin 2v)/r3〉 = 0 and 〈(cos 2v)/r3〉 = 0. As a result, it
follows that Ġ = 0. Similarly, the complete set of averaged equations of
motion are

L̇ = Ġ = Ḣ = 0,

ġ = −ε
1

2L3G4 (5 sin2 i − 4),

ḣ = −ε
1

L3G4 cos i (3.57)

where cos i = H/G. Let us note that the dependent variables that appear
in the averaged system (3.57) should perhaps be denoted by new symbols
so that solutions of system (3.57) are not confused with solutions of the
original system. However, this potential confusion will not arise here.

Finally, we have arrived at a system that we can analyze! In fact, the
(square root of the) semimajor axis of the osculating ellipse, the total an-
gular momentum, and the z-component of the angular momentum are con-
stant on average. The argument of periastron g, or, if you like, the angle
from the equatorial plane to the line corresponding to the perigee (closest
approach of the satellite) is changing on average at a rate proportional to
4 − 5 sin2 i. If the inclination i of the osculating plane—an angle that is on
average fixed—is less than the critical inclination where sin2 i = 4

5 , then
the perigee of the orbit advances. If the inclination angle is larger than
the critical inclination, then the perigee is retrograde. Similarly, the rate
of regression of the ascending node—given by the angle h in the equatorial
plane relative to the x-axis—is proportional to the quantity − cos i. Thus,
for example, if the orbit is polar (i = π

2 ), then the rate of regression is zero
on average.

The averaging computation that we have just completed is typical of
many “first order” approximations in mechanics. Averaging is, of course,
only one of the basic methods that have been developed to make predictions
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from “realistic” systems of ordinary differential equations that originate in
celestial mechanics.

Exercise 3.12. The fact that the perturbation force for the oblate planet
comes from a potential implies that the force is conservative. In fact, the per-
turbed system in this case is Hamiltonian with the total energy, including the
correction to the gravitational potential, as the Hamiltonian function. It turns out
that the coordinate change to Delaunay variables is of a very special type, called
canonical. For a canonical change of coordinates it is not necessary to change
variables directly in the equations of motion. Instead, it suffices to change vari-
ables in the Hamiltonian function and then to derive the new equations of motion
in the usual way from the transformed Hamiltonian (see Section 1.7). Show, by
constructing an example, that a general change of coordinates is not canonical.
Assume that the Delaunay coordinates are canonical, write the Hamiltonian in
Delaunay variables, and derive from it the Hamiltonian equations of motion in
Delaunay variables. In particular, show, using the form of the Hamiltonian differ-
ential equations, that the average of L̇ over the angle � must vanish. This provides
an internal check for the formulas derived in this section. Do you see how one
might obtain the averaged equations directly from the Hamiltonian? One reason
why the Hamiltonian approach was not used in the derivation of the equations
in Delaunay elements is that we have not developed the theory required to prove
that the change to Delaunay variables is canonical. Another reason is that our
approach works even if the perturbing force is not conservative.

3.2.5 The Diamagnetic Kepler Problem
In this section we will derive equations of motion for the electron of the
hydrogen atom in a magnetic field. The purpose of the section is to show
that some of the usual theory of Lagrangian and Hamiltonian mechanics
may be viewed as a method to study a certain class of differential equations.
In particular, we will use some ideas from classical mechanics to reduce the
equations of motion to a form where Delaunay variables and the method
of averaging are applicable.

Consider the classical equations for the motion of an electron of an atom
in the presence of a constant magnetic field. Let us assume that the electron
is subjected to the Coulomb potential relative to the nucleus of the atom
and to the Lorentz force due to the constant magnetic field B. If q is the
charge of an electron and Z is the atomic number of the atom, and if, as
usual, R is the position of the electron relative to Cartesian coordinates
centered at the nucleus, V is the velocity of the electron, and r := |R|, then
the Coulomb potential is

U :=
kZq(−q)

r
= −kZq2

r

where k is a constant. (Note the similarity to the gravitational potential!)
In our choice of units, q is measured in coulombs and kq2, often denoted
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e2 in physics where of course e is not the eccentricity, has value kq2 ≈
(1.52 × 10−14)2Nm2 in mks units where N is used to denote newtons. For
the rest of this section let us suppose that Z = 1, the atomic number of
the hydrogen atom.

Let us assume that the constant magnetic field B is parallel to the z-axis
and that the electric field E vanishes. Then, as we have seen previously,
the Lorentz force is given by

qV × B.

According to Newton’s law, the equations of motion are given in vector
form by

ṗ = qV × B − kq2

r3 R (3.58)

where p is the momentum. Because the speed of the electron of a hydrogen
atom is about one percent of the speed of light ([66]), let us use the classical
momentum p = mV .

Equation (3.58) will be reduced to a somewhat simpler and more useful
form by a change of coordinates. From a mathematical point of view, the
reduction is rather simple. However, the motivation for the reduction is the
result of at least half a century of physics.

Let us recast system (3.58) in the form

d

dt
(p − 1

2
q(R × B)) =

1
2
q(V × B) − gradU. (3.59)

This first step may appear to arrive out of thin air. In fact, it is just
the bridge from Newtonian to Lagrangian mechanics. As we will see in a
moment, system (3.59) is in the form of an Euler–Lagrange equation.

In physics, a new vector field A, called the vector potential, is introduced
so that B = curlA. For our constant magnetic field, an easy computation
shows that A = 1

2B × R. This vector field can be substituted into the
left hand side of equation (3.59) and used in the rest of the computation.
However, let us continue using the original fields.

If we define the Lagrangian

L :=
1

2m
〈p, p〉 +

q

2
〈B × R, V 〉 − U,

then, using a vector identity, we have

∂L
∂V

= p − q

2
〈R × B, V 〉,

∂L
∂R

= −q

2
∂

∂R
〈R,B × V 〉 − gradU

=
q

2
V × B − gradU ;



230 3. Applications

that is, equation (3.59) with Q := R = (x, y, z) is exactly

d

dt

( ∂L
∂Q̇

)
=

∂L
∂Q . (3.60)

In view of our derivation of the Euler–Lagrange equation in Section 3.1, we
have reason to expect that there is a variational principle associated with
the differential equation (3.60). This is indeed the case (see [104]).

The position variable Q and the velocity variable Q̇ define a coordinate
system on R

3 × R
3. Let us define a new variable

P :=
∂L
∂Q̇

(Q, Q̇) = p − q

2
Q × B (3.61)

and note that the relation (3.61) can be inverted to obtain Q̇ as a function
of Q and P. In fact, there is a function α such that

P ≡ ∂L
∂Q̇

(Q, α(Q,P)).

Thus, we have defined new coordinates (P,Q) on R
3 × R

3.
The reason for introducing P is so that we can define the Hamiltonian

H := PQ̇ − L(Q, Q̇) = Pα(Q,P) − L(Q, α(Q,P)).

This terminology is justified by the following results:

∂H
∂P = Q̇ +

(
P − ∂L

∂Q̇
) ∂α

∂P = Q̇,

∂H
∂Q = − ∂L

∂Q̇
= − d

dt

∂L
∂Q̇

= −Ṗ.

Thus, the original system is equivalent to the Hamiltonian system with
Hamiltonian H. In particular, H is constant along orbits.

By the definition of H, we have

H = 〈p +
q

2
(B × R), V 〉 − 1

2m
〈p, p〉 − q

2
〈B × R, V 〉 − U(Q)

=
1

2m
〈p, p〉 − U(Q)

=
1

2m
〈P +

q

2
Q × B,P +

q

2
Q × B〉 − U(Q).

If we take the constant magnetic field B := (0, 0, b), then

H =
1

2m

(
P2

1 + P2
2 + P2

3
)

+ ω(yP1 − xP2) +
mω2

2
(x2 + y2) − kq2

r
(3.62)
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where ω := 1
2mqb is called the Larmor frequency. Here, the magnitude b

of the magnetic field has units N sec/(coul m) and the Larmor frequency ω
has units 1/sec.

An essential result for the Hamiltonian system with Hamiltonian (3.62)
is that the angular momentum function

(x, y, z,P1,P2,P3) �→ yP1 − xP2 (3.63)

is constant on orbits (see Exercise 3.13). Using this fact, if we consider only
electrons with zero angular momentum, then we may as well consider the
equations of motion for the reduced Hamiltonian

H∗ =
1

2m

(
P2

1 + P2
2 + P2

3
)

+
mω2

2
(x2 + y2) − kq2

r
. (3.64)

Because of the analogy with the perturbed Kepler motion, this is called
the diamagnetic Kepler problem ([82]). The corresponding Hamiltonian
equations of motion are

ẋ =
1
m

P1, ẏ =
1
m

P2, ż =
1
m

P3,

Ṗ1 = −
(kq2

r3 x + mω2x
)
,

Ṗ2 = −
(kq2

r3 y + mω2y
)
,

Ṗ3 = −kq2

r3 z. (3.65)

Equivalently, we have the second order system

mẍ = −kq2

r3 x − mω2x,

mÿ = −kq2

r3 y − mω2y,

mz̈ = −kq2

r3 z (3.66)

which is given in vector form by

R̈ = −kq2m−1

r3 R + F0 (3.67)

where F0 = −ω2(x, y, 0). This last system is completely analogous to the
equation for relative motion of the perturbed two-body problem.

What have we accomplished? We have used some ideas from classical
mechanics to find a reduction of the original equations of motion to a form
where we can apply all of the analysis we have developed for the Kepler
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problem. In particular, we found two conserved quantities: the Hamiltonian
and the angular momentum.

As an instructive project, rescale system (3.66) and use equations (3.52)
to transform the diamagnetic Kepler problem to Delaunay elements. Also,
average the transformed equations and discuss the average motion of the
electron (see Exercise 3.14). It turns out that the diamagnetic Kepler prob-
lem has very complex (chaotic) motions; it is one of the model equations
studied in the subject called quantum chaos, but that is another story ([71],
[82]).

Exercise 3.13. Prove that the function given in display (3.63) is constant on
orbits of the Hamiltonian system with Hamiltonian (3.62). What corresponding
quantity is conserved for system (3.58)?

Exercise 3.14. Show that system (3.66) can be rescaled in space and time to
the dimensionless form

R̈ = − 1
r3 R − ω2β2


x

y
0




were β is measured in seconds. Define ε := ω2β2 and show that the scaled system
is equivalent to the first order system

ẋ = P1, ẏ = P2, ż = P3,

Ṗ1 = −x/r3 − εx, Ṗ2 = −y/r3 − εy, Ṗ3 = −z/r3.

Use the result of Exercise 3.13 and the new variables (ρ, θ, z, Pρ, Pθ, Pz) given by

x = ρ cos θ, y = ρ sin θ,

Pρ = cos θ P1 + sin θ P2, Pθ = x P2 − y P1, Pz = P3

to show that the differential equation expressed in the new variables decouples
so that the set of orbits with zero angular momentum correspond to solutions of
the subsystem

ρ̇ = Pρ, ż = Pz, Ṗρ = − ρ

(ρ2 + z2)3/2 − ερ, Ṗz = − z

(ρ2 + z2)3/2 . (3.68)

The system (3.68) can be viewed as perturbed Kepler motion with R := (ρ, 0, z)
and F := −ε(ρ, 0, 0). In particular, for these motions i ≡ π

2 and h ≡ 0. Show that

Fr = −εr cos2 θ, Fb = εr sin θ cos θ, Fn = 0

and the averaged Delaunay system is given by

L̇ = 0, Ġ = −ε
5
4
L2(G2 − L2) sin 2g, ġ = −ε

1
4
L2G(3 + 5 cos 2g).

Draw the phase cylinder portrait of the (g, G)-subsystem. Find the rest points
and also show that there is a homoclinic orbit.
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FIGURE 3.3. Two pendula connected by a spring. To build a simple bench model,
consider suspending two lead fishing weights on “droppers” from a stretched
horizontal section of monofilament.

Exercise 3.15. Consider the diamagnetic Kepler problem as a perturbation,
by the Coulomb force, of the Hamiltonian system with Hamiltonian

H∗
0 =

1
2m

(P2
1 + P2

2 + P2
3
)

+
mω2

2
(x2 + y2).

Write out Hamilton’s equations, change coordinates so that the equations of mo-
tion corresponding to the Hamiltonian H∗

0 are in action-angle form (use polar
coordinates), and find the perturbation in the new coordinates. Is averaging rea-
sonable for this system?

3.3 Coupled Pendula: Beats

Consider a pendulum of length L and mass m where the angle with positive
orientation with respect to the downward vertical is θ and let g denote the
gravitational constant (near the surface of the earth). The kinetic energy of
the mass is given by K := m

2 (Lθ̇)2 and the potential energy is given by U :=
−mgL cos θ. There are several equivalent ways to obtain the equations of
motion; we will use the Lagrangian formulation. Recall that the Lagrangian
of the system is

L := K − U =
m(Lθ̇)2

2
+ mgL cos θ, (3.69)

and the equation of motion is given by Lagrange’s equation

d

dt

dL
dθ̇

− dL
dθ

= 0.
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Thus, the equation of motion for the pendulum is

mL2θ̈ + mgL sin θ = 0. (3.70)

For two identical pendula coupled by a Hookian spring with spring con-
stant k, the Lagrangian is

L =
m

2
(
(Lθ̇1)2 + (Lθ̇2)2

)
+ mgL(cos θ1 + cos θ2) − k

2
(θ1 − θ2)2,

and the equations of motion are given by

mL2θ̈1 + mgL sin θ1 + k(θ1 − θ2) = 0,
mL2θ̈2 + mgL sin θ2 − k(θ1 − θ2) = 0.

Here, we do not say how the spring is physically attached to the pendula. In
order to model a laboratory physical system, perhaps a different expression
for the potential energy of the spring would be required. However, if the
spring is twisted by the motion of the pendula at the points of support
rather than stretched between the masses, then our model is physically
reasonable.

Let us note that the time and the parameters of the system are rendered
dimensionless by rescaling the time as follows: t = µs where µ := (L/g)1/2.
In fact, let us also define the dimensionless constant α := k/(mgL) and
change variables in the equations of motion to obtain

θ′′
1 + sin θ1 + α(θ1 − θ2) = 0,

θ′′
2 + sin θ2 − α(θ1 − θ2) = 0.

To study the motions of the system for “small” oscillations of the pen-
dula, the approximation sin θ ≈ θ—corresponding to linearization of the
system of differential equations at the origin—yields the model

θ′′
1 + (1 + α)θ1 − αθ2 = 0,

θ′′
2 − αθ1 + (1 + α)θ2 = 0. (3.71)

This linear second order system can be expressed as a first order system
and solved in the usual manner by finding the eigenvalues and eigenvectors
of the system matrix. However, for this system, because of its special form,
there is a simpler way to proceed. In fact, if Θ is defined to be the transpose
of the state vector (θ1, θ2), then system (3.71) has the form

Θ′′ = AΘ

where A is the matrix (
−(1 + α) α

α −(1 + α)

)
.



3.3 Coupled Pendula: Beats 235

The idea is to diagonalize the symmetric matrix A by a linear change
of variables of the form Z = BΘ where B is an orthogonal matrix. In
components, Z is the transpose of the vector (x, y) where

x =
1√
2
(θ1 + θ2), y =

1√
2
(θ1 − θ2),

and the system in the new coordinates is given by

x′′ = −x, y′′ = −(1 + 2α)y.

There are two normal modes of oscillation. If y(s) ≡ 0, then θ1(s) −
θ2(s) ≡ 0 and the pendula swing “in phase” with unit frequency relative
to the scaled time. If x(s) ≡ 0, then θ1(s) + θ2(s) ≡ 0 and the pendula
swing “in opposing phase” with frequency (1 + 2α)1/2 in the scaled time.
The frequency of the second normal mode is larger than the frequency of
the first normal mode due to the action of the spring; the spring has no
effect on the first normal mode.

Consider the following experiment. Displace the second pendulum by a
small amount and then release it from rest. What happens?

In our mathematical model, the initial conditions for the experiment are

θ1 = 0, θ′
1 = 0, θ2 = a, θ′

2 = 0.

The corresponding motion of the system, with β :=
√

1 + 2α, is given by

x(s) =
a√
2

cos s, y(s) = − a√
2

cos βs,

and

θ1(s) =
a

2
(cos s − cos βs), θ2(s) =

a

2
(cos s + cos βs).

Use the usual identities for cos(A ± B) with

A :=
1 + β

2
s, B :=

1 − β

2
s,

to obtain

θ1(s) =
(
a sin

β − 1
2

s
)
sin

β + 1
2

s, θ2(s) =
(
a cos

β − 1
2

s
)
cos

β + 1
2

s,

and note that each pendulum swings with quasi-frequency 1
2 (β + 1) and

(relatively) slowly varying amplitude. Also, the “beats” of the two pendula
are out of phase. If s is approximately an integer multiple of 2π/(β − 1),
then the first pendulum is almost motionless, Whereas if s is approximately
an integer multiple of π/(β − 1), then the second pendulum is almost mo-
tionless. This interesting exchange-of-energy phenomenon can be observed
even with very crude experimental apparatus—try it.



236 3. Applications

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

FIGURE 3.4. Representation of the Fermi–Ulam–Pasta coupled oscillator.

Exercise 3.16. Suppose that the kinetic energy of a mechanical system is given
by 1

2 〈KΘ̇, Θ̇〉 and its potential energy is given by 1
2 〈PΘ, Θ〉, where Θ is the state

vector, K and P are symmetric matrices, and the angle brackets denote the
usual inner product. If both quadratic forms are positive definite, show that they
can be simultaneously diagonalized. In this case, the resulting system decouples.
Solutions corresponding to the oscillation of a single component while all other
components are at rest are called normal modes. Determine the frequencies of
the normal modes (see [10]).

Exercise 3.17. Build a bench top experiment with two “identical” coupled
pendula (see Figure 3.3), and tune it until the beat phenomena are observed. Show
that a measurement of the length of the pendula together with a measurement of
the number of oscillations of one pendulum per second suffices to predict the time
interval required for each pendulum to return to rest during a beating regime.
Does your prediction agree with the experiment? How sensitive is the predicted
value of this time scale relative to errors in the measurements of the lengths of the
pendula and the timing observation? Approximate the spring constant in your
physical model?

Problem 3.18. Consider small oscillations of the coupled pendula in case there
are two different pendula, that is, pendula with different lengths or different
masses. What happens if there are several pendula coupled together in a ring or
in series? What about oscillations that are not small? What predictions (if any)
made from the linear model remain valid for the nonlinear model? What happens
if there is damping in the system?

3.4 The Fermi–Ulam–Pasta Oscillator

The analysis of the small oscillations of coupled pendula in Section 3.3 can
be generalized in many different directions. Here we will consider a famous
example due to Enrico Fermi, Stania�law Ulam, and John R. Pasta [65] that
can be viewed as a model for a series of masses coupled to their nearest
neighbors by springs. The original model was obtained as the discretization
of a partial differential equation model of a string—one of the ways that
systems of ordinary differential equations arise in applied mathematics.

Let us consider N identical masses positioned on a line as in Figure 3.4,
and let us suppose that the masses are constrained to move only on this
line. Moreover, let us suppose that the masses are coupled by springs, but
with the first and last masses pinned to fixed positions. If xk denotes the
displacement of the kth mass from its equilibrium position; then, using
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Newton’s second law, the equations of motion are given by

mẍk = F (xk+1 − xk) − F (xk − xk−1), k = 1, . . . , N − 2

where F (xk+1 − xk) is the force exerted on the kth mass from the right
and −F (xk − xk−1) is the force exerted on the kth mass from the left.

One of the Fermi–Ulam–Pasta models uses the scalar force law

F (z) = α(z + βz2), α > 0, β ≥ 0,

to model the restoring force of a nonlinear spring. This choice leads to the
following equations of motion:

mẍk = α(xk−1 − 2xk + xk+1)(1 + β(xk+1 − xk−1)), k = 1, . . . N − 2
(3.72)

where we also impose the boundary conditions

x0(t) ≡ 0, xN−1(t) ≡ 0.

If we set β = 0 in the equations (3.72), then we obtain the linearization of
system (3.72) at the point corresponding to the rest positions of the masses.
The first objective of this section is to determine the normal modes and
the general solution of this linearization.

Let us define the state vector x with components (x1, . . . , xN−2), and
let us write the system in matrix form

ẍ = c2Qx (3.73)

where c2 = α/m and

Q =


−2 1 0 0 · · · 0

1 −2 1 0 · · · 0
... · · ·
0 · · · 1 −2

 .

Because Q is a real negative definite symmetric matrix, the matrix has a
basis of eigenvectors corresponding to real negative eigenvalues. If v is an
eigenvector corresponding to the eigenvalue λ, then ec

√−λ itv is a solution
of the matrix system. The corresponding “normal mode” is the family of
real solutions of the form

x(t) = R cos(c
√

−λ t + ρ) v

where R and ρ depend on the initial conditions.
If v = (v1, . . . , vN−2) is an eigenvector of Q with eigenvalue λ, then

vk−1 − 2vk + vk+1 = λvk, k = 1, . . . , N − 2.



238 3. Applications

To solve this linear three term recurrence, set vk = ak, and note that ak

gives a solution if and only if

a2 − (2 + λ)a + 1 = 0. (3.74)

Also, note that the product of the roots of this equation is unity, and one
root is given by

r =
2 + λ +

√
λ(4 + λ)

2
.

Thus, using the linearity of the recurrence, the general solution has the
form

vk = µrk + νr−k

where µ and ν are arbitrary scalars. Moreover, in view of the boundary
conditions, v0 = 0 and vN−1 = 0, we must take µ + ν = 0 and rN−1 −
1/rN−1 = 0. In particular, r must satisfy the equation r2(N−1) = 1. Thus,
the possible choices for r are the roots of unity

r� = eπi�/(N−1), � = 0, 1, . . . , 2N − 3.

We will show that the r� for � = 1, . . . , N −2 correspond to N −2 distinct
eigenvalues of the (N − 2) × (N − 2) matrix Q as follows: The eigenvalue

λ� = −4 sin2(
π�

2(N − 1)
)

corresponding to r� is obtained by solving equation (3.74) with a = r�; that
is, the equation

e2πi�/(N−1) − (2 + λ)eπi�/(N−1) + 1 = 0.

The remaining choices for r� of course cannot lead to new eigenvalues. But
to see this directly consider the range of integers � expressed in the form

0, 1, . . . , N − 2, N − 1, (N − 1) + 1, . . . , (N − 1) + N − 2

to check that the corresponding r� are given by

1, r1, . . . , rN−1,−1,−r1, . . . ,−rN−1,

and the corresponding λ� are

0, λ1, . . . , λN−1,−4, λN−1, . . . , λ1.

Here, the choices r = 1 and r = −1, corresponding to � = 0 and � = N − 1,
give vk ≡ 0. Hence, they do not yield eigenvalues.
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The eigenvectors corresponding to the eigenvalue λ� are given by

vk = µ
(
eπi�k/(N−1) − e−πi�k/(N−1)) = 2iµ sin(

π�k

N − 1
)

where µ is a scalar. If µ = 1/(2i), then we have, for each � = 1, . . . , N − 2,
the associated eigenvector v� with components

v�
k = sin(

π�k

N − 1
).

Because Q is symmetric, its eigenvectors corresponding to distinct eigen-
values are orthogonal with respect to the usual inner product. Moreover,
we have that

〈v�, v�〉 =
N−2∑
k=1

sin2(
π�k

N − 1
) =

N − 1
2

where the last equality can be proved by first applying the identity

sin θ =
eiθ − e−iθ

2i

and then summing the resulting geometric series. Thus, the vectors( 2
N − 1

)1/2
v1, . . . ,

( 2
N − 1

)1/2
vN−2

form an orthonormal basis of R
N−2.

The general solution of the system (3.72) with β = 0 is given by the
vector solution t �→ x(t) with components

xk(t) =
( 2

N − 1

)1/2 N−2∑
�=1

(γ�p�(t) + η�q�(t)) sin(
π�k

N − 1
)

where c2 = α/m,

p�(t) = cos(2ct sin(
π�

2(N − 1)
)), q�(t) = sin(2ct sin(

π�

2(N − 1)
)),

and γ�, η� are real constants. In vector form, this solution is given by

x(t) =
( 2

N − 1

)1/2 N−2∑
�=1

(γ�p�(t) + η�q�(t))v�,

and its initial condition is

x(0) =
( 2

N − 1

)1/2 N−2∑
�=1

γ�v
�,

ẋ(0) = 2c
( 2

N − 1

)1/2 N−2∑
�=1

η� sin(
π�

2(N − 1)
)v�.



240 3. Applications

Moreover, let us note that if we use the orthonormality of the normalized
eigenvectors, then the scalars γ� and η� can be recovered with the inversion
formulas

γ� = 〈x(0),
( 2

N − 1

)1/2
v�〉, η� = 〈ẋ(0),

( 2
N − 1

)1/2
v�〉.

Now that we have determined the normal modes and the general solution
of the linearized system, let us use them to describe the Fermi–Ulam–Pasta
experiments.

If B is the matrix whose columns are the ordered orthonormal eigenvec-
tors of Q, then the linear coordinate transformation x = By decouples the
system of differential equations (3.72) with β = 0 into a system of the form

ÿk = c2λkyk, k = 1, . . . , N − 2

where λk is the eigenvalue corresponding to the kth column of B. Note
that the total energy of this kth mode is given by

Ek :=
1
2
(
ẏ2

k + c2λky2
k

)
,

and that this energy can be easily computed from the vector solution x(t)
by using the identity ( 2

N − 1

)1/2
〈x(t), vk〉 = yk.

Fermi, Ulam, and Pasta expected that after an initial excitation the av-
erages over time of the linear mode energies Ek(t) of the nonlinear (β �= 0)
oscillator (3.72) would tend to equalize after a sufficiently long time pe-
riod. The process leading to this “equipartition of energy” is called ther-
malization. In fact, the purpose of their original experiment—numerical
integration of the system starting with nonzero energy in only one normal
mode—was to determine the length of time required for thermalization to
occur. Contrary to their expectation, the results of the experiment sug-
gested that thermalization does not occur. For example, for some choices
of the system parameters, the energy becomes distributed among the vari-
ous linear modes for a while, but eventually almost all the energy returns
to the initial mode. Later, most of the energy might be in the second mode
before returning again to the first mode, and so on. For other values of the
system parameters the recurrence is not as pronounced, but none of their
experiments suggested that thermalization does occur. The explanation for
this “beat phenomenon” and for the nonexistence of thermalization leads
to some very beautiful mathematics and mathematical physics (see the
article by Richard Palais [138]). It is remarkable that the first numerical
dynamics experiments performed on a computer (1954–55) turned out to
be so important (see [182]).
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Exercise 3.19. Solve the differential equation (3.73) by converting it to a first
order system and then finding a basis of eigenvectors.

Exercise 3.20. Describe the geometry of the modes of oscillation of the masses
in the Fermi–Ulam–Pasta model with respect to the linearized model (3.73). For
example, is it possible that all the masses move so that the distances between
adjacent masses stays fixed?

Exercise 3.21. Repeat the Fermi–Ulam–Pasta experiment. Begin with the pa-
rameters

N = 32, m = 1.0, α = 1.0, β = 0.25,

and choose an initial condition so that the velocity of each mass is zero and all
the energy is in the first mode; for example, take

xk(0) =
( 2

N − 1

)1/2
sin(

πk

N − 1
).

Integrate the system numerically and output the mode energies for at least the
first few modes. Discuss how the mode energies change over time.

3.5 The Inverted Pendulum

Consider a pendulum with oscillating vertical displacement. We will outline
a proof of the following amazing fact: The inverted pendulum can be made
stable for certain rapid oscillations of small vertical displacement. Historical
comments on this observation together with a very interesting discussion
of the phenomenon based on topological methods is given by Mark Levi
(see [108]).

The equation of motion for the displaced inverted pendulum is obtained
as a modification of the pendulum model (3.70). For this, let H be a smooth
(L/g)1/2-periodic function with unit amplitude where L is the length of
the pendulum and g is the gravitational constant (the strange period is
chosen for mathematical convenience). Also, let us incorporate two control
parameters, the amplitude δ and the (relative) frequency Ω of the vertical
displacement, so that the displacement function is given by

t �→ δH(Ωt).

Then, the displacement may be viewed as an external force with period
(L/g)1/2/Ω by taking the force to be

F := mLΩ2δH ′′(Ωt) sin θ.

An alternative way to view the model is to imagine the pendulum in an
“Einstein elevator” that is being periodically accelerated. Then, the exter-
nal force is perceived as a time-dependent change in the gravitational field.
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In this case, the new gravitational “constant” measured in some units, say
cm/sec/sec, is given by

g − Ω2δH ′′(Ωt),

and the equation of motion can be obtained by replacing g by this difference
in the model (3.70). The minus sign is not important, it is there to make this
formulation compatible with the Lagrangian formulation. Indeed, with the
choice for the force given above and the Lagrangian (3.69), the Lagrange
equation

d

dt

dL
dθ̇

− dL
dθ

= F

yields the following equation of motion:

θ̈ +
g

L
sin θ = δ

Ω2

L
H ′′(Ωt) sin θ.

As in Section 3.3, let us rescale time with the change of variable given
by

t =
( L

Ω2g

)1/2
s.

Also, after this change of time, let us use the scaled period and amplitude
of the displacement

α :=
1

Ω2 , β := δ,

and the function given by

a(s) :=
1
g
H ′′((L

g

)1/2
s
)

to construct the dimensionless equation of motion

θ′′ + (α − βa(s)) sin θ = 0 (3.75)

where the function s �→ a(s) is periodic with period one.
To study the stability of the rest point at θ = π corresponding to the

inverted pendulum, let us linearize the equation of motion at θ = π to
obtain the periodic linear system

w′′ − (α − βa(s))w = 0 (3.76)

with two dimensionless parameters, α and β. While we will consider the sys-
tems corresponding to points (α, β) in the corresponding parameter plane,
we must also keep in mind that only the points in the first quadrant of the
parameter plane correspond to the physical parameters.

We will outline a proof of the following proposition:
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Stability region

�

�

FIGURE 3.5. Stabilization region for the inverted pendulum.

Proposition 3.22. If a(s) = sin 2πs in the differential equation (3.76),
then the point (α, β) = (0, 0) is a boundary point of an open subset in
the first quadrant of the parameter plane such that the differential equation
corresponding to each point of this open set has a stable trivial solution.

The open set mentioned in Proposition 3.22 contains points close to the
origin of the parameter plane that correspond to high frequency, small
amplitude displacements that stabilize the inverted pendulum. Also, we
will indicate that the function s �→ a(s) can be of a more general form than
is required in this proposition.

We have not developed a method that can be used to show that the lin-
earized stability, of the rest position of the inverted pendulum mentioned
in Proposition 3.22, implies the corresponding rest position of the original
nonlinear model of the inverted pendulum is stable. The problem is that
the corresponding periodic orbits in the extended phase space are not hy-
perbolic; they are “only” (Lyapunov) stable. It turns out that the principle
of linearized stability does give the right conclusion for the inverted pen-
dulum, but the proof of this fact requires an analysis that is beyond the
scope of this book (see [108]).

We will use Floquet theory, as in our analysis of Hill’s equation, to prove
Proposition 3.22. Indeed, let Φ(t, α, β) denote the principal fundamental
matrix of the first order system

w′ = z, z′ = (α − βa(s))w (3.77)

corresponding to the differential equation (3.76). Recall from our study
of Hill’s equation that the trivial solution of the system (3.77) is stable
provided that

| tr Φ(1, α, β)| < 2.
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If (α, β) = (0, 0), then

Φ(1, 0, 0) = exp
(

0 1
0 0

)
=

(
1 1
0 1

)
.

At this point of the parameter space tr Φ(1, 0, 0) = 2. Thus, it is reasonable
to look for nearby points where tr Φ(1, 0, 0) < 2. The idea is simple enough:
Under our assumption that H is smooth, so is the function τ : R

2 → R

given by (α, β) �→ tr Φ(1, α, β). We will use the implicit function theorem
to show that the boundary of the region of stability is a smooth curve
that passes through the origin of the parameter space into the positive first
quadrant as depicted in Figure 3.5.

Let us compute the partial derivative τα(0, 0). For this, let A(s) denote
the system matrix for the system (3.77) and use the fact that Φ′ = A(s)Φ
to obtain the variational initial value problem

Φ′
α = A(s)Φα + Aα(s)Φ, Φ′

α(0) = 0.

At (α, β) = (0, 0), the variational equation is given by the following linear
system

W ′ =
(

0 1
0 0

)
W +

(
0 0
1 0

)
Φ(s, 0, 0)

=
(

0 1
0 0

)
W +

(
0 0
1 0

)(
1 s
0 1

)
=

(
0 1
0 0

)
W +

(
0 0
1 s

)
which can be solved by variation of parameters to obtain

Φα(1, 0, 0) = W (1) =
( 1

2 ∗
∗ 1

2

)
.

Therefore, we have that τα(0, 0) = 1.
Define the function g(α, β) := τ(α, β) − 2 and note that we now have

g(0, 0) = 0, gα(0, 0) = 1.

By an application of the implicit function theorem, there is a function β �→
γ(β), defined for sufficiently small β, such that γ(0) = 0 and τ(γ(β), β) ≡ 2.

To determine which “side” of the curve Γ, defined by β �→ (β, γ(β)),
corresponds to the region of stability, let us consider points on the positive
α-axis. In this case, the linearized equation has constant coefficients:

w′′ − αw = 0.

The principal fundamental matrix solution after “time” s = 1 is given by(
cosh

√
α 1√

α
sinh

√
α√

α sinh
√

α cosh
√

α

)
,
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and, for α > 0, we have τ(α, 0) = 2 cosh
√

α > 2.
By the implicit function theorem, the curve Γ in the parameter space

corresponding to tr Φ(1, α, β) = 2 is unique. Also, by the computation
above, the positive α-axis lies in the unstable region. Because τα(0, 0) = 1,
we must have τα(γ(β), β) > 0 as long as β is sufficiently small. Thus, it
follows that the trace of the monodromy matrix increases through the value
2 as the curve Γ is crossed. In particular, the trace of the monodromy matrix
is less than 2 on the left side of this curve; that is, Γ forms a boundary of
the stable region as depicted in Figure 3.5.

Finally, to determine the conditions on the periodic displacement so that
the restriction of Γ to β > 0 lies in the first quadrant, we will use the fact
that

τβ(0, 0) = −
∫ 1

0
a(s) ds

(see Exercise 3.23).
If the external excitation is sinusoidal, then its average value is zero. In

this case, we have that τβ(0, 0) = 0, or equivalently, γ′(0) = 0. A por-
tion of the stability region will be as depicted in Figure 3.5; that is, the
linearized pendulum motion will be stabilized for small α > 0 and small
β > 0, provided that γ′′(0) > 0. By differentiation of the implicit relation
τ(γ(β), β) = 2, it is easy to see that the required condition on the second
derivative of γ is equivalent to the inequality τββ(0, 0) < 0. Of course, this
requirement is not always satisfied (see Exercise 3.25), but it is satisfied for
a(s) = sin(2πs) (see Exercise 3.24).

Exercise 3.23. Prove that

τβ(0, 0) = −
∫ 1

0
a(s) ds.

Exercise 3.24. Prove that τββ(0, 0) < 0 for the case a(s) = sin(2πs). Hint:
Compute the variational derivatives directly in terms of the second order equa-
tion (3.76).

Exercise 3.25. Find a condition on the function a(s) so that τββ(0, 0) < 0.
Also, if a(s) is expressed as a convergent Fourier series, find the corresponding
condition in terms of its Fourier coefficients. Hint: If

a(s) =
∞∑

k=1

ak cos(2πks) + bk sin(2πks),

then

τββ(1, 0, 0) = 2
( ∞∑

k=1

1
2πk

bk

)2
−

∞∑
k=1

( 1
2πk

)2(a2
k + 3b2

k).
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FIGURE 3.6. Regions of instability (Arnold tongues) for the linearized pendulum.

Exercise 3.26. Find an example of a periodic function s �→ a(s) with period
one such that τββ(0, 0) > 0. For this choice of the displacement, the inverted
pendulum is not stabilized for small β > 0.

Exercise 3.27. What can you say about stability of the inverted pendulum
using Lyapunov’s theorem (Theorem 2.68)?

Let us consider the stability of the noninverted pendulum. Note that the
linearization of the differential equation (3.75) at θ = 0 is given by

w′′ + (α − βa(s))w = 0,

and let Ψ(t, α, β) denote the principal fundamental matrix solution of the
corresponding homogeneous linear system at t = 0. In this case, we have

tr Ψ(1, α, 0) = 2 cos
√

α.

Because the boundaries of the regions of instability are given by

| tr Ψ(1, α, β)| = 2,

they intersect the α-axis only if
√

α is an integer multiple of π. In view
of the fact that α = 1/Ω2, these observations suggest the zero solution is
unstable for small amplitude displacements whenever there is an integer n
such that the period of the displacement is

1
Ω

(L

g

)1/2
=

n

2

(
2π

(L

g

)1/2)
;

that is, the period of the displacement is a half-integer multiple of the
natural frequency of the pendulum. In fact, the instability of the pendulum
for a small amplitude periodic displacement with n = 1 is demonstrated in
every playground by children pumping up swings.

The proof that the instability boundaries do indeed cross the α-axis
at the “resonant” points (α, β) = ((nπ)2, 0), for n = 1, . . . ,∞, is obtained
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from an analysis of the Taylor expansion of the function given by Ψ(1, α, β)
at each resonant point (see Exercise 3.28). Typically, the instability regions
are as depicted in Figure 3.6. The instability region with n = 1 is “open”
at β = 0 (the tangents to the boundary curves have distinct slopes); the
remaining instability regions are “closed.” While it is an interesting math-
ematical problem to determine the general shape of the stability regions
([78], [115]), the model is, perhaps, not physically realistic for large β.

Exercise 3.28. Suppose that a(s) = sin(2πs) and set

g(α, β) = tr Ψ(1, α, β) − 2.

Show that gα((nπ)2, 0) = 0 and gβ((nπ)2, 0) = 0. Thus, the implicit function
theorem cannot be applied directly to obtain the boundaries of the regions of
instability, the boundary curves are singular at the points where they meet the
α-axis. By computing appropriate higher order derivatives and analyzing the
resulting Taylor expansion of g, show that the regions near the α-axis are indeed
as depicted in Figure 3.6. Also, show that the regions become “thinner” as n
increases.

3.6 Origins of ODE: Partial Differential Equations

In this section there is an elementary discussion of three “big ideas”:

• Certain partial differential equations (PDE) can be viewed as ordi-
nary differential equations with an infinite dimensional phase space.

• Finite dimensional approximations of some PDE are systems of ordi-
nary differential equations.

• Traveling wave fronts in PDE can be described by ordinary differen-
tial equations.

While these ideas are very important and therefore have been widely stud-
ied, only a few elementary illustrations will be given here. The objective
of this section is to introduce these ideas as examples of how ordinary
differential equations arise and to suggest some very important areas for
further study (see [27], [85], [84], [90], [135], [140], [162], [174], and [191]).
We will also discuss the solution of first order PDE as an application of the
techniques of ordinary differential equations.

Most of the PDE mentioned in this section can be considered as mod-
els of “reaction-diffusion” processes. To see how these models are derived,
imagine some substance distributed in a medium. The density of the sub-
stance is represented by a function u : R

n × R → R so that (x, t) �→ u(x, t)
gives its density at the site with coordinate x at time t.
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If Ω is a region in space with boundary ∂Ω, then the rate of change of the
amount of the substance in Ω is given by the flux of the substance through
the boundary of Ω plus the amount of the substance generated in Ω; that
is,

d

dt

∫
Ω

u dV = −
∫

∂Ω
X · η dS +

∫
Ω

f dV

where X is the vector field representing the motion of the substance; dV
is the volume element; dS is the surface element; the vector field η is the
outer unit normal field on the boundary of Ω; and f , a function of density,
position and time, represents the amount of the substance generated in Ω.
The minus sign on the flux term is required because we are measuring the
rate of change of the amount of substance in Ω. If, for example, the flow
is all out of Ω, then X · η ≥ 0 and the minus sign is required because the
rate of change of the amount of substance in Ω must be negative.

If Stokes’ theorem is applied to rewrite the flux term and the time deriva-
tive is interchanged with the integral of the density, then∫

Ω
ut dV = −

∫
Ω

div X dV +
∫

Ω
f dV.

Moreover, by using the fact that the region Ω is arbitrary in the integral
identity, it is easy to prove the fundamental balance law

ut = − div X + f. (3.78)

To obtain a useful dynamical equation for u from equation (3.78), we
need a constitutive relation between the density u of the substance and
the flow field X. It is not at all clear how to derive this relationship from
the fundamental laws of physics. Thus, we have an excellent example of
an important problem where physical intuition must be used to propose a
constitutive law whose validity can only be tested by comparing the results
of experiments with the predictions of the corresponding model. Problems
of this type lie at the heart of applied mathematics and physics.

For equation (3.78), the classic constitutive relation—called Darcy’s,
Fick’s, or Fourier’s law depending on the physical context—is

X = −K gradu + µV (3.79)

where K ≥ 0 and µ are functions of density, position, and time; and V
denotes the flow field for the medium in which our substance is moving.
The minus sign on the gradient term represents the assumption that the
substance diffuses from higher to lower concentrations.

By inserting the relation (3.79) into the balance law (3.78), we obtain
the dynamical equation

ut = div(K gradu) − div(µV ) + f.
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Also, if we assume that the diffusion coefficient K is equal to k2 for some
constant k, the function µ is given by µ(u, x, t) = γu where γ is a constant,
and V is an incompressible flow field (div V = 0); then we obtain the most
often used reaction-diffusion-convection model equation

ut + γ gradu · V = k2∆u + f. (3.80)

In this equation, the gradient term is called the convection term, the Lapla-
cian term is called the diffusion term, and f is the source term. Let us also
note that if the diffusion coefficient is zero, the convection coefficient is
given by γ = 1, the source function vanishes, and V is not necessarily in-
compressible, then equation (3.80) reduces to the law of conservation of
mass, also called the continuity equation, given by

ut + div(uV ) = 0. (3.81)

Because equation (3.80) is derived from general physical principles, this
PDE can be used to model many different phenomena. As a result, there
is a vast scientific literature devoted to its study. We will not be able to
probe very deeply, but we will use equation (3.80) to illustrate a few aspects
of the analysis of these models where ordinary differential equations arise
naturally.

3.6.1 Infinite Dimensional ODE
A simple special case of the reaction-diffusion-convection model (3.80) is
the linear diffusion equation (the heat equation) in one spatial dimension,
namely, the PDE

ut = k2uxx (3.82)

where k2 is the diffusivity constant. This differential equation can be used
to model heat flow in an insulated bar. In fact, let us suppose that the bar is
idealized to be the interval [0, �] on the x-axis so that u(x, t) represents the
temperature of the bar at the point with coordinate x at time t. Moreover,
because the bar has finite length, let us model the heat flow at the ends of
the bar where we will consider just two possibilities: The bar is insulated
at both ends such that we have the Neumann boundary conditions

ux(0, t) = 0, ux(�, t) = 0;

or, heat is allowed to flow through the ends of the bar, but the temperature
at the ends is held constant at zero (in some appropriate units) such that
we have the Dirichlet boundary conditions

u(0, t) = 0, u(�, t) = 0.
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If one set of boundary conditions is imposed and an initial temperature
distribution, say x �→ u0(x), is given on the bar, then we would expect
that there is a unique scalar function (x, t) �→ u(x, t), defined on the set
[0, �] × [0,∞) that satisfies the PDE, the initial condition u(x, 0) = u0(x),
and the boundary conditions. Of course, if such a solution exists, then
for each t > 0, it predicts the corresponding temperature distribution
x �→ u(x, t) on the bar. In addition, if there is a solution of the bound-
ary value problem corresponding to each initial temperature distribution,
then we have a situation that is just like the phase flow of an ordinary dif-
ferential equation. Indeed, let us consider a linear space E of temperature
distributions on the rod and let us suppose that if a function v : [0, �] → R

is in E , then there is a solution (x, t) �→ u(x, t) of the boundary value prob-
lem with v as the initial temperature distribution such that x �→ u(x, t) is
a function in E whenever t > 0. In particular, all the functions in E must
satisfy the boundary conditions. If this is the case, then we have defined a
function (0,∞) × E → E given by (t, v) �→ ϕt(v) such that ϕ0(v)(x) = v(x)
and (x, t) �→ ϕt(v)(x) is the solution of the boundary value problem with
initial temperature distribution v. In other words, we have defined a dy-
namical system with “flow” ϕt whose phase space is the function space
E of possible temperature distributions on the bar. For example, for the
Dirichlet problem, we might take E to be the subset of C2[0, �] consisting
of those functions that vanish at the ends of the interval [0, �].

Taking our idea a step farther, let us define the linear transformation A
on E by

Au = k2uxx.

Then, the PDE (3.82) can be rewritten as

u̇ = Au, (3.83)

an ordinary differential equation on the infinite dimensional space E . Also,
to remind ourselves of the boundary conditions, let us write A = AN
if Neumann boundary conditions are imposed and A = AD for Dirichlet
boundary conditions.

The linear homogeneous differential equation (3.83) is so simple that
its solutions can be given explicitly. However, we will see how the general
solution of the PDE can be found by treating it as an ordinary differential
equation.

Let us begin by determining the rest points of the system (3.83). In fact, a
rest point is a function v : [0, �] → R that satisfies the boundary conditions
and the second order ordinary differential equation vxx = 0. Clearly, the
only possible choices are affine functions of the form v = cx+d where c and
d are real numbers. There are two cases: For AN we must have c = 0, but d
is a free variable. Thus, there is a line in the function space E corresponding
to the constant functions in E that consists entirely of rest points. For the
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Dirichlet case, both c and d must vanish and there is a unique rest point
at the origin of the phase space.

Having found the rest points for the differential equation (3.83), let us
discuss their stability. By analogy with the finite dimensional case, let us
recall that we have discussed two methods that can be used to determine
the stability of rest points: linearization and Lyapunov’s direct method.
In particular, for the finite dimensional case, the method of linearization is
valid as long as the rest point is hyperbolic, and, in this case, the eigenvalues
of the system matrix for the linearized system at the rest point determine
its stability type.

Working formally, let us apply the method of linearization at the rest
points of the system (3.83). Since this differential equation is already linear,
we might expect the stability of these rest points to be determined from
an analysis of the position in the complex plane of the eigenvalues of the
system operator A. By definition, if λ is an eigenvalue of the operator AD
or AN , then there must be a nonzero function v on the interval [0, �] that
satisfies the boundary conditions and the ordinary differential equation

k2vxx = λv.

If v is an eigenfunction with eigenvalue λ, then we have that∫ �

0
k2vxxv dx =

∫ �

0
λv2 dx. (3.84)

Let us suppose that v is square integrable, that is,∫ �

0
v2 dx < ∞

and also smooth enough so that integration by parts is valid. Then, equa-
tion (3.84) is equivalent to the equation

vxv
∣∣∣�
0

−
∫ �

0
v2

x dx =
λ

k2

∫ �

0
v2 dx.

Thus, if either Dirichlet or Neumann boundary conditions are imposed,
then the boundary term from the integration by parts vanishes, and there-
fore the eigenvalue λ must be a nonpositive real number.

For AD, if λ = 0, then there is no nonzero eigenfunction. If λ < 0, then
the eigenvalue equation has the general solution

v(x) = c1 cos αx + c2 sin αx

where α := (−λ)1/2/k and c1 and c2 are constants; and, in order to satisfy
the Dirichlet boundary conditions, we must have(

1 0
cos α� sin α�

)(
c1
c2

)
=

(
0
0

)
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for some nonzero vector of constants. In fact, the determinant of the matrix
must vanish, and we therefore have to impose the condition that α� is an
integer multiple of π; or equivalently,

λ = −
(nπk

�

)2

with a corresponding eigenfunction given by

x �→ sin
nπ

�
x

for each integer n = 1, 2, . . . ,∞. By a similar calculation for AN , we have
that λ = 0 is an eigenvalue with a corresponding eigenfunction v ≡ 1, and
again the same real numbers

λ = −
(nπk

�

)2

are eigenvalues, but this time with corresponding eigenfunctions

x �→ cos
nπ

�
x.

The nature of the real parts of the eigenvalues computed in the last para-
graph and the principle of linearized stability suggest that the origin is an
asymptotically stable rest point for the Dirichlet problem. On the other
hand, the rest points of the Neumann problem seem to be of a different
type: each of these rest points would appear to have a one-dimensional
center manifold and an infinite dimensional stable manifold. All of these
statements are true. But to prove them, certain modifications of the corre-
sponding finite dimensional results are required. For example, the principle
of linearized stability is valid for rest points of infinite dimensional ODE
under the assumption that all points in the spectrum of the operator given
by the linearized vector field at the rest point (in our case the operator A)
have negative real parts that are bounded away from the imaginary axis
in the complex plane (see, for example, [162, p. 114]). More precisely, the
required hypothesis is that there is some number α > 0 such that the real
part of every point in the spectrum of the operator is less than −α.

Recall that a complex number λ is in the spectrum of the linear operator
A if the operator A − λI does not have a bounded inverse. Of course, if
v �= 0 is an eigenfunction with eigenvalue λ, then the operator A − λI is
not injective and indeed λ is in the spectrum. In a finite dimensional space,
if an operator is injective, then it is invertible. Hence, the only complex
numbers in the spectrum of a finite dimensional linear operator are eigen-
values. However, in an infinite dimensional space, there can be points in
the spectrum that are not eigenvalues (see [60]). For example, let us define
the space L2(0, �) to be all (real) functions v : [0, �] → R such that∫ �

0
v2(x) dx < ∞ (3.85)
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where we consider two such functions v and w to be equal if∫ �

0
(v(x) − w(x))2 dx = 0,

and consider the operator B : L2 → L2 given by (Bf)(x) �→ xf(x). This
operator has no eigenvalues, yet the entire interval [0, �] is in its spectrum.
(Why?)

The operators AD and AN , considered as operators defined in L2(0, �),
have spectra that consist entirely of eigenvalues (pure point spectrum).
However, to prove this claim we must first deal with the fact that these
operators are not defined on all of L2. After all, a square integrable function
does not have to be differentiable. Instead, we can view our operators to
be defined on the subset of L2 consisting of those functions that have two
derivatives both contained in L2. Then, the claim about the spectra of AD
and AN can be proved in two steps. First, if a complex number λ is not an
eigenvalue, then for all w ∈ L2 there is some function v that satisfies the
boundary conditions and the differential equation

k2vxx − λv = w.

In other words, there is an operator B : L2 → L2 given by Bw = v such
that (A − λI)Bw = w. The fact that B is bounded is proved from the
explicit construction of B as an integral operator. Also, it can be proved
that B(A − λI)v = v for all v in the domain of A (see Exercise 3.29).
Using these facts and the theorem on linearized stability mentioned above,
it follows that the origin is an asymptotically stable rest point for the
Dirichlet problem.

Exercise 3.29. Show that the spectrum of the operator in L2(0, �) given by
Av = vxx with either Dirichlet or Neumann boundary conditions consists only of
eigenvalues. Prove the same result for the operator Av = avxx + bvx + cv where
a, b, and c are real numbers.

In view of our results for finite dimensional linear systems, we expect that
if we have a linear evolution equation v̇ = Av, even in an infinite dimen-
sional phase space, and if Aw = λw, then etλw is a solution. This is indeed
the case for the PDE (3.82). Moreover, for linear evolution equations, we
can use the principle of superposition to deduce that every linear combi-
nation of solutions of this type is again a solution. If we work formally,
that is, without proving convergence, and if we use the eigenvalues and
eigenvectors computed above, then the “general solution” of the Dirichlet
problem is given by

u(x, t) =
∞∑

n=1

e−( nπk
� )2tan sin

nπ

�
x,
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and the general solution of the Neumann problem is given by

u(x, t) =
∞∑

n=0

e−( nπk
� )2tbn cos

nπ

�
x

where an and bn are real numbers.
If the initial condition u(x, 0) = u0(x) is given, then, for instance, for the

Dirichlet problem we must have that

u0(x) =
∞∑

n=1

an sin
nπ

�
x.

In other words, the initial function u0 must be represented by a Fourier
sine series. What does this mean? The requirement is that the Fourier sine
series converges to u0 in the space L2 endowed with its natural norm,

‖v‖ :=
(∫ �

0
v2(x) dx

)1/2
.

In fact, the inner product space L2 is a Hilbert space; that is, with respect
to this norm, every Cauchy sequence in L2 converges (see [156]). The precise
requirement for u0 to be represented by a Fourier sine series is that there
are real numbers an and corresponding L2 partial sums

N∑
n=1

an sin
nπ

�
x

such that

lim
N→∞

‖u0 − uN‖ = 0.

If the initial function u0 is continuous, then for our special case the cor-
responding solution obtained by Fourier series also converges pointwise to
a C2 function that satisfies the PDE in the classical sense. We will show in
a moment that this solution is unique, and therefore the special solutions
of the PDE obtained from the eigenvalues and corresponding eigenfunc-
tions do indeed form a fundamental set of solutions for our boundary value
problems.

There are several ways to prove that solutions of the diffusion equation
with a given initial condition are unique. We will use the “energy method”;
an alternative uniqueness proof is based on the maximum principle (see
Exercise 3.30). To show the uniqueness result, let us note that if two so-
lutions of either the Dirichlet or Neumann boundary value problem satisfy
the same initial condition, then the difference u of these two solutions is
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a solution of the same boundary value problem but with initial value the
zero function. Using an integration by parts, we also have the equality

d

dt

∫ �

0

1
2
u2 dx =

∫ �

0
utu dx = k2

∫ �

0
uxxu dx = −k2

∫ �

0
u2

x dx.

It follows that the function

t �→
∫ �

0

1
2
u2(x, t) dx

is not increasing, and therefore it is bounded above by its value at t = 0,
namely, ∫ �

0

1
2
u2(x, 0) dx = 0.

The conclusion is that u(x, t) ≡ 0, as required.

Exercise 3.30. Prove the maximum principle: If ut(x, t) = k2uxx(x, t) is a C2

function on the open rectangle (0, �) × (0, T ) and a continuous function on the
closure of this rectangle, then the maximum of the function u is assumed either
on the line (0, �) × {0} or on one of the lines

{0} × [0, T ], {�} × [0, T ].

Also, use the maximum principle to prove the uniqueness of solutions of the
boundary value problem with initial condition for the diffusion equation. Hint:
Use calculus (see [171, p. 41]).

Exercise 3.31. Solve the PDE (3.82) by the method of separation of variables;
that is, assume that there is a solution of the form u(x, t) = p(x)q(t), substitute
this expression into the PDE, impose the boundary conditions, and determine
the general form of the functions p and q.

Using the explicit form of the Fourier series representations of the gen-
eral solutions of the heat equation with Dirichlet or Neumann boundary
conditions, we can see that these solutions are very much like the solutions
of a homogeneous linear ordinary differential equation: They are expressed
as superpositions of fundamental solutions and they obviously satisfy the
flow property ϕs(ϕt(v)) = ϕs+t(v) as long as s and t are not negative (the
series solutions do not necessarily converge for t < 0). Because of this re-
striction on the time variable, the solutions of our evolution equation are
said to be semi-flows or semi-groups.

In the case of Dirichlet boundary conditions, if we look at the series
solution, then we can see immediately that the origin is in fact globally
asymptotically stable. For the Neumann problem there is a one-dimensional
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invariant manifold of rest points, and all other solutions are attracted expo-
nentially fast to this manifold. Physically, if the temperature is held fixed
at zero at the ends of the bar, then the temperature at each point of the bar
approaches zero at an exponential rate, whereas if the bar is insulated at
its ends, then the temperature at each point approaches the average value
of the initial temperature distribution.

Our discussion of the scalar diffusion equation, PDE (3.82), has served
to illustrate the fact that a (parabolic) PDE can be viewed as an ordinary
differential equation on an infinite dimensional space. Moreover, as we have
seen, if we choose to study a PDE from this viewpoint, then our experience
with ordinary differential equations can be used to advantage as a faithful
guide to its analysis.

Exercise 3.32. Verify the semi-flow property ϕs(ϕt(v)) = ϕs+t(v) for the solu-
tions of the scalar heat equation with Dirichlet or Neumann boundary conditions.
Generalize this result to the equation ut = uxx +f(u) under the assumption that
every initial value problem for this equation has a local solution. Hint: How is
the flow property proved for finite dimensional autonomous equations?

Let us now consider the nonlinear PDE

ut = k2uxx + f(u, x, t), 0 < x < �, t > 0 (3.86)

where f is a smooth function that represents a heat source in our heat
conduction model.

To illustrate the analysis of rest points for a nonlinear PDE, let us as-
sume that the source term f for the PDE (3.86) depends only on its first
variable, and let us impose, as usual, either Dirichlet or Neumann boundary
conditions. In this situation, the rest points are given by those solutions of
the ordinary differential equation

k2uxx + f(u) = 0 (3.87)

that also satisfy the Dirichlet or Neumann boundary conditions.
The boundary value problem (3.87) is an interesting problem in ordinary

differential equations. Let us note first that if we view the independent
variable as “time,” then the second order differential equation (3.87) is just
Newton’s equation for a particle of mass k2 moving in a potential force
field with force −f(u). In addition, the corresponding first order system in
the phase plane is the Hamiltonian system

u̇ = v, v̇ = −f(u)

whose total energy is given by

H(u, v) :=
k2

2
v2 + F (u)
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v

u

FIGURE 3.7. Phase portrait of the system u̇ = v v̇ = −u + u3.

where F , the potential energy, can be taken to be

F (u) :=
∫ u

0
f(w) dw,

and, as we know, the phase plane orbits all lie on curves of constant energy.
We will use these facts below.

A rest point of the PDE (3.86) with our special form of f and Dirichlet
boundary conditions corresponds to a trajectory in the phase plane that
starts on the v-axis and returns to the v-axis again exactly at time x = �.
On the other hand, a rest point for the PDE with Neumann boundary
conditions corresponds to a trajectory in the phase plane that starts on
the u-axis and returns to the u-axis at time x = �.

Though the nonlinear boundary value problems that have just been de-
scribed are very difficult in general, they can be “solved” in some important
special cases. As an example, let us consider the following Dirichlet bound-
ary value problem

ut = uxx + u − u3, u(0, t) = 0, u(�, t) = 0 (3.88)

(see Exercise 3.35 for Neumann boundary conditions). Note first that the
constant functions with values 0 or ±1 are all solutions of the differential
equation uxx + u − u3 = 0. However, only the zero solution satisfies the
Dirichlet boundary conditions. Thus, there is exactly one constant rest
point. Let us determine if there are any nonconstant rest points.

The phase plane system corresponding to the steady state equation for
the PDE (3.88) is given by

u̇ = v, v̇ = −u + u3.

It has saddle points at (±1, 0) and a center at (0, 0). Moreover, the period
annulus surrounding the origin is bounded by a pair of heteroclinic orbits
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that lie on the curve

1
2
v2 +

1
2
u2 − 1

4
u4 =

1
4

(see Figure 3.7). Using this fact, it is easy to see that the interval (0, 1/
√

2)
on the v-axis is a Poincaré section for the annulus of periodic orbits. Also, a
glance at the phase portrait of the system shows that only the solutions that
lie on these periodic orbits are candidates for nonconstant steady states for
the PDE; they are the only periodic orbits in the phase plane that meet the
v-axis at more than one point. Also, let us notice that the phase portrait
is symmetric with respect to each of the coordinate axes. In view of this
symmetry, if we define the period function

T :
(
0,

1√
2

)
→ R (3.89)

so that T (a) is the minimum period of the periodic solution starting at
u(0) = 0, v(0) = a, then

u(
1
2
T (a)) = 0, v(

1
2
T (a)) = −a.

Hence, solutions of our boundary value problem that correspond to rest
points for the PDE also correspond to periodic solutions whose half periods
are exactly some integer submultiple of �; equivalently, these solutions cor-
respond to those real numbers a such that 0 < a < 1/

√
2 and T (a) = 2�/n

for some positive integer n. In fact, each such a corresponds to exactly
two rest points of the PDE; namely, x �→ u(x) and x �→ u(� − x) where
x �→ (u(x), v(x)) is the phase trajectory such that u(0) = 0 and v(0) = a.

The number and position in the phase plane of all rest point solutions
of the PDE can be determined from the following three propositions: (i)
T (a) → 2π as a → 0+; (ii) T (a) → ∞ as a → (1/

√
2)−; and (iii) T ′(a) > 0

(see Exercise 3.33). Using these facts, it follows that there is at most a
finite number of rest points that correspond to the integers 1, 2, . . . , n such
that n < �/π.

Exercise 3.33. Prove that the period function T given in display (3.89) has a
positive first derivative. One way to do this is to find the explicit time-dependent
periodic solutions of the first order system u̇ = v, v̇ = −u + u3 using elliptic
functions. For a different method, see [29] and [153].

Exercise 3.34. Find the rest points for the Dirichlet boundary value problem

ut = uxx + au − bu2, u(x, 0) = 0, u(x, �) = 0

(see [35]).
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Are the rest points of the PDE (3.88) stable? It turns out that the sta-
bility problem for nonconstant rest points, even for our scalar PDE, is too
difficult to describe here (see [162, p. 530]). However, we can say some-
thing about the stability of the constant rest point at the origin for the
PDE (3.88). In fact, let us note that if � < π, then it is the only rest point.
Moreover, its stability can be determined by linearization.

Let us first describe the linearization procedure for a PDE. The correct
formulation is simple if we view the PDE as an ordinary differential equa-
tion on a function space. Indeed, we can just follow the recipe for linearizing
an ordinary differential equation of the form u̇ = g(u). Let us recall that if
z is a rest point and g is a smooth function, then the linearization of the
ordinary differential equation at z is

ẋ = Dg(z)(x − z),

or equivalently

ẇ = Dg(z)w

where w := x − z. Moreover, if the eigenvalues of Dg(z) all have negative
real parts, then the rest point z is asymptotically stable (see Section 2.3).

In order to linearize at a rest point of a PDE, let us suppose that the
function x �→ z(x) is a rest point for the PDE

ut = g(u)

where g(u) := uxx + f(u) and f : R → R is a differentiable function. If the
domain of AD is viewed as the function space C2[0, �], then the function
g : C2[0, �] → C0[0, �] is differentiable. This follows because the function
u �→ uxx is linear and the function f is smooth. However, we have to be
careful. In the definition of g we must view the notation f(u) to mean f ◦u
where u ∈ C2[0, �]. The difficulty is that the smoothness of the function
u �→ f ◦u depends on the topology of the function space to which u belongs
(see Example 1.153).

Once we know that g is differentiable, its derivative can be easily com-
puted as a directional derivative; in fact,

Dg(z)v =
d

dt
g(z + tv)

∣∣∣
t=0

= vxx + Df(z)v.

Therefore, by definition, the linearized equation at the rest point z is given
by

ẇ = wxx + Df(z(x))w. (3.90)

For a nonconstant rest point, the linearized equation (3.90) depends on
the space variable x. The determination of stability in this case is often
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quite difficult—-recall the stability analysis for periodic solutions of finite
dimensional ordinary differential equations. For a constant rest point, the
linearized equation has the form ẇ = Aw where A is the linear operator
given by w �→ wxx+Df(z)w for z a fixed number. In this case, as mentioned
previously, it seems natural to expect the following result: If the spectrum
of A is in the open left half plane and bounded away from the imaginary
axis, then the rest point is asymptotically stable. In fact, this result, when
properly interpreted, is true for the PDE (3.88). But to prove it, we have
to specify the function space on which the spectrum is to be computed and
recast the arguments used for ordinary differential equations in an infinite
dimensional setting. For the PDE (3.88) the idea—derived from our study
of ordinary differential equations—of applying the principle of linearized
stability is justified, but some functional analysis is required to carry it
out (see [162, Chapter 11]). However, our example is perhaps too simple;
there are PDE where the linearized stability of a steady state can be easily
proved, but the stability of the rest point is an open question. The problem
for a general PDE of the form

ut = Au + f(u)

is that the linear operator A, the function f , and the linearized operator
A+Df(z) must all satisfy additional hypotheses before the ODE arguments
for the validity of the principle of linearized stability can be verified in the
infinite dimensional case. This fact is an important difference between the
theory of ordinary differential equations and the theory of PDE.

Let us put aside the theoretical justification of linearized stability and re-
consider the rest point at the origin for the PDE (3.88) where the linearized
system is given by

wt = wxx + w, w(0) = 0, w(�) = 0.

In this case, the spectrum of the differential operator defined by

Aw = wxx + w

consists only of eigenvalues (see Exercise 3.29). In fact, using the analysis
of the spectrum of the operator w → wxx given above, the spectrum of A
is easily obtained by a translation. In fact, the spectrum is{

1 −
(nπ

�

)2
: n = 1, 2, . . . ,∞

}
.

Because

1 −
(nπ

�

)2
≤ 1 −

(π

�

)2
,

the spectrum of A lies in the left half of the complex plane and is bounded
away from the imaginary axis if and only if 1 < π2/�2. Hence, using this
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fact and assuming the validity of the principle of linearized stability, we
have the following proposition: If � < π, then the origin is the only steady
state and it is asymptotically stable.

Let us go one step further in our qualitative analysis of the PDE ut =
uxx + f(u) by showing that there are no periodic solutions. In fact, this
claim is true independent of the choice of � > 0 and for an arbitrary smooth
source function f . The idea for the proof, following the presentation in [162],
is to show that there is a function (essentially a Lyapunov function) that
decreases on orbits. In fact, let us define

E(u) = −
∫ �

0

(1
2
u(x)uxx(x) + F (u(x))

)
dx

where F is an antiderivative of f and note that

Ė = −
∫ �

0

(1
2
utuxx +

1
2
uutxx + f(u)ut

)
dx.

After integration by parts twice for the integral of the second term in
the integrand, and after imposing either Dirichlet or Neumann boundary
conditions, it follows that

Ė = −
∫ �

0
(uxx + f(u))ut dx = −

∫ �

0
(uxx + f(u))2 dx.

Hence, except for the rest points, the time derivative of E is negative along
orbits. In particular, there are no periodic orbits. Can the function E be
used to give a proof of the stability of the rest point at the origin?

For the PDE (3.88) with � < π we have now built up a rather complete
picture of the phase portrait. In fact, we know enough to conjecture that
there is a unique rest point that is globally asymptotically stable. Is this
conjecture true?

Exercise 3.35. Analyze the existence of rest points, the stability types of con-
stant rest points, and the phase portrait for the Neumann boundary value prob-
lem

ut = uxx + u − u3, ux(0, t) = 0, ux(�, t) = 0.

Note that there are three constant rest points. Use equation (3.90) to determine
their stability types.

3.6.2 Galërkin Approximation
Since most differential equations, ODE or PDE, cannot be “solved,” it is
natural to seek approximate solutions. Of course, numerical methods are
used all the time to obtain approximate values of state variables. However,
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in theory and practice the utility of approximation methods goes far beyond
number crunching; for example, approximations are used to gain insight
into the qualitative behavior of dynamical systems, to test computer codes,
and to obtain existence proofs. Indeed, approximation methods are central
elements of applied mathematics.

In this section we will take a brief look at a special case of Galërkin’s
method, one of the classic approximation methods for PDE. However, let
us note that Galërkin’s method is just one of an array of methods that
are based on the idea of finding finite dimensional approximations of in-
finite dimensional dynamical systems. Many other methods are based on
the idea of finding finite dimensional invariant (or approximately invariant)
submanifolds in the infinite dimensional phase space. Of course, rest points
and periodic orbits are finite dimensional invariant submanifolds. But these
are only the simplest examples. In fact, let us note that a rest point or a
periodic orbit might have an infinite dimensional stable manifold and a
finite dimensional center manifold. In this case, the local dynamical behav-
ior is determined by the dynamics on the center manifold because nearby
orbits are attracted to the center manifold. An important generalization of
this basic situation is the concept of an inertial manifold. By definition, an
inertial manifold M is a finite dimensional submanifold in the phase space
that has two properties: M is positively invariant, and every solution is
attracted to M at an exponential rate (see [174]).

In general, if there is an attracting finite dimensional invariant manifold,
then the dynamical system restricted to this invariant set is an ordinary
differential equation that models the asymptotic behavior of the full in-
finite dimensional PDE. In particular, the ω-limit set of every solution
lies on this manifold. Thus, the existence of such an invariant manifold
provides the theoretical basis for a complete understanding of the infinite
dimensional dynamical system using the techniques of ordinary differential
equations. However, it is usually very difficult to prove the existence of at-
tracting invariant manifolds. Moreover, even if an invariant manifold does
exist, it is often very difficult to obtain the detailed specification of this
manifold that would be required to reduce the original infinite dimensional
dynamical system to an ordinary differential equation. As an alternative,
an approximation method—such as Galërkin’s method—that does not re-
quire the existence of an invariant manifold can often be employed with
great success.

The following philosophical question seems to accompany all theoreti-
cal approximation methods for PDE “Is the set of reduced equations—
presumably a system of nonlinear ordinary differential equations—easier
to analyze than the original PDE?” In general, the answer to this ques-
tion is clearly “no.” However, if the finite dimensional approximation is
“low dimensional” or of some special form, then often qualitative analysis
is possible, and useful insights into the dynamics of the original system can
be obtained. Perhaps the best “answer” to the question is to avoid the im-
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plied choice between infinite dimensional and finite dimensional analysis.
The best approach to an applied problem is with a mind free of prejudice.
Often several different methods, including physical thinking and numerical
analysis, are required to obtain consistent and useful predictions from a
model.

Let us begin our discussion of the Galërkin approximation method with
an elementary, but key idea. Recall that a (real) vector space H is an inner
product space if there is a bilinear form (denoted here by angle brackets)
such that if h ∈ H, then 〈h, h〉 ≥ 0 and 〈h, h〉 = 0 if and only if h = 0. It
follows immediately that if v ∈ H and 〈v, h〉 = 0 for all h ∈ H, then v = 0.
We will use this simple fact as the basis for solving equations in the space
H. Indeed, suppose that we wish to find a solution of the (linear) equation

Au = b. (3.91)

If there is a vector u0 ∈ H such that 〈Au0 − b, h〉 = 0 for all h ∈ H, then
u0 is a solution of the equation.

If we identify a subspace S ⊂ H and find uS ∈ S such that

〈AuS − b, s〉 = 0

for all s ∈ S, then uS is called a Galërkin approximation of a solution
of equation (3.91). Of course, every h ∈ H is an “approximation” of a
solution! The idea is to consider a sequence of subspaces, S1 ⊂ S2 ⊂ · · · that
“converge” to H, and the corresponding Galërkin approximations un ∈ Sn

such that 〈Aun − b, s〉 = 0 for all s ∈ Sn. In this case, we might expect that
the sequence u1, u2, . . . converges to a solution of the equation (3.91).

If H is a finite dimensional inner product space and the subspaces

S1, S2, S3, . . .

are strictly nested, then a corresponding sequence of Galërkin approxima-
tions is finite. Thus, we do not have to worry about convergence. However,
if H is an infinite dimensional Hilbert space, then the approximating sub-
spaces must be chosen with care in order to ensure the convergence of the
sequence of Galërkin approximations.

Let us recall that a sequence B = {νi}∞
i=1 of linearly independent ele-

ments in H is called a Hilbert space basis if the linear manifold S spanned
by B—all finite linear combinations of elements in B—is dense in H; that
is, if h ∈ H, then there is a sequence in S that converges to h in the natural
norm defined from the inner product.

Suppose that H is a Hilbert space, B = {νi}∞
i=1 is a Hilbert space basis

for H, and A : H → H is a linear operator. Also, for each positive integer
n let Sn denote the linear manifold spanned by the finite set {ν1, . . . , νn}.
The Galërkin principle may be stated as follows: For each positive integer
n, there is some un ∈ Sn such that 〈Aun−b, s〉 = 0 for all s ∈ Sn. Moreover,
the sequence {un}∞

n=1 converges to a solution of the equation Au = b.



264 3. Applications

The Galërkin principle is not a theorem! In fact, the Galërkin approxima-
tions may not exist or the sequence of approximations may not converge.
The applicability of the method depends on the equation we propose to
solve, the choice of the space H, and the choice of the basis B.

As an illustration of the Galërkin method applied to a PDE, let us con-
sider the steady state equation

uxx + f(x) = 0, 0 < x < �, (3.92)

with either Dirichlet or Neumann boundary conditions where f is a smooth
function. We will formulate a variational (weak) form for this boundary
value problem. The basic idea is based on the fact that if u is a solution of
the PDE (3.92), then ∫ �

0
(uxx + f)φ dx = 0 (3.93)

whenever φ is a square integrable function defined on [0, �]. In the Hilbert
space L2(0, �) (see display (3.85)), the inner product of two functions v and
w is

〈v, w〉 :=
∫ �

0
v(x)w(x) dx.

Therefore, if u is a solution of the PDE, then equation (3.93) merely states
that the inner product of φ with the zero function in L2 vanishes. Moreover,
if we define the operator Au = uxx and the function b = f , then 〈Au −
f, φ〉 = 0 whenever φ is in the Hilbert space L2(0, �). Turning this analysis
around, we can look for a function u such that 〈Au − f, φ〉 = 0 for all
φ in L2. Roughly speaking, in this case u is called a weak solution of the
PDE. However, if we wish to apply the Galërkin method to the PDE (3.92),
then we have to face the fact that although L2 spaces are natural Hilbert
spaces of functions, the elements in L2 are not necessarily differentiable. In
particular, the operator A is not defined on L2(0, �).

In which Hilbert space should we look for a solution? By asking this
question, we free ourselves from the search for a classical or strong solution
of the PDE (3.92), that is, a twice continuously differentiable function that
satisfies the PDE and the boundary conditions. Instead, we will seek a
weak solution by constructing a Hilbert space H whose elements are in
L2 such that a Galërkin formulation of our partial differential equation
makes sense in H. If our boundary value problem has a classical solution,
and we choose the Hilbert space H as well as the Galëkin formulation
appropriately, then the L2 equivalence class of the classical solution will
also be in H. Moreover, if are fortunate, then the weak solution of the
boundary value problem obtained by applying the Galërkin principle in H
will be exactly the equivalence class of the classical solution.
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To construct the appropriate Hilbert space of candidate solutions for
the equation (3.93), let us first formally apply the fundamental method for
PDE, namely, integration by parts, to obtain the identity∫ �

0
(uxx + f)φ dx = uxφ

∣∣∣�
0

−
∫ �

0
(uxφx − fφ) dx. (3.94)

If the functions φ and u are sufficiently smooth so that the integration by
parts is valid, then equation (3.93) is equivalent to an equation involving
functions and only one of their derivatives with respect to the variable x,
namely, the equation∫ �

0
uxφx dx − uxφ

∣∣∣�
0

=
∫ �

0
fφ dx. (3.95)

In other words, to use equation (3.95) as a Galërkin formulation of our
boundary value problem, it suffices to find a Hilbert space H whose ele-
ments have only one derivative with respect to x in L2. Moreover, suppose
that such a Hilbert space H exists. If we find a function u ∈ H such that
equation (3.95) holds for all φ ∈ H and u happens to be smooth, then the in-
tegration by parts is valid and we also have a solution of equation (3.93) for
all smooth functions φ. Using this fact, it is easy to prove that u satisfies the
PDE (3.92) pointwise, that is, u is a classical solution (see Exercise (3.36)).

Exercise 3.36. Suppose that u is a C2 function. If equation (3.93) holds for
every φ ∈ C∞, then prove that uxx + f(x) = 0.

If Dirichlet boundary conditions are imposed, then the boundary condi-
tions must be build into the Hilbert space H of test functions from which we
select φ. In other words, we must impose the condition that the test func-
tions satisfy the Dirichlet boundary conditions. The appropriate Hilbert
space is denoted H1

0 (0, �). To define it, let us first define the Sobolev norm
for a smooth function φ as follows:

‖φ‖1 :=
(∫ �

0
φ2(x) dx

)1/2
+

(∫ �

0
φ2

x(x) dx
)1/2

.

The subscript on the norm indicates that one derivative of φ is in L2. The
definition of the Sobolev norms with n derivatives taken into account is
similar. Also, note that the Sobolev norm is just the sum of the L2 norms
of φ and its first derivative. The Sobolev space H1

0 (0, �) is defined to be
the completion, with respect to the Sobolev norm, of the set of all smooth
functions that satisfy the Dirichlet boundary conditions and have a finite
Sobolev norm; informally, “the space of functions with one derivative in
L2.”
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Using the Sobolev space H1
0 (0, �), we have the following Galërkin or weak

formulation of our Dirichlet boundary value problem: Find u ∈ H1
0 (0, �)

such that

(u, φ) :=
∫ �

0
uxφx dx =

∫ �

0
fφ dx = 〈f, φ〉 (3.96)

for all φ ∈ H1
0 (0, �). If u is a weak solution of the Dirichlet boundary value

problem, then, using the definition of the Sobolev space, we can be sure
that u is the limit of smooth functions that satisfy the boundary conditions.
However, u itself is only defined abstractly as an equivalence class, thus it
only satisfies the boundary conditions in the generalized sense, that is, u is
the limit of a sequence of functions that satisfy the boundary conditions.

For the Neumann boundary value problem, again using equation (3.94),
the appropriate space of test functions is H1(0, �), the space defined just
like H1

0 except that no boundary conditions are imposed. This requires a bit
of explanation. First, we have the formal statement of the weak formulation
of the Neumann problem: Find a function u in H1(0, �) such that, with the
same notation as in display (3.96),

(u, φ) = 〈f, φ〉

for all φ ∈ H1(0, �). We will show the following proposition: If u is smooth
enough so that the integration by parts in display (3.94) is valid and the
equivalence class of u in H1(0, �) is a weak solution of the Neumann prob-
lem, then u satisfies the Neumann boundary conditions. In fact, if φ ∈
H1

0 (0, �), then φ is a limit of smooth functions that satisfy the Dirichlet
boundary conditions. Thus, if we use integration by parts for a sequence
of smooth functions converging to φ in H1

0 (0, �) and pass to the limit, then
we have the identity

−
∫ �

0
uxxφ dx =

∫ �

0
fφ dx

for all φ ∈ H1
0 (0, �). In other words, uxx + f(x) is the zero element of

H1
0 (0, �). By Exercise (3.37), the space H1

0 (0, �) is a dense subspace of
H1(0, �). Thus, it is easy to see that the identity

−
∫ �

0
uxxφ dx =

∫ �

0
fφ dx

holds for all φ ∈ H1(0, �). Finally, by this identity, the boundary term in
the integration by parts formula in display (3.94) must vanish for each φ ∈
H1(0, �). This fact clearly implies that u satisfies the Neumann boundary
conditions, as required. Hence, our weak formulation is consistent with
the classical boundary value problem: If a weak solution of the Neumann
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boundary value problem happens to be smooth, then it will satisfy the
Neumann boundary conditions.

Exercise 3.37. Prove that H1
0 (0, �) is a dense subspace of H1(0, �).

Our analysis leads to the natural question “If a weak solution exists, then
is it automatically a strong (classical) solution?” The answer is “yes” for
the example problems that we have formulated here, but this important
“regularity” result is beyond the scope of our discussion. Let us simply
remark that the regularity of the weak solution depends on the form of the
PDE. It is also natural to ask if our weak boundary value problems have
solutions. The answer is in the affirmative. In fact, the relevant theory is
easy to understand. We will formulate and prove a few of its basic results.

Let us suppose that H is a real Hilbert space, that ( , ) is a bilinear
form on H (it maps H × H → R), 〈 , 〉 is the inner product on H, and
‖ ‖ := 〈 , 〉1/2 is the natural norm. The bilinear form is called continuous
if there is a constant a > 0 such that

|(u, v)| ≤ a‖u‖‖v‖

for all u, v ∈ H. The bilinear form is called coercive if there is a constant
b > 0 such that

(u, u) ≥ b‖u‖2

for all u ∈ H.

Theorem 3.38 (Lax–Milgram). Suppose that H is a real Hilbert space
and ( , ) is a continuous and coercive bilinear form on H. If F is a bounded
linear functional F : H → R, then there is a unique u ∈ H such that

(u, φ) = F (φ)

for every φ ∈ H. Moreover,

‖u‖ ≤ 1
b
‖F‖.

Proof. The main tool of the proof is a standard result in Hilbert space
theory, the Riesz representation theorem: If F is a bounded linear func-
tional, then there is a unique f ∈ H such that F (φ) = 〈f, φ〉 for every
φ ∈ H (see [156]). In particular, this is true for the functional F in the
statement of the theorem.

If u ∈ H, then the function given by φ �→ (u, φ) is a linear functional on
H. To see that this functional is bounded, use the continuity of the bilinear
form to obtain the estimate

|(u, φ)| ≤ a‖u‖‖φ‖
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and note that ‖u‖ < ∞. The Riesz theorem now applies to each such
functional. Therefore, there is a function A : H → H such that

(u, φ) = 〈Au, φ〉

for all φ ∈ H. Moreover, using the linearity of the bilinear form, it follows
that A is a linear transformation.

It is now clear that the equation in the statement of the theorem has a
unique solution if and only if the equation Au = f has a unique solution
for each f ∈ H.

By the continuity and the coerciveness of the bilinear form, if u, v, φ ∈ H,
then

〈A(u − v), φ〉 = (u − v, w) ≤ a‖u − v‖‖φ‖, (3.97)
〈A(u − v), u − v〉 = (u − v, u − v) ≥ b‖u − v‖2. (3.98)

Also, by the Schwarz inequality, we have that

sup
‖φ‖≤1

|〈v, φ〉| ≤ ‖v‖,

and, for φ := (1/‖v‖)v, this upper bound is attained. Thus, the norm of
the linear functional φ �→ 〈w, φ〉 is ‖w‖. In particular, using the inequal-
ity (3.97), we have

‖Au − Av‖ = sup
‖w‖≤1

〈A(u − v), φ〉 ≤ a‖u − v‖. (3.99)

Define the family of operators Aλ : H → H by

Aλφ = φ − λ(Aφ − f), λ > 0,

and note that Aλu = u if and only if Au = f . Thus, to solve the equation
Au = f , it suffices to show that for at least one choice of λ > 0, the operator
Aλ has a unique fixed point.

By an easy computation using the definition of the norm, equation (3.97),
the Schwarz inequality, and equation (3.99), we have that

‖Aλu − Aλv‖2 = (1 − 2λa + λ2a2)‖u − v‖2.

Note that the polynomial in λ vanishes at λ = 0 and that its derivative
at this point is negative. It follows that there is some λ > 0 such that the
corresponding operator is a contraction on the complete metric space H.
By the contraction mapping theorem, there is a unique fixed point u ∈ H.
Moreover, for this u we have proved that (u, u) = F (u). Therefore,

‖u‖‖F‖ ≥ 〈f, u〉 ≥ b‖u‖2,

and the last statement of the theorem follows. �
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The Lax–Milgram theorem is a classic result that gives us a “hunting
license” to seek weak solutions for our boundary value problems. One way
to construct a solution is to use the Galërkin method described above. In
fact, with the previously defined notation, let us consider one of the finite
dimensional Hilbert spaces Sn of H, and note that by the Lax–Milgram
theorem there is a unique un ∈ Sn such that

(un, s) = 〈f, s〉 (3.100)

for all s ∈ Sn with the additional property that

‖un‖ ≤ ‖f‖. (3.101)

The Galërkin principle is the statement that the sequence {un}∞
n=1 con-

verges to the unique solution u of the weak boundary value problem. The
approximation un can be expressed as a linear combination of the vectors
ν1, . . . , νn that, by our choice, form a basis of the subspace Sn. Thus, there
are real numbers c1, . . . , cn such that

un =
n∑

j=1

cjνj .

Also, each element s ∈ Sn is given in coordinates by

s =
n∑

i=1

siνi.

Thus, the equation (3.100) is given in coordinates by the system of equa-
tions

n∑
j=1

cj(νj , νi) = 〈f, νi〉, i = 1, . . . n,

or, in the equivalent matrix form for the unknown vector (c1, . . . cn), we
have the equation

S

 c1
...

cn

 =

 〈f, ν1〉
...

〈f, νn〉


where S, called the stiffness matrix—the terminology comes from the the-
ory of elasticity—is given by sij := (νj , νi). Of course, by the Lax–Milgram
theorem, S is invertible and the matrix system can be solved to obtain the
approximation un.

Does the sequence of approximations {un}∞
n=1 converge? The first obser-

vation is that, by the inequality (3.101), the sequence of approximates is
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bounded. Let u be the weak solution given by the Lax–Milgram theorem.
Subtract the equality (un, s) = 〈f, s〉 from the equality (u, s) = 〈f, s〉 to
see that

(u − un, s) = 0 (3.102)

for all s ∈ Sn. Also, using the coerciveness of the bilinear form, if φ ∈ Sn,
then

b‖u − un‖2 ≤ (u − un, u − un) = (u − un, u − un + φ − φ)
= (u − un, φ − un) + (u − un, u − φ).

By equation (3.102) and the fact that both un and φ are in Sn, we have
the inequality

b‖u − un‖2 ≤ (u − un, u − φ) ≤ a‖u − un‖‖u − φ‖.

It follows that

‖u − un‖ ≤ a

b
‖u − φ‖ (3.103)

for all φ ∈ Sn.
Recall that the linear span of the sequence {νj}∞

j=1 is assumed to be
dense in H. Hence, for each ε > 0 there is some integer m and constants
c1, . . . , cm such that

‖u −
m∑

j=1

cjνj‖ < ε.

If we set n = m and v =
∑m

j=1 cjνj in the inequality (3.103), then

‖u − un‖ ≤ a

b
ε.

In other words, the sequence of Galërkin approximations converges to the
weak solution, as required.

In the context of the steady state problem with which we started, namely,
the PDE (3.92), the Lax–Milgram theorem applies (see Exercise 3.39). If,
for example, we consider Dirichlet boundary conditions, the bilinear form

(u, v) =
∫ �

0
uxvx dx

in H1
0 , and

νj(x) := sin
jπ

�
x, f(x) =

∞∑
j=1

fj sin
jπ

�
x,
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then the Galërkin approximation is easily computed to be

un(x) =
n∑

i=1

( L

iπ

)2
fi sin

iπ

�
x, (3.104)

exactly the partial sum of the usual Fourier series approximation (see Ex-
ercise 3.40).

Exercise 3.39. Prove that the bilinear form

(u, v) =
∫ �

0
uxvx dx

is continuous and coercive on the spaces H1
0 and H1.

Exercise 3.40. Find the stiffness matrix for the Galërkin approximation for
the PDE (3.92) with Dirichlet boundary conditions using the basis given by

νj(x) := sin
jπ

�
x, j = 1, 2, . . . , ∞

for H1
0 , and verify the approximation (3.104). Also, consider the PDE (3.92)

with Neumann boundary conditions, and find the Galërkin approximations cor-
responding to the basis

1, cos
πx

�
, sin

πx

�
, . . . .

We have now seen one very simple example where the Galërkin principle
can be turned into a theorem. Let us take this as a prototype argument to
justify the Galërkin principle. However, our main objective in this section
is to see how the Galërkin method leads to problems in ordinary differential
equations. For this, let us consider first the PDE

ut = uxx + f(x, t), 0 < x < �, t > 0 (3.105)

with either Dirichlet or Neumann boundary conditions, and let us work
formally.

The weak form of our boundary value problem is derived from the inte-
gration by parts formula∫ �

0
(ut − uxx − f(x, t))φ dx =

∫ �

0
(utφ + uxφx − f(x, t))φ dx − uxφ

∣∣∣�
0
.

Just as before, we can formulate two weak boundary value problems.

The Dirichlet Problem: Find u(x, t), a family of functions in H1
0 (0, �)

such that ∫ �

0
(utφ + uxφx) dx =

∫ �

0
fφ dx
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for all φ ∈ H1
0 (0, �).

The Neumann Problem: Find u(x, t), a family of functions in H1(0, �)
with the same integral condition satisfied for all φ ∈ H1(0, �).

To apply the Galërkin method, choose ν1, ν2, . . . a linearly independent
sequence whose span is dense in the Hilbert space H1

0 (0, �) or H1(0, �), and
define the finite dimensional spaces Sn as before. The new wrinkle is that
we will look for an approximate solution in the subspace Sn of the form

un(x, t) =
n∑

j=1

cj(t)νj(x)

where the coefficients are differentiable functions of time. According to the
Galërkin principle, let us search for the unknown functions c1, . . . , cn so
that we have (un, s) = 〈f, s〉 for all s ∈ Sn. Expressed in coordinates, the
requirement is that the unknown functions satisfy the system of n ordinary
differential equations

n∑
j=1

c′
j(t)

∫ �

0
νjνi dx +

n∑
j=1

cj(t)
∫ �

0
(νj)x(νi)x dx =

∫ �

0
fνi dx

indexed by i = 1, . . . , n. In matrix form, we have the linear system of
ordinary differential equations

MC ′ + SC = F (t)

where M , given by

Mij :=
∫ �

0
νjνi dx

is called the mass matrix, S, given by

Sij :=
∫ �

0
(νj)x(νi)x dx

is the stiffness matrix, and C := (c1, . . . , cn). If the initial condition for
the PDE (3.105) is u(x, 0) = u0(x), then the usual choice for the initial
condition for the approximate system of ordinary differential equations is
the element un

0 ∈ Sn such that

〈un
0 , s〉 = 〈u0, s〉

for all s ∈ Sn. This “least squares” approximation always exists. (Why?)
We have, in effect, described some aspects of the theoretical foundations

of the finite element method for obtaining numerical approximations of
PDE (see [170]). But a discussion of the techniques that make the finite
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element method a practical computational tool is beyond the scope of this
book.

The Galërkin method was originally developed to solve problems in elas-
ticity. This application yields some interesting dynamical problems for the
corresponding systems of ordinary differential equations. Let us consider,
for instance, the PDE (more precisely the integro-PDE ),

uxxxx +
(
α − β

∫ 1

0
u2

x dx
)
uxx + γux + δut + εutt = 0

that is derived in the theory of aeroelasticity as a model of panel flutter
(see for example the book of Raymond L. Bisplinghoff and Holt Ashley [22,
p. 428] where the physical interpretation of this equation and its param-
eters are given explicitly). We note in passing that this reference is full
of Galërkin approximations, albeit Galërkin approximations of linearized
equations. In fact, Galërkin approximations are commonplace in the theory
of aeroelasticity.

At any rate, let us take the boundary conditions

u(0, t) = u(1, t) = 0, uxx(0, t) = uxx(1, t) = 0

given for this equation for “simply supported” panel edges. Of course,
u(x, t) represents the deflection of the panel. If we take just the first Fourier
mode, that is, the Galërkin approximation with trial function

u1(x, t) = c(t) sinπx,

then we obtain the equation

εc̈ + δċ + π2(π2 − α)c +
π4

2
βc3 = 0. (3.106)

Let us note that if π2 − α < 0, then this Galëkin approximation is a
form of Duffing’s equation with damping. We have already developed some
of the tools needed to analyze this equation. In fact, most solutions are
damped oscillations whose ω-limits are one of two possible asymptotically
stable rest points (see Exercise 3.41). However, if a periodic external force
is added to this system, then very complex dynamics are possible (see [96]
and Chapter 6).

Exercise 3.41. Draw representative phase portraits for the family of differen-
tial equations (3.106). How does the phase portrait depend on the choice of the
parameters?

Exercise 3.42. Consider the basis functions

νj(x) := sin(jπx/�)
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for H1
0 (0, �). Find the mass matrix and the stiffness matrix for the Galërkin

approximations for the weak Dirichlet boundary value problem (3.105) with
f(x, t) := sin(πx/�) cos ωt. Solve the corresponding system of linear differential
equations for the nth approximation un(x, t). What can you say qualitatively
about the solutions of the Galërkin approximations? What long term dynamical
behavior of the PDE (3.105) is predicted by the Galërkin approximations? Find
a steady state solution? Repeat the analysis for f(x, t) = cos ωt. Do you see a
problem with our formal computations? Formulate and solve analogous problems
for Neumann boundary conditions.

Exercise 3.43. Consider a two (Fourier) mode Galërkin approximation for the
PDE

ut = k2uxx + u − u3 + a cos ωt, 0 < x < �, t > 0

with either Dirichlet or Neumann boundary conditions. What is the “general
character” of the solutions in the phase plane? Start, for example, with the case
where there is a time-independent source term (a = 0) and consider the stability
of the steady state solution of the PDE at u ≡ 0. Is the (linearized) stability
criterion for the PDE reflected in the stability of the corresponding rest point
in the phase plane of the approximating ordinary differential equation? Is the
ω-limit set of every solution of the approximation a rest point?

3.6.3 Traveling Waves
The concept of traveling wave solutions will be introduced in this section
for the classic model system

ut = k2uxx + au(1 − u), x ∈ R, t > 0 (3.107)

where k and a > 0 are constants.
The PDE (3.107), often called Fisher’s equation, can be used to model

many different phenomena. For example, this equation is a model of logistic
population growth with diffusion ([67], [132]), and it is also a model of
neutron flux in a nuclear reactor (see [140]). For a general description of
this and many other models of this type see [132] and [140].

Let us begin with the observation that equation (3.107) can be rescaled
to remove the explicit dependence on the system parameters. In fact, with
respect to the new time and space variables

τ = kt, ξ = x
(a

k

)
,

equation (3.107) can be recast in the form

uτ = uξξ + u(1 − u).

Therefore, with no loss of generality, we will consider the original model
equation (3.107) for the case a = 1 and k = 1.
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The basic idea is to look for a solution of equation (3.107) in the form of
a traveling wave, that is,

u(x, t) = U(x − ct)

where the wave form is given by the function U : R → R and where the
wave speed is |c| �= 0. For definiteness and simplicity, let us assume that
c > 0. If we substitute the ansatz into Fisher’s equation, we obtain the
second order nonlinear ordinary differential equation

Ü + cU̇ + U − U2 = 0

that is equivalent to the phase plane system

U̇ = V, V̇ = −U − cV + U2. (3.108)

All solutions of the system (3.108) correspond to traveling wave solutions
of Fisher’s equation. However, for applications, the traveling wave solutions
must satisfy additional properties. For example in biological applications,
u represents a population. Thus, to be physically meaningful, we must have
u ≥ 0.

In the original model equation, if there is no diffusion, then the model
reduces to the one-dimensional ordinary differential equation for logistic
growth u̇ = u − u2 where there is an unstable rest point at u = 0, a stable
rest point at u = 1, and a connecting orbit, that is, an orbit with α-limit
set {0} and ω-limit set {1}.

Is there a traveling wave solution u for the PDE (3.107) such that
0 < u(x, t) < 1, and

lim
t→∞ u(x, t) = 1, lim

t→−∞ u(x, t) = 0?

In other words, is there an orbit—for the PDE viewed as an infinite dimen-
sional ordinary differential equation—connecting the steady states u ≡ 0
and u ≡ 1 as in the case of the one-dimensional logistic model? An answer
to this question is given by the following proposition.

Proposition 3.44. There is a traveling wave solution (x, t) �→ u(x, t)
whose orbit connects the steady states u ≡ 0 and u ≡ 1 with 0 < u(x, t) < 1
if and only if c ≥ 2.

Proof. Note that the solution u(x, t) = U(x − ct) is a connecting orbit if
0 < U(s) < 1, and

lim
s→∞ U(s) = 0, lim

s→−∞ U(s) = 1.

The system matrix of the linearized phase plane equations (3.108) at the
origin has eigenvalues

1
2
(−c ±

√
c2 − 4),
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V

U

�

FIGURE 3.8. The invariant region Ω for the system (3.108) in case c ≥ 2.

and its eigenvalues at the point (1, 0) are given by

1
2
(−c ±

√
c2 + 4).

Therefore, if c > 0, then there is a hyperbolic sink at the origin and a
hyperbolic saddle at the point (1, 0). Moreover, if a connecting orbit exists,
then the corresponding phase plane solution s �→ (U(s), V (s)) must be on
the unstable manifold of the saddle and the stable manifold of the sink.

Note that if c < 2, then the sink at the origin is of spiral type. Hence,
even if there is a connecting orbit in this case, the corresponding function
U cannot remain positive.

Assume that c ≥ 2 and consider the lines in the phase plane given by

V =
1
2
(

− c +
√

c2 − 4
)
U, V =

1
2
(

− c +
√

c2 + 4
)
(U − 1). (3.109)

They correspond to eigenspaces at the rest points. In particular, the second
line is tangent to the unstable manifold of the saddle point at (U, V ) =
(1, 0). The closed triangular region Ω (see Figure 3.8) in the phase plane
bounded by the lines (3.109) and the line given by V = 0 is positively
invariant. In fact, the phase plane vector field points into this region at every
point on the boundary of Ω except the rest points. This fact is easily checked
by computing the dot product of the vector field with the appropriate
normal fields along the lines. In fact, along the lines (3.109), we have

V̇ − 1
2
(−c +

√
c2 − 4)U̇ = U2 ≥ 0,

V̇ − 1
2
(−c +

√
c2 + 4)U̇ = (U − 1)2 ≥ 0, (3.110)

and V̇ = −U + U2 is negative for 0 < U < 1.
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Suppose (as we will soon see) that the unstable manifold at the saddle
intersects the region Ω. Then a solution that starts on this portion of the
unstable manifold must remain in the region Ω for all positive time. Thus,
the ω-limit set of the corresponding orbit is also in Ω. Because U̇ ≤ 0 in
Ω, there are no periodic orbits in Ω and no rest points in the interior of Ω.
By the Poincaré–Bendixson theorem, the ω-limit set must be contained in
the boundary of Ω. In fact, this ω-limit set must be the origin.

To complete the proof, we will show that the unstable manifold at the
saddle has nonempty intersection with the interior of Ω. To prove this fact,
let us first recall that the unstable manifold is tangent to the line given by
the second equation in display (3.109). We will show that the tangency is
quadratic and that the unstable manifold lies “above” this line. Our proof
of this fact is more complicated than is necessary. However, the method
used can be generalized.

In the new coordinates given by

Z = U − 1, W = V,

the saddle rest point is at the origin for the equivalent first order system

Ż = W, Ẇ = Z − cW + Z2.

The additional change of coordinates

Z = P, W = Q + αP := Q +
1
2
(−c +

√
c2 + 4)P

transforms the system so that the unstable manifold of the saddle point is
tangent to the horizontal P -axis. We will show that the unstable manifold
is above this axis in some neighborhood of the origin; it then follows from
the second formula in display (3.110) that the unstable manifold lies above
the P -axis globally.

Note that the unstable manifold is given, locally at least, by the graph
of a smooth function Q = h(P ) with h(0) = h′(0) = 0. Since this manifold
is invariant, we must have that Q̇ = h′(P )Ṗ , and therefore, by an easy
computation,

P 2 − (c + α)h(P ) = h′(P )(h(P ) + αP ). (3.111)

The function h has the form h(P ) = βP 2 + O(P 3). By substitution of this
expression into equation (3.111), we obtain the inequality

β = (3α + c)−1 > 0,

as required. �

Much more can be said about the traveling wave solutions that we have
just found. A surprising fact is that all orbits of the PDE (3.107) start-
ing with physically realistic initial conditions have as their ω-limit set the
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traveling wave solution with wave speed c = 2. This fact was proved by
Andrei N. Kolmogorov, Ivan G. Petrovskii, and Nikolai S. Piskunov [103]
(see also [15] and [21]). For a detailed mathematical account of traveling
wave solutions see the book of Paul C. Fife [67] and also [132] and [162].

Exercise 3.45. Show that the PDE

ut − u2ux = uxx + u, x ∈ R, t ≥ 0

has a nonconstant solution that is periodic in both space and time.

3.6.4 First Order PDE
Consider the special case of the model equation (3.80) where there is no
diffusion, but the medium moves with velocity field V ; that is, consider the
differential equation

ut + γ gradu · V = f. (3.112)

This is an important example of a first order partial differential equation.
Other examples are equations of the form

ut + (f(u))x = 0,

called conservation laws (see [162]), and equations of the form

St + H(Sq, q, t) = 0,

called Hamilton–Jacobi equations (see [10]). We will show how these PDE
can be solved using ordinary differential equations.

Let us consider the case of one space variable; the general case is similar.
If γ = 1, then the equation (3.112) is given by

ut + v(x, t)ux = f(u, x, t),

or, with a redefinition of the names of the functions, it has the more general
form

f(x, y, u)ux + g(x, y, u)uy = h(x, y, u). (3.113)

We will “solve” the PDE (3.113) using the following basic idea: If the
graph G of a function z = u(x, y) is an invariant manifold for the first order
system

ẋ = f(x, y, z), ẏ = g(x, y, z), ż = h(x, y, z), (3.114)

then u is a solution of the PDE (3.113). Indeed, using the results of Sec-
tion 1.7 and the fact that

(x, y) �→ (x, y, u(x, y), ux(x, y), uy(x, y),−1)
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is a normal vector field on G, it follows that the manifold G is invariant
if and only if the dot product of the vector field associated with the sys-
tem (3.114) and the normal field is identically zero; that is, if and only if
equation (3.113) holds. The orbits of the system (3.114) are called charac-
teristics of the PDE (3.113).

Perhaps it is possible to find an invariant manifold for the first order
system (3.114) by an indirect method. However, we can also construct the
invariant manifold directly from appropriate initial data. To see how this
is done, let us suppose that we have a curve in space given by γ : R → R

3

such that in coordinates

γ(s) = (γ1(s), γ2(s), γ3(s)).

This curve is called noncharacteristic at γ(0) if

f(γ(0))γ2(0) − g(γ(0))γ3(0) �= 0.

Let ϕt denote the flow of the system (3.114), and define H : R
2 → R

3 by

(s, t) �→ ϕt(γ(s)). (3.115)

Also, define H : R
2 → R

2 by projection of the image of H onto its first two
components. More precisely, let e1, e2, e3 be the usual basis vectors for R

3

and let the usual inner product be denoted by angle brackets. Then H is
given by

(s, t) �→ (〈ϕt(γ(s)), e1〉, 〈ϕt(γ(s)), e2〉).

We will show that H is locally invertible at γ(0). For this, compute

DH(0, 0)e1 =
d

dτ
H(τ, 0)

∣∣∣
τ=0

=
d

dτ
(γ1(s), γ2(s))

∣∣∣
τ=0

= (γ̇1(0), γ̇2(0)),

and similarly

DH(0, 0)e2 = (f(γ1(0)), g(γ2(0))).

Because the curve γ is noncharacteristic at γ(0), the matrix representation
of DH(0, 0) has nonzero determinant and is therefore invertible. By the
inverse function theorem, H is locally invertible at the origin.

Using the local inverse of H, let us note that

H(H−1(x, y)) = (x, y,H3(H−1(x, y))).
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In other words, if u(x, y) := H3(H−1(x, y)), then the surface given by
the range of H is locally the graph of the function u. This completes the
construction of u; it is a local solution of the PDE (3.113).

We have now proved that if we are given initial data on a noncharacter-
istic curve, then there is a corresponding local solution of the PDE (3.113).
Also, we have a method to construct such a solution.

As an example, let us consider the model equation

uτ + a sin(ωτ)ux = u − u2, 0 ≤ x ≤ 1, t ≥ 0

with initial data u(x, 0) = u0(x) defined on the unit interval. A phenomeno-
logical interpretation of this equation is that u is the density of a species
with logistic growth in a moving medium that is changing direction with
frequency ω and amplitude a. We have used τ to denote the time parameter
so that we can write the first order system for the characteristics in the
form

τ̇ = 1, ẋ = a sin(ωτ), ż = z − z2.

To specify the initial data, let us define the noncharacteristic curve given
by s �→ (0, s, u0(s)). Then, after solving the first order system and using
the definition (3.115), we have that

H(s, t) =
(
t, s +

a

µ
(1 − cos µt),

etu0(s)
1 + u0(s)(et − 1)

)
.

Also, because H−1 is given explicitly by

H−1(τ, x) = (τ, x − a

µ
(1 − cos µτ)),

we have the solution

u(x, t) =
eτu0(x − a

µ (1 − cos µτ))

1 + (eτ − 1)u0(x − a
µ (1 − cos µτ))

. (3.116)

What does our model predict? For example, if the initial condition is
given by a positive function u0, then the ω-limit set of the corresponding
solution of the PDE is the constant function u ≡ 1, the solution corre-
sponding to no drift. However, if the initial population is distributed so
that some regions have zero density, then the fate of the initial population
is more complicated (see Exercise 3.46).

Exercise 3.46. What long term behavior for the corresponding model equation
is predicted by the solution (3.116)? How does your answer depend on the choice
of u0, a, and ω?
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Exercise 3.47. Solve the PDE xux + yuy = 2u with u prescribed on the unit
circle. Hint: Define the noncharacteristic curve

s �→ (cos s, sin s, h(cos s, sin s)).

Exercise 3.48. Find solutions of the PDE xux − yuy = 2u. How should the
data be prescribed?

Exercise 3.49. A function U that is constant along the orbits of an ordinary
differential equation is called an invariant function, or a first integral. In symbols,
if we have a differential equation ẋ = f(x) with flow ϕt, then U is invariant
provided that U(φt(x)) = U(x) for all x and t for which the flow is defined. Show
that U is invariant if and only if 〈grad U(x), f(x)〉 ≡ 0. Equivalently, the Lie
derivative of U in the direction of the vector field given by f vanishes. Consider
the differential equation

θ̇ = 1, φ̇ = α

where α ∈ R. Also, consider both θ and φ as angular variables so that the
differential equation can be viewed as an equation on the torus. Give necessary
and sufficient conditions on α so that there is a smooth invariant function defined
on the torus.

Exercise 3.50. A simple example of a conservation law is the (nonviscous)
Burgers’ equation ut + uux = 0. Burgers’ equation with viscosity is given by

ut + uux =
1

Re
uxx

where Re is called the Reynold’s number. This is a simple model that incorporates
two of the main features in fluid dynamics: convection and diffusion. Solve the
nonviscous Burgers’ equation with initial data u(x, 0) = (1 − x)/2 for −1 <
x < 1. Note that the solution cannot be extended for all time. This is a general
phenomenon that appears in the study of conservation laws that is related to the
existence of shock waves (see [162]). Also, consider the viscous Burgers’ equation
on the same interval with the same initial data and with boundary conditions

u(−1, t) = 1, u(1, t) = 0.

How can we find Galërkin approximations? The problem is that with the nonho-
mogeneous boundary conditions, there is no vector space of functions that satisfy
the boundary conditions. To overcome this problem, we can look for a solution
of our problem in the form

u(x, t) = v(x, t) +
1
2
(1 − x)

where v satisfies the equation

vt + (v +
1
2
(1 − x))(vx − 1

2
) = vxx

and Dirichlet boundary conditions. Determine the Galërkin approximations us-
ing trigonometric trial functions. Use a numerical method to solve the resulting
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differential equations, and thus approximate the solution of the PDE. For a nu-
merical analyst’s approach to this problem, consider the Galërkin approximations
with respect to the “test function basis” of Chebyshev polynomials given by

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1

and

Tn+1(x) = 2xTn(x) − Tn−1(x).

The Chebyshev polynomials are orthogonal (but not orthonormal) with respect
to the inner product defined by

〈f, g〉 :=
∫ 1

−1
f(x)g(x)(1 − x2)−1/2 dx.

Moreover, the Chebyshev polynomials do not satisfy the boundary conditions.
However, proceed as follows: Look for a Galërkin approximation in the form

un(x, t) =
n∑

i=1

ci(t)Tn−1(x),

but only construct the corresponding system of differential equations for

c1, . . . , cn−2.

Then, define the last two coefficients so that the boundary conditions are satisfied
(see [69]). Compare numerical results. Finally, note that Burgers’ equation can,
in principle, be solved explicitly by the Hopf–Cole transformation. In fact, if u is
a solution of Burgers’ equation and ψ is defined so that ψx = u, then ψ is defined
up to a function that depends only on the time variable. An appropriate choice
of the antiderivative satisfies the equation

ψt +
1
2
ψ2

x =
1

Re
ψxx.

If φ is defined by the equation ψ = −(2/Re)φ, then

φt =
1

Re
φxx.

Thus, solutions of the heat equation can be used to construct solutions of Burgers’
equation. The fact that Burgers’ equation can be solved explicitly makes this PDE
a very useful candidate for testing numerical codes.
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Hyperbolic Theory

The chapter is an introduction to the theory of hyperbolic structures in dif-
ferential equations. The basic idea might be called “the principle of hyper-
bolic linearization.” Namely, if the linearized flow of a differential equation
has “no eigenvalues with zero real parts,” then the nonlinear flow behaves
locally like the linear flow. This idea has far-reaching consequences that
are the subject of many important and useful mathematical results. Here
we will discuss two fundamental theorems: the center and stable manifold
theorem for a rest point and Hartman’s theorem.

4.1 Invariant Manifolds

One of the important results in the theory of ordinary differential equations
is the stable manifold theorem. This and many closely related results, for
example, the center manifold theorem, form the foundation for analyzing
the dynamical behavior of a dynamical system in the vicinity of an invariant
set. In this section we will consider some of the theory that is used to
prove such results, and we will prove the existence of invariant manifolds
related to the simplest example of an invariant set, namely, a rest point.
However, the ideas that we will discuss can be used to prove much more
general theorems. In fact, some of the same ideas can be used to prove
the existence and properties of invariant manifolds for infinite dimensional
dynamical systems.
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The concept of the invariant manifolds for rest points arises from the
study of linear systems. Recall that if A is a linear map of R

n, then the
spectrum of A splits naturally—from the point of view of stability theory—
into three subsets: the eigenvalues with negative, zero, or positive real parts.
After a linear change of coordinates that transforms A to its real Jordan
normal form, we find that the differential equation u̇ = Au decouples into
a system

ẋ = Sx, ẏ = Uy, ż = Cz

where (x, y, z) ∈ R
k × R

� × R
m with k + � + m = n, and where S, U and C

are linear operators whose eigenvalues have all negative, zero, and positive
real parts, respectively. The subspace R

k ⊂ R
n is called the stable manifold

of the rest point at the origin for the original system u̇ = Au, the subspace
R

� is called the unstable manifold, and the subspace R
m is called the center

manifold.
We proved previously, in Theorem 2.34, that there are constants K > 0,

a > 0 and b > 0 such that if ξ ∈ R
k and ζ ∈ R

n, then

‖x(t, ξ)‖ = ‖etSξ‖ ≤ Ke−at‖ξ‖, t ≥ 0,

‖y(t, ζ)‖ = ‖etUζ‖ ≤ Kebt‖η‖, t ≤ 0, (4.1)

where t �→ x(t, ξ) is the solution of the differential equation ẋ = Sx with
the initial condition x(0, ξ) = ξ, and y is defined similarly. Here, ‖ ‖ is
an arbitrary norm on R

n. There are no such exponential estimates on the
center manifold.

An analysis of the dynamics on the center manifold, when it exists, is
often one of the main reasons for finding a center manifold in the first place.
In this regard, let us recall that the flow of a nonlinear system near a rest
point where the linearization has an eigenvalue with zero real part is not
determined by the linearized flow. For example, the linearization at a rest
point of a planar system might have a center, whereas the corresponding
rest point for the nonlinear system is a sink or a source. In this case the
center manifold at the rest point is an open subset of the plane. As this
example shows, we can expect the most complicated (and most interesting)
dynamics near a nonhyperbolic rest point to occur on a corresponding cen-
ter manifold. If a center manifold has dimension less than the dimension
of the phase space, then the most important dynamics can be studied by
considering the restriction of the original system to a center manifold. To
illustrate, let us imagine a multidimensional system that has a rest point
with a codimension two stable manifold and a two-dimensional center man-
ifold. Then, as we will see, the orbits of the nonlinear system are all locally
attracted to the center manifold, and therefore the nontrivial dynamics can
be determined by studying a planar system. This “center manifold reduc-
tion” to a lower dimensional system is one of the main applications of the
theory.
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The stable manifold theorem states that if the linear system u̇ = Au
has no center manifold, then the nonlinear system u̇ = Au + H(u), where
H : R

n → R
n with H(0) = 0 and DH(0) = 0, has stable and unstable

manifolds corresponding to the stable and unstable manifolds of the linear
system. These manifolds are invariant sets that contain the rest point at
the origin, and they have the same dimensions as the corresponding linear
manifolds. In fact, the corresponding linear manifolds are their tangent
spaces at the rest point. Moreover, the flow restricted to the stable and the
unstable manifolds has exponential (hyperbolic) estimates similar to the
inequalities in display (4.1)

There are several different methods available to prove the existence of
invariant manifolds. Each of these methods has technical as well as concep-
tual advantages and disadvantages. Here we will use the Lyapunov–Perron
method. The basic idea is to determine the invariant manifold as the graph
of a function that is obtained as the fixed point of an integral operator on
a Banach space. An alternative method based on the “graph transform”
is also very important (see [94] and [151]). The Lyapunov–Perron method
has wide applicability and it can be used to prove very general theorems.
While the graph transform method is perhaps even more far-reaching, the
main reason for using the Lyapunov–Perron method here is that the theory
illustrates many useful ODE techniques.

For the invariant manifold theory that we will discuss, it is not neces-
sary to assume the existence of an infinitesimally hyperbolic linearization.
Instead, it suffices to assume that the spectrum of the linearization has a
spectral gap; that is, the spectrum is separated into two vertical strips in
the complex plane such that the maximum of the real parts of the eigenval-
ues in the left hand strip is strictly less than the minimum of the real parts
of the eigenvalues in the right hand strip. This hypothesis is exactly the
right condition required to apply the Lyapunov–Perron method to obtain
the existence of an invariant manifold. The stable, unstable, and center
manifold theorems are easily obtained as corollary results.

We will use the notation C1 as a prefix to denote spaces of continuously
differentiable functions. If f is such a function, then let ‖f‖1 denote the
C1-norm given by the sum of the supremum norm of f and the supremum
norm of its derivative Df , where the supremum is taken over the domain
of definition of the function.

The next theorem is the main result of this section. It states the existence
of a smooth global invariant manifold at a rest point of a nonlinear system,
provided that the linearization of the system at the rest point has a spectral
gap and the nonlinear remainder terms are sufficiently small. The proof
of this theorem is quite long, but it is not too difficult to understand.
The idea is to set up a contraction in an appropriate Banach space of
continuous functions so that the fixed point of the contraction is a function
whose graph is the desired invariant manifold. Then the fiber contraction
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principle is applied to show that this function is smooth. The proof uses
many important ODE techniques that are well worth learning.

Theorem 4.1. Suppose that S : R
k → R

k and U : R
� → R

� are linear
transformations such that all eigenvalues of S have real part less than a,
all eigenvalues of U have real part greater than b, and a < b. If F ∈
C1(Rk × R

�, Rk) and G ∈ C1(Rk × R
�, R�) are such that F (0, 0) = 0,

DF (0, 0) = 0, G(0, 0) = 0, DG(0, 0) = 0, and such that ‖F‖1 and ‖G‖1
are sufficiently small, then there is a unique function α ∈ C1(Rk, R�) with
the following properties

α(0) = 0, Dα(0) = 0, sup
ξ∈Rk

‖Dα(ξ)‖ < ∞,

whose graph, namely the set

W (0, 0) = {(x, y) ∈ R
k × R

� : y = α(x)},

is an invariant manifold for the system of differential equations given by

ẋ = Sx + F (x, y), ẏ = Uy + G(x, y). (4.2)

Moreover, if (ξ, α(ξ)) ∈ W (0, 0), then for each λ > a there is a constant
C > 0 such that the solution t �→ (x(t), y(t)) of the system (4.2) with initial
condition (ξ, α(ξ)) satisfies the exponential estimate

‖x(t)‖ + ‖y(t)‖ ≤ Ceλt‖ξ‖.

Proof. We will use several Banach spaces and several different norms. The
proofs that these spaces with the indicated norms are indeed Banach spaces
are left to the reader. However, we will outline a proof for one of the spaces.

Let C0(RN , RM ) denote the linear space of all continuous functions

f : R
N → R

M ,

and let us use it to define the following Banach spaces: C0(RN , RM ), the
set of all functions f ∈ C0(RN , RM ) such that f(0) = 0 and

‖f‖0 = sup
ξ∈RN

‖f(ξ)‖ < ∞;

C1(RN , RM ), the set of all continuously differentiable functions

f ∈ C0(RN , RM )

such that f(0) = 0, Df(0) = 0, and

‖f‖1 = ‖f‖0 + ‖Df‖0 < ∞;
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and E0(RN , RM ), the set of all functions f ∈ C0(RN , RM ) such that f(0) =
0 and

‖f‖E = sup{‖f(ξ)‖
‖ξ‖ : ξ ∈ R

N , ξ �= 0} < ∞.

Also, for f ∈ C0(RN , RM ), let the Lipschitz constant of f be denoted by

Lip(f) := sup
ξ 
=η

‖f(ξ) − f(η)‖
‖ξ − η‖

whenever the indicated supremum is finite.
Proposition A: The space E0(RN , RM ) with the E-norm is a Banach

space.
To prove the proposition, let us assume for the moment that if {fn}∞

n=1
is a sequence in E0(RN , RM ) that converges in the E-norm to a function
f : R

N → R
M , then the sequence converges uniformly on compact subsets

of R
N . Using the usual theorems on uniform convergence, it follows from

this fact that the limit function f is continuous on R
N . Also, there is a

sufficiently large integer n such that ‖f − fn‖E < 1. Thus, for this choice
of n, we have that

‖f‖E ≤ ‖f − fn‖E + ‖fn‖E < 1 + ‖fn‖,

and as a result we see that the E-norm of f is bounded.
To show that E0(RN , RM ) is a Banach space, we must show that it is

complete. To this end, suppose that the above sequence is Cauchy. We will
show that the sequence converges to a function f : R

N → R
M with f(0) =

0. By the facts claimed above, we must then have that f ∈ E0(RN , RM ),
as required.

Let us define a function f : R
N → R

M . First, set f(0) = 0. If ξ ∈ R
N is

not the zero vector, let ε > 0 be given and note that there is an integer J
such that

‖fm(ξ) − fn(ξ)‖
‖ξ‖ <

ε

‖ξ‖
whenever m and n exceed J . Thus, the sequence {fn(ξ)}∞

n=1 is a Cauchy
sequence in R

M , and hence it has a limit that we define to be f(ξ).
We claim that the sequence {fn}∞

n=1 converges to the function f in the
E-norm. To prove the claim, let ε > 0 be given. There is an integer J , as
before, such that, if ξ �= 0, then

‖fn(ξ) − fp(ξ)‖
‖ξ‖ <

ε

2

whenever the integers n and p exceed J . It follows that if ξ ∈ R
N , including

ξ = 0, then the inequality

‖fn(ξ) − fp(ξ)‖ ≤ ε

2
‖ξ‖
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holds whenever n and p exceed J . Using this fact, we have the following
estimates

‖fn(ξ) − f(ξ)‖ ≤ ‖fn(ξ) − fp(ξ)‖ + ‖fp(ξ) − f(ξ)‖

≤ ε

2
‖ξ‖ + ‖fp(ξ) − f(ξ)‖.

If we now pass to the limit as p → ∞, we find that, for all ξ ∈ R
N ,

‖fn(ξ) − f(ξ)‖
‖ξ‖ ≤ ε

2
< ε

whenever n exceeds J . Thus, we have that ‖fn − f‖E < ε whenever n
exceeds J , and therefore the sequence converges to f in the E-norm.

To finish the proof, we must show that convergence in the E-norm is
uniform on compact sets. To this end, suppose that {fn}∞

n=1 converges to
f in the E-norm, let K be a compact subset of R

N , and let ε > 0 be given.
Also, let us define r := supξ∈K ‖ξ‖. There is an integer J such that if ξ �= 0,
then

‖fn(ξ) − f(ξ)‖
‖ξ‖ <

ε

r + 1

whenever n exceeds J . Hence, as before, if ξ ∈ K, then

‖fn(ξ) − f(ξ)‖ ≤ ε

r + 1
‖ξ‖ ≤ ε

r

r + 1
< ε

whenever n exceeds J . It follows that the convergence is uniform on the
compact set K. This completes the proof of Proposition A.

Let us define two subsets of the Banach spaces defined above as follows:

B0
ρ(RN , RM ) := {f ∈ E(RN , RM ) : Lip(f) ≤ ρ},

B1
δ(RN , RM ) := {f ∈ C1(RN , RM ) : ‖f‖1 < δ}.

The set B0
ρ(RN , RM ) is a closed (in fact, compact) subset of E(RN , RM ),

while the set B1
δ(RN , RM ) is an open subset of C1(RN , RM ). Moreover, the

set B0
ρ(RN , RM ) is a complete metric space with respect to the metric given

by the E-norm.
Fix ρ > 0. If δ > 0, F ∈ B1

δ(Rk × R
�, RM ), and α ∈ B0

ρ(Rk, R�), then the
differential equation

ẋ = Sx + F (x, α(x)) (4.3)

has a continuous flow. In fact, for each ξ ∈ R
k, there is a solution t �→

x(t, ξ, α) such that x(0, ξ, α) = ξ and such that (t, ξ, α) �→ x(t, ξ, α) is a
continuous function.
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To compress notation, let us define

χ(t) := x(t, ξ, α)

and note that the function t �→ χ(t) is defined for all t ≥ 0. In fact, from
the hypotheses of the theorem, there is a constant K > 0 such that for all
ξ ∈ R

k and for all ν ∈ R
�, we have the following exponential estimates

‖etSξ‖ ≤ Keat‖ξ‖, ‖e−tUν‖ ≤ Ke−bt‖ν‖

for all t ≥ 0. The proof of these estimates under the spectral gap condition
is similar to the proof of Theorem 2.34.

Using the fact that ‖DF‖0 < δ and the mean value theorem, we have
that

‖F (x, y)‖ = ‖F (x, y) − F (0, 0)‖ ≤ δ(‖x‖ + ‖y‖)

where we are using the sum of the norms on each factor for the norm on
the cross product space R

k × R
�. Also, after obtaining a similar estimate

for α, and combining these estimates, it follows that

‖F (x, α(x))‖ ≤ δ(1 + ρ)‖x‖.

By an application of the variation of constants formula (2.37), the func-
tion χ satisfies the integral equation

χ(t) = etSξ +
∫ t

0
e(t−τ)SF (χ(τ), α(χ(τ))) dτ (4.4)

from which we obtain the estimate

‖χ(t)‖ ≤ Keat‖ξ‖ +
∫ t

0
Kδ(1 + ρ)ea(t−τ)‖χ(τ)‖ dτ.

Equivalently, we have

e−at‖χ(t)‖ ≤ K‖ξ‖ +
∫ t

0
Kδ(1 + ρ)e−aτ‖χ(τ)‖ dτ,

and by an application of Gronwall’s inequality, we obtain the estimate

‖x(t, ξ)‖ = ‖χ(t)‖ ≤ K‖ξ‖e(Kδ(1+ρ)+a)t. (4.5)

In particular, the solution t �→ x(t, ξ) does not blow up in finite time.
Hence, it is defined for all t ≥ 0.

For α ∈ B0
ρ(Rk, R�) and G ∈ B1

δ(Rk × R
�, R�), if the graph

Mα := {(x, y) ∈ R
k × R

� : y = α(x)}
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is an invariant set for the system (4.2), then the function

t �→ y(t, ξ, α) := α(x(t, ξ, α))

is a solution of the differential equation

ẏ = Uy + G(x, y) (4.6)

with initial condition y(0, ξ, α) = α(ξ). Equivalently, by variation of pa-
rameters and with the notational definition γ(t) := y(t, ξ, α), we have that

e−tUγ(t) − α(ξ) =
∫ t

0
e−τUG(χ(τ), α(χ(τ))) dτ.

Note that

‖e−tUγ(t)‖ ≤ Ke−btρ‖χ(t)‖ ≤ K2ρ‖ξ‖e(Kδ(1+ρ)+a−b)t. (4.7)

Thus, using the fact that a − b < 0, if we choose δ so that

0 < δ <
b − a

K(1 + ρ)
,

then limt→∞ ‖e−tUγ(t)‖ = 0 and

α(ξ) = −
∫ ∞

0
e−τUG(χ(τ), α(χ(τ))) dτ. (4.8)

Conversely, if α ∈ B0
ρ(Rk, R�) satisfies the integral equation (4.8), then

the graph of α is an invariant manifold. To see this, consider a point (ξ, α(ξ))
on the graph of α, and redefine χ(t, ξ) := x(t, ξ, α) and γ(t) := α(χ(t, ξ)).
We will show that γ is a solution of the differential equation (4.6). Indeed,
from the integral equation (4.8), we have that

d

dt

(
e−tUγ(t)

)
= − d

dt

∫ ∞

0
e−(t+τ)UG(χ(τ, χ(t, ξ)), α(χ(τ, χ(t, ξ)))) dτ

= − d

dt

∫ ∞

0
e−(t+τ)UG(χ(τ + t, ξ), α(χ(τ + t, ξ))) dτ

= − d

dt

∫ ∞

t

e−sUG(χ(s, ξ), α(χ(s, ξ))) ds

= e−tUG(χ(t, ξ), γ(t)).

In other words,

e−tU γ̇(t) − e−tUUγ(t) = e−tUG(χ(t, ξ), γ(t)),

and therefore γ is a solution of the differential (4.6), as required.
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Proposition B: If ρ > 0 is given, if δ > 0 is sufficiently small, and if
F ∈ B1

δ(Rk × R
�, Rk) and G ∈ B1

δ(Rk × R
�, R�), then the Lyapunov–Perron

operator Λ defined by

Λ(α)(ξ) := −
∫ ∞

0
e−tUG(x(t, ξ, α), α(x(t, ξ, α))) dt

is a contraction on the complete metric space B0
ρ(Rk, R�).

Let us first prove that the range of Λ is in the space B0
ρ(Rk, R�). For this,

consider ξ, η ∈ R
k, and note that

‖Λ(α)(ξ) − Λ(α)(η)‖ ≤ K(1 + ρ)‖G‖1

∫ ∞

0
e−bt‖x(t, ξ, α) − x(t, η, α)‖ dt.

Using the integral equation (4.4), we have the estimate

‖x(t, ξ, α) − x(t, η, α)‖

≤ Keat‖ξ − η‖ +
∫ t

0
K‖F‖1(1 + ρ)ea(t−τ)‖x(τ, ξ, α) − x(τ, η, α)‖ dτ.

After multiplying both sides of this last inequality by e−at and applying
Gronwall’s inequality, we have that

‖x(t, ξ, α) − x(t, η, α)‖ ≤ K‖ξ − η‖e(K‖F‖1(1+ρ)+a)t. (4.9)

Returning to the original estimate, let us substitute the inequality (4.9)
and carry out the resulting integration to obtain the inequality

‖Λ(α)(ξ) − Λ(α)(η)‖ ≤ K2δ(1 + ρ)
b − a − Kδ(1 + ρ)

‖ξ − η‖. (4.10)

If ‖F‖1 and ‖G‖1 are sufficiently small, that is, if δ > 0 is sufficiently
small, then it follows that Λ(α) is a Lipschitz continuous function with
Lipschitz constant less than ρ. In fact, it suffices to take

0 < δ < min
{ b − a

K(1 + ρ)
,

(b − a)ρ
K(1 + ρ)(K + ρ)

}
.

If δ > 0 is less than the first element in the brackets, then the denominator
of the fraction in inequality (4.10) is positive. If δ > 0 is less than the second
element, then the fraction is less than ρ. Moreover, if we take ξ = 0, then
x(t, 0, α) ≡ 0 is the corresponding solution of the differential equation (4.3),
and it follows that Λ(α)(0) = 0.

To show that ‖Λ(α)‖E < ∞, let us use the estimate (4.10) with η = 0 to
get

sup
ξ 
=0

‖Λ(α)(ξ)‖
‖ξ‖ ≤ K2δ(1 + ρ)

b − a − Kδ(1 + ρ)
< ∞.
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This completes the proof that Λ is a transformation of the complete metric
space B0

ρ(Rk, R�) into itself.
It remains to show that Λ is a contraction. Using the fact that ‖G‖1

is finite; the fact that the Lipschitz constant for all functions in the space
B0

ρ(Rk, R�) does not exceed ρ; and the definition that the norm on the cross
product R

k×R
� is the sum of the Euclidean norms on the factors, we obtain

the inequalities

‖Λ(α)(ξ) − Λ(β)(ξ)‖

≤ K

∫ ∞

0
e−bt‖G(x(t, ξ, α), α(x(t, ξ, α))) − G(x(t, ξ, β), β(x(t, ξ, β)))‖ dt

≤ K‖G‖1

∫ ∞

0
e−bt(‖x(t, ξ, α) − x(t, ξ, β)‖

+ ‖α(x(t, ξ, α)) − α(x(t, ξ, β))‖ + ‖α(x(t, ξ, β)) − β(x(t, ξ, β))‖ dt

≤ K‖G‖1

∫ ∞

0
e−bt((1 + ρ)‖x(t, ξ, α) − x(t, ξ, β)‖

+ ‖α − β‖E‖x(t, ξ, β)‖) dt. (4.11)

To estimate the terms in the integrand of the last integral in the dis-
play (4.11), let us use the integral equation (4.4) to obtain the estimate

‖x(t, ξ, α) − x(t, ξ, β)‖ ≤

K

∫ t

0
ea(t−τ)‖F (x(τ, ξ, α), α(x(τ, ξ, α))) − F (x(τ, ξ, β), β(x(τ, ξ, β)))‖ dτ.

Then, by proceeding exactly as in the derivation of the estimate (4.11), it
is easy to show that

‖x(t, ξ, α) − x(t, ξ, β)‖

≤ K‖F‖1

∫ t

0
ea(t−τ)((1 + ρ)‖x(τ, ξ, α) − x(τ, ξ, β)‖ dτ

+ K‖F‖1‖α − β‖E
∫ t

0
‖x(τ, ξ, β)‖) dτ.

After inserting the inequality (4.5), integrating the second integral, and
multiplying both sides of the resulting inequality by e−at, we find that

e−at‖x(t, ξ, α) − x(t, ξ, β)‖ ≤
∫ t

0
K‖F‖1e

−aτ‖x(τ, ξ, α) − x(τ, ξ, β)‖ dτ

+
K‖F‖1‖ξ‖
δ(1 + ρ)

‖α − β‖E
(
eKδ(1+ρ)t − 1

)
.

Then, an application of Gronwall’s inequality followed by some algebraic
manipulations can be used to show the estimate

‖x(t, ξ, α) − x(t, ξ, β)‖ ≤ K

1 + ρ
‖α − β‖E‖ξ‖e(2Kδ(1+ρ)+a)t.
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Returning to the main estimate, if we insert the last inequality as well
as the inequality (4.5), then an integration together with some obvious
manipulations yields the estimate

‖Λ(α) − Λ(β)‖E ≤ 2K2δ

b − a − 2Kδ(1 + ρ)
‖α − β‖E .

Moreover, if

0 < δ < min
{ b − a

2K(1 + ρ)
,

b − a

2K(K + 1 + ρ)

}
,

then Λ has a contraction constant strictly less than one, as required.
Taking into account all the restrictions on δ, if

0 < δ <
b − a

K
min

{ ρ

(1 + ρ)(K + ρ)
,

1
2(1 + ρ)

,
1

2(K + 1 + ρ)

}
,

then the Lyapunov–Perron operator has a fixed point whose graph is a
Lipschitz continuous invariant manifold that passes through the origin.
This completes the proof of Proposition B.

Let us apply the fiber contraction principle to prove the smoothness of
the invariant manifold that corresponds to the function α obtained as the
fixed point of the Lyapunov–Perron operator. To this end, let us follow
the prescription outlined after the proof of the fiber contraction theorem
(Theorem 1.176).

The space of “candidates for the derivatives of functions in B0
ρ(Rk, R�)”

is, in the present case, the set F = C(Rk, L(Rk, R�)) of all bounded con-
tinuous functions Φ that map R

k into the bounded linear maps from R
k

into R
� with Φ(0) = 0 and with the norm

‖Φ‖F := sup
ξ∈Rk

‖Φ(ξ)‖,

where ‖Φ(ξ)‖ denotes the usual operator norm of the linear transformation
Φ(ξ). Also, let Fρ denote the closed ball in F with radius ρ, that is,

Fρ := {Φ ∈ F : ‖Φ‖ ≤ ρ}

where ρ > 0 is the number chosen in the first part of the proof.
Proposition C: Suppose that β ∈ B0

ρ(Rk, R�), the function t �→ x(t, ξ, β)
is the solution of the differential equation (4.3) with parameter β and initial
condition x(0, ξ, β) = ξ, and Φ ∈ Fρ. If ‖F‖1 and ‖G‖1 are both sufficiently
small, then Ψ given by

Ψ(β,Φ)(ξ) := −
∫ ∞

0
e−tU [Gx(x(t, ξ, β), β(x(t, ξ, β)))W (x(t, ξ, β))

+ Gy(x(t, ξ, β), β(x(t, ξ, β)))Φ(x(t, ξ, β))W (x(t, ξ, β))] dt

(4.12)
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where

W (t, ξ, β) :=
∫ t

0
e(t−s)S [Fx(x(s, ξ, β), β(x(s, ξ, β)))W (x(s, ξ, β))

+Fy(x(s, ξ, β), β(x(s, ξ, β)))Φ(x(s, ξ, β))W (x(s, ξ, β))] ds

(4.13)

defines a function from B0
ρ ×Fρ to Fρ. If, in addition, β is continuously dif-

ferentiable and if Λ denotes the Lyapunov–Perron operator, then DΛ(β) =
Ψ(β, Dβ).

To prove the first statement of the proposition, let us begin by showing
that the indefinite integral in the definition of Ψ is convergent. Using the
hypotheses of the theorem and estimating in the usual manner, we have
that

‖Φ(β,Φ)(ξ)‖ ≤
∫ ∞

0
Ke−bt‖G‖1(1 + ρ)‖W (t, ξ, β)‖ dt. (4.14)

An upper bound for ‖W (t, ξ, β)‖ is easily obtained from the integral
equation (4.13). In fact, estimating once again in the usual manner, we
have

‖W (t, ξ, β)‖ ≤ Keat +
∫ t

0
K‖F‖1(1 + ρ)e(t−s)a‖W (s, ξ, β)‖ dt.

After multiplying both sides of this last inequality by e−at and then apply-
ing Gronwall’s inequality, we obtain the estimate

‖W (t, ξ, β)‖ ≤ Ke(K‖F‖1(1+ρ)+a)t. (4.15)

If the inequality (4.15) is inserted into the estimate (4.14), with

‖F‖1 ≤ δ <
b − a

K(1 + ρ)
,

and the resulting integral is evaluated, then we have that

‖Ψ(β,Φ)(ξ)‖ ≤ K2‖G‖1(1 + ρ)
b − a − Kδ(1 + ρ)

. (4.16)

Thus, the original integral converges. Moreover, if the quantity ‖G‖1 is
sufficiently small—the upper bound

‖G‖1 ≤ δ ≤ ρ(b − a − Kδ(1 + ρ))
K2(1 + ρ)

will suffice—then

‖Ψ(β,Φ)(ξ)‖ ≤ ρ.



4.1 Invariant Manifolds 295

Finally, it is easy to check that Ψ(β,Φ)(0) = 0. Therefore, Ψ(β,Φ) ∈ Fρ,
as required.

If β is continuously differentiable, then the solution t �→ x(t, ξ, β) of the
differential equation (4.3) given by

ẋ = Sx + F (x, β(x))

is continuously differentiable by Theorem 1.184. Moreover, if we define
Φ := Dβ, then W (t, ξ, β) := xξ(t, ξ, β) (the solution of the first variational
equation of the differential equation (4.3)) is the corresponding solution
of the integral equation (4.13). In this case, the integrand of the integral
expression for Λ(β)(ξ) is clearly a differentiable function of ξ with deriva-
tive exactly the integrand of the integral expression for Ψ(β, Dβ)(ξ). As we
have shown above, this integrand is bounded above by an integrable func-
tion. Thus, differentiation under the integral sign is justified, and in fact,
DΛ(β) = Ψ(β, Dβ), as required. This completes the proof of the proposi-
tion.

Let us show that

Λ� : B0
ρ(Rk, R�) × Fρ → B0

ρ(Rk, R�) × Fρ

given by (β,Φ) �→ (Λ(β), Ψ(β,Φ)), is a fiber contraction. For this, fix β ∈
B0

ρ(Rk, R�) and consider the estimates (analogous to those made previously)
given by

‖Ψ(β,Φ1)(ξ)−Ψ(β,Φ2)(ξ)‖

≤
∫ ∞

0
e−bt(‖GxW1 + GyΦ1W1 − GxW2 − GyΦ2W2)‖ dt

≤
∫ ∞

0
e−bt‖G‖1(‖W1 − W2‖ + ‖Φ1W1 − Φ2W2‖ dt

≤
∫ ∞

0
e−bt‖G‖1(‖W1 − W2‖ + ‖Φ1‖‖W1 − W2‖

+ ‖Φ1 − Φ2‖‖W2‖) dt (4.17)

≤
∫ ∞

0
e−bt‖G‖1((1 + ρ)‖W1 − W2‖ + ‖Φ1 − Φ2‖F‖W2‖) dt,

where, for notational convenience, the arguments of the functions in the
integrands have been suppressed.

Let us estimate ‖W1 −W2‖. The upper estimates are obtained in a man-
ner that is completely analogous to the estimate just completed; in fact,

‖W1(t, ξ, α)−W2(t, ξ, β)‖

≤
∫ t

0
K‖F‖1(1 + ρ)ea(t−s)‖W1(s, ξ, α) − W2(s, ξ, β)‖ ds

+ K‖F‖1‖Φ1 − Φ2‖F
∫ t

0
ea(t−s)‖W2(s, ξ, β)‖ ds.
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Now, insert the inequality (4.15) into the second integral, carry out the
integration in the second integral, multiply both sides of the resulting in-
equality by e−at, and apply Gronwall’s inequality to show the estimate

‖W1(t, ξ, α) − W2(t, ξ, β)‖ ≤ K

1 + M
‖Φ1 − Φ2‖Fe(2K‖F‖1(1+ρ)+a)t. (4.18)

If we insert the inequalities (4.15) and (4.18) into the estimate (4.17),
then, after integration of the resulting integrals and some obvious manip-
ulation, we find that

‖Ψ(β,Φ1)(ξ) − Ψ(β,Φ2)(ξ)‖ ≤ 2K2‖F‖1

b − a − 2K‖G‖1(1 + ρ)
‖Φ1 − Φ2‖F .

(4.19)

Thus, if

0 < δ <
b − a

2K(K + 1 + ρ)
,

‖F‖1 ≤ δ, and ‖G‖1 ≤ δ, then

0 <
2K2‖F‖1

b − a − 2K‖G‖1(1 + ρ)
< 1,

and therefore Λ� is a fiber contraction.
Let us define (φ0, Φ0) = (0, 0) ∈ B0

ρ(Rk, R�)×Fρ and note that Dφ0 = Φ0.
Also, let us define recursively a sequence {(φn, Φn)}∞

n=0 by

(φn+1, Φn+1) := Λ�(φn, Φn) = (Λ(φn), Ψ(φn, Φn)).

If Dφn = Φn, then, by Proposition C, DΛ(φn) = Ψ(φn, Φn) and DΛ(φn) ∈
Fρ. Thus, Dφn+1 = DΛ(φn) = Ψ(φn, Φn) = Φn+1. Moreover, if α is the
fixed point of the Lyapunov–Perron operator, then by the fiber contraction
theorem and the fact that Fρ is a complete metric space, there is some
Φ∞ ∈ Fρ such that

lim
n→∞ φn = α, lim

n→∞ Φn = Φ∞.

The sequence {φn}∞
n=0 converges in E0(Rk, R�) to α and its sequence

of derivatives converges uniformly to a continuous function—an element
of Fρ. By Theorem 1.177, α is continuously differentiable with derivative
Φ∞, provided that the convergence of the sequence {φn}∞

n=0 is uniform.
While the norm in E0(Rk, R�) is not the uniform norm, the convergence is
uniform on compact subsets of R

k. As differentiability and continuity are
local properties, the fact that {φn}∞

n=0 converges to α uniformly on compact
subsets of R

k is sufficient to obtain the desired result: α is continuously
differentiable with derivative Φ∞.
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For a direct proof that the function α is continuously differentiable, con-
sider ξ, h ∈ R

k and note that, by the fundamental theorem of calculus, if
n is a positive integer, then

φn(ξ + h) − φn(ξ) =
∫ 1

0

d

dt
φn(ξ + th) dt =

∫ 1

0
Φn(ξ + th)h dt.

If we pass to the limit as n → ∞ and use the fact that {Φn}∞
n=0 converges

uniformly to the continuous function Φ∞, then we have the identity

α(ξ + h) − α(ξ) =
∫ 1

0
Φ∞(ξ + th)h dt,

and consequently the estimate

‖α(ξ + h) − α(ξ) − Φ∞(ξ)h‖ ≤ ‖
∫ 1

0
Φ∞(ξ + th)h dt −

∫ 1

0
Φ∞(ξ)h dt‖

≤ ‖h‖
∫ 1

0
‖Φ∞(ξ + th) − Φ∞(ξ)‖ dt.

The Lebesgue dominated convergence theorem can be used to show that
the last integral converges to zero as h → 0. This proves that Dα = Φ∞,
as required. �

As a remark, let us note that to obtain the existence and smoothness of
the invariant manifold in Theorem 4.1, we used the fact that both ‖F‖1
and ‖G‖1 do not exceed the minimum of the numbers

(b − a)ρ
K(1 + ρ)(K + ρ)

,
b − a

2K(1 + ρ)
,

b − a

2K(K + 1 + ρ)
.

Of course, if K is given, there is an optimal value of ρ, namely, the value
that makes the minimum of the three numbers as large as possible.

Theorem 4.1 requires that the nonlinear terms F and G in the differen-
tial equation (4.2) have sufficiently small C1-norms over the entire cross
product space R

k × R
�. However, if we start with a differential equation

that has a linearization with a spectral gap, then we cannot expect that
the nonlinear terms in the expansion of the vector field at the rest point
are globally small. To overcome this difficulty, we will use the fact that
the C1-norm of the nonlinear terms can be made as small as we like if
we restrict attention to a sufficiently small open set that contains the rest
point.

Let us suppose that the coordinates are already chosen so that the rest
point is at the origin and the differential equation is given in a product
neighborhood of the origin in the form

ẋ = Sx + f(x, y), ẏ = Uy + g(x, y) (4.20)
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where f and g, together with all their first partial derivatives, vanish at
the origin.

Let us suppose that δ > 0 is given as in the proof of Theorem 4.1. Choose
a ball Br at the origin with radius r > 0 such that

sup
(x,y)∈Br

‖Df(x, y)‖ <
δ

3
, sup

(x,y)∈Br

‖Dg(x, y)‖ <
δ

3
.

Then, using the mean value theorem, we have that

sup
(x,y)∈Br

‖f(x, y)‖ <
δr

3
, sup

(x,y)∈Br

‖g(x, y)‖ <
δr

3
.

Moreover, there is a smooth “bump function” γ : R
k × R

� → R, also called
in this context a “cut-off function,” with the following properties:
(i) γ(x, y) ≡ 1 for (x, y) ∈ Br/3;
(ii) the function γ vanishes on the complement of Br in R

k × R
�;

(iii) ‖γ‖ = 1 and ‖Dγ‖ ≤ 2/r.
With these constructions, it follows that

‖D(γ · F )‖ ≤ ‖Dγ‖‖F‖ + ‖γ‖‖DF‖ <
(2

r

)(δr

3

)
+

δ

3
< δ (4.21)

with the same upper estimate for ‖D(γ · G)‖.
If we define F (x, y) := γ(x, y)f(x, y) and G(x, y) := γ(x, y)g(x, y), then

the system

ẋ = Sx + F (x, y), ẏ = Uy + G(x, y)

has a global C1 invariant manifold. The subset of this manifold that is
contained in the ball Br/3 is an invariant manifold for the system (4.20).

If the rest point is hyperbolic, so that a < 0 < b in Theorem 4.1, then we
have proved the existence and uniqueness of a stable manifold at the rest
point. In particular, solutions starting on this invariant manifold converge
to the origin as t → ∞. To obtain the existence of an unstable manifold,
simply reverse the direction of the independent variable, t → −t, and apply
Theorem 4.1 to the resulting differential equation.

Of course, the local invariant manifolds that are produced in the manner
just described may very well be just small portions of the entire invariant
manifolds at the rest point. It’s just that one of the global invariant man-
ifolds may not be the graph of a function. If W s

loc(0, 0) denotes the local
stable manifold for a rest point at the origin, and if φt denotes the flow
of the corresponding differential equation, then we can define the stable
manifold by

W s(0, 0) :=
⋃
t≤0

φt(W s
loc(0, 0)).
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It can be shown that W s(0, 0) is an immersed disk. A similar statement
holds for the unstable manifold.

In case the rest point is not hyperbolic, let us consider the system

ẋ = Sx + f(x, y, z), ẏ = Uy + g(x, y, z), ż = Cz + h(z, y, z)

where we have already changed coordinates so that (x, y, z) ∈ R
k ×R

�×R
m

with the spectrum of S in the left half plane, the spectrum of U in the right
half plane, and the spectrum of C on the imaginary axis. If, for example,
we group the first and last equations so that the system is expressed in the
form (

ẋ
ż

)
=

(
S 0
0 C

)(
x
z

)
+

(
f(x, y, z)
h(x, y, z)

)
,

then we are in the situation of Theorem 4.1 where the corresponding spec-
tral gap is bounded by a = 0 and some b > 0. An application of Theo-
rem 4.1 produces a “center-stable manifold”—a manifold W cs(0, 0) given
as the graph of a smooth function α : R

k × R
m → R

�. Using a reversal
of the independent variable and a second application of Theorem 4.1, let
us produce a center-unstable manifold W cu(0, 0) given as the graph of a
smooth function ω : R

� × R
m → R

k. The intersection of these manifolds is
denoted by W c(0, 0) and is a center manifold for the original system. To
prove this fact, we will show that W c(0, 0) is given, at least locally, as the
graph of a function ν : R

m → R
k × R

� with ν(0) = 0 and Dν(0) = 0.
There seems to be a technical point here that depends on the choice of

the number ρ. Recall that ρ > 0 was used in the proof of Theorem 4.1 as the
bound on the Lipschitz constants for the functions considered as candidates
for fixed points of the Lyapunov–Perron operator. If 0 < ρ < 1, then we
will show, as a corollary of Theorem 4.1, that there is a smooth global
center manifold. If ρ > 1, then we will show that there is a local center
manifold. Of course, in the proof of Theorem 4.1 we were free to choose
ρ < 1 as long as we were willing to take the C1-norms of the nonlinear terms
sufficiently small, perhaps smaller than is required to prove the existence
of the center-stable and the center-unstable manifolds.

Let us suppose that 0 < ρ < 1. If there is a smooth function ν : R
m → R

k

with ν(0) = 0 that satisfies the functional equation

ν(z) = ω(α(ν(z), z), z), (4.22)

then it is easy to check that W c(0, 0) is the graph of the smooth function
ζ �→ (ν(ζ), α(ν(ζ), ζ)), as required.

In order to solve the functional equation, let us consider the Banach space
E0(Rm, Rk) with the E-norm as defined in the proof of Theorem 4.1, the
subset B0

ρ(Rm, Rk) consisting of all elements of E0(Rm, Rk) whose Lipschitz
constants do not exceed ρ, and the operator Λ that is defined for functions
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in B0
ρ(Rm, Rk) by

Λ(ν)(ζ) := ω(α(ν(ζ), ζ), ζ).

We are using the same symbol to denote this operator as we used to de-
note the Lyapunov–Perron operator because the proof that each of these
operators has a smooth fixed function is essentially the same.

To show that Λ is a contraction on the complete metric space B0
ρ(Rm, Rk),

note that if ν ∈ B0
ρ(Rm, Rk), then Λ(ν) is continuous on R

m. Moreover, it
is easy to show the following inequality:

‖Λ(ν)(ζ1) − Λ(ν)(ζ2)‖ ≤ Lip(ω) Lip(α) Lip(ν)‖ζ1 − ζ2‖ ≤ ρ3‖ζ1 − ζ2‖.

In particular, we have that ‖Λ(ν)(ζ1)‖ ≤ ρ3‖ζ1‖. It now follows that
‖Λ(ν)‖E < ∞ and Lip(Λ(ν)) ≤ ρ. Thus, Λ maps the complete metric
space B0

ρ(Rm, Rk) into itself. Also, we have that

‖Λ(ν1)(ζ) − Λ(ν2)(ζ)‖ ≤ Lip(ω) Lip(α)‖ν1(ζ) − ν2(ζ)‖ ≤ ρ2‖ν1 − ν2‖E‖ζ‖,

and, as a result, Λ is a contraction on B0
ρ(Rm, Rk). Therefore, Λ has a

globally attracting fixed point ν ∈ B0
ρ(Rm, Rk).

To show that ν is smooth, we can again use the fiber contraction princi-
ple. In fact, the proof is completely analogous to the proof of the smoothness
of the invariant manifold in Theorem 4.1 (see also the discussion after the
fiber contraction theorem (Theorem (1.176))). We will outline the main
steps of the proof.

Consider the set F = C(Rm, L(Rm, Rk)) of all bounded continuous func-
tions Φ that map R

m into the bounded linear maps from R
m into R

k with
Φ(0) = 0 and with the norm

‖Φ‖F := sup
ξ∈Rk

‖Φ(ξ)‖

where, as before, ‖Φ(ξ)‖ denotes the operator norm of the transformation
Φ(ξ). Also, let Fρ denote the closed ball in F with radius ρ, that is,

Fρ := {Φ ∈ F : ‖Φ‖ ≤ ρ}.

For φ ∈ B0
ρ(Rm, Rk) and for Φ ∈ Fρ, let us define

Ψ(φ,Φ)(ζ) := ωy(α(φ(ζ), ζ), ζ)[αx(α(φ(ζ), ζ), ζ)Φ(ζ) + αz(φ(ζ), ζ), ζ)]
+ ωz(α(φ(ζ), ζ), ζ).

It is easy to check that Ψ maps B0
ρ(Rm, Rk) × Fρ into Fρ. Moreover, if φ

is continuously differentiable, then Λ(φ) = Ψ(φ, Dφ).
The transformation Λ� : B0

ρ(Rm, Rk) × Fρ → B0
ρ(Rm, Rk) × Fρ is a fiber

contraction. In fact, we have

‖Ψ(φ,Φ1)(ζ) − Ψ(φ,Φ2)(ζ)‖ ≤ ρ2‖Φ1 − Φ2‖.
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FIGURE 4.1. Schematic phase portrait for system (4.23) modified with a cut-off
function that removes the nonlinearity outside of the indicated disk. Note that
only the horizontal axis is a global center manifold for the modified differential
equation.

Also, let us define Φ∞ to be the unique fixed point of the map Φ �→ Ψ(ν,Φ)
where, recall, ν is the unique fixed point of Λ.

Let (φ0, Φ0) = (0, 0) ∈ B0
ρ(Rm, Rk) × Fρ and define recursively the se-

quence {(φ0, Φ0)}∞
n=0 by

(φn+1, Φn+1) = Λ�(φn, Φn).

It is easy to check that Φn = Dφn for each nonnegative integer n. By the
fiber contraction principle, we have that limn→∞ φn = ν and

lim
n→∞ Φn = Φ∞.

As before, if we use the fact that the convergence of the sequence {φn}∞
n=0

is uniform on compact subsets of R
m and the fact that the convergence of

{Φn}∞
n=0 is uniform, we can conclude that ν is continuously differentiable

with derivative Φ∞.
If ρ > 1, let us consider the map Γ : R

k × R
m → R

k defined by

Γ(x, z) := x − ω(α(x, z), z).

An application of the implicit function theorem at the origin produces a
local solution z �→ ν(z) that can be used as above to define a function
whose graph is a subset W c

loc(0, 0) of W c(0, 0).
We have proved that a C1 differential equation has C1 local invariant

manifolds at a rest point. However, it should be reasonably clear that the
methods of proof used in this section, together with an induction argument,
can be used to show that if 1 ≤ r < ∞, then a Cr differential equation has
Cr local invariant manifolds at a rest point. The case of C∞, or analytic,



302 4. Hyperbolic Theory

differential equations is more difficult. For example, an analytic differential
equation may not have a C∞ center manifold (see [80, p. 126]).

Let us note that (local) center manifolds may not be unique. For example,
the rest point at the origin for the planar differential equation

ẋ = x2, ẏ = −y (4.23)

has infinitely many center manifolds (see Exercise 4.2). This fact may seem
contrary to the uniqueness of the invariant manifolds proved in Theo-
rem 4.1. The apparent contradiction arises from the fact that only one
of the local center manifolds for the differential equation (4.23) is defined
globally. More precisely, if this differential equation is modified by a cut-off
function, then only one of the local center manifolds extends as the graph
of a globally defined function (see Figure 4.1). Indeed, in the unbounded
region where the cut-off function vanishes, the modified vector field is given
by the linearized equations at the rest point, and for this linear system the
only invariant one-dimensional manifold that is the graph of a function over
the horizontal axis is the horizontal axis itself.

The local stable and unstable manifolds are unique. The key observation
is that, unlike for the center manifold case, the linearization at a hyperbolic
rest point, which defines the modified vector field in the region where the
cut-off function vanishes, is such that local invariant manifolds for the orig-
inal system would extend globally for the modified vector field as graphs
of functions. Thus, the existence of more than one local stable or unstable
manifold would violate Theorem 4.1.

Exercise 4.2. Show that the system (4.23) has infinitely many local center
manifolds.

4.2 Applications of Invariant Manifolds

The most basic application of invariant manifold theory is the rigorous
proof that the phase portraits of rest points of nonlinear systems have
invariant manifolds akin to the (linear) invariant subspaces at the zero
solution of a constant coefficient homogeneous linear system. However, the
applications of invariant manifold theory go far beyond this fact. It turns
out that invariant sets (for example, periodic orbits, invariant tori, etc.) also
have associated invariant manifolds. It is even possible to have a system
(called a uniformly hyperbolic system or an Anosov system) where every
orbit has associated nontrivial stable and unstable manifolds. The existence
of invariant manifolds provides an important part of the analysis required
to understand the dynamical behavior of a differential equation near an
invariant set, for example a steady state.
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Another important application of invariant manifold theory arises when
we are interested in the qualitative changes in the phase portrait of a fam-
ily of differential equations that depends on one or more parameters. For
example, let us imagine that the phase portrait of a family at some param-
eter value has a rest point (more generally, an invariant set) that is not
hyperbolic. In this case we expect that the qualitative dynamical behavior
of the system will change—a bifurcation will occur—when the parameter
is varied. Often, if there are qualitative changes, then they are confined to
changes on a center manifold. After all, the dynamics on stable and unsta-
ble manifolds is very simple: asymptotic attraction in forward or backward
time to the invariant manifold. This observation often allows the reduction
of a multidimensional problem to a much lower dimensional differential
equation restricted to the center manifold as we will now explain.

Let us consider a differential equation that depends on a parameter ν.
Moreover, let us assume that the differential equation has a rest point
whose position in space is a smooth function of ν near ν = 0. In this case,
there is a change of coordinates that fixes the rest point at the origin and
transforms the system to the form

ẋ = S(ν)x + F (x, y, z, ν),
ẏ = U(ν)y + G(x, y, z, ν),
ż = C(ν)z + H(x, y, z, ν)

where S, U , and C are matrices that depend on the parameter. More-
over, C(0) has eigenvalues with zero real parts, S(0) has eigenvalues with
negative real parts, and U(0) has eigenvalues with positive real parts.

There is a standard “trick” that is quite important. Let us introduce ν
as a new dependent variable; that is, let us consider the system

ẋ = S(ν)x + F (x, y, z, ν),
ẏ = U(ν)y + G(x, y, z, ν),
ż = C(ν)z + H(x, y, z, ν),
ν̇ = 0.

Also, note that if we expand the matrices S, U , and C in powers of ν at
ν = 0 to obtain, for example, S(ν) = S(0)+νS(ν), then the term νS(ν)x is
a nonlinear term with respect to our new differential equation, and therefore
it can be grouped together with F (x, y, z, ν) in the first equation. Hence, by
an obvious redefinition of the symbols, we lose no generality if we consider
the system in the form

ẋ = Sx + F (x, y, z, ν),
ẏ = Uy + G(x, y, z, ν),
ż = Cz + H(x, y, z, ν)
ν̇ = 0
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where the matrices S, U and C do not depend on ν. Moreover, by grouping
together the last two equations, let us view the system as having its center
part augmented by one extra center direction corresponding to ν. If ν is a
vector of parameters, then there may be several new center directions.

By our general theorem, there is a center manifold which is the graph
of a function with components x = α(z, ν) and y = β(z, ν) defined on the
space with coordinates (z, ν). In particular, the center manifold depends
smoothly on the coordinate ν in some open ball containing ν = 0, and
therefore the restriction of the original differential equation to this invariant
center manifold—its center manifold reduction—depends smoothly on the
parameter ν and has the form

ż = Cz + H(α(z, ν), β(z, ν), z, ν). (4.24)

The “interesting” dynamics near the original rest point for ν near ν = 0
is determined by analyzing the family of differential equations (4.24). In
fact, this construction is one of the most important applications of center
manifold theory.

The qualitative behavior for center manifold reduced systems is the same
on all local center manifolds. Moreover, each bounded invariant set of the
original system, sufficiently close to the rest point under consideration,
is also an invariant set for each center manifold reduced system (see, for
example, [50]).

Exercise 4.3. Find a center manifold for the system

ẋ = −xy, ẏ = −y + x2 − 2y2

for the rest point at the origin, and also find a differential equation for the dy-
namics on the center manifold. Also, show that every solution of the system is at-
tracted to the center manifold (see the interesting article by A. J. Roberts [152]).
Hint: Look for the center manifold as a graph of a function of the form

y = h(x) = −αx2 + βx3 + · · · .

Why does the expected h have h(0) = 0 and h′(0) = 0? The condition for
invariance is ẏ = h′(x)ẋ with y = h(x). Find the first few terms of the series
expansion for h, formulate a conjecture about the form of h, and then find h
explicitly. Once h is known, the dynamical equation for the flow on the center
manifold is given by ẋ = −xh(x). (Why?)

Find an explicit equation for the unstable manifold of the saddle point at the
origin for the system

ẋ = εx − xy, ẏ = −y + x2 − 2y2,

and find the differential equation that gives the dynamics on the invariant man-
ifold. How does the phase portrait change as ε passes through ε = 0.
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Exercise 4.4. Find the third order Taylor series approximation of the (scalar)
center manifold reduced family at the origin, as in display (4.24), for the system

ż = ε − z + w +
1
4
((1 + ε)z2 − 2εwz − (1 − ε)w2),

ẇ = ε + z − w − 1
4
((1 + ε)z2 − (2ε − 4)wz + (3 + ε)w2).

4.3 The Hartman–Grobman Theorem

In the last section we proved the existence of stable and unstable manifolds
for hyperbolic rest points of differential equations using a classic idea that
is worth repeating: The existence of the desired object, for example an
invariant manifold, is equivalent to the existence of a fixed point for a
properly defined map on a function space, and the hyperbolicity hypothesis
is used to prove that this map is a contraction. This same idea is used in this
section to prove the Hartman–Grobman theorem (Theorem 1.27). See [9],
[126], [144], [139], and [150] for the origins of this marvelous proof, and for
the original proofs see [79] and [87].

4.3.1 Diffeomorphisms
Let us consider the Hartman–Grobman theorem for a discrete dynamical
system, that is, a dynamical system defined by a diffeomorphism F : R

n →
R

n as follows: If ξ ∈ R
n, then the orbit of ξ is the set of all iterates

of ξ under transformation by F . More precisely, if we use the notation
F−1 for the inverse of F , define F 0(ξ) = ξ and use the inductive identity
F �+1(ξ) := F (F �(ξ)) to define F � for every integer �, then the orbit of ξ
is the set {F �(ξ) : � ∈ Z}. A fixed point of the dynamical system defined
by F is analogous to a rest point for the dynamical system defined by a
differential equation.

There is, of course, a very close connection between the dynamical sys-
tems defined by differential equations and those defined by diffeomor-
phisms. If, for example, ϕt is the flow of an autonomous differential equa-
tion, then for each fixed t ∈ R the time t map given by ξ �→ ϕt(ξ) is
a diffeomorphism on its domain that defines a dynamical system whose
orbits are all subsets of the orbits of the flow. Also, a Poincaré map is a
diffeomorphism whose orbits correspond to features of the phase portrait of
its associated differential equation. In particular, a fixed point of a Poincaré
map corresponds to a periodic orbit of the associated differential equation.

If ϕt is the flow for the differential equation ẋ = f(x), then recall that
t �→ Dφt(ζ) is the solution of the variational initial value problem

Ẇ = Df(ϕt(ζ))W, W (0) = I.
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In particular, if ζ is a rest point, then the solution of the initial value
problem is

Dφt(ζ) = etDf(ζ).

Thus, if ζ is a hyperbolic rest point and t �= 0, then the linear transfor-
mation Dφt(ζ) has no eigenvalues on the unit circle of the complex plane.
For this reason, a fixed point of a diffeomorphism is called hyperbolic if the
derivative of the diffeomorphism at the fixed point has no eigenvalue on
the unit circle.

The next theorem is a version of the Hartman–Grobman theorem for
diffeomorphisms. Informally, it states that the phase portrait near a hy-
perbolic fixed point is the same, up to a continuous change of coordinates,
as the phase portrait of the dynamical system induced by the derivative of
the diffeomorphism evaluated at the fixed point.

Theorem 4.5 (Hartman–Grobman). If ζ is a hyperbolic fixed point for
the diffeomorphism F : R

n → R
n, then there is an open set U ∈ R

n

containing ζ and a homeomorphism H with domain U such that

F (H(x)) = H(DF (ζ)x)

whenever x ∈ U and both sides of the equation are defined.

The proof of Theorem 4.5 is based on the idea that the conjugating homeo-
morphism is the solution of a functional equation. Sufficient conditions for
the appropriate functional equation to have a unique solution are given in
the following key lemma.

Lemma 4.6. Suppose that A : R
n → R

n is an invertible hyperbolic linear
transformation and p : R

n → R
n is a smooth function. If 0 < α < 1 and

the C1-norm of the function p is sufficiently small, then there is a unique
continuous function h : R

n → R
n such that ‖h‖ ≤ α, h(0) = 0, and

h(Ax) − Ah(x) = p(x + h(x)) (4.25)

for every x in R
n.

Proof. For h : R
n → R

n, define the linear operator L by

L(h)(x) = h(Ax) − Ah(x),

the (nonlinear) operator Φ by

Φ(h)(x) = p(x + h(x)) − p(x),

and recast equation (4.25) in the form

L(h)(x) = Φ(h)(x) + p(x). (4.26)
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The operator L is invertible on the Banach space C(Rn), the space of
bounded continuous transformations of R

n with the supremum norm. To
prove this fact, let us use the hyperbolicity of the linear transformation
A to decompose the space R

n as the direct sum of the invariant linear
eigenspaces Es and Eu that correspond, respectively, to the subsets of the
spectrum of A that lie inside and outside of the unit circle. Of course, if
the fixed point is a sink or a source, then there is only one eigenspace.

By Corollary 2.85, there are adapted norms (both denoted by | |) on the
eigenspaces such that the sum of these norms is equivalent to the norm
on R

n, and in addition there is a number λ, with 0 < λ < 1, such that if
x = xs + xu ∈ Es ⊕ Eu, then

|Axs| < λ|xs|, |A−1xu| < λ|xu|.

Also, if h is a transformation of R
n, then h can be expressed uniquely as a

sum of functions h = hs + hu where hs : R
n → Es and hu : R

n → Eu.
Using the projections to Es and Eu, let us note that

L(h)(x) = [hs(Ax) − A(hs(x))] + [hu(Ax) − A(hu(x))].

Because the eigenspaces are invariant sets for A, it follows the equation

L(h)(x) = p(x),

where p : R
n → R

n, has a solution h if and only if the “operator equations”

Ls(hs)(x) := hs(Ax) − Ahs(x) = ps(x),

Lu(hu)(x) := hu(Ax) − Ahu(x) = pu(x)

both have solutions. In particular, to prove that L is invertible, it suffices
to prove that Ls and Lu are both invertible as operators on the respec-
tive spaces C0(Rn, Es) and C0(Rn, Eu) where C0(Rn, Es), respectively
C0(Rn, Eu), denotes the space of continuous bounded functions from R

n

to Es, respectively Eu, with the adapted norm.
Let us define two additional operators S and U by

S(hs)(x) := hs(Ax), U(hu)(x) := hu(Ax)

so that

Ls(hs) = (S − A)hs, Lu(hu) = (U − A)hu.

Because A is invertible, both of the operators S and U are invertible; for
example, we have that S−1(hs)(x) = hs(A−1x). Moreover, it is easy to
prove directly from the definition of the operator norm that these operators
and their inverses all have norm one. It follows that

‖S−1A‖ ≤ ‖S−1‖ ‖A‖ < λ < 1,
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and therefore the operator I − S−1A is invertible. In fact, its inverse is
given by

I − S−1A = I +
∞∑

�=1

(S−1A)�

where the Neumann series is easily proved to be absolutely convergent by
comparison with the geometric series

∞∑
�=0

λ� =
1

1 − λ
.

Because the operator Ls can be rewritten in the form

Ls = S − A = S(I − S−1A),

it is invertible with inverse

L−1
s = (I − S−1A)−1S−1.

Moreover, we have the following norm estimate:

‖L−1
s ‖ ≤ 1

1 − λ
.

Similarly, for the operator Lu, we have that

Lu = U − A = A(A−1U − I) = −A(I − A−1U)

with

‖A−1U‖ < λ < 1.

Therefore, the inverse of Lu is given by

L−1
u = −(I − A−1U)−1A−1,

and, in addition, we have the norm estimate

‖L−1
u ‖ ≤ λ

1 − λ
<

1
1 − λ

.

Using the fact that both Ls and Lu are invertible and using the norm
estimates for their inverses, it follows that L is invertible and

‖L−1‖ <
2

1 − λ
.

Let us recast equation (4.26) in the form

h = L−1Φ(h) + L−1p
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and note that the solutions of equation (4.26) are exactly the fixed points
of the operator T defined by

T (h) := L−1Φ(h) + L−1p.

Also, the set

C0
α := {h ∈ C0(Rn) : ‖h‖ ≤ α, h(0) = 0}

is a complete metric subspace of the Banach space C0(Rn). Thus, to com-
plete the proof of the lemma, it suffices to show the following proposition:
T : C0

α → C0
α and T is a contraction.

To prove the proposition, note that if h(0) = 0, then T (h)(0) = 0, and
also that

‖T (h)‖ ≤ ‖L−1‖(‖Φ(h)‖ + ‖p‖)

≤ 1
1 − λ

(
sup

x∈Rn

|p(x + h(x)) − p(x)| + ‖p‖
)

≤ 1
1 − λ

(
sup

x∈Rn

|Dp(x)| ‖h‖ + ‖p‖
)

≤ 1
1 − λ

(
‖p‖1‖h‖ + ‖p‖

)
≤ 1

1 − λ
(1 + α)‖p‖1

where ‖ ‖1 denotes the C1 norm. Hence, if

‖p‖1 <
α

1 + α
(1 − λ),

then T is a transformation of the space C0
α. Moreover, because

‖T (h1) − T (h2)‖ = ‖L−1(Φ(h1) − Φ(h2))‖

≤ 1
1 − λ

sup
x∈Rn

‖p(x + h1(x)) − p(x + h2(x))‖

≤ 1
1 − λ

‖p‖1‖h1 − h2‖,

the same restriction on the size of ‖p‖1 ensures that T is a contraction. �

Let us prove Theorem 4.5.

Proof. Assume, without loss of generality, that ζ is the origin of R
n. Also,

define A := DF (0) and note that, because F is a diffeomorphism, A is an
invertible hyperbolic linear transformation.

Choose α ∈ R such that 0 < α < 1. If we define f(x) := F (x)−Ax, then
f(0) = 0 and Df(0) = 0. Thus, using the continuity of f , there is an open
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neighborhood V of the origin such that the C1-norm of the restriction of f
to V is less than α/3. This norm is defined as usual in terms of C0-norms
as follows

‖f‖1 = ‖f‖ + ‖Df‖.

By using an appropriate bump function, as in the derivation of the esti-
mate (4.21), there is a smooth function f∗ defined on all of R

n such that
f = f∗ on V and the C1-norm of f∗ (with the supremum taken over R

n)
does not exceed three times the C1-norm of the restriction of f to V ; that
is, since ‖f‖1 ≤ α/3, we have that ‖f∗‖1 < α.

Apply Lemma 4.6 with p = f∗ and define a new continuous function
H : R

n → R
n by

H(x) = x + h(x). (4.27)

Using equation (4.25), it is easy to see that F (H(x)) = H(A(x)) for all
x ∈ R

n. This function H, restricted to a suitably small neighborhood of
the origin, is a candidate for the required local homeomorphism. Indeed,
to complete the proof of the theorem, we will show that there is an open
set U containing the origin and contained in V such that the restriction of
H to U is a homeomorphism.

To prove that H is injective, let us suppose that H(x) = H(y) for some
points x and y in R

n. Using the identities

H(Ax) = F (H(x)) = F (H(y)) = H(Ay),

we have that

H(A�x) = H(A�y)

for every integer �. But then

A�x + h(A�x) = A�y + h(A�y)

and

‖A�x − A�y‖ = ‖h(A�x) − h(A�y)‖ ≤ 2‖h‖.

In particular, the set

{‖A�(x − y)‖ : � ∈ Z}

is bounded. But this is a contradiction unless x = y. In fact, because A is
a hyperbolic linear transformation on R

n, if z �= 0, then either

lim
�→∞

‖A�z‖ = ∞, or lim
�→−∞

‖A�z‖ = ∞.
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Thus, H is injective.
There is an open neighborhood U of the origin such that its closure Ū

is compact, contained in V , and H(Ū) ⊂ V . Because H is a continuous
injective function on the compact set Ū ⊂ R

n, an elementary argument
using point set topology [129, p. 167] shows that H restricted to Ū is a
homeomorphism onto its image. In particular, H has a continuous inverse
defined on H(Ū). This inverse restricted to H(U) is still continuous. Thus,
H restricted to U is a homeomorphism onto its image. �

4.3.2 Differential Equations
In this section we will prove the following version of the Hartman–Grobman
theorem for a hyperbolic rest point of an autonomous differential equation.

Theorem 4.7. Suppose that ζ is a rest point of the differential equation
ẋ = f(x) on R

n with flow ϕt and ψt is the flow of the linearized system
ẋ = Df(ζ)(x − ζ). If ζ is a hyperbolic rest point, then there is an open
subset U of R

n such that ζ ∈ U and a homeomorphism G with domain
U such that G(ϕt(x)) = ψt(G(x)) whenever x ∈ U and both sides of the
equation are defined.

While the proofs of Theorem 4.7 and the Hartman–Grobman theorem for
diffeomorphisms are similar, there are some subtle differences. For example,
note that whereas the conjugating homeomorphism H in the diffeomor-
phism case is a solution of the functional equation F (G(x)) = G(DF (ζ)x),
the corresponding equation in Theorem 4.7 has the form

G(F (x)) = DF (ζ)G(x).

If G is a homeomorphism, then these two equations are equivalent. But,
the form of these equations is important for the method used here to prove
the existence of G.

Let us begin with a lemma analogous to Lemma 4.6. For the statement
of this lemma, recall that C(Rn) denotes the Banach space of bounded
continuous transformations of R

n with the supremum norm.

Lemma 4.8. If A : R
n → R

n is an invertible hyperbolic linear transfor-
mation and F : R

n → R
n is a homeomorphism, then the operator given

by

Φ(g)(x) = Ag(x) − g(F (x))

is a bounded linear transformation with a bounded inverse on the Banach
space C(Rn).

Proof. If g ∈ C(Rn), then clearly x �→ Φ(g)(x) is a continuous trans-
formation of R

n. Also, it is clear that Φ is a linear operator. The norm
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estimate

|Φ(g)(x)| ≤ |Ag(x)| + |g(F (x))| ≤ ‖A‖ ‖g‖ + ‖g‖

(where ‖A‖ is the operator norm of the linear transformation A and ‖g‖ is
the supremum norm of the function g), shows that Φ is a bounded linear
operator on C(Rn).

The proof that the operator Φ has a bounded inverse is similar to the
proof of Lemma 4.6. In fact, relative to the splitting R

n = Es ⊕ Eu, the
operator Φ is given by Φ = Φs + Φu where

Φs(gs) := A ◦ gs − gs ◦ F, Φu(gu) := A ◦ gu − gu ◦ F.

The important point is that the operators S and U defined by

S(gs) := gs ◦ F, U(gu) := gu ◦ F

and their inverses are all bounded, and they all have operator norm one.
The operators Φs and Φu are inverted using Neumann series, as in the
proof of Lemma 4.6. �

Let us prove Theorem 4.7.

Proof. Assume that ζ = 0 and define B := Df(0). Also, note that

ψt(x) = etBx

and define A := ψ1, the time-one map of the flow ψt.
By using an appropriate bump function γ defined on a neighborhood of

the origin, the differential equation

ẋ = f∗(x), (4.28)

where f∗ := γf , has a complete flow ϕ∗
t together with the following addi-

tional properties.
(i) The function f∗ : R

n → R
n has a finite Lipschitz constant.

(ii) There is an open neighborhood V of the origin such that the time
one map F := ϕ∗

1 agrees with the time one map ϕ1 of the flow ϕ1
on V .

(iii) The function p(x) := F (x) − Ax has finite C1-norm that is suffi-
ciently small so that, by Lemma 4.6, there is a function h ∈ C(Rn)
with h(0) = 0, ‖h‖ < 1, and

h(Ax) − Ah(x) = p(x + h(x))

for all x ∈ R
n.
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Let us prove first that there is a continuous map G : R
n → R

n such that
G(F (x)) = A(G(x); that is, G conjugates the time one maps of the linear
and nonlinear flows. In fact, because p has finite C1-norm, it follows that
p ∈ C(Rn) and by Lemma 4.8, there is a unique g ∈ C(Rn) such that

Ag(x) − g(F (x)) = p(x).

Thus, if we define G by G(x) = x + g(x), then we have that

G(F (x)) = AG(x). (4.29)

To construct a conjugacy between the linear and the nonlinear flows, use
the “time one conjugacy” G to define G : R

n → R
n by

G(x) :=
∫ 1

0
ψ−s(G(ϕ∗

s(x))) ds.

We will show that

ψt(G(x)) = G(ϕ∗
t (x)). (4.30)

In fact, using the linearity of ψt, the change of variables τ = s + t − 1, the
flow property, and equation (4.29), we have

ψt(G(ϕ∗
t (x))) =

∫ 1

0
ψ−t−s(G(ϕ∗

s+t(x))) ds

=
∫ t

t−1
ψ−τ (ψ−1(G(ϕ∗

1(ϕ
∗
τ (x))) dτ

=
∫ t

t−1
ψ−τ (G(ϕ∗

τ (x))) dτ.

If we split the last integral into the two parts∫ 0

t−1
ψ−τ (G(ϕ∗

τ (x))) dτ +
∫ t

0
ψ−τ (G(ϕ∗

τ (x))) dτ,

change variables by σ := τ+1 in the first integral, and use the flow property
together with equation (4.29), then we obtain the identity

ψt(G(ϕ∗
t (x))) =

∫ 1

t

ψ−σ+1(G(ϕ∗
−1+σ(x))) dσ +

∫ t

0
ψ−τ (G(ϕ∗

τ (x))) dτ

= G(x),

as required.
Recall equation (4.29) and note that if we set t = 1 in equation (4.30),

then we have the functional identities

G(F (x)) = AG(x), G(F (x)) = AG(x).
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By Lemma 4.8, the function G is unique among all continuous transforma-
tions of R

n of the form G(x) = x + g(x) that satisfy the same functional
equation, provided that g ∈ C(Rn). Thus, to prove that G = G, it suffices
to show that the function x �→ G(x) − x is in C(Rn). To see this fact, let
us note first that we have the identities

G(x) − x =
∫ 1

0
ψ−s(G(ϕ∗

s(x))) ds − x

=
∫ 1

0
ψ−s[G(ϕ∗

s(x)) − ψt(x)] ds

=
∫ 1

0
ψ−s[G(ϕ∗

s(x)) − ϕ∗
s(x) + ϕ∗

s(x) − ψt(x)] ds,

and the estimate

|G(x) − x| ≤ e‖B‖( |G(ϕ∗
s(x)) − ϕ∗

s(x)| + |ϕ∗
s(x) − ψt(x)| )

≤ e‖B‖( ‖g‖ + sup
0≤s≤1

|ϕ∗
s(x) − ψs(x)| ).

Also, for 0 ≤ s ≤ 1, we have the inequalities

|ϕ∗
s(x) − ψs(x)| ≤

∫ s

0
|f∗(ϕ∗

t (x)) − Bφt(x)| dt

≤
∫ s

0
|f∗(ϕ∗

t (x)) − f∗(ψt(x))| + |f∗(ψt(x)) − Bφt(x)| dt

≤
∫ s

0
Lip(f∗)|ϕ∗

t (x) − ψt(x)| dt + (‖f∗‖ + ‖B‖e‖B‖).

Thus, by Gronwall’s inequality,

sup
0≤s≤1

|ϕ∗
s(x) − ψs(x)| ≤ (‖f∗‖ + ‖B‖e‖B‖)eLip(f∗),

and, as a result, the function x �→ G(x) − x is in C(Rn).
It remains to show that G = G is a homeomorphism when restricted to

some neighborhood of the origin. Using property (iii) given above and the
proof of the Hartman–Grobman theorem for diffeomorphisms, the function
h given in property (iii) can be use to define a continuous function H by
H(x) = x + h(x) so that

F (H(x)) = H(Ax).

Thus,

G(H(Ax)) = G(F (H(x))) = AG(H(x))
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and, with K := G◦H, we have K(A(x)) = A(K(x)). Moreover, the function
K has the form

K(x) = x + h(x) + g(x + h(x))

where, by the construction of G and H, the function

α : x �→ +h(x) + g(x + h(x))

is in C(Rn) and A(α(x)) − α(Ax) = 0. By Lemma 4.8, there is only one
function α in C(Rn) that solves this functional equation. It follows that
α(x) ≡ 0. Therefore, K is the identity function and G(H(x)) = x for all
x ∈ R

n. Because there is an open set U containing the origin such that the
restriction of H to U is a homeomorphism onto its image, we must have
that G restricted to H(U) is the inverse of H. In particular, G restricted
to H(U) is a homeomorphism onto U . �

Exercise 4.9. Suppose A is an invertible linear transformation of R
n. Let L

denote the set of all Lipschitz functions mapping R
n to R

n and, for α ∈ L, let
Lip(α) denote the (least) Lipschitz constant for α. Prove: There is an ε > 0 such
that if α ∈ L and Lip(α) < ε, then A + α : R

n → R
n is continuous and bijective.

Exercise 4.10. [Toral Automorphisms] Consider the torus T
2 = R

2/Z
2, that

is, all equivalence classes of points in the plane where two points are equivalent
if their difference is in the integer lattice. A unimodular matrix, for example

A :=
(

2 1
1 1

)
,

induces a map on T
2 called a toral automorphism. Prove that A is a hyperbolic

linear map (spectrum off the unit circle). Prove that the induced map on T
2

is invertible. Determine all periodic points of the induced map. Prove that the
induced map has a dense orbit. Show that every orbit of the induced map has a
one-dimensional stable and a one-dimensional unstable manifold, the sets defined
as the points in T

2 that are asymptotic to the given orbit under forward, respec-
tively backward, iteration. Hyperbolic toral automorphisms are the prototypical
examples of Anosov (uniformly hyperbolic) dynamical systems and they enjoy
many interesting dynamical properties; for example, they are “chaotic maps”
where the entire phase space is a “chaotic attractor”. Also, note that toral auto-
morphisms are examples of area preserving dynamical systems: the measures of
subsets of the phase space do not change under iteration by the map. (The flow
of a Hamiltonian system has the same property.) The hyperbolic toral automor-
phisms are ergodic; that is, they are area preserving maps such that every one of
their invariant sets has measure zero or measure one. Hint: See [100]. The first
order system ẋ = 1, ẏ = α induces a flow on the torus (where x and y are viewed
as angular variables modulo one). Prove that its flow is measure preserving. Prove
that the flow is ergodic if α is irrational.



5
Continuation of Periodic Solutions

A fundamental engineering problem is to determine the response of a phys-
ical system to an applied force. In this chapter some mathematical ideas
are introduced that can be used to address a classic case of this problem
where the physical system is an oscillator that is modeled by a differential
equation with periodic orbits and the applied force is modeled as a “small”
perturbation. Partial answers to several important questions will be given.
Which, if any, of the unperturbed periodic orbits persist under the per-
turbation? Are the perturbed periodic orbits stable? Can the perturbed
periodic orbits be approximated by analytic formulas? We will restrict our
discussion to planar systems, the case of most practical value. However,
many of the results of this chapter can be easily generalized to multidi-
mensional systems.

The subject of this chapter has a long history in applied science and
mathematics; it is still an active area of mathematical research. Thus,
there is a mathematical and scientific literature on this subject that is far
too extensive to be reviewed here. However, every student of the subject
should be aware of the classic books by Aleksandr A. Andronov, Aleksandr
A. Vitt, and Semen E. Khaiken [7], Nikolai N. Bogoliubov and Yuri A.
Mitropolsky [23], Chihiro Hayashi [89], Nikolai Minorsky [125], and James
J. Stoker [169]; and the more recent works of Miklós Farkas [63], John Guck-
enheimer and Philip Holmes [80], Jack K. Hale [83], Jirair K. Kevorkian
and Julian D. Cole [101], James Murdock [130], Ali H. Nayfey [133], and
Stephen W. Wiggins [185].
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5.1 A Classic Example: van der Pol’s Oscillator

An important mathematical model in the history of our subject is known
as van der Pol’s equation

ẍ + ε(x2 − 1)ẋ + ω2x = a sin Ωt. (5.1)

This differential equation was introduced by Lord Rayleigh [146] in 1883.
Balthasar van der Pol [176] investigated it more extensively when he studied
the equation in 1926 as a model of the voltage in a triode circuit. How-
ever, since its introduction, this differential equation has been suggested
as a model for many different physical phenomena. For example, just two
years after van der Pol’s initial paper, van der Pol and Johannes van der
Mark [178] proposed the equation as a model for the human heartbeat. We
will use the differential equation (5.1) to illustrate some of the ideas that
will be explored more fully later in this chapter.

Let us observe some of the dynamical features of the van der Pol equa-
tion. If a = 0 and ε = 0, then equation (5.1) is the familiar model of a linear
spring; that is, a spring with restoring force modeled by Hooke’s law. This
equation is often referred to as the spring equation or the harmonic oscilla-
tor. The term a sin Ωt represents a periodic external force with amplitude a,
period 2π/Ω and frequency Ω. The term ε(x2 −1)ẋ can be viewed as repre-
senting a nonlinear damping. The “direction” of this damping depends on
the state (x, ẋ) of the system where x represents position and ẋ represents
velocity. In fact, the energy of the spring is given by

E :=
1
2
ẋ2 +

1
2
ω2x2,

and has time derivative

Ė = aẋ sin Ωt − ε(x2 − 1)ẋ2.

Thus, energy due to the damping leaves the system while |x| > 1 and is
absorbed while |x| < 1.

Our subject is motivated by the following basic question: If the current
state of the system is known, what does the model predict about its future
states? Even though the van der Pol equation has been studied intensively,
we cannot give a complete answer to this question. However, as we will see,
many useful predictions can be made. In particular, in this section we will
show how to determine the steady state behavior of the system when there
is no external force and the damping is small.

Let us consider the unforced, weakly damped, scaled van der Pol equation
given by

ẍ + ε(x2 − 1)ẋ + x = 0. (5.2)
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FIGURE 5.1. The left panel depicts the phase portrait for the harmonic oscillator.
The right panel shows a perturbed orbit with initial state (ξ, 0) on the positive
x-axis that returns to the positive x-axis at the point P (ξ, ε).

The corresponding unperturbed (ε = 0) equation ẍ + x = 0 is explicitly
solvable. Indeed, the solution with initial state (x0, ẋ0) is given by

t �→ x0 cos t + ẋ0 sin t.

In particular, all solutions of the unperturbed system, except for the solu-
tion corresponding to the rest point at (0, 0), are periodic with period 2π.
Hence, there is no problem predicting the future states of the unperturbed
system.

What happens when ε �= 0? Does the differential equation (5.2) have a
periodic solution? If it does, then can we find a “formula” that represents
the solution? Or, if this is not possible, how can we approximate the periodic
solution? Is the periodic solution stable? We will approach such questions
using the geometric interpretation of the differential equation as a system
in the phase plane; that is, as the equivalent first order system given by

ẋ = −y,

ẏ = x − ε(x2 − 1)y. (5.3)

Here, the choice ẋ = y works just as well, but the minus sign ensures
that trajectories move in the positive sense of the usual orientation of the
Euclidean plane.

If ε = 0, then all orbits of system (5.3), except the rest point at the origin,
are circles that intersect the positive x-axis as shown in the left panel of
Figure 5.1. To investigate the orbits of the system (5.3) for ε �= 0, we will
consider the Poincaré map defined on the positive x-axis.

Let us note that if ε �= 0 is sufficiently small, then the orbit of the solution
of system (5.3) with initial condition (x(0), y(0)) = (ξ, 0) remains close to
the circle with radius ξ at least until it returns to the x-axis after a finite
time T (ξ, ε) that depends on the initial point and the value of ε. More
precisely, if t �→ (x(t, ξ, ε), y(t, ξ, ε)) is the solution of system (5.3) with
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initial condition

x(0, ξ, ε) = ξ, y(0, ξ, ε) = 0,

then, as long as ε is sufficiently small, the trajectory of this solution will
return to the positive x-axis at the point with coordinate x(T (ξ, ε), ξ, ε).
The function (ξ, ε) �→ P (ξ, ε) given by

P (ξ, ε) := x(T (ξ, ε), ξ, ε) (5.4)

is called the parametrized return map (see the right panel of Figure 5.1).
If P (ξ, ε) = ξ, then t �→ (x(t, ξ, ε), y(t, ξ, ε)) is a periodic solution of the

system (5.3) with period T (ξ, ε). In other words, if ξ is a fixed point of
the map ξ �→ P (ξ, ε) or a zero of the associated displacement function
δ(ξ, ε) = x(T (ξ, ε), ξ, ε) − ξ, then (ξ, 0) is the initial point for a periodic
orbit of the perturbed system.

Because δ(ξ, 0) ≡ 0, it is natural to look for the root ξ implicitly as a
function β of ε such that, for ε �= 0, the point ξ = β(ε) is the initial point
of a periodic solution of system (5.3). More precisely, we seek a function β
defined on some neighborhood of ε = 0 in R such that δ(β(ε), ε) ≡ 0. The
obvious way to find an implicit solution is to apply the implicit function
theorem (Theorem 1.182).

In the present context, the displacement function is defined by δ : U ×
V → R where U and V are both open subsets of R. Moreover, we have
that δ(ξ, 0) ≡ 0. If there were some point (ξ, 0) such that δξ(ξ, 0) �= 0, then
by the implicit function theorem there would be an implicit solution and
our problem would be solved. But it is clear that the hypothesis of the
implicit function theorem is not satisfied. In fact, because δ(ξ, 0) ≡ 0, we
have that δξ(ξ, 0) ≡ 0. However, the implicit function theorem does apply
after a further reduction.

Let us use the Taylor series of δ at ε = 0 to obtain the equation

δ(ξ, ε) = εδε(ξ, 0) + O(ε2)

where the O(ε2) term denotes the remainder. This notation is used formally
in the following way: The statement f(ε) = g(ε) + O(ε2) means that there
are constants K > 0 and ε0 > 0 such that the inequality

|f(ε) − g(ε)| < Kε2.

holds for |ε| < ε0. The required reduction is accomplished by defining a
new function

∆(ξ, ε) := δε(ξ, 0) + O(ε)

so that
δ(ξ, ε) = ε(δε(ξ, 0) + O(ε)) = ε∆(ξ, ε).
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Clearly, if there is a function ε �→ β(ε) such that ∆(β(ε), ε) ≡ 0, then
δ(β(ε), ε) ≡ 0.

Even though the implicit function theorem does not apply to the dis-
placement function δ, it might well apply to the function ∆. At any rate,
we have reduced the original search for a periodic solution of the per-
turbed van der Pol equation to the problem of finding implicit solutions
of the equation ∆(ξ, ε) = 0. Thus, by the implicit function theorem, we
have the following proposition: If ξ > 0 is a simple zero of the function
ξ �→ ∆(ξ, 0), that is, ∆(ξ, 0) = 0 and ∆ξ(ξ, 0) �= 0, or equivalently if
δε(ξ, 0) = 0 and δξε(ξ, 0) �= 0, then an implicit solution ξ = β(ε) exists. The
function ξ �→ δε(ξ, 0) is called the reduced displacement function, and a sim-
ple zero of the reduced bifurcation function (respectively the corresponding
unperturbed periodic orbit) is called a continuation point of periodic solu-
tions of the system (5.3) (respectively a continuable periodic orbit). Also, a
periodic orbit is said to persist if it is continuable. The ideas used to prove
our proposition recur in every continuation problem that we will consider;
their implementation constitutes the first part, called the reduction step,
in the solution of the continuation problem.

The second part of the continuation method is the identification step,
that is, the identification of the reduced displacement function in terms
of the original differential equation. For system (5.3), perhaps the most
direct route to the identification of the reduced displacement function is
via a change to polar coordinates. However, as an illustration of a general
method, let us work directly in the original variables and identify the re-
duced function by solving a variational equation derived from system (5.3).

To carry out the identification step, apply the chain rule to compute the
partial derivative

δε(ξ, 0) = ẋ(T (ξ, 0), ξ, 0)Tε(ξ, 0) + xε(T (ξ, 0), ξ, 0)

and evaluate at ε = 0 to obtain the equality

ẋ(T (ξ, 0), ξ, 0) = −y(0, ξ, 0) = 0.

In particular, the function ξ �→ ẋ(T (ξ, 0), ξ, 0)Tε(ξ, 0) and all of its deriva-
tives vanish. Thus, to complete the identification step it suffices to deter-
mine the partial derivative xε(T (ξ, 0), ξ, 0). To do this, let us compute the
partial derivative with respect to ε at ε = 0 of both sides of the differen-
tial equation (5.3) to obtain a variational equation. Also, let us compute
the partial derivative with respect to ε of both sides of each of the ini-
tial conditions x(0, ξ, ε) = ξ and y(0, ξ, ε) = 0 to obtain the corresponding
(variational) initial value problem

ẋε = −yε, ẏε = xε − (x2 − 1)y, xε(0, ξ, 0) = 0, yε(0, ξ, 0) = 0 (5.5)

whose solution is t �→ (xε(t, ξ, 0), yε(t, ξ, 0)).
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The variational initial value problem (5.5) is expressed in matrix form
by

Ẇ = AW + b(t), W (0) = 0 (5.6)

where

A =
(

0 −1
1 0

)
, b(t) =

(
0

(1 − x2(t, ξ, 0))y(t, ξ, 0)

)
,

and this nonhomogeneous 2 × 2 linear system is readily solved by the vari-
ation of constants formula (2.37). Indeed, let us recall that the principal
fundamental matrix solution at t = 0 of the associated homogeneous linear
system Ẇ = AW is the 2 × 2 matrix function t �→ Φ(t) with Φ̇ = AΦ and
Φ(0) = I, and the solution t �→ W (t) of the initial value problem (5.6) is
given by

W (t) = Φ(t)W (0) + Φ(t)
∫ t

0
Φ−1(s)b(s) ds. (5.7)

Moreover, for the system (5.3), we have that W (0) = 0, T (ξ, 0) = 2π, and

Φ(t) = etA =
(

cos t − sin t
sin t cos t

)
.

It follows that

x(t, ξ, 0) = ξ cos t, y(t, ξ, 0) = ξ sin t

and, in addition,(
xε(2π, ξ, 0)

yε(2π, ξ, 0)

)
= Φ(2π)

∫ 2π

0
Φ−1(s)b(s) ds

=

(∫ 2π

0 sin s[(1 − ξ2 cos2 s)ξ sin s] ds∫ 2π

0 cos s[(1 − ξ2 cos2 s)ξ sin s] ds

)
.

After an elementary integration, we have that

δε(ξ, 0) =
π

4
ξ(4 − ξ2), ξ > 0, (5.8)

and therefore ξ = 2 is a simple zero of the reduced displacement function
ξ �→ δε(ξ, 0). Hence, the unperturbed periodic orbit with radius 2 persists.
But since ξ = 2 is the only zero of the displacement function, all other pe-
riodic orbits of the unperturbed system are destroyed by the perturbation.
In particular, there is a function ε �→ β(ε) defined on some neighborhood
of ε = 0 such that β(0) = 2, and for each ε in the domain of β the corre-
sponding van der Pol system (5.3) has a periodic orbit with initial condition
(x(0), y(0)) = (β(ε), 0).
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The theory we have just developed to analyze the existence of continua-
tions of periodic solutions of the van der Pol equation will be generalized in
the next two sections of this chapter. In Sections 5.3.6 and 5.3.7 we will dis-
cuss a method that can be used to obtain analytical approximations of the
perturbed periodic orbit. For an analysis of the stability of the perturbed
periodic solution see Exercise 5.3.

Let us formalize what we have done so far by considering the weakly
linear system

u̇ = Au + εg(u), u ∈ R
2 (5.9)

where

u =
(

x
y

)
, A =

(
0 −1
1 0

)
, g(u) =

(
g1(u)
g2(u)

)
.

By repeating the steps of the argument made for system (5.3), it is easy to
prove the following theorem.

Theorem 5.1. A simple zero of the function B : (0,∞) → R given by

ξ �→
∫ 2π

0
g1(ξ cos s, ξ sin s) cos s + g2(ξ cos s, ξ sin s) sin s ds

is a continuation point of periodic solutions of the system (5.9). Moreover,
if ξ0 is a continuation point, then B(ξ0) = 0.

Exercise 5.2. Apply Theorem 5.1 to find the continuation points of periodic
solutions for the system

ẋ = −y + εp(x, y), ẏ = x + εq(x, y)

where p and q are entire functions with series representations given by

p =
∑

pijx
iyj , q =

∑
qijx

iyj .

For example, give a complete analysis when p, q are quadratic polynomials and
again when p, q are cubic polynomials.

Exercise 5.3. [Stability] Prove that for sufficiently small ε the stability of the
perturbed periodic solution passing near the continuation point (ξ, 0) is deter-
mined by the size of Pξ(ξ, ε). In particular, show that Pξ(ξ, ε) ≥ 0 and prove the
following statements: If Pξ(ξ, ε) < 1, then the periodic solution is (asymptoti-
cally) stable; and if Pξ(ξ, ε) > 1, then the periodic solution is (asymptotically)
unstable. Also, note that

P (ξ, ε) = P (ξ, 0) + εPε(ξ, 0) + O(ε2),

and therefore

Pξ(ξ, ε) − 1 = ε(δξε(ξ, 0) + O(ε)).
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If, for example, ε > 0 is sufficiently small and δξε(ξ, 0) < 0, then the periodic
orbit is stable. Thus, if ε is sufficiently small, then to determine the stability, it
suffices to compute the sign of the mixed partial derivative at the continuation
point ξ. Apply your results to determine the stability of the perturbed periodic
orbit for the van der Pol equation.

Exercise 5.4. The period of the perturbed periodic orbit for the van der Pol
oscillator is given by the function

ε �→ T (β(ε), ε)

where T is the return time function that appears in the definition of the Poincaré
map (5.4) and β is the implicit solution of the corresponding displacement func-
tion. Determine the first two terms of the Taylor series at ε = 0 of the period of
the perturbed periodic orbit. Hint: Use the identity

y(T (β(ε), ε), β(ε), ε) ≡ 0.

We will learn a more efficient method for computing the period of the perturbed
periodic orbit in Section 5.3.6 (see Exercise 5.47).

5.1.1 Continuation Theory and Applied Mathematics
Continuation theory, also called regular perturbation theory, is very useful
in applied mathematics where we wish to make predictions from a differ-
ential equation model of a physical process. In most instances, our model
is a family of differential equations; that is, the model depends on param-
eters. If a member of the family—obtained by fixing the parameters—has
a dynamical feature (for example, a rest point, periodic orbit, or invari-
ant manifold) that is relevant to the analysis of our applied problem, then
there is a natural and fundamental question: Does this feature persist if we
change the parameter values? Continuation theory is a diverse collection of
tools that can be used to answer this question in some situations.

In the rest of this chapter, we will extend the continuation theory for
periodic solutions introduced in Section 5.1 to cover more complex prob-
lems. However, as in the example provided by the van der Pol equation,
we will always look for continuations of unperturbed periodic solutions in
a family of differential equations with a small parameter. We will see that
the underlying ideas for the general continuation analysis are the same as
those introduced in this section: Construct an appropriate displacement
function; reduce to a bifurcation function whose simple zeros correspond—
by an application of the implicit function theorem—to continuation points;
and identify the reduced bifurcation function in terms of the given differ-
ential equation.

Perhaps our analysis of the continuation of periodic solutions for the gen-
eral weakly nonlinear system provides initial evidence for the notion that
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the proof of a general result such as Theorem 5.1 is often easy compared
with the task of applying the result to a realistic model. For our example,
where the perturbation term is a single harmonic, the bifurcation function
is a quadratic polynomial (formula (5.8)) and its roots are therefore easy to
determine. However, if we consider a perturbation with several harmonics,
as for example in Exercise 5.2, then the problem of finding the number and
position of the persistent unperturbed periodic solutions becomes more dif-
ficult. This illustrates a maxim that lies at the heart of many problems in
applied mathematics: The more realistic the model, the more difficult it is
to apply general theorems.

Maxim number two: General theorems are always too weak. If you work
hard and are fortunate, you might develop all of the ideas necessary to prove
a classic and beautiful theorem such as Theorem 5.1. You may then go to
your collaborator, a very good engineer, and proudly announce your result:
“If ... and ε is sufficiently small, then there is a periodic solution.” But you
know what is coming! Your collaborator will say, “That’s interesting, but
how small do I have to make the perturbation so that I can be sure there is
a periodic orbit?” You are now invited to find a computable number ε0 > 0
and a proof that periodic solutions exist at least for |ε| < ε0. If you succeed
in doing this for the model equation (5.2), then your collaborator will be
happy for a moment. But before long she comes back to you with a new
perturbation term in mind: “Does your method apply if we add ... ?”

When confronted with an applied problem, there is a natural tendency
for a mathematician to try to prove a theorem. Perhaps by now you feel
that your contribution to the applied project is not receiving enough credit.
But in fact your results are enormously valuable. You have answered some
basic questions so that new questions can be asked. However, you have done
much more: You have provided a way to understand why a periodic orbit
exists. After proving a few more theorems that apply to show the existence
of periodic orbits for a few more basic model equations, your understanding
of periodic orbits begins to coalesce into a theory that gives a conceptual
framework, which can be used by you, and others, to discuss the existence
of periodic orbits in systems that are too complex to analyze rigorously.

In general, the applied mathematician faces a highly nontrivial, perhaps
impossible, task when trying to rigorously verify the hypotheses of general
theorems for realistic models of physical systems. In fact, doing so might
require the development of a new area of mathematics. Most often, we are
left to face the realization that rigorous results can only be obtained for
simplified models. However, the analysis of a mathematical model, even a
simple one, deepens our understanding, sharpens our formulation of results,
forces us to seek new methods of analysis, and often reveals new phenom-
ena. In addition, rigorous results for simple models provide test cases that
can be used to debug implementations of numerical methods that we intend
to use to obtain predictions from more realistic models.
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When we return as mathematicians to confront a realistic model of our
original physical problem (the understanding of which is the real object of
the game), it is not always clear how to continue doing mathematics. In-
stead, we turn to computation and investigate numerical methods. Perhaps
we become experts in computer algebra, or we investigate computer graph-
ics in order to find useful visual representations of our data, and so on. But
when our simulations are implemented, we are happy to have knowledge of
the range of expected phenomena, we are happy to be able to test our code
on the simplified models we have rigorously analyzed, and we are happy
to verify numerically the hypotheses of a general theorem that we have
proved. All of this helps us gain confidence in our predictions.

By running our simulations, we find evidence for an answer to our origi-
nal physical question. But during the process, we might also see unexpected
results or we conceive new ideas to improve our simulations. These experi-
ences motivate us to find additional rigorous results. Thus, we are naturally
led back to questions in mathematics. And so it goes—a natural cycle that
will be repeated many times during our attempts to understand physical
phenomena.

Our technical skills will improve and our depth of understanding will
increase as we master more sophisticated mathematical methods and learn
from the experience of doing applied mathematics. The remainder of this
chapter is intended to help provide an example of an area of applicable
mathematics as well as the opportunity to gain some useful experience with
some types of differential equations that appear as mathematical models.

5.2 Autonomous Perturbations

In this section we will consider the periodic solutions of the system

u̇ = f(u) + εg(u), u ∈ R
2 (5.10)

where ε is a small parameter and the unperturbed system

u̇ = f(u) (5.11)

has periodic solutions. If the unperturbed differential equation (5.11) is
nonlinear, then there are at least two cases to consider in our search for
periodic solutions of system (5.10): system (5.11) has a limit cycle (see
Definition 1.119); and system (5.11) has an (invariant) annulus of periodic
solutions. In the limit cycle case, we wish to determine if the limit cycle
persists after perturbation; in the case of an invariant annulus of periodic
solutions, we wish to determine which, if any, of its constituent periodic
solutions persist.

Let us begin with the general assumption that the unperturbed sys-
tem (5.11) has a periodic solution Γ. To employ the method suggested in
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Section 5.1, we must define a displacement function. To do this, let us
choose a point v ∈ Γ and a curve Σ1 that is transverse to Γ at v. By
an application of the implicit function theorem, there is an open segment
Σ ⊆ Σ1 with v ∈ Σ and some ε0 > 0 such that for each σ ∈ Σ the so-
lution of the system (5.10) with |ε| < ε0 that has initial value σ returns
to Σ1 after some finite positive time. More precisely, there is a return
time function T : Σ × (−ε0, ε0) → R and a (parametrized) Poincaré map
P : Σ × (−ε0, ε0) → Σ1. The subset Σ ⊆ Σ1 is called a Poincaré section.

The usual definitions of Poincaré section and Poincaré map do not men-
tion a parametrized system. However, the important point in the definition
of the Poincaré section Σ is that solutions starting in Σ return to Σ1. Let us
also note that for each ε in the interval (−ε0, ε0) the corresponding Poincaré
map σ �→ P (σ, ε) is defined on the fixed Poincaré section Σ.

In the example in Section 5.1, the Poincaré section is a line. Here, by
allowing the Poincaré section Σ to be a curve, we create a new technical
problem: What is the definition of displacement on the manifold Σ? There
are at least two options. We could define ∆ : Σ × (−ε0, ε0) → R

2 by
∆(σ, ε) := P (σ, ε) − σ. However, if we do so, then the “displacement” is a
vector in R

2. Alternatively, if we view Σ1 as a one-dimensional manifold,
then we can define the displacement function δ : R× (−ε0, ε0) → R relative
to a local coordinate representation of Σ. Indeed, let us choose a function
σ : R → Σ ⊆ R

2 such that σ(0) = v and for each ξ ∈ R the vector σ̇(ξ)
is a nonzero tangent vector to Σ at σ(ξ). A displacement function is then
defined by

δ(ξ, ε) := σ−1(P (σ(ξ), ε)) − ξ. (5.12)

If we want to avoid local coordinates, then our näıve notion of distance
will have to be replaced by some measure of distance on the manifold Σ.
This could be a reason to study differential geometry! The introduction of
manifolds might seem unnecessarily complex, and certainly, the mention of
manifolds and local coordinates can be avoided as long as the discussion
is about curves. However, for generalizations of our continuation theory to
higher dimensional problems, these ideas are unavoidable. However, even in
the one-dimensional case, since we will have to compute partial derivatives
of the displacement, we must ultimately make some choice of local coordi-
nates. Hence, we may as well make this choice at the outset. Let us also
note that our analysis is based on the implicit function theorem. For this
reason, it is advantageous to study a function R×R → R, the usual context
for the implicit function theorem, rather than a function R×R → R

2. Thus,
we will work with the definition of displacement given by equation (5.12).

Consider the case where the unperturbed system (5.11) has a limit cycle
Γ with period 2π/ω and let δ be defined as in equation (5.12). We have
δ(0, 0) = 0. Also, because Γ is isolated among periodic solutions of the
system (5.11), the function ξ �→ δ(ξ, 0) does not vanish in some punctured
neighborhood of ξ = 0. Thus, in this case the function δ is already in a
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form where the implicit function theorem can be directly applied. In fact,
we have the following proposition: If δξ(0, 0) �= 0, then Γ persists. The
conclusion means that there is a continuous function ε �→ β(ε) defined in
some interval containing ε = 0 with β(0) = 0 and δ(β(ε), ε) ≡ 0. Also,
it is easy to identify δξ(0, 0). By the definition given in equation (5.12),
the number δξ(0, 0) + 1 is the local representative of the derivative of the
Poincaré map on Σ at {v} = Γ∩Σ. In other words, δξ(0, 0) �= 0 if and only
if the derivative of the Poincaré map is not the identity at v. A periodic
orbit in the plane with this property is called hyperbolic. More generally, a
periodic orbit Γ is hyperbolic if the derivative of the Poincaré map at v has
no eigenvalue with modulus one.

To identify δξ(0, 0) in terms of the function f , let

t �→ u(t, ζ, ε), ζ ∈ R
2, ε ∈ R

denote the solution of system (5.10) with initial condition u(0, ζ, ε) = ζ, and
define the local representation of the return time map T : R×(−ε0, ε0) → R

by T (ξ, ε) = T (σ(ξ), ε). From the definition of the displacement in dis-
play (5.12), we have

σ(δ(ξ, ε) + ξ) = P (σ(ξ), ε) = u(T (ξ, ε), σ(ξ), ε). (5.13)

Set ε = 0 and note that ξ �→ σ(δ(ξ, ε)+ξ) defines a curve in Σ1 ⊆ R
2. After

differentiation with respect to ξ at ξ = 0, we obtain an equality between
tangent vectors to Σ at v. In fact,

(δξ(0, 0) + 1)σ̇(0) = u̇(T (0, 0), v, 0)Tξ(0, 0) + uζ(T (0, 0), v, 0)σ̇(0)
= Tξ(0, 0)f(v) + uζ(2π/ω, v, 0)σ̇(0). (5.14)

To be (absolutely) precise, the left hand side is

σ∗(0)
[
(δξ(0, 0) + 1)

∂

∂ξ

]
where ∂

∂ξ denotes the unit tangent vector to R at ξ = 0 and σ∗(0) is the
linear map given by the differential of σ. This differential is a linear map
from the tangent space of R at ξ = 0 to the tangent space of Σ at v. We
represent this quantity as a vector in R

2 that is tangent to Σ at v:

σ∗(0)(δξ(0, 0) + 1)
∂

∂ξ
= (δξ(0, 0) + 1)σ∗(0)

∂

∂ξ
= (δξ(0, 0) + 1)σ̇(0).

Similar remarks apply to the identifications made on the right hand side.
An expression for δξ(0, 0) can be determined from equation (5.14) once

we compute the derivative uζ(2π/ω, v, 0). Let us note that by taking the
partial derivative with respect to ζ in the equations

u̇(t, ζ, 0) = f(u(t, ζ, 0)), u(0, ζ, 0) = ζ,
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it is easy to see that the function t �→ uζ(t, ζ, 0) is the matrix solution
of the homogeneous variational equation (also called the first variational
equation) given by

Ẇ = Df(u(t, ζ, 0))W (5.15)

with initial condition W (0) = I where Df denotes the derivative of the
function f . In other words, t �→ uζ(t, ζ, 0) is the principal fundamental
matrix solution of the system (5.15) at t = 0 and the desired derivative
uζ(2π/ω, v, 0) is just the value of the solution of the variational initial
value problem at t = 2π/ω.

Let ϕt(ζ) := u(t, ζ, 0) denote the flow of the differential equation (5.11)
and let t �→ Φ(t) denote the principal fundamental matrix solution of the
system (5.15) at t = 0. If f(ζ) �= 0 (as it is in the present case because
ζ ∈ Γ and Γ is a periodic orbit), then the vectors f(ϕt(ζ)) and f⊥(ϕt(ζ)) are
linearly independent for each t ∈ R. The following additional proposition
is simple but fundamental:

Φ(t)f(ζ) = f(ϕt(ζ)).

To prove it, note that Φ(0)f(ζ) = f(ζ) and

d

dt
f(ϕt(ζ)) = Df(ϕt(ζ))f(ϕt(ζ)).

Thus, t �→ f(ϕt(ζ)) and t �→ Φ(t)f(ζ) are solutions of the same initial value
problem, and therefore they must be equal.

Define f⊥ = Rf where R is the rotation matrix
(

0 −1
1 0

)
. Since f and

f⊥ are linearly independent at each point of the plane where f is nonzero,
there are two real-valued functions t �→ a(t, ζ) and t �→ b(t, ζ) such that

Φ(t)f⊥(ζ) = a(t, ζ)f(ϕt(ζ)) + b(t, ζ)f⊥(ϕt(ζ)). (5.16)

We will soon find useful formulas for a and b. However, using the definitions
just given, let us note that the fundamental matrix Φ(t) is represented as
a linear transformation from R

2, with the basis {f(ζ), f⊥(ζ)}, to R
2, with

the basis {f(ϕt(ζ)), f⊥(ϕt(ζ))}, by the matrix

Φ(t) =
(

1 a(t, ζ)
0 b(t, ζ)

)
. (5.17)

In equation (5.14), σ̇(0) is a tangent vector at v ∈ Σ ⊆ R
2. Hence, there

are real constants c1 and c2 such that

σ̇(0) = c1f(v) + c2f
⊥(v),

and therefore

(δξ(0, 0) + 1)(c1f(v) + c2f
⊥(v))

= Tξ(0, 0)f(v) + Φ(2π/ω)(c1f(v) + c2f
⊥(v))

= Tξ(0, 0)f(v) + c1f(v) + c2a(2π/ω, v)f(v) + c2b(2π/ω, v)f⊥(v).
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Moreover, because Σ is transverse to Γ, we have c2 �= 0. Using this fact and
the linear independence of f and f⊥, it follows that

δξ(0, 0) = b(2π/ω, v) − 1, (5.18)

Tξ(0, 0) = −c2a(2π/ω, v) + c1δξ(0, 0)

= −c2a(2π/ω, v) + c1(b(2π/ω, v) − 1). (5.19)

Let us identify the quantities a(2π/ω, v) and b(2π/ω, v) geometrically.
From equation (5.18), it is clear that b(2π/ω, v) is the (local representative
of the) derivative of the Poincaré map for the unperturbed system (5.11)
at {v} = Γ ∩ Σ. If σ̇(0) = −f⊥(v) (for example, if we take t �→ σ(t) to be
the solution of the differential equation u̇ = −f⊥(u) with initial condition
u(0) = v ), then c1 = 0, c2 = −1, and a(2π/ω, ζ) is the derivative of the
(local representative of the) return time map for (5.11) on Σ at v.

Recall that the Euclidean divergence and curl of the vector function
f : R

2 → R
2 with f(x, y) = (f1(x, y), f2(x, y)) are defined as follows:

div f(x, y) :=
∂f1

∂x
(x, y) +

∂f2

∂y
(x, y),

curl f(x, y) :=
∂f2

∂x
(x, y) − ∂f1

∂y
(x, y).

Also, the scalar curvature function of the smooth curve t �→ (x(t), y(t)) is
given by

κ :=
ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2 .

We will write κ(t, ζ) to denote the scalar curvature along the curve t �→
ϕt(ζ) given by the phase flow ϕt of an autonomous planar differential equa-
tion.

Theorem 5.5 (Diliberto’s Theorem). Let ϕt denote the flow of the dif-
ferential equation u̇ = f(u), u ∈ R

2. If f(ζ) �= 0, then the principal funda-
mental matrix solution t �→ Φ(t) at t = 0 of the homogeneous variational
equation

Ẇ = Df(ϕt(ζ))W

is such that

Φ(t)f(ζ) = f(ϕt(ζ)),

Φ(t)f⊥(ζ) = a(t, ζ)f(ϕt(ζ)) + b(t, ζ)f⊥(ϕt(ζ))

where

b(t, ζ) =
|f(ζ)|2

|f(ϕt(ζ))|2 e
∫ t
0 div f(ϕs(ζ)) ds, (5.20)

a(t, ζ) =
∫ t

0

(
2κ(s, ζ)|f(ϕs(ζ))| − curl f(ϕs(ζ))

)
b(s, ζ) ds. (5.21)



5.2 Autonomous Perturbations 331

The integral formulas (5.20) and (5.21) for a(t, ζ) and b(t, ζ) seem to
have been first obtained by Stephen P. Diliberto [57]. However, his formula
for a(t, ζ) incorrectly omits the factor 2 of the curvature term.

Proof. By definition

t �→ a(t)f(ϕt(ζ)) + b(t)f⊥(ϕt(ζ))

is the solution of the variational equation (5.15) with initial value f⊥(ζ).
In particular, a(0) = 0, b(0) = 1, and

a(t)Df(ϕt(ζ))f(ϕt(ζ))
+ a′(t)f(ϕt(ζ)) + b(t)Df⊥(ϕt(ζ))f(ϕt(ζ)) + b′(t)f⊥(ϕt(ζ))

= a(t)Df(ϕt(ζ))f(ϕt(ζ)) + b(t)Df(ϕt(ζ))f⊥(ϕt(ζ)). (5.22)

After taking the inner product with f⊥(ϕt(ζ)) and suppressing the argu-
ments of various functions, we obtain the equation

b′|f |2 = b
(
〈Df · f⊥, f⊥〉 − 〈Df⊥ · f, f⊥〉

)
.

Since f⊥ = Rf , where R =
( 0 −1

1 0

)
, we have

〈Df⊥ · f, f⊥〉 = 〈RDf · f, Rf〉 = 〈Df · f, f〉

and
b′|f |2 = b(〈Df · f⊥, f⊥〉 + 〈Df · f, f〉 − 2〈Df · f, f〉).

By an easy (perhaps lengthy) computation, it follows that

b′ = b div f − b
d

dt
ln |f |2.

The solution of this differential equation with the initial condition b(0) = 1
is exactly formula (5.20).

From equation (5.22), taking the inner product this time with f(ϕt(ζ)),
we obtain

a′|f |2 = b(〈Df · f⊥, f〉 − 〈Df⊥ · f, f〉)
= b(〈f⊥, (Df)∗f〉 − 〈RDf · f, f〉)
= b(〈f⊥, (Df)∗f〉 + 〈f⊥, Df · f〉)
= b(〈f⊥, 2Df · f〉 + 〈f⊥, ((Df)∗ − (Df))f〉)

(5.23)

where ∗ denotes the transpose. Also, by simple computations, we have

〈f⊥, 2Df · f〉 = 2κ|f |3,
〈f⊥, ((Df)∗ − (Df))f〉 = −|f |2 curl f

where the scalar curvature κ, the curl, and the other functions are eval-
uated on the curve t �→ ϕt(ζ). After substitution of these formulas into
equation (5.23), an integration yields formula (5.21). �
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Recall that the periodic orbit Γ is hyperbolic if the derivative of the
Poincaré map on Σ at v = Γ ∩ Σ has no eigenvalue with modulus one.
By our geometric identification, this derivative is just b(2π/ω, v). Using
the fact that |f(ϕ2π/ω(v))| = |f(v)| and Diliberto’s theorem, we have the
identification

b(2π/ω, v) = e
∫ 2π/ω
0 div f(ϕt(v)) dt.

Thus, the derivative of the Poincaré map is independent of the choice of
section Σ. In addition, by a change of variables, it is easy to see that the
derivative does not depend on v ∈ Γ. These remarks give an alternate proof
of Proposition 2.88, which we restate here in a slightly different form.

Proposition 5.6. A periodic solution t �→ ϕt(ζ) of u̇ = f(u) with period
2π/ω is hyperbolic if and only if∫ 2π/ω

0
div f(ϕt(ζ)) dt �= 0. (5.24)

Also, using equation (5.18) together with the implicit function theorem,
we have a theorem on persistence.

Theorem 5.7. A hyperbolic periodic solution of the differential equation
u̇ = f(u) persists for autonomous perturbations.

Exercise 5.8. Prove: If ϕt is the flow of the differential equation ẋ = f(x) with
the periodic orbit Γ, then

∫ 2π/ω

0 div f(ϕt(ζ)) dt does not depend on the choice of
ζ ∈ Γ.

Exercise 5.9. With respect to Proposition 5.6, suppose that Γ is the periodic
orbit corresponding to the periodic solution t �→ ϕt(ζ). Show that the inequality

∫
Γ

div f(z) dz < 0

is not sufficient to prove that Γ is a stable limit cycle.

Exercise 5.10. Suppose that Γ is a hyperbolic periodic solution with period
T of the planar system u̇ = f(u); and, using the notation of Diliberto’s theorem,
define

g(ϕt(ζ)) =
1

b(t, ζ)

( a(T, ζ)
b(T, ζ) − 1

+ a(t, ζ)
)
f(ϕt(ζ)) + f⊥(ϕt(ζ)).

Prove the following facts: (i) Φ(t)g(ζ) = b(t, ζ)g(ϕt(ζ)), (ii) g(ϕT (ζ)) = g(ζ),
and (iii) the vector g is nowhere parallel to f .

Exercise 5.11. Suppose that u̇ = f(u), u ∈ R
n has a periodic orbit Γ cut

transversely by an (n−1)-dimensional surface Σ ⊆ R
n. Here, transversality means

that f(v) is not tangent to Σ for v = Γ∩Σ. Show that the analogue of Theorem 5.7
is valid in this context. Hint: The ideas of this section apply. However, there is
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no obvious substitute for Diliberto’s formulas. Use the definition of hyperbolicity,
that is, the derivative of the Poincaré map on Σ at v has its spectrum off the unit
circle in the complex plane; and then proceed abstractly by following the same
argument presented for Theorem 5.7. Is the hyperbolicity hypothesis necessary
when n > 2. Can you prove a stronger result?

Exercise 5.12. Obtain equation (5.20) using Liouville’s formula (2.15). Warn-
ing: At first sight, in the context of equation (5.20), it appears that the funda-

mental matrix for system (5.15) is given by
( 1 a(t)

0 b(t)

)
relative to the basis

{f(ϕt(ζ)), f⊥(ϕt(ζ))}.

However, this matrix does not represent the fundamental matrix solution in
any fixed basis. Rather, it represents a transition from the initial basis given
by {f(ζ), f⊥(ζ)} to the basis {f(ϕt(ζ)), f⊥(ϕt(ζ))}.

Problem 5.13. How can Diliberto’s theorem be generalized to the case of vari-
ational equations for differential equations defined in R

n for n > 2? A solution of
this exercise together with some examples would perhaps make a nice research
article.

To determine the persistence of periodic orbits of the differential equa-
tion (5.11), our main hypothesis, δξ(0, 0) �= 0, is equivalent to requiring
the unperturbed periodic solution to be hyperbolic. Let us consider the
continuation problem for nonhyperbolic periodic orbits.

If an unperturbed planar periodic orbit is not hyperbolic, then we cannot
determine an implicit solution of the equation δ(ξ, ε) = 0 by a direct appli-
cation of the implicit function theorem. Instead, the main new tool for the
analysis is the (Weierstrass) preparation theorem. The following statement
is a special case of this important result (see [6], [24], and [49]).

Theorem 5.14 (Preparation Theorem). If δ : R × R → R is analytic
(or C∞) and

δ(0, 0) =
∂δ

∂ξ
(0, 0) =

∂2δ

∂ξ2 (0, 0) = · · · =
∂n−1δ

∂ξn−1 (0, 0),
∂nδ

∂ξn
(0, 0) �= 0,

then there are n smooth functions ai : R → R defined near ε = 0 and a
function U : R × R → R defined near ξ = 0, ε = 0 such that ai(0) = 0,
i = 1, . . . , n, U(0, 0) �= 0 and

δ(ξ, ε) = (a0(ε) + a1(ε)ξ + · · · + an−1(ε)ξn−1 + ξn)U(ξ, ε).

The name “preparation theorem” derives from the fact that the function
δ, written in the form given in the conclusion of the theorem, is prepared
for a study of its zeros. Moreover, because U(0, 0) �= 0 (such a function U
is called a unit in the algebra of functions defined in a neighborhood of the
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origin), the zeros of the function δ(ξ, ε) near (ξ, ε) = (0, 0) are exactly the
zeros of the Weierstrass polynomial

a0(ε) + a1(ε)ξ + · · · + an−1(ε)ξn−1 + ξn.

In particular, there are at most n zeros for each fixed ε near ε = 0.
For the case where δ is the displacement function associated with a pe-

riodic orbit Γ, the multiplicity of Γ is defined to be the degree n of the
Weierstrass polynomial. If n = 1, then Γ is hyperbolic and exactly one
continuation point of periodic solutions exists for |ε| �= 0 sufficiently small.
It follows from the preparation theorem that if Γ has multiplicity n, then
there is some choice of the function g in the differential equation (5.10) such
that n families of periodic solutions bifurcate from Γ at ε = 0. However, for
each specific perturbation, the actual number of continuations can only be
determined by analyzing the coefficients of the Weierstrass polynomial.

Exercise 5.15. Show that the system

ẋ = −y + x(x2 + y2 − 1)2,

ẏ = x + y(x2 + y2 − 1)2 (5.25)

has a limit cycle with multiplicity 2.

As an illustration of the ideas just presented, let us analyze the contin-
uation problem for a periodic orbit Γ with multiplicity 2.

Using the displacement function δ associated with Γ, we have that

δ(0, 0) = δξ(0, 0) = 0, δξξ(0, 0) �= 0,

and, by the preparation theorem,

δ(ξ, ε) = (a0(ε) + a1(ε)ξ + ξ2)U(ξ, ε) (5.26)

where a0(0) = 0, a1(0) = 0, but U(0, 0) �= 0. We will solve for ξ implicitly
with respect to ε. But, in anticipation of a bifurcation at ε = 0, we cannot
expect to have a smooth continuation given by a function ε �→ β(ε) such
that β(0) = 0 and δ(β(ε), ε) ≡ 0. More likely, there are implicit solutions
defined for ε > 0 or ε < 0, but not both. For this reason, we say there are N
positive branches at the bifurcation point (0, 0) if there is some ε0 > 0 and
N continuous functions β1, . . . , βN , each defined for 0 ≤ ε < ε0 such that
for each j = 1, . . . , N , βj(0) = 0, and δ(βj(ε), ε) ≡ 0. Negative branches are
defined analogously for −ε0 < ε ≤ 0. Of course, the number and position
of the branches is determined by the roots of the Weierstrass polynomial.

With respect to the Weierstrass polynomial in display (5.26), we have

a0(ε) = a01ε + O(ε2), a1(ε) = O(ε),
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and therefore the roots of this Weierstrass polynomial are given by

ξ = β(ε) =
−a1(ε) ±

√
−4a01ε + O(ε2)
2

.

If ε �= 0 has fixed sign and a01ε > 0, then there are no real branches. On
the other hand, if a01ε < 0, then there are two real branches given by

β1(ε) =
√

−a01ε + O(ε), β2(ε) = −
√

−a01ε + O(ε).

To identify the coefficient a01, compute the derivatives

δε(0, 0) = a01U(0, 0),
δξξ(0, 0) = 2U(0, 0),

and note that

a01 = 2δε(0, 0)/δξξ(0, 0). (5.27)

Of course δξξ(0, 0) is just the second derivative of the unperturbed Poincaré
map, that is, the map ξ �→ σ−1P (σ(ξ), 0). A formula for the derivative
δε(0, 0) will be computed below.

Let us apply the result in equation (5.27) to the bifurcation of limit cycles
for the system

ẋ = − y + x(x2 + y2 − 1)2,

ẏ =x + y(x2 + y2 − 1)2 + ε(x2 − 1)y. (5.28)

By a change to polar coordinates, we have the equivalent system

ṙ =r(r2 − 1)2 + εr sin2 θ(r2 cos2 θ − 1),

θ̇ =1 + ε cos θ sin θ(r2 cos2 θ − 1).

Note that, for r near r = 1, if ε is sufficiently small, then we can treat θ as
a time-like variable and obtain the following differential equation for r:

dr

dθ
= F (r, θ, ε) :=

r(r2 − 1)2 + εr sin2 θ(r2 cos2 θ − 1)
1 + ε cos θ sin θ(r2 cos2 θ − 1)

. (5.29)

Also, for each ξ near ξ = 1, let us define the function θ �→ r(θ, ξ, ε) to be the
unique solution of the differential equation (5.29) with the initial condition
r(0, ξ, ε) = ξ.

Note that the displacement function is given by δ(ξ, ε) = r(2π, ξ, ε) − ξ.
Thus, to compute the partial derivative δξ(ξ, ε), it suffices to solve the
variational initial value problem

ṙξ = Fr(r(θ, ξ, ε), ξ, ε)rξ, rξ(0, ξ, ε) = 1
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to obtain the useful formula

rξ(θ, ξ, ε) = e
∫ θ
0 Fr(r(s,ξ,ε),ξ,ε) ds.

By Exercise 5.15, the point ξ = 1 corresponds to the unperturbed limit
cycle. Thus, if we view ξ as a coordinate on the positive x-axis, then
δ(1, 0) = r(2π, 1, 0) − 1 = 0. Moreover, we have

rξ(2π, ξ, 0) = e
∫ 2π
0 (r2−1)(5r2−1) dθ,

and therefore δξ(1, 0) = 0. By taking one more derivative with respect to
ξ, let us note that

δξξ(1, 0) = rξξ(2π, 1, 0) =
∫ 2π

0
8rξ dθ = e16π.

To compute δε(1, 0), solve the variational initial value problem

ṙε = r sin2 θ(r2 cos2 θ − 1), rε(0, 1, 0) = 0

to obtain

rε(2π, 1, 0) = −
∫ 2π

0
sin4 θ dθ < 0.

In particular, δε(1, 0) < 0, and, by using equation (5.27), we can conclude
there are two branches of periodic solutions for small ε > 0. One branch
consists of stable limit cycles; the other branch consists of unstable limit
cycles. We will outline the method for proving this fact, but the details are
left to the reader.

The stability of the perturbed limit cycles is determined by δξ(β(ε), ε). In
fact, the orbit is unstable if δξ(β(ε), ε) > 0 and stable if δξ(β(ε), ε) < 0. To
prove this claim, recall that δ(ξ, ε) = σ−1(P (σ(ξ), ε)) − ξ and the stability
type is determined by the derivative of the Poincaré map. Since δξ(0, 0) =
0, the stability type for small ε is determined by the sign of δεξ(0, 0). If
δεξ(0, 0) > 0 and a branch of continued periodic solutions exists for ε > 0,
then the branch is unstable. If the branch exists for ε < 0, then the branch
is stable. If δεξ(0, 0) < 0 and the branch exists for ε > 0, then it is stable,
whereas, if the branch exists for ε < 0, then it is unstable.

We now have discussed a complete analysis for autonomous perturbations
in case Γ is hyperbolic, and we have just indicated how to approach the
problem when Γ has finite multiplicity. Let us consider the case where Γ
has infinite multiplicity; that is, when δ(ξ, 0) ≡ 0. This, of course, is not
quite correct if by infinite multiplicity we mean that all partial derivatives
of the displacement function δ with respect to ξ vanish at (ξ, ε) = (0, 0);
maybe δ is infinitely flat but still δ(ξ, 0) �= 0 for ξ �= 0. However, if δ
is analytic (it will be if the differential equation (5.10) is analytic), then
infinite multiplicity at the point ξ = 0 does imply that δ(ξ, 0) ≡ 0.
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Exercise 5.16. Give an example of an infinitely flat limit cycle: The periodic
orbit is isolated but ∂kδ/∂ξk(0, 0) = 0 for k = 1, 2, 3, . . . .

Suppose that δ(ξ, 0) ≡ 0 and consider the perturbation series

δ(ξ, ε) = δε(ξ, 0)ε +
1
2!

δεε(ξ, 0)ε2 + O(ε3).

Note that

δ(ξ, ε) = ε(δε(ξ, 0) + O(ε)). (5.30)

Here, since δ(ξ, 0) ≡ 0, the periodic orbit Γ is contained in a period annulus;
that is, an annulus in the plane consisting entirely of periodic orbits of the
unperturbed differential equation (5.11) (see, for example, Figure 3.2).

Although we could consider continuations from the fixed periodic orbit
Γ, it is traditional to consider all of the periodic orbits in the period annu-
lus together. Let us determine if any of the periodic orbits in the annulus
persist. For this problem, if we recall equation (5.30) and use the implicit
function theorem, then the reduction step is easy: A simple zero of the
function ξ �→ δε(ξ, 0) is a continuation point of periodic solutions. Equiva-
lently, if δε(ξ0, 0) = 0 and δξε(ξ0, 0) �= 0, then the periodic solution Γξ0 of
the unperturbed system (5.11) with initial value σ(ξ0) ∈ Σ persists.

For the identification step, we will find a useful formula for δε(ξ, 0). Let
us first compute the partial derivative with respect to ε in equation (5.13)
to obtain the identity

δε(ξ, 0)σ̇(ξ) = Tε(ξ, 0)f(σ(ξ)) + uε(T (ξ, 0), σ(ξ), 0), (5.31)

and note that t �→ uε(t, σ(ξ), 0) is the solution of the inhomogeneous vari-
ational initial value problem

Ẇ = Df(ϕt(σ(ξ)))W + g(ϕt(σ(ξ))), W (0) = 0, (5.32)

where the initial condition follows from the fact that u(0, σ(ξ), 0) ≡ σ(ξ).
(The differential equation in display (5.32) is also called the second varia-
tional equation.)

By the variation of constants formula,

uε(T (ξ, 0), σ(ξ), 0) = Φ(T (ξ, 0))
∫ T (ξ,0)

0
Φ−1(s)g(ϕs(σ(ξ))) ds

where Φ(t) denotes the principal fundamental matrix solution of the sys-
tem (5.15) at t = 0.

Let us use the identifications given in equations (5.20) and (5.21) by first
expressing the function g in the form

g(ϕt(σ(ξ))) = c1(t, σ(ξ))f(ϕt(σ(ξ))) + c2(t, σ(ξ))f⊥(ϕt(σ(ξ)))
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with

c1(t, σ(ξ)) =
1

|f(ϕt(σ(ξ)))|2 〈g(ϕt(σ(ξ))), f(ϕt(σ(ξ)))〉,

c2(t, σ(ξ)) =
1

|f(ϕt(σ(ξ)))|2 〈g(ϕt(σ(ξ))), f⊥(ϕt(σ(ξ)))〉

:=
1

|f(ϕt(σ(ξ)))|2 f(ϕt(σ(ξ))) ∧ g(ϕt(σ(ξ))).

Also, note that the inverse of the matrix (5.17) represents the action of
the inverse of the principal fundamental matrix at t = 0 from the span of
{f, f⊥} at u(t, σ(ξ), 0) to the span of {f, f⊥} at σ(ξ). Likewise, the matrix
in equation (5.17) evaluated at T (ξ, 0) is the matrix representation of the
fundamental matrix with respect to the basis {f, f⊥} at σ(ξ). Thus, we
have that

Φ(T (ξ, 0)) =
(

1 a(T (ξ, 0), σ(ξ))
0 b(T (ξ, 0), σ(ξ))

)
,

Φ−1(s)g(ϕs(σ(ξ))) =
1

b(s, σ(ξ))

(
b(s, σ(ξ)) −a(s, σ(ξ))

0 1

)(
c1(s, σ(ξ))
c2(s, σ(ξ))

)
,

and

uε(T (ξ, 0), ξ, 0) = (N (ξ) + a(T (ξ, 0), σ(ξ))M(ξ))f(σ(ξ))
+ b(T (ξ, 0), σ(ξ))M(ξ)f⊥(σ(ξ)) (5.33)

where

M(ξ) :=
∫ T (ξ,0)

0

1
b(t, σ(ξ))|f(ϕt(σ(ξ)))|2 f(ϕt(σ(ξ))) ∧ g(ϕt(σ(ξ))) dt

=
1

|f(σ(ξ))|2

×
∫ T (ξ,0)

0
e− ∫ t

0 div f(ϕs(σ(ξ)))f(ϕt(σ(ξ))) ∧ g(ϕt(σ(ξ))) dt,

N (ξ) :=
∫ T (ξ,0)

0

1
|f(ϕt(σ(ξ)))|2 〈g(ϕt(σ(ξ))), f(ϕt(σ(ξ)))〉 dt

−
∫ T (ξ,0)

0

a(t, σ(ξ))
b(t, σ(ξ))|f(ϕt(σ(ξ)))|2 f(ϕt(σ(ξ))) ∧ g(ϕt(σ(ξ))) dt.

After taking the inner product of both sides of the equation (5.31) with
the vector f⊥(σ(ξ)), and using the formulas for M and N , the quantity
δε(ξ, 0) is seen to be given by

δε(ξ, 0) =
b(T (ξ, 0), σ(ξ))|f(σ(ξ))|2

〈σ̇(ξ), f⊥(σ(ξ))〉 M(ξ). (5.34)
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In this formula, 〈σ̇, f⊥〉 �= 0 because Σ is transverse to the unperturbed
periodic solutions, and b(t, ζ) �= 0 because |f | does not vanish along the
unperturbed periodic orbit.

The autonomous Poincaré–Andronov–Melnikov function is defined by

M(ξ) :=
∫ T (ξ,0)

0
e− ∫ t

0 div f(ϕs(σ(ξ))) dsf(ϕt(σ(ξ))) ∧ g(ϕt(σ(ξ))) dt. (5.35)

Here, ξ �→ T (ξ, 0) is a local representation of the period function associated
with the period annulus of the differential equation (5.11); the number
T (ξ, 0) is the minimum period of the periodic orbit labeled by ξ, that is,
the orbit passing through the point in the plane with coordinates (ξ, 0).
It should be clear that values of the function M are independent of the
choice of Poincaré section. In fact, as long as ξ is a smooth parameter for
the periodic solutions in our period annulus, the value of M at a particular
periodic solution is not altered by the choice of the parametrization.

Theorem 5.17. Suppose that the differential equation (5.11) has a period
annulus A whose periodic solutions are parametrized by a smooth function
σ : R → A given by ξ �→ σ(ξ). If ξ0 is a simple zero of the function
ξ �→ M(ξ) given by the formula (5.35) for the perturbed system (5.10),
then the periodic solution of the unperturbed system (5.11) passing through
ξ0 is continuable.

Proof. This result follows immediately from the formula (5.34) and the
fact that simple zeros of ξ �→ δε(ξ, 0) persist. We only remark that, in
general, if α(ξ) = β(ξ)γ(ξ) with β(ξ) nonvanishing, then the simple zeros
of α and γ coincide. �

Exercise 5.18. Find the continuable periodic solutions of the perturbed har-
monic oscillator in each of the following systems:

1. weakly damped van der Pol equation:

ẍ + ε(x2 − 1)ẋ + ω2x = 0;

2. nonlinear weakly damped van der Pol equation:

ẍ + ε(x2 − 1)ẋ + ω2x − ελx3 = 0;

3. modified van der Pol equation:

ẍ + ε(x2 + ẋ2 − 1)ẋ + x = 0.
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5.3 Nonautonomous Perturbations

Let us consider the periodic solutions of the nonautonomous periodically
perturbed system

u̇ = f(u) + εg(u, t, ε), u ∈ R
2. (5.36)

More precisely, let us suppose that the unperturbed system has a periodic
solution Γ whose period is 2π/ω and that t �→ g(u, t, ε) is periodic with
period

η := η(ε) =
n

m

2π

ω
+ kε + O(ε2) (5.37)

where n, m are relatively prime positive integers and k ∈ R is the “detuning
parameter.” In particular, at ε = 0 we have

mη(0) = n
2π

ω
(5.38)

and we say that the periodic solution Γ is in (m : n) resonance with the
perturbation g. Equation (5.38) is called a resonance relation. If, as before,
we let t �→ u(t, ζ, ε) denote the solution of the differential equation (5.36)
with initial condition u(0, ζ, ε) = ζ in R

2, then we have that t �→ u(t, ζ, 0)
defines a 2π/ω-periodic function for each ζ ∈ Γ.

The nonautonomous differential equation (5.36) is equivalent to the first
order system

u̇ = f(u) + εg(u, τ, ε),
τ̇ = 1

(5.39)

in the extended phase plane. Due to the fact that g is a periodic function
of time, it is customary to view τ as an angular variable modulo η(ε). This
leads to the very useful geometric interpretation of the system (5.39) as a
differential system on the phase cylinder R

2 × T where

T := {e2πiτ/η(ε) : τ ∈ R}.

There is an annular region A ⊆ R
2 containing Γ and some ε0 > 0 such

that Σ = A×{1} ⊆ R
2 ×T is a Poincaré section for the system (5.39) with

associated (parametrized) Poincaré map P : Σ× (−ε0, ε0) → R
2 defined by

(ζ, 1, ε) �→ u(η(ε), ζ, ε).

However, because the set A × {1} is naturally identified with A, we will
view the Poincaré map as the map P : A × (−ε0, ε0) → R

2 given by

(ζ, ε) �→ u(η(ε), ζ, ε). (5.40)
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FIGURE 5.2. The left panel depicts an orbit on a invariant cylinder starting at
ζ and returning to the Poincaré section at τ = 0 for the Poincaré map (5.40).
The right panel is a schematic depiction of the same orbit on the torus formed
by identifying the Poincaré section at τ = 0 with the plane at τ = η(ε). If the
orbit were to close on the mth return to the section, it would be an (m : 1)
subharmonic.

We are going to look for (m : n) subharmonic solutions of the perturbed
system (5.36), that is, periodic solutions of the differential equation (5.36)
with period mη(ε). They correspond to periodic points of period m for
the Poincaré map. Actually, there is a finer classification of such solutions
that is often made as follows: A periodic solution is called a harmonic if it
closes at the first pass through the Poincaré section after rotating once in
the T direction. Harmonics are associated with (1 : 1) resonance. A periodic
solution is called a subharmonic of order m if it closes at the mth pass,
m > 1, through the Poincaré section after rotating once in the T direction.
The name “subharmonic” is used because the frequency 2π/(mη(ε)) is a
submultiple of the frequency 2π/η(ε) of the perturbation. Subharmonics
are associated with (m : 1) resonance with m > 1. A periodic solution
is called an (m, n) ultrasubharmonic if it closes at the mth pass through
the Poincaré section after rotating n times, n > 1, in the T direction.
Ultrasubharmonics are associated with (m : n) resonance with n > 1. The
geometry of subharmonic orbits in the extended phase plane is depicted in
Figure 5.2.

The key point derived from our geometric interpretation of the perturba-
tion problem is the following: A periodic point of period m for the Poincaré
map is a periodic solution with period mη(ε) for the system (5.36). To see
this, let ζ be a periodic point of period m so that

u(mη(ε), ζ, t) = ζ.

Consider the solution t �→ u(t, ζ, ε) of the system (5.36) and the function
given by

v(t) := u(t + mη(ε), ζ, ε),

and note that
v̇ = f(v) + εg(v, t + mη(ε), ε).

Using the periodicity of g, this last equation simplifies to yield

v̇ = f(v) + εg(v, t, ε),
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and therefore t �→ v(t) is a solution of the differential equation (5.36). As
v(0) = ζ and u(0, ζ, ε) = ζ, the solutions t �→ u(t, ζ, ε) and t �→ v(t) must be
the same; that is, u(t+mη(ε), ζ, ε) = u(t, ζ, ε) and the function t �→ u(t, ζ, ε)
is mη(ε)-periodic.

As before, let us define the (parametrized) displacement function δ :
A × (−ε0, ε0) → R

2 by

δ(ζ, ε) = u(mη(ε), ζ, ε) − ζ. (5.41)

Here there is no need for a local coordinate representation via a coordinate
chart: Points in the domain A × (ε0, ε0) ⊂ R

2 × R are already expressed in
local coordinates.

Clearly, if ζ ∈ Γ, where Γ is a resonant periodic solution of the differential
equation (5.11), then δ(ζ, 0) = 0; in effect,

δ(ζ, 0) = u(mη(0), ζ, 0) − ζ = u(m
n

m

2π

ω
, ζ, 0) − ζ = 0.

To see if Γ persists, we would like to apply the implicit function theorem
to the function δ at the point (ζ, 0) where δ(ζ, 0) = 0. Thus, we would like
to show that the linear map δζ(ζ, 0) : R

2 → R
2 is invertible. However, for

a point ζ that lies on a resonant periodic solution Γ, this map always has
a nontrivial kernel. In fact, we have that δζ(ζ, 0)f(ζ) ≡ 0 for ζ ∈ Γ. This
result is geometrically obvious. But to construct an analytic proof, let us
use the definition of the directional derivative and the group property of
the unperturbed flow to obtain the identity

δζ(ζ, 0)f(ζ) =
d

dt
δ(u(t, ζ, 0), 0)

∣∣
t=0

=
d

dt
(u(2πn/ω, u(t, ζ, 0), 0) − u(t, ζ, 0))

∣∣
t=0

=
d

dt
(u(2πn/ω + t, ζ, 0) − u(t, ζ, 0))

∣∣
t=0

= f(u(2πn/ω, ζ, 0)) − f(ζ) = 0.

(5.42)

We have just proved that the kernel of the linear transformation δζ(ζ, 0)
contains the subspace generated by f(ζ). Here and hereafter we will let
[v] denote the subspace spanned by the enclosed vector. In particular, we
have [f(ζ)] ⊆ Kernel δζ(ζ, 0). The analysis to follow later in this chapter
falls naturally into two cases: [f(ζ)] = Kernel δζ(ζ, 0) and Kernel δζ(ζ, 0) =
R

2. After a short section devoted to the continuation of periodic orbits
from unperturbed rest points where the kernel of the derivative of the
displacement can be trivial, we will develop some of the theory required to
determine the continuable periodic orbits in each of these two cases.
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5.3.1 Rest Points
Let us suppose that the unperturbed system

u̇ = f(u),

derived from the system (5.36) by setting ε = 0, has a rest point u = ζ.
This point is a fixed point of the unperturbed Poincaré map and a zero
of the unperturbed displacement function. In particular, the rest point
corresponds to a periodic solution of the artificially autonomous system

u̇ = f(u), τ̇ = 1, (5.43)

where τ is considered as an angular variable modulo η(0). To determine if
the corresponding periodic solution continues, we have the following theo-
rem.

Theorem 5.19. If ζ is a rest point for the unperturbed system u̇ = f(u)
derived from the system (5.36), and the Jacobian matrix Df(ζ) has no
eigenvalue of the form 2πNi/η where N is an integer, then the periodic
orbit with period η(0) for system (5.43) corresponding to ζ persists as an
η(ε)-periodic solution of equation (5.36).

Proof. The partial derivative

δζ(ζ, 0) = uζ(η(0), ζ, 0) − I

is easily computed by solving the variation initial value problem

Ẇ = Df(ζ)W, W (0) = I

to obtain

δζ(ζ, 0) = eηDf(ζ) − I.

The matrix δζ(ζ, 0) is invertible if and only if the number one is not an
eigenvalue of eηDf(ζ). Thus, the desired result follows from Theorem 2.52
and the implicit function theorem. �

Exercise 5.20. Describe the bifurcations of rest points that may occur in case
2πNi/η is an eigenvalue of Df(ζ) for some integer N .

5.3.2 Isochronous Period Annulus
If the coordinate neighborhood A ⊂ R

2 containing the unperturbed peri-
odic orbit Γ is a period annulus A, it is possible that every periodic solution
in A has the same period, that is, the period annulus is isochronous. In
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this case, if a resonance relation holds for one periodic solution in A, then
it holds for all of the periodic solutions in A. We will determine the con-
tinuable periodic solutions for an unperturbed system with an isochronous
period annulus.

Note that a period annulus for a linear system is necessarily isochronous.
Perhaps less obvious is the fact that there are nonlinear systems with
isochronous period annuli.

Exercise 5.21. Prove that the following systems have isochronous period an-
nuli.

1. ẍ + 1 − √
1 + 2x = 0.

2. (Loud’s system) ẋ = −y + Bxy, ẏ = x + Dx2 + Fy2 in case (D/B, F/B)
is one of the following:

(0, 1), (−1
2
, 2), (0,

1
4
), (−1

2
,

1
2
)

(see [36] and [112]).

Loud’s theorem states that every quadratic system with an isochronous period
annulus can be transformed by a linear change of coordinates to one of the four
systems mentioned above. An interesting unsolved pure mathematics problem is
to determine the number and positions of critical points for the period functions
of the period annuli of Loud’s system as the parameters B, D, and F are varied.
For example, there are some period functions with two critical points. It is not
known if this is the maximum number (see [36]).

For the rest of this subsection, let us assume that the unperturbed sys-
tem (5.11) has an isochronous period annulus A where every periodic orbit
has period 2π/ω. In this case, δ(ζ, 0) ≡ 0 and δζ(ζ, 0) ≡ 0 for ζ ∈ A.

Because the perturbation series for the displacement function (see dis-
play (5.41)) has the form

δ(ζ, ε) = ε(δε(ζ, 0) + O(ε)),

we have the following proposition: A simple zero ζ of the function ζ �→
δε(ζ, 0) is an (ultra)subharmonic continuation point. In other words, there
is a number ε0 > 0 and a continuous function β : (−ε0, ε0) → R

2 given
by ε �→ β(ε) such that β(0) = ζ and δ(β(ε), ε) ≡ 0. Of course, β(ε) is the
initial value of a subharmonic solution of the differential equation (5.36).
This result is the now familiar reduction step of our analysis.

To identify the function ζ �→ δε(ζ, 0), we simply compute this partial
derivative from the definition of the displacement (5.41) to obtain

δε(ζ, 0) = mη′(0)f(ζ) + uε(mη(0), ξ, 0)
= mkf(ζ) + uε(2πn/ω, ζ, 0).
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As before, t �→ uε(t, ζ, 0) is the solution of a variational initial value prob-
lem, namely,

Ẇ = Df(ϕt(ζ))W + g(ϕt(ζ), t, 0), W (0) = 0

where ϕt is the flow of the unperturbed system. The solution of the ini-
tial value problem is obtained just as in the derivation of equation (5.33).
The only difference is the “nonautonomous” nature of g, but this does
not change any of the formal calculations. In fact, with the notation as in
equation (5.33), we obtain

uε(2πn/ω, ζ, 0) = (N (ζ) + a(2πn/ω, ζ)M(ζ))f(ζ)
+ b(2πn/ω, ζ)M(ζ)f⊥(ζ). (5.44)

By the geometric interpretation of the functions a and b given following
equation (5.19), these functions are readily reinterpreted in the present
context. In fact, since every orbit of our isochronous period annulus is not
hyperbolic, we must have b(2π/ω, ζ) = 1, and, since the period function is
constant, we also have a(2π/ω, ζ) = 0. Thus, we obtain the identity

δε(ζ, 0) = (mk + N (ζ))f(ζ) + M(ζ)f⊥(ζ). (5.45)

Exercise 5.22. Show that b(n2π/ω, ζ) = bn(2π/ω, ζ) and

a(2πn/ω, ζ) = a(2π/ω, ζ)
n−1∑
j=0

bj(2π/ω, ζ).

Theorem 5.23. Suppose the differential equation (5.36) is such that the
unperturbed system has an isochronous period annulus A with period 2π/ω
and the perturbation g(u, t, ε) has period ν(ε) = (n/m)2π/ω + kε + O(ε2)
where n and m are relatively prime positive integers. If the bifurcation
function B : A → R

2 given by ζ �→ (mk + N (ζ),M(ζ)) has a simple zero
ζ, then ζ is a continuation point of (m : n) (ultra)subharmonics for the
system (5.36).

Proof. The theorem follows from equation (5.45). Indeed, if

F (ζ) :=
(

f1(ζ) −f2(ζ)
f2(ζ) f1(ζ)

)
and B(ζ) :=

(
mk + N (ζ)

M(ζ)

)
,

then
B(ζ) = F (ζ) · B(ζ),

and the simple zeros of B coincide with the simple zeros of B. �

Theorem 5.23, specialized to the case where the unperturbed system is
linear, is slightly more general than Theorem 5.1. For example, suppose
that f(u) = Au where

A =
(

0 −ω
ω 0

)
, ω > 0.



346 5. Continuation of Periodic Solutions

Since div f ≡ 0 and |f | is constant on orbits, b(t, ζ) ≡ 1. Also, let us note
that

2κ(t, ζ)|f(ϕt(ζ))| − curl f(ϕt(ζ)) = 2
1
|ζ|ω|ζ| − 2ω = 0,

and therefore a(t, ζ) ≡ 0. (This is a good internal check that the formula
for a is correct!) Thus, in this special case,

N (ζ) =
∫ n2π/ω

0

1
|f(ϕt(ζ))|2 〈f(ϕt(ζ)), g(ϕt(ζ), t, 0)〉 dt,

M(ζ) =
1

|f(ζ)|2
∫ n2π/ω

0
f(ϕt(ζ)) ∧ g(ϕt(ζ), t, 0) dt.

More explicitly, we have that

N (ζ) =
1

ω|ζ|2
∫ n2π/ω

0
xg2(x, y, t, 0) − yg1(x, y, t, 0) dt,

M(ζ) = − 1
ω|ζ|2

∫ n2π/ω

0
xg1(x, y, t, 0) + yg2(x, y, t, 0) dt (5.46)

where

x := x(t, ζ) = ζ1 cos ωt − ζ2 sin ωt, y := y(t, ζ) = ζ1 sin ωt + ζ2 cos ωt.

Let us consider the stability of the perturbed (ultra)subharmonics. Note
that the “perturbation series” for the Poincaré map is given by

P (ζ, ε) = ζ + εPε(ζ, 0) + O(ε2),

and Pε(ζ, 0) = δε(ζ, 0). Thus, the formula for the partial derivative of the
Poincaré map with respect to ε is given by equation (5.45) and

P (ζ, ε) =
(

ζ1
ζ2

)
+ ε

(
kmω

(
−ζ2
ζ1

)
+

(∫ n2π/ω

0 g1 cos ωt + g2 sin wt dt∫ n2π/ω

0 g2 cos ωt − g1 sin wt dt

))
+ O(ε2) (5.47)

where g1 and g2 are evaluated at (x, y, t, 0).
It should be clear that the stability of the perturbed (ultra)subharmonics

is determined by the eigenvalues of the matrix Pζ(ζ, ε), called the linearized
Poincaré map evaluated at the fixed point of ζ �→ P (ζ, ε) correspond-
ing to the subharmonic. The subharmonic is stable if both eigenvalues lie
inside the unit circle in the complex plane. Of course, if the linearized
Poincaré map is hyperbolic, then the local behavior near the periodic orbit
is determined—stability is just a special case of this more general fact.
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It is not too difficult to show that if ε > 0 is sufficiently small, then
the matrix Pζ(ζ, ε) evaluated at the perturbed fixed point has both of its
eigenvalues inside the unit circle in the complex plane provided that each
eigenvalue of the matrix Pζε(ζ, 0) has negative real part. For ε < 0, each
eigenvalue of the matrix Pζε(ζ, 0) must have positive real part. Equivalently,
it suffices to have

det Pζε(ζ, 0) > 0, ε trPζε(ζ, 0) < 0.

The proof of this fact contains a pleasant surprise.
The perturbation series for the Poincaré map evaluated along the curve

ε �→ (β(ε), ε) has the form

Pζ(β(ε), ε) = I + εA + ε2B + O(ε3)

where A = Pζε(β(0), 0). In particular, we have used the fact that Pζζ(ζ, 0) =
0. The characteristic polynomial of the first order approximation of this
matrix, namely, I + εA, has coefficients that contain terms of second order
in ε. Thus, it appears that second order terms in the perturbation series
are required for computing the eigenvalues to first order. However, there is
an unexpected cancellation, and the eigenvalues, for ε > 0, are given by

1 + ε
1
2
(
trA ±

√
tr2 A − 4 det A

)
+ O(ε2). (5.48)

Using formula (5.48), it is easy to show that if the eigenvalues of A have
nonzero real parts, then the first order terms of the expansion determine
the stability. If A has an eigenvalue with zero real part, then higher order
terms in the perturbation expansion must be considered (see [131]).

General formulas for the eigenvalues of Pζε(ζ, 0) can be obtained in terms
of certain partial derivatives of M and N . However, such formulas are
usually not useful. A better approach is to use the special properties of the
system under investigation.

Exercise 5.24. Prove the statements following equation (5.48) concerning the
eigenvalues of the matrix Pζ(ζ, ε).

5.3.3 The Forced van der Pol Oscillator
In this subsection we will outline, by formulating a series of exercises, some
applications of the continuation theory (developed so far in this chapter)
to the classic case of the van der Pol oscillator. Also, we mention briefly
some of the additional structures that can be studied using our first order
methods.
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Exercise 5.25. Find the (ultra)subharmonics for the periodically forced van
der Pol oscillator

ẍ + ε(x2 − 1)ẋ + x = εa sinΩt.

In particular, for fixed a �= 0, find the regions in (Ω, ε) space near the line ε = 0
where (ultra)subharmonics exist.

The regions mentioned in Exercise 5.25 are called entrainment domains
or, in some of the electrical engineering literature, they are called synchro-
nization domains. We cannot determine the entire extent of the entrain-
ment domains because our first order theory is only valid for sufficiently
small |ε|. Higher order methods can be used to obtain more information
(see, for example, [124] and [86], and for some classic numerical experiments
[89]).

To use the formulas for M and N in display (5.46), let us consider the
first order system in the phase plane given by

ẋ = −y, ẏ = x + ε(−(x2 − 1)y − a sin Ωt).

Also, let us consider curves in the (Ω, ε) parameter space of the form ε �→
(Ω(ε), ε) where

Ω(ε) =
m

n
− k

(m

n

)2
ε + O(ε2),

η(ε) = 2π
n

m
+ kε + O(ε2).

To complete Exercise 5.25, start by looking for harmonics; that is, look
for periodic solutions of the perturbed system with periods close to 2π for
Ω near Ω = 1. Set m = n = 1. To help debug the computations for this
example, first try the case k = 0 where k is the detuning, and show that
there is a harmonic at the point (ζ1, ζ2) provided that ζ2 = 0 and ζ1 is a
root of the equation ζ3

1 −4ζ1 +4a = 0. This corresponds to perturbation in
the vertical direction in the parameter space. Show that the harmonic will
be stable if |ζ1| > 2 and that there is a unique (stable) harmonic in case
a = 1.

There is a very interesting difference between the (1 : 1) resonance and
the (m : n) resonance with m/n �= 1. To glimpse into this structure, con-
sider the (m : n) resonance where m/n �= 1 and use equation (5.47) to
compute the following first order approximation of the associated Poincaré
map:

ζ1 �→ ζ1 + ε
(

− kmζ2 + nπζ1 − nπ

4
ζ1(ζ2

1 + ζ2
2 )

)
,

ζ2 �→ ζ2 + ε
(
kmζ1 + nπζ2 − nπ

4
ζ2(ζ2

1 + ζ2
2 )

)
. (5.49)
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This map preserves the origin. Thus, it is natural to study the map in polar
coordinates where it is represented to first order by

r �→ r + εnπr
(
1 − r2

4

)
,

θ �→ θ + εmk. (5.50)

Here the first order formula in the rectangular coordinates goes over to
a formula in polar coordinates that contains higher order terms in ε that
have been deleted. Can we safely ignore these higher order terms?

For the (1 : 1) resonance with k included as a parameter, a similar first
order computation yields the map

ζ1 �→ ζ1 + ε
(

− kζ2 + πζ1 − aπ − π

4
ζ1(ζ2

1 + ζ2
2 )

)
,

ζ2 �→ ζ2 + ε
(
kζ1 + πζ2 − π

4
ζ2(ζ2

1 + ζ2
2 )

)
. (5.51)

Note that if this map preserves the origin, then a = 0. Thus, polar coor-
dinates are not the natural coordinates for studying this map. However, a
useful representation of the map is obtained by changing to the complex
coordinate z = ζ1 + iζ2 where the map is represented in the form

z �→ z + ε
(
(π + ki)z − 1

4
πz2z̄ − aπ

)
. (5.52)

We will that show the dynamics of the map defined in display (5.49) are
quite different from the dynamics of the map in display (5.51).

For the map (5.50), the circle r = 2 is an invariant set and every point
in the plane except the origin is attracted to this circle under iteration. On
the circle, the map gives a rational or an irrational rotation depending on
whether or not k is rational. In other words, an analysis of the dynamics
at this approximation suggests that there is an invariant torus in the phase
space of the differential equation and solutions of the differential equation
that do not start on the torus are attracted at an exponential rate to
this torus in positive time. Roughly speaking, such an invariant torus is
called normally hyperbolic; for the precise definition of normal hyperbolicity
see [64] and [94].

Solutions of the differential equation on the invariant torus may wind
around the torus, as in the case of irrational rotation, or they may be
attracted to a subharmonic on the torus as in the case of rational rotation.
There are general theorems that can be used to show that a normally
hyperbolic torus will persist with the addition of a small perturbation (see,
for example, [64], [83], and [94], and also [34] and [40]). Thus, we see that
there is a second possible type of entrainment. It is possible that solutions
are entrained to the torus when there are no periodic solutions on the torus.
In this case, corresponding to an irrational rotation, every solution on the
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torus is dense; that is, every solution on the torus has the entire torus as
its omega limit set.

Exercise 5.26. View the circle as the set {eiθ : θ ∈ R} and define the (linear)
rotation on the circle through angle α as the map eiθ �→ ei(θ+α) for some fixed
k ∈ R. Prove the following classic result of Jacobi: If α is a rational multiple of
π, then every point on the circle is periodic under the rotation map. If α is an
irrational multiple of π, then the orbit of each point on the circle is dense in the
circle. In the irrational case, the solutions are called quasi-periodic.

For the forced van der Pol oscillator, we cannot determine the quasi-
periodicity of the flow by looking at the first order approximation of the
Poincaré map—the flow on the torus is nonlinear. There are actually three
possibilities. The nonlinear flow can have all its orbits dense, all its orbits
periodic, or it can have isolated periodic solutions. We have to be careful
here because the nonlinear Poincaré map on the invariant torus is not, in
general, a rotation as defined above. However, it is likely to be conjugate
to a rotation by a nonlinear change of coordinates.

The Poincaré map will have a stable subharmonic, or at least an isolated
subharmonic, on the invariant torus provided that the bifurcation function
has simple zeros on this torus. We will have more to say about this topic
below.

For the case m/n �= 1, an examination of the map (5.50) shows that
a necessary condition for the existence of subharmonics on the invariant
torus near r = 1 is that k = 0. In the (m : n) entrainment domain in the
(Ω, ε) (frequency-amplitude) parameter space the curves corresponding to
the subharmonics would have to be expressible as series

Ω =
mω

n
−

(m

n

)2( k

2π

)
ω2ε +

∞∑
j=2

Ωjε
j

(see equation (5.37)). But because k = 0, it follows that they are all of
the form Ω = mω/n + O(ε2). Thus, all such curves have the same tangent
line at ε = 0, namely, the line given by Ω = mω/n. The portion of the
entrainment domain near ε = 0 that is filled by such curves is called an
Arnold tongue.

For the map (5.51), there are fixed points corresponding to harmonics
but not necessarily an invariant torus. In case k = 0, there is a fixed point
only if ζ2 = 0 and

ζ3
1 − 4ζ1 + 4a = 0.

In case k �= 0, the computations are more complicated. There are many
different ways to proceed. One effective method is “Gröbner basis reduc-
tion” (see [55]). Without going into the definition of a Gröbner basis for a
polynomial ideal, the reduction method is an algorithm that takes as input
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a set of polynomials (with rational coefficients) and produces a new set of
polynomials with the same zero set. The reduced set is in a good normal
form for further study of its zero set. The output depends on the ordering
of the variables. In particular, the Gröbner basis is not unique.

For example, by using the MAPLE V command gbasis with the lexico-
graphic ordering of the variables ζ1 and ζ2, the equations

−kζ2 + πζ1 − aπ − π

4
ζ1

(
ζ2
1 + ζ2

2
)

= 0,

kζ1 + πζ2 − π

4
ζ2

(
ζ2
1 + ζ2

2
)

= 0,

can be reduced to

4k2ζ1 + 4kπζ2 + aπ2ζ2
2 = 0,

16k3aπ +
(
16k4 + 16k2π2) ζ2 + 8akπ3ζ2

2 + a2π4ζ3
2 = 0. (5.53)

By an inspection of the equations (5.53), it is clear that there are either
one, two, or three fixed points in the Poincaré section. If there is exactly
one solution, then (for sufficiently small ε > 0), either it corresponds to
a stable harmonic that attracts the entire phase space, and, as a result,
there is no invariant torus, or, it corresponds to an unstable harmonic and
there is an invariant torus. The first order approximation of the Poincaré
map restricted to the invariant circle corresponding to this invariant torus
may be conjugate to either a rational or an irrational rotation. In case it is
rational, each point on the invariant circle is periodic. On the other hand,
if it is irrational, then each point has a dense orbit. Are these properties
present in the perturbed Poincaré map?

If there are three harmonics, several different phase portraits are possible,
but generally the Poincaré map has a sink, a source, and a saddle. The
“most likely” possibility in this case is to have the unstable separatrices
of the saddle attracted to the sink. In this case, the separatrices together
with the saddle and the sink form an invariant “circle” that corresponds
to an invariant torus for the flow of the differential equation. We may
ask if this set is a manifold. The answer is not obvious. For example, if
the linearization of the Poincaré map at the sink happens to have complex
eigenvalues, then the separatrices will “roll up” at the sink and the invariant
“circle” will not be smooth. However, in our case, for ε sufficiently small
the linearization of the Poincaré map is near the identity, so this roll up
phenomenon does not occur. Does this mean the invariant circle is smooth?

The case where there is an “invariant torus”—consisting of a saddle, its
unstable manifold, and a sink—is particularly interesting from the point
of view of applications. For example, a trajectory starting near the stable
manifold of the saddle will be “entrained” by the harmonic corresponding
to the saddle on perhaps a very long time scale. However, unless the orbit
stays on the stable manifold, a very unlikely possibility, it will eventually
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leave the vicinity of the saddle along the unstable manifold. Ultimately,
the orbit will be entrained by the sink. However, because of the possibility
of a long sojourn time near the saddle, it is often not clear in practice,
for example, in a numerical experiment, when a trajectory has become
entrained (phase locked) to the input frequency with a definite phase. This
phenomenon might be the cause of some difficulties if we wish to control
the response of the oscillator.

Which regions in the (k, a) parameter space correspond to the existence
of three harmonics? Answer: the region of the parameter space where the
cubic polynomial (5.53) has three distinct real roots. To find this region,
let us first compute the discriminant locus of the polynomial, that is, the
set of points in the parameter space where the cubic polynomial has a
double root (see [24]). Of course, the discriminant locus is the zero set of
the discriminant of the polynomial. Equivalently, the discriminant locus is
given by the set of points in the parameter space where the polynomial
and its first derivative have a simultaneous solution. This set is also the
zero set of the resultant of polynomial and its first derivative. In our case,
a computation shows that the discriminant locus of the cubic polynomial
in display (5.53) is the zero set of the polynomial

∆(k, a) := 27π6a4 − 16π6a2 − 144π4a2k2 + 64π4k2 + 128π2k4 + 64k6.
(5.54)

The discriminant locus is also the boundary of the region corresponding
to the existence of three real roots. This region is the bounded region
depicted in Figure 5.3.

Exercise 5.27. The discriminant locus corresponds to an invariant curve for
the Hamiltonian system

k̇ = −∂∆
∂a

(k, a), ȧ =
∂∆
∂k

(k, a) (5.55)

with Hamiltonian ∆. Show that the invariant set consists of six trajectories and
five rest points (zeros of the vector field). The four rest points not at the origin
are all degenerate—the Jacobian matrix at each rest point has zero eigenvalues.
Study the local behavior of the discriminant locus at each of its singular points
to explain the corners in Figure 5.3. For example, show that

k0 = −
√

3
3

π, a0 = −4
9

√
6

is a rest point and that the discriminant locus near this rest point is given by

a − a0 =
√

2
π

(k − k0) ± 2
3

31/4

π3/2 (k − k0)3/2 + O((k − k0)2).

In particular, the tangents to the discriminant locus at the singular point coincide;
that is, the discriminant locus has a cusp at the singular point. To show this you
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FIGURE 5.3. Discriminant locus for the polynomial (5.53). The bounded region
corresponds to the existence of three harmonics for the periodically forced van
der Pol equation.

can just note that the discriminant locus is a quadratic in a2 and solve. A more
complicated but perhaps more instructive way to obtain the same result is to use
the theory of Newton polygons and Puiseux series (see, for example, [24]).

For each parameter value (k, a) in the unbounded region of the plane
bounded by the discriminant locus, the corresponding differential equation
has one subharmonic solution. We can determine the stability of this sub-
harmonic using the formulas given in the preceding section following for-
mula (5.47). In particular, there are curves in the parameter space starting
near each cusp of the discriminant locus that separates the regions corre-
sponding to stable and unstable harmonics. These curves are exactly the
curves in the (k, a) parameter space given by the parameter values where
the following conditions (see formula (5.48)) are met at some fixed point
of the first order linearized Poincaré map: The trace of the linearization of
the O(ε) term of the first order Poincaré map vanishes and its determinant
is positive. We call these the PAH curves in honor of Poincaré, Andronov,
and Hopf.

To determine the PAH curve, note first that the trace of the O(ε) term
of the linearization (5.51) is given by π(2 − zz̄) and use fact if there is a
fixed point, then the O(ε) term of the map (5.52) vanishes. Thus, (k, a) lies
on the PAH curve when the determinant is positive and the following two
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equations have a simultaneous solution:

2 − zz̄ = 0,

(π + ki)z − 1
4
πz2z̄ − aπ = 0.

All three conditions are satisfied provided that (k, a) lies on one of the
curves given by

a2π2 =
π2

2
+ 2k2, |k| ≤ π

2
. (5.56)

The portion of the PAH curve in the region where k > 0 and a > 0 is
depicted in Figure 5.4. Note that the PAH curve does not pass through the
cusp on the discriminant locus; rather, it “stops” on the discriminant locus
at the point (k, a) = (π/2, 1). This suggests there are more bifurcations for
parameter values in the region corresponding to three harmonics—inside
the bounded region cut off by the discriminant locus. This is indeed the
case. A more detailed bifurcation diagram and references to the literature
on these bifurcations can be found in [80, p. 71] where the first order ap-
proximation is obtained by the method of averaging, a topic that will be
covered in Chapter 7.

Exercise 5.28. Compare and contrast our computation of the first order ap-
proximation of the Poincaré map with the first order approximation obtained by
the method of averaging, see Chapter 7 and [80], [185], or [157].

Exercise 5.29. Find the points where the PAH curve intersects the discrimi-
nant locus. Show that the determinant of the linearized Poincaré map vanishes
at a fixed point of the first order Poincaré map exactly when the parameter value
defining the map is on the discriminant locus. Study the bifurcations at the point
(k, a) on the hyperbola (5.56) at the point (k, a) = (π/2, 1) to account for the
fact that the PAH curve ends at this point. The set of (k, a) points where the
determinant of the O(ε) term of the linearized Poincaré map vanishes at the fixed
point is determined by finding the parameters (k, a) where the equations

π2 − π2zz̄ +
3
16

π2(zz̄)2 + k2 = 0,

(π + ki)z − 1
4
πz2z̄ − aπ = 0.

have a simultaneous solution for z.

The eigenvalues of the linearized Poincaré map are generally complex
conjugates λ(k, a) and λ̄(k, a); they lie on the unit circle in the complex
plane when (k, a) is on one of the PAH curves. In other words, the sta-
bility of a corresponding harmonic is not determined by the first order
terms of the perturbation series at this point. If we consider a second curve
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FIGURE 5.4. The left panel depicts the PAH curve in the region in the (k, a)
parameter space with k > 0 and a > 0 together with the discriminant locus. The
right panel is a blowup of the figure near the cusp on the discriminant locus.

µ �→ (k(µ), a(µ)) that crosses one of the boundary curves at the parameter
value µ = 0, then we will see that the fixed point of the Poincaré map
changes its stability as we cross from µ < 0 to µ > 0. For example, the
real parts of the eigenvalues of the linearized map may change from neg-
ative to positive values—the stability changes in this case from stable to
unstable. The bifurcation corresponding to this loss of stability is called
Hopf bifurcation. The theory for this bifurcation is quite subtle; it will be
discussed in detail in Chapter 8. But roughly speaking if the parameter
value µ > 0 is sufficiently small, then the Poincaré map has an invariant
circle with “radius” approximately

√
µ and “center” approximately at the

unstable harmonic.

Exercise 5.30. Show (numerically) that the Hopf bifurcation occurs as de-
scribed in this section for the forced van der Pol oscillator. See Figure 5.4. For
example, fix k = 2 and ε = .001, then compute phase portraits of the Poincaré
map for several choices of a in the range a = 1.2 to a = 1.1.

Exercise 5.31. Determine the “phase portrait” of the Poincaré map for the
forced van der Pol oscillator near (1 : 1) resonance for the case when the pa-
rameters (k, a) lie on the discriminant locus. In particular, determine the phase
portrait in case (k, a) is a singular point of the discriminant locus. How does the
phase portrait change on a curve of parameter values that passes through the
discriminant locus?

Exercise 5.32. Code a numerical simulation of the Poincaré map for the forced
van der Pol oscillator and verify that the first order analysis of this section predicts
the dynamical behavior of the iterated Poincaré map.

Exercise 5.33. Consider the forced van der Pol oscillator near (1 : 1) resonance
for fixed input amplitude a, for example, a = 3

4 . Determine the value of the
detuning for which the amplitude of the response is maximum.
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5.3.4 Regular Period Annulus
In this section we will discuss a continuation theory for periodic solutions
of the periodically perturbed oscillator

u̇ = f(u) + εg(u, t, ε), u ∈ R
2, (5.57)

in case the unperturbed system has a resonant periodic orbit that is con-
tained in a nonisochronous period annulus.

Consider an unperturbed resonant periodic orbit Γ for system (5.57)
that is contained in a period annulus A, and recall that if A is isochronous,
then all of the orbits in A are resonant and the unperturbed displacement
function ζ �→ δ(ζ, 0), defined as in display (5.41) by

δ(ζ, ε) = u(mη(ε), ζ, ε) − ζ, (5.58)

vanishes identically. If A is not isochronous, then we expect that although
the unperturbed displacement function does vanish on Γ, it does not vanish
on nearby periodic orbits.

What happens when we attempt to apply the implicit function theorem?
For each z ∈ Γ we have δ(z, 0) = 0. If, in addition, the linear transformation
δζ(z, 0) : R

2 → R
2 were invertible, then z would be a continuation point.

But, as demonstrated by the result in display (5.42), this linear transfor-
mation is not invertible. In particular, all vectors tangent to Γ are in its
kernel.

In this section, we will consider the case where the kernel of the deriva-
tive of the displacement function at each point z ∈ Γ is exactly the one-
dimensional tangent space to Γ at z. In other words, we will assume that
Kernel δζ(ζ, 0) = [f(ζ)]. If this condition is met, then Γ, as well as the
corresponding invariant torus for the system

u̇ = f(u), τ̇ = 1,

is called normally nondegenerate.
Before proceeding to the continuation analysis, let us consider a geomet-

rical interpretation of our assumption about the kernel of the derivative
of the displacement function. For this, we do not need to assume that the
periodic orbit Γ is contained in a period annulus. Instead, we may assume
more generally that there is a region R ⊆ R

2 and an ε0 > 0 such that the
displacement function δ : R × (−ε0, ε0) → R

2 is defined. Also, let us as-
sume that there is a curve Σ ⊆ R transverse to Γ—a Poincaré section—such
that the return time map T : Σ × (−ε0, ε0) → R is defined. The following
proposition gives the geometrical conditions we seek.

Proposition 5.34. Suppose Γ is an (m : n) resonant unperturbed periodic
solution of the periodically perturbed oscillator (5.57); T : Σ × (−ε0, ε0) →
R is the return time map defined on a Poincaré section Σ with {v} =
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Γ ∩ Σ; and R ⊆ R
2 is a region containing Γ such that for some ε0 > 0 the

displacement δ : R × (−ε0, ε0) → R
2 given in equation (5.58) is defined. If

Γ is contained in a period annulus A ⊆ R such that the differential T∗(v, 0)
of σ �→ T (σ, 0) at σ = v is nonsingular, then Kernel δζ(ζ, 0) = [f(ζ)] and
Range δζ(ζ, 0) = [f(ζ)] for each ζ ∈ Γ. If Γ is a hyperbolic limit cycle,
or if T∗(v, 0) is nonsingular, then Kernel δζ(ζ, 0) = [f(ζ)] for all ζ ∈ Γ.
Moreover, if Σ is orthogonal to Γ at v, then

Range δζ(ζ, 0) = [r1f(ζ) + r2f
⊥(ζ)]

for each ζ ∈ Γ where, for a and b as in Diliberto’s theorem (Theorem 5.5),

r1 = a(2πn/ω, v) = −
n−1∑
j=0

bj(2π/ω, v)(T∗(ζ, 0)f⊥(ζ)),

r2 = b(2πn/ω, v) − 1 = bn(2π/ω, v) − 1.

Proof. By equation (5.42), we have [f(ζ)] ⊆ Kernel δζ(ζ, 0). Consider the
vector field f⊥ and the solution t �→ u⊥(t, ζ) of the initial value problem

u̇ = f⊥(u), u(0) = ζ.

In other words u⊥(t, ζ) is the flow of f⊥. We have

δζ(ζ, 0)f⊥(ζ) =
d

dt
(u(mη(0), u⊥(t, ζ), 0) − u⊥(t, ζ))

∣∣∣
t=0

= uζ(2πn/ω, ζ, 0)f⊥(ζ) − f⊥(ζ).

Here t �→ uζ(t, ζ, 0) is the principal fundamental matrix at t = 0 for the
variational equation (5.15). Thus, from equation (5.16) and Exercise 5.22
we have

δζ(ζ, 0)f⊥(ζ) =
( n−1∑

j=0

bj(2π/ω, v)
)
a(2π/ω, v)f(ζ)

+(bn(2π/ω, v) − 1)f⊥(ζ). (5.59)

If Γ is contained in a period annulus, then b(2π/ω, v) = 1 and, by equa-
tion (5.19),

a(2π/ω, v) = − |f(ζ)|2
〈σ̇(0), f⊥(ζ)〉T ′(0)

where σ̇(0) is the tangent vector to Σ at ζ determined by the parametriza-
tion of Σ. Thus,

δζ(ζ, 0)f⊥(ζ) = −n
|f(ζ)|2

〈σ̇(0), f⊥(ζ)〉T ′(0)f(ζ) �= 0
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and Kernel δζ(ζ, 0) = [f(ζ)]. Also, the range of δζ(ζ, 0) is [f(ζ)].
On the other hand, if Γ is a hyperbolic limit cycle, then b(2π/ω, v) �= 1,

the coefficient of f⊥(ζ) in equation (5.59) does not vanish, and f⊥(ζ) /∈
Kernel δζ(ζ, 0). Hence, in this case we have that Kernel δζ(ζ, 0) = [f(ζ)].
Moreover, if Σ is orthogonal to Γ at ζ, then

δζ(ζ, 0)f⊥(ζ) =
( n−1∑

j=0

bj(2π/ω, v)
)(

− T ′(0)|f(ζ)|2
〈σ̇(0), f⊥(ζ)〉

)
f(ζ)

+ (bn(2π/ω, v) − 1)f⊥(ζ).

�

We say that a period annulus A is a regular period annulus if the dif-
ferential T∗(ζ, 0) of the return time, defined as in the previous theorem, is
nonsingular at every point of A. Let us note that the differential T∗(ζ, 0) is
nonsingular if and only if the corresponding period function for the period
annulus A has a nonvanishing derivative; that is, the period function is
regular.

Every resonant periodic orbit contained in a regular period annulus is
normally nondegenerate. Also, by Proposition 5.34, if Γ is a resonant pe-
riodic orbit in A and ζ ∈ Γ, then both the kernel and range of the partial
derivative δζ(ζ, 0) are given by [f(ζ)]. In particular, if we restrict the lin-
ear map δζ(ζ, 0) to [f⊥(ζ)], then the map δζ(ζ, 0) : [f⊥(ζ)] → [f(ζ)] is an
isomorphism. We will use these facts in the analysis to follow.

Exercise 5.35. Prove that a linear map on a finite dimensional vector space,
when restricted to a complement of its kernel, is an isomorphism onto its range.
What happens in an infinite dimensional space?

Let us reiterate the basic fact that the partial derivative δζ(ζ, 0) of the
displacement function, when viewed as a map on all of R

2, has a nontrivial
kernel. This precludes a direct application of the implicit function theorem
to solve the equation δ(ζ, ε) = 0 on R

2 × R. However, we can use the
implicit function theorem to reduce our search for continuation points to
the problem of solving a related equation on a lower dimensional space. This
is accomplished by using an important technique called Lyapunov–Schmidt
reduction. This method is very general. In fact, it works for equations
defined on Banach spaces when the linear map playing the role of our
derivative δζ(ζ, 0) is a Fredholm operator. We will give a brief introduction
to these simple but powerful ideas in an abstract setting. However, as we
will demonstrate when we apply the method to our continuation problem,
it is very fruitful to keep the idea of the method firmly in mind, but it
may not be efficient to adapt all of the abstraction verbatim. Also, on a
first reading and for the applications to be made later in this section, it
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is sufficient to consider only finite dimensional real Banach spaces, that is,
R

n with the usual norm.
Let us suppose that B1 and B2 are Banach spaces and L(B1,B2) denotes

the bounded linear maps from B1 to B2. Also, with this notation, let us
recall that a map G : B1 → B2 is C1 if there is a continuous map L : B1 →
L(B1,B2) such that

lim
n→0

‖G(x + h) − G(x) − L(x) · h‖
‖h‖ = 0

for each x ∈ B1. A map A ∈ L(B1,B2) is called Fredholm if it has a finite
dimensional kernel and a closed range with a finite dimensional comple-
ment. The index of a Fredholm map is defined to be the difference of the
dimensions of its corange and kernel.

Suppose that X and Y are open subsets of the Banach spaces B and E
respectively, and F : X × Y → B, given by (x, y) �→ F (x, y), is a C1 map
such that F (0, 0) = 0. Since F is C1, the partial derivative Fx(0, 0) is a
bounded linear map on B. However, let us assume in addition that Fx(0, 0)
is Fredholm with index zero.

If B is finite dimensional, as in our application where F is the displace-
ment function and B = R

2, then every linear map is automatically Fred-
holm. Let us also note that we will use the hypothesis that our Fredholm
map has index zero to ensure that the final reduced bifurcation function is
a map between finite dimensional spaces of the same dimension. However,
the general Lyapunov–Schmidt reduction technique does not require the
Fredholm map to have index zero.

Let K denote the kernel of the Fredholm map Fx(0, 0), and let R de-
note its range. There are subspaces KC and RC such that B = K ⊕ KC
and B = R ⊕ RC. The complement RC exists by the Fredholm hypoth-
esis. The existence of a complement KC for the finite dimensional kernel
K in an infinite dimensional Banach space is a consequence of the Hahn–
Banach theorem (see [156, p. 105]). Indeed, choose a basis for the finite
dimensional subspace, apply the Hahn–Banach theorem to extend the cor-
responding dual basis functionals to the entire Banach space, use the ex-
tended functionals to define a projection from the entire space to the finite
dimensional subspace, and construct the desired complement as the range
of the complementary projection.

The complementary subspaces KC and RC are not unique. In fact, in
the applications, the correct choices for these spaces can be an important
issue. However, there are complementary linear projections P : B → R and
Q : B → RC corresponding to the direct sum splitting of B. Also, there is
a product neighborhood of the origin in X of the form U ×V where U ⊆ K
and V ⊆ KC.
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Consider the map H : U×V ×Y → R defined by (u, v, y) �→ PF (u+v, y).
Its partial derivative with respect to v at (0, 0, 0) is given by

PFx(0, 0)
∣∣
KC

: KC → R. (5.60)

The map P is the projection to the range of Fx(0, 0). Thus, PFx(0, 0)
∣∣
KC

=
Fx(0, 0)

∣∣
KC

. Note that in a finite dimensional space the map (5.60) is an
isomorphism. The same result is true in an infinite dimensional space un-
der the assumption that Fx(0, 0) is Fredholm. In effect, the open mapping
theorem (see [156, p. 99]) states that a continuous bijective linear map of
Banach spaces is an isomorphism.

The main idea of the Lyapunov–Schmidt reduction results from the ob-
servation that, by the implicit function theorem applied to the map H,
there are open sets U1 ⊆ U and Y1 ⊆ Y , and a C1 map h : U1 × Y1 → KC,
with h(0, 0) = 0 such that

PF (u + h(u, y), y) ≡ 0.

The (Lyapunov–Schmidt) reduced function F̃ : U1×Y1 → RC associated
with F is defined by

(u, y) �→ QF (u + h(u, y), y).

Clearly, F̃ (0, 0) = 0. If there is a continuous function y �→ β(y), with
β(y) ∈ U1 such that β(0) = 0 and F̃ (β(y), y) ≡ 0, then

QF (β(y) + h(β(y), y), y) ≡ 0,

PF (β(y) + h(β(y), y), y) ≡ 0.

In particular, since P and Q are projections to complementary subspaces
of B, we must have

F (β(y) + h(β(y), y), y) ≡ 0,

that is, y �→ β(y)+h(β(y), y) is an implicit solution of F (x, y) = 0 for x as
a function of y near (x, y) = (0, 0).

Of course, we will not be able to use the implicit function theorem directly
to find an implicit solution of the reduced equation F̃ (u, y) = 0. If we could,
then we would have been able to solve the original equation F (x, y) = 0
by an application of the implicit function theorem. However, to show that
the implicit function theorem does not apply, let us consider the partial
derivative

F̃u(0, 0) = QFx(0, 0)(I + hu(0, 0)) : K → RC.

Here r := Fx(0, 0)(I + hu(0, 0))u ∈ R, so Qr = 0. Thus, F̃u(0, 0) is not
invertible; it is in fact the zero operator.
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Although the implicit function theorem does not apply directly to the
reduced function, we may be able to apply it after a further reduction. For
example, in the applications to follow, we will have a situation where

F̃ (u, 0) ≡ 0. (5.61)

In this case, under the assumption that F ∈ C2, let us apply Taylor’s the-
orem (Theorem 1.168) to obtain the representation F̃ (u, y) = F̃y(u, 0)y +
G(u, y)y where (u, y) �→ G(u, y) is the C1 function given by

G(u, y) =
∫ 1

0
(F̃y(u, ty) − F̃y(u, y)) dt.

Thus, we also have

F̃ (u, y) = (F̃y(u, 0) + G(u, y))y

where G(u, 0) = 0 and

Gy(u, 0) =
∫ 1

0
(tF̃yy(u, 0) − F̃yy(u, 0)) dt = −1

2
F̃yy(u, 0).

In particular, let us note that the simple zeros of the reduced bifurcation
function B : U1 → RC defined by

B(u) = F̃y(u, 0)

are the same as the simple zeros of the function u �→ F̃y(u, 0) + G(u, 0).
Thus, by another application of the implicit function theorem, it follows
that if the reduced bifurcation function B has a simple zero, then the
equation

F̃y(u, 0) + G(u, y) = 0

has an implicit solution. Therefore, the simple zeros of the reduced bifur-
cation function B are continuation points.

Let us now apply the Lyapunov–Schmidt reduction to our continua-
tion problem in case the resonant periodic orbit Γ is contained in a reg-
ular period annulus. For definiteness, let Γm/n := Γ denote the unper-
turbed periodic solution that is in (m : n) resonance with the periodic
perturbation, and recall from Proposition 5.34 that Kernel δζ(ζ, 0) = [f(ζ)]
and Range δζ(ζ, 0) = [f(ζ)]. According to the Lyapunov–Schmidt reduc-
tion, we should choose coordinates and projections relative to the splitting
R

2 = [f(ζ)] ⊕ [f⊥(ζ)]. However, in keeping with the philosophy that the
Lyapunov–Schmidt reduction is merely a guide to the analysis, we will con-
sider instead a coordinate system that has the required splitting property
“infinitesimally;” that is, we will choose coordinates tangent to the sum-
mands of the splitting rather than coordinates on the subspaces themselves.
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Let ϕt denote the flow of the system u̇ = f(u) and let ψt denote the flow
of the system u̇ = f⊥(u). Of course, ϕt(ζ) = u(t, ζ, 0). Define

Υ(ρ, φ) = ϕφψρ(v),

where v ∈ Γm/n is viewed as arbitrary but fixed. Also, the subscripts on ϕ
and ψ denote the temporal parameter in the respective flows, not partial
derivatives. This should cause no confusion if the context is taken into
account.

The (ρ, φ) coordinates are defined in some annulus containing Γm/n.
They have the property that for ρ fixed, φ �→ Υ(ρ, φ) is tangent to f ,
whereas for φ fixed at φ = 0, the map ρ �→ Υ(ρ, φ) is tangent to f⊥. More
precisely, we have that

Υρ(ρ, φ) = DΥ(ρ, φ)
∂

∂ρ
= Dϕφ(ψρ(v))f⊥(ψρ(v)),

Υφ(ρ, φ) = DΥ(ρ, φ)
∂

∂φ
= f(Υ(ρ, φ))

where ∂/∂ρ (respectively ∂/∂φ) denotes the unit vector field tangent to the
ρ-axis (respectively the φ-axis) of the coordinate plane. Also, in the new
(local) coordinates, the displacement is given by

∆(ρ, φ, ε) := δ(Υ(ρ, φ), ε) (5.62)

and we have that
∆(0, φ, 0) = δ(ϕφ(v), 0) ≡ 0.

The first step of the Lyapunov–Schmidt reduction method is to find an
implicit solution of the map H given by H(ρ, φ, ε) := P · ∆(ρ, φ, ε) where
P := P(φ) is a projection onto the range [f(ϕφ(v))] of the linear map
δζ(ϕφ(v), 0). For definiteness, let 〈 , 〉 denote the usual inner product on R

2

and define H by
(ρ, φ, ε) �→ 〈∆(ρ, φ, ε), f(ϕφ(v))〉.

The partial derivative of H with respect to ρ—the direction complemen-
tary to the kernel—evaluated at (0, φ, 0) is given by 〈∆ρ(0, φ, 0), f(ϕφ(v))〉.
Using Diliberto’s theorem, Proposition 5.34, and equation (5.59), we have

∆ρ(0, φ, 0) = δζ(ϕφ(v), 0)DΥ(0, φ)
∂

∂ρ

= δζ(ϕφ(v), 0)Dϕφ(v)f⊥(v)

= δζ(ϕφ(v), 0)
(
a(φ)f(ϕφ(v)) + b(φ)f⊥(ϕφ(v))

)
= b(φ)δζ(ϕφ(v), 0)f⊥(ϕφ(v))

= b(φ)a(2πn/ω)f(ϕφ(v)). (5.63)
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Thus,

Hρ(0, φ, 0) = 〈∆ρ(0, φ, 0), f(ϕφ(v))〉 = b(φ)a(2πn/ω)|f(ϕφ(v))|2 �= 0,

and we can apply (as expected) the implicit function theorem to obtain an
implicit function (φ, ε) �→ h(φ, ε) such that h(φ, 0) = 0 and

〈∆(h(φ, ε), φ, ε), f(ϕφ(v))〉 ≡ 0.

Also, because ∆(0, φ, 0) ≡ 0 and the implicit solution produced by an appli-
cation of the implicit function theorem is unique, we have that h(φ, 0) ≡ 0.

The second step of the Lyapunov–Schmidt reduction is to consider the
zeros of the reduced displacement function ∆̃ given by

(φ, ε) �→ Q(φ)(∆(h(φ, ε), φ, ε)) = 〈∆(h(φ, ε), φ, ε), f⊥(ϕφ(v))〉

where Q(φ) is the indicated linear projection onto the complement of the
range of the partial derivative δζ(ϕφ(v), 0). Here, as mentioned previously,
we can make a further reduction. In fact, because

〈∆(h(φ, 0), φ, 0), f⊥(ϕφ(v))〉 ≡ 0,

it follows that
∆̃(φ, ε) = ε(∆̃ε(φ, 0) + O(ε)).

Let us define the bifurcation function B : R → R by

B(φ) := ∆̃ε(φ, 0).

By the general remarks following equation (5.61), the simple zeros of B are
(ultra)subharmonic continuation points. This ends the reduction phase of
our analysis.

We will identify the bifurcation function B geometrically and analyti-
cally. As we will see in a moment,

B(φ) = ∆̃ε(φ, 0) = Q(φ)Pε(ϕφ(v), 0) (5.64)

where P is the Poincaré map. Also, let us note that if we take Q to be an
arbitrary projection to the complement of the range of δζ(ϕφ(v), 0), then
we will obtain an equivalent bifurcation function, that is, a bifurcation
function with the same simple zeros. In any case, the bifurcation function
is the projection onto the complement of the range of the partial derivative
of the Poincaré map with respect to the bifurcation parameter.

To determine an analytic expression for the bifurcation function and to
show that the representation (5.64) is valid, start with the definitions of
B and ∆̃, and compute the derivative of ε∆̃(φ, ε) at ε = 0 to obtain the
formula

B(φ) = 〈∆ρ(h(φ, 0), φ, 0)hε(φ, 0) + ∆ε(h(φ, 0), φ, 0), f⊥(ϕφ(v))〉
= 〈∆ρ(0, φ, 0)hε(φ, 0) + ∆ε(0, φ, 0), f⊥(ϕφ(v))〉.
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FIGURE 5.5. The top left panel depicts a resonant periodic orbit Γ viewed as
a manifold of fixed points for the Poincaré map. The “twist” in the tangential
directions along Γ due to the changing periods of the periodic orbits in the period
annulus and the normal “push” directions due to the perturbations as detected
by the Melnikov function are also depicted. In this illustration, the Melnikov
function has two zeros. The top right panel shows the local directions of twist and
push near the continuation points corresponding to these zeros. The bottom two
panels depict the perturbed fixed points of the Poincaré map (subharmonics of
the perturbed differential equation) and their stability types as would be expected
by inspection of the directions of twist and push. The local phase portraits of the
perturbed periodic orbits are seen to be saddles and rotation points that alternate
in the direction of the unperturbed resonant orbit. The global depiction of the
stable and unstable manifolds of the saddle point only illustrates one of many
possibilities. Also, the rotation point is depicted as a center, but of course it can
be a source or sink, depending on the nature of the perturbation.



5.3 Nonautonomous Perturbations 365

By using equation (5.63) and the fact that h(φ, 0) ≡ 0, it follows that

B(φ) = 〈∆ε(0, φ, 0), f⊥(ϕφ(v))〉.

Here, ∆ρ(0, φ, 0)hε(φ, 0) is viewed as the vector ∆ρ(0, φ, 0) multiplied by
the scalar hε(φ, 0) . Strictly speaking, ∆ρ(0, φ, 0) is a linear transformation
R → R

2 represented by a 2 × 1 matrix that we identify with a vector in
R

2 and hε(φ, 0) is a linear transformation R → R that we identify with a
scalar.

To find a formula for the partial derivative ∆ε(0, φ, 0), first use the defi-
nition δ(ζ, ε) = u(mη(ε), ζ, ε) − ζ and compute the partial derivative with
respect to ε to obtain the equation

∆ε(0, φ, 0) = mη′(0)f(ϕφ(v)) + uε(2πn/ω, ϕφ(v), 0). (5.65)

Then, by equation (5.33), we have

uε(2πn/ω, ζ, 0) = (N + aM)f(ζ) + bMf⊥(ζ), (5.66)

and therefore
B(φ) = b(2πn/ω)|f(ϕφ(v))|2M(φ).

Thus, φ is an (ultra)subharmonic continuation point if and only if φ is a
simple zero of the subharmonic Melnikov function

M(φ) :=
∫ 2πn/ω

0
e− ∫ t

0 div f(ϕs+φ(v)) dsf(ϕt+φ(v)) ∧ g(ϕt+φ(v), t, 0) dt.

(5.67)

These arguments are formalized in the following theorem.

Theorem 5.36. If Γ is an (m : n) resonant unperturbed periodic solu-
tion of the differential equation (5.57) contained in a regular period annu-
lus, then the simple zeros of the bifurcation function φ �→ M(φ) defined
by (5.67) are the (ultra)subharmonic continuation points.

What is the real meaning of the Melnikov function? One answer to this
question is provided by the identification given by equation (5.64). The
partial derivative of the Poincaré map in the direction ε determines the
infinitesimal direction of drift for orbits of the perturbed Poincaré map
near the point ϕφ(v). When the magnitude of the infinitesimal drift is zero,
then we expect a periodic orbit. The precise condition for this is given in
Theorem 5.36.

The stability type of the perturbed orbit is also determined by an ex-
amination of the direction of drift determined by the Melnikov function.
In fact, the resonant periodic orbit is fixed by the unperturbed Poincaré
map. By the assumption that the resonant orbit is “normally nondegener-
ate,” the drift of the unperturbed Poincaré map is in opposite directions
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on opposite sides of the resonant orbit. The sign of the Melnikov function
determines the drift in the direction of the complement to the range of the
infinitesimal displacement, a direction that is known to be transverse to
the unperturbed orbit. A plot of these directions at a continuable point
suggests the stability type as seen in Figure 5.5.

Exercise 5.37. Use the Lyapunov–Schmidt reduction to determine conditions
on the triplet of functions (g1, g2, g3) so that the system of equations

1 − x2 − y2 − z2 + εg1(x, y, z) = 0,

1 − x2 − y2 − z2 + εg2(x, y, z) = 0,

xyz + εg3(x, y, z) = 0,

has solutions for small ε �= 0. What (additional) condition assures that roots
found in this way are simple?

Exercise 5.38. Consider the forced rotor given by

θ̈ + ε sin θ = ε sin t.

The associated first order system with φ̇ = v can be considered as a differential
equation on the cylinder R × T, where T denotes the unit circle. In this interpre-
tation, all orbits of the unperturbed system are periodic. Moreover, the periodic
orbit Γ corresponding to v = 0 is (1 : 1) resonant. Show that Γ is normally non-
degenerate, and determine the continuation points on Γ. What can you say about
the (m : n) resonant periodic orbits? Change the time scale in the differential
equation to slow time τ =

√
εt. What is the meaning of the continuable peri-

odic solutions relative to the transformed differential equation? The slow time
equation is a rapidly forced pendulum. Does it have subharmonics?

Exercise 5.39. Suppose that F : R
3 × R → R

3 is a function given in the form

F (u, ε) = g(u) + εh(u)

where g, h : R
3 → R

3 are smooth vector functions with

g(u) = (g1(u), g2(u), g3(u)), h(u) = (h1(u), h2(u), h3(u)).

Prove the following theorem: If the slot functions g1 and g2 are identical and
v ∈ R

3 is such that g(v) = 0 and the vectors grad g1(v) and grad g3(v) are linearly
independent, then there is a curve s �→ γ(s) in R

3 such that γ(0) = 0, γ̇(s) �= 0,
and F (γ(s), 0) ≡ 0. If such a curve exists and s = 0 is a simple zero of the scalar
function given by s �→ h2(γ(s)) − h1(γ(s)), then there is a curve ε �→ β(ε) is R

3

such that β(0) = v and F (β(ε), ε) ≡ 0. Moreover, for each sufficiently small ε �= 0,
the point β(ε) is a simple zero of the function u �→ F (u, ε) (see [42]).

Exercise 5.40. [Multidimensional Oscillators] Suppose that the system u̇ =
f(u), for the vector case u ∈ R

n, has a T -periodic orbit Γ given by the solution
t �→ γ(t). Show that the number one is a Floquet multiplier of the (periodic)
variational equation ẇ = Df(γ(t))w. Prove that if the Floquet multiplier one has
algebraic multiplicity one and if g : R

n × R × R → R
n is a smooth function given

by (u, t, ε) �→ g(u, t, ε) such that the corresponding map given by t �→ g(u, t, ε) is
T -periodic for each u and ε, then Γ persists in the family u̇ = f(u) + εg(u, t, ε).
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5.3.5 Limit Cycles–Entrainment–Resonance Zones
In Section 5.3.4 we considered the continuation of (ultra)subharmonics of
the differential equation

u̇ = f(u) + εg(u, t, ε), u ∈ R
2 (5.68)

from a resonant unperturbed periodic orbit contained in a period annulus.
Here, we will consider continuation of (ultra)subharmonics from a resonant
unperturbed limit cycle.

If we view the differential equation (5.68) as an autonomous first or-
der system on the phase cylinder R

2 ×T, then the unperturbed differential
equation has an invariant torus Γ×T. For the theory in this section, it is not
necessary to determine the fate of the invariant torus after perturbation.
However, note that if Γ is a hyperbolic limit cycle, then the correspond-
ing invariant torus is a normally hyperbolic invariant manifold. Roughly
speaking, an invariant manifold is attracting and normally hyperbolic if
the linearized flow for each orbit on the manifold contracts normal vectors
at an exponential rate, and if the slowest such rate is faster than the fastest
contraction rate for a vector that is tangent to the manifold. There is a sim-
ilar definition if the manifold is repelling or if it has both attracting and
repelling normal directions. In our case, if the limit cycle Γ is attracting,
then its normal contraction rate is exponential and its tangential contrac-
tion rate is zero. Moreover, the invariant unperturbed torus corresponding
to Γ inherits this behavior (see Exercise 5.42). Thus, this invariant torus is
normally hyperbolic. In this case, by a powerful, important theorem (see
[64] and [94]), the normally hyperbolic torus persists after perturbation.
The continuation theory in this section describes the flow on this perturbed
invariant torus. Typically, there is an even number of (ultra)subharmonics
that alternate in stability around the perturbed torus.

By the above remarks, if our unperturbed system has a resonant, at-
tracting hyperbolic limit cycle, then after perturbation there is an attract-
ing invariant torus and nearby perturbed orbits are attracted to stable
(ultra)subharmonic orbits on this torus. In the engineering literature this
phenomenon is called entrainment: As nearby orbits are attracted to the
perturbed invariant torus, their quasi-periods approach the periods of the
(ultra)subharmonics on the perturbed torus. In particular, the asymptotic
periods are entrained to a multiple of the period of the input perturba-
tion. For a perturbation of small amplitude, this entrained period is close
to the resonant period mη(0) as in equation (5.38). We will determine a
bifurcation function whose simple zeros are the continuation points of these
(ultra)subharmonics.

For the remainder of this section let us consider the periodically per-
turbed oscillator (5.68) under the following assumptions:
(i) There is an unperturbed periodic orbit Γ in (m : n) resonance with

the periodic perturbation as in the equation (5.38).
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(ii) There is a region R ⊆ R
2 with Γ ⊂ R such that the displacement

δ : R × (−ε0, ε0) → R
2 is defined for some ε0 > 0.

(iii) As in Proposition 5.34, the periodic orbit Γ is a hyperbolic limit cycle,
or alternatively, the differential of the return time map σ �→ T (σ, 0)
at v = Γ∩Σ defined on some curve Σ transverse to Γ, is nonsingular.

Let us also note that by the third hypothesis and Proposition 5.34, we have
that Kernel δζ(ζ, 0) = [f(ζ)] for ζ ∈ Γ, and therefore the invariant torus
Γ × T is normally nondegenerate.

The analysis required to obtain the bifurcation function in case the un-
perturbed resonant periodic orbit is a limit cycle is analogous to the analysis
carried out in the last section for the case of a regular period annulus. In
particular, using the same notation as before, we can apply the Lyapunov–
Schmidt reduction to the displacement function represented in the same
(ρ, φ)-coordinates.

By the abstract theory of the Lyapunov–Schmidt reduction, ρ can be de-
fined implicitly as a function of (φ, ε) when it is projected onto the range of
the infinitesimal displacement, that is, the partial derivative of the displace-
ment with respect to the space variable. However, it is easy and instructive
to verify this directly. In fact, with respect to the (ρ, φ)-coordinates, the
section Σ as in Proposition 5.34 is just an integral curve of f⊥, and hence
it is orthogonal to Γ. Thus, let us first consider the map

(ρ, φ, ε) �→ 〈∆(ρ, φ, ε), r1f(ϕφ(v)) + r2f
⊥(ϕφ(v))〉

where r1 and r2 are defined in Proposition 5.34 and ∆ is the local co-
ordinate representation defined in display (5.62) of the displacement. By
equation (5.63) and this proposition, its differential with respect to ρ at
(ρ, ε) = (0, 0) is given by

〈∆ρ(0, φ, 0), r1f(ϕφ(v)) + r2f
⊥(ϕφ(v))〉

= 〈δζ(ϕφ(v), 0)DΥ(0, φ)∂/∂ρ, r1f(ϕφ(v)) + r2f
⊥(ϕφ(v))〉

= 〈b(φ)δζ(ϕφ(v), 0)f⊥(ϕφ(v)), r1f(ϕφ(v)) + r2f
⊥(ϕφ(v))〉

= b(φ)〈r1f(ϕφ(v)) + r2f
⊥(ϕφ(v)), r1f(ϕφ(v)) + r2f

⊥(ϕφ(v))〉
= b(φ)|f(ϕφ(v))|2(r2

1 + r2
2).

Also, let us note that during the course of the last computation we have
proved that

∆ρ(0, φ, 0) = b(φ)(r1f(ϕφ(v)) + r2f
⊥(ϕφ(v))). (5.69)

By the assumptions for this section, we have r2
1 + r2

2 �= 0, and therefore
∆ρ(0, φ, 0) �= 0. Thus, by an application of the implicit function theorem,
there is a function (φ, ε) �→ h(φ, ε) such that h(φ, 0) ≡ 0 and

〈∆(h(φ, ε), φ, ε), r1f(ϕφ(v)) + r2f
⊥(ϕφ(v))〉 ≡ 0.
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Recall that Γ × T is normally nondegenerate if

Kernel δζ(ϕφ(v), 0) = [f(φφ(v))].

Since this kernel is a one-dimensional subspace of the two-dimensional tan-
gent space of the Poincaré section, the range of the infinitesimal displace-
ment must also be one-dimensional, and therefore r2

1 + r2
2 �= 0. Of course,

this inequality also holds if either Γ is hyperbolic or the differential of the
return time is nonzero.

The reduced displacement function is just the projection of the dis-
placement onto a complement for the range of the infinitesimal displace-
ment. For definiteness, let us consider the reduced displacement function
(φ, ε) �→ ∆̃(φ, ε) given by

∆̃(φ, ε) = 〈∆(h(φ, ε), φ, ε), −r2f(ϕφ(v)) + r1f
⊥(ϕφ(v))〉.

Since ∆(h(φ, 0), φ, 0) ≡ 0, we have ∆̃(φ, 0) ≡ 0 and

∆̃(φ, ε) = ε(∆̃ε(φ, 0) + O(ε)).

If the bifurcation function B : R → R is defined by B(φ) := ∆̃ε(φ, 0), then
we have, as usual, the following proposition: The simple zeros of B are the
(ultra)subharmonic continuation points. This ends the reduction step.

The identification of the bifurcation function B is accomplished with the
aid of a simple computation. Indeed, using the definition of B, we have
that

B(φ) = 〈∆ρ(h(φ, 0), φ, 0)hε(φ, 0) + ∆ε(h(φ, 0), φ, 0),
− r2f(ϕφ(v)) + r1f

⊥(ϕφ(v))〉. (5.70)

To simplify this expression, apply identity (5.69) to obtain the representa-
tion

B(φ) = 〈∆ε(h(φ, 0), φ, 0), −r2f(ϕφ(v)) + r1f
⊥(ϕφ(v))〉.

Also, let us note that, as in the last section, B(φ) = Q(φ)Pε(ϕφ(v), 0).
Using the equations (5.65) and (5.37), substitute the solution (5.33) of

the nonhomogeneous variational equation for ∆ε to obtain the formula

B(φ) = 〈mη′(0)f(ϕφ(v)) +
(
N (φ) + a(2πn/ω)M(φ)

)
f(ϕφ(v))

+ b(2πn/ω)M(φ)f⊥(ϕφ(v)),−r2f(ϕφ(v)) + r1f
⊥(ϕφ(v))〉

where, by Proposition 5.34,

r1 = a(2πn/ω, ϕφ(v)), r2 = b(2πn/ω, ϕφ(v)) − 1.

Hence, the bifurcation function is given by

B(φ) =
(
(1 − b(2πn/ω, ϕφ(v)))(mk + N (φ))

+ a(2πn/ω, ϕφ(v))M(φ)
)
|f(ϕφ(v))|2.
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Define the subharmonic bifurcation function by

C(φ) := (1 − b(2πn/ω, ϕφ(v)))(mk + N (φ)) + a(2πn/ω, ϕφ(v))M(φ)
(5.71)

where

b(t, ϕφ(v)) =
|f(v)|2

|f(ϕt+φ(v))|2 e
∫ t
0 div f(ϕs+φ(v)) ds,

a(t, ϕφ(v)) =
∫ t

0

(
2κ(s, ϕφ(v))|f(ϕs+φ(v))|

− curl f(ϕs+φ(v))
)
b(s, ϕφ(v)) ds,

b(2πn/ω, ϕφ(v)) = bn(2π/ω, ϕφ(v)) = (e
∫
Γ div f )n,

a(2πn/ω, ϕφ(v)) =
( n−1∑

j=0

bj(2π/ω, ϕφ(v))
)

×
∫ 2π/ω

0

(
2κ(t, ϕφ(v))|f(ϕt+φ(v))|

− curl f(ϕt+φ(v))
)
b(t, ϕφ(v)) dt;

and

M(φ) =
∫ 2πn/ω

0

1
b(t, φ)|f(ϕt+φ(v))|2 f(ϕt+φ(v)) ∧ g(ϕt+φ(v), t, 0) dt,

N (φ) =
∫ 2πn/ω

0

1
|f(ϕt+φ(v))|2 〈g(ϕt+φ(v), t, 0), f(ϕt+φ(v))〉 dt

−
∫ 2πn/ω

0

a(t, φ)
b(t, φ)|f(ϕt+φ(v))|2 f(ϕt+φ(v)) ∧ g(ϕt+φ(v), t, 0) dt.

Remark 1. The function φ �→ b(2πn/ω, ϕφ(v)) is constant, but the function
φ �→ a(2πn/ω, ϕφ(v)) may not be constant.

Theorem 5.41. If Γ is an (m : n) resonant unperturbed periodic solution
of the periodically perturbed oscillator (5.68) such that Γ× T is a normally
nondegenerate unperturbed invariant torus for the system (5.39), then the
simple zeros of the subharmonic bifurcation function φ �→ C(φ) are (ul-
tra)subharmonic continuation points.

By inspection of the formula for the subharmonic bifurcation function
φ �→ C(φ), let us note that this function is periodic with period 2π/ω, the
period of the resonant limit cycle Γ. This simple observation leads to an
important application of Theorem 5.41, at least in the case where Γ is hy-
perbolic. In fact, the theorem provides a partial answer to the following
question: What are the regions in the (η, ε) parameter space correspond-
ing to the existence of (m : n) (ultra)subharmonics of the system (5.68)?
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For this application it is traditional to view these regions in frequency-
amplitude coordinates instead of period-amplitude coordinates. Thus, let us
define Ω = 2π/η. The subset Dm/n of all (Ω, ε) in the parameter space such
that the corresponding system (5.68) has an (m : n) (ultra)subharmonic is
called the (m : n) entrainment domain. In effect, relative to the geometric
interpretation provided by the system (5.39), if (Ω, ε) is in Dm/n, then there
is a solution of the corresponding system on the perturbed invariant torus
that wraps n times in the direction of φ, the parameter on Γ, and m times
in the direction of the “time” given by τ in system (5.39).

Theorem 5.41 only applies for ε sufficiently small. Thus, it cannot pro-
vide an answer to the general question posed above. However, it does give
valuable insight into the geometry of entrainment domains near ε = 0. To
see why this is so, note first that the frequency, in terms of equation (5.37),
is given by

Ω =
m

n
ω − km2

2πn2 ω2ε + O(ε2), (5.72)

and the (ultra)subharmonics correspond to the simple zeros of the subhar-
monic bifurcation function C. Thus, using the definition of C we expect
(ultra)subharmonics to exist whenever the detuning parameter k satisfies
the equation

(1 − b(2πn/ω, ϕφ(v)))mk = −C(φ) (5.73)

for some φ ∈ R, where the new function C is defined by

C(φ) = (1 − b(2πn/ω, ϕφ(v)))N (φ) + a(2πn/ω, ϕφ(v))M(φ).

The existence of solutions for equation (5.73) depends on the maximum
and minimum values of the function C on the interval 0 ≤ φ < 2π/ω.
Let us denote these values by Cmin and Cmax. Also, let us assume that
the unperturbed resonant torus is attracting, that is, b(2πn/ω, ϕφ(v)) < 1.
Under these assumptions, we have the following result: If

Cmin < (b − 1)mk < Cmax,

then (m : n) (ultra)subharmonics exist for sufficiently small |ε|. In other
words, from equation (5.72), the lines in the frequency-amplitude space
given by

L1 := {(Ω, ε) : Ω =
m

n
ω +

Cmin

(1 − b)
mω2

2πn2 ε},

L2 := {(Ω, ε) : Ω =
m

n
ω +

Cmax

(1 − b)
mω2

2πn2 ε} (5.74)

are the tangent lines to the (m : n) entrainment domain at ε = 0. The
shape of an entrainment domain (see, for example, Figure 5.6) suggested
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FIGURE 5.6. A schematic depiction of the (1 : 1) entrainment domain D1/1

and its tangent lines L± := {(Ω, ε) : ε = ±2 (Ω − 1)} at (Ω, ε) = (1, 0) for the
system (5.75).

to Vladimir Arnold the shape of a tongue. Thus, entrainment domains are
often referred to as Arnold tongues. They are also called resonance zones
or resonance horns.

If C(φ) ≡ 0, then the tangents L1 and L2 computed above coincide. In
this case the tongue has vertical tangents provided that it extends all the
way to the ε-axis.

If C has a simple zero, then the corresponding tongue is “open.” Also,
in the (Ω, ε)-coordinates the left boundary of the tongue corresponds to
the φ coordinate on Γ giving the minimum value of C, while the right
boundary corresponds to the maximum value of C. Thus, we see how the
phase of the entrained solution shifts as the detuning parameter is changed
so that (1−b(2πn/ω))mk passes from the minimum to the maximum value
of C. Finally, if a boundary is crossed as the detuning k is varied, say the
boundary corresponding to the minimum of C, then it is clear that for k
sufficiently small there are no (ultra)subharmonics, for k at the minimum
of C there is a bifurcation point, and as k increases from this value, two
branches of subharmonics bifurcate. This scenario is very common (generic,
in fact) and is called a saddle-node bifurcation. It will be studied in detail
in Chapter 8.

Let us consider the family of differential equations

ẋ = −y + x(1 − x2 − y2),
ẏ = x + y(1 − x2 − y2) + ε cos(Ωt) (5.75)

to illustrate some typical computations that are used to approximate the
boundaries of entrainment domains (see [32]).

The unperturbed member of the family (5.75) has the unit circle as an
attracting hyperbolic limit cycle with the corresponding solution starting
at (x, y) = (cos θ, sin θ) given by

x(t) = cos(t + θ), y(t) = sin(t + θ).
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If Ω(ε) := m/n + Ω1ε, then the period of the forcing function is

2π

Ω(ε)
=

2πn

m
− 2π

( n

m

)2
Ω1ε + O(ε2).

Also, for this system a ≡ 0, and therefore

C(θ) = (1 − b(2πn))mk + (1 − b(2πn))N (θ, 2πn)

=
(
1 − e−4πn

)
mk +

(
1 − e−4πn

) ∫ 2πn

0
cos(t + θ) cos(Ω(0)t) dt.

Moreover, we have that

C(θ) =
(
1 − e−4πn

) ∫ 2πn

0
cos(t + θ) cos(

m

n
t) dt

=
(
1 − e−4πn

)
×{

πn cos θ, m
n = 1,

n2

m2−n2

(
sin θ + m+n

2n sin(2πm − θ) + m−n
2n sin(2πm + θ)

)
, m

n �= 1

=

{(
1 − e−4πn

)
πn cos θ, m = n,

0, m �= n.

Thus, for m = n; that is, for the (1 : 1) resonance, the tangents of the
entrainment domain at the resonant point (Ω, ε) = (1, 0) are

ε = ±2 (Ω − 1) ,

whereas, for the case m �= n, the tangents have infinite slope.
The phase shift mentioned above is also easy to see in this example.

The phase angle is θ. Also, if we use the fact that m = n and divide by a
common factor, then the equation

k + π cos θ = 0

has the same roots as the zeros of the subharmonic bifurcation function. In
particular, the detuning parameter k simply serves to translate the graph of
the function θ �→ π cos θ in the vertical direction. Thus, at the left boundary
of the tongue, k = π and the phase of the entrained solution will be near
θ = π, whereas at the right hand boundary we have k = −π and the phase
will be near θ = 0.

Exercise 5.42. Suppose that Γ is a hyperbolic limit cycle of the planar system
u̇ = f(u). Show that the linearized flow on the limit cycle attracts or repels
normal vectors on the limit cycle at an exponential rate. Hint: Use the fact that
the limit cycle has a characteristic multiplier that is not unity. Alternatively use
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Mercury

Perihelion

Sun

FIGURE 5.7. The point of closest approach to the Sun moves after each orbit
in the direction of the revolution of Mercury. (The orbit of Mercury is nearly
circular. The figure is not drawn to scale.)

the function b defined in Diliberto’s theorem. Also, show that normal vectors on
the invariant torus Γ × T for the system

u̇ = f(u), ψ̇ = 1

on the phase cylinder where ψ is an angular variable are attracted exponentially,
whereas tangent vectors have contraction rate zero.

Exercise 5.43. The theory of this chapter does not apply directly to determine
the subharmonic solutions of the system

ẋ =y − x(1 − x2 − y2)2 − ε cos t,

ẏ = − x − y(1 − x2 − y2)2 + ε sin t.

Why? Develop an extension of the continuation theory to cover this case and use
your extension to determine the subharmonics (see [31]).

5.3.6 Lindstedt Series and the Perihelion of Mercury
We have discussed in detail how to prove the existence of periodic solutions
of nonlinear differential equations by continuation. In this section we will
consider a procedure invented by Anders Lindstedt in 1882 that can be used
to find useful series approximations for these periodic solutions. Lindstedt’s
method will be applied to the problem of the precession of the perihelion of
Mercury—the most famous verification of the general theory of relativity—
and in the next section it will used to determine the widths of entrainment
domains for a forced van der Pol oscillator. The limitations of Lindstedt’s
method will also be briefly discussed.

Let us begin with the problem of the perihelion of Mercury. If a Cartesian
coordinate system is fixed at the Sun, then the osculating ellipse traced
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out by the motion of Mercury is observed to precess. This means that
the perihelion of Mercury—the point of closest approach to the Sun—
changes after each revolution, moving in the direction of the motion of
the planet (see Figure 5.7). In fact, the point of perihelion is observed to
advance by approximately 43 seconds of arc per century. No satisfactory
explanation of this phenomenon was known until after the introduction of
the general theory of relativity by Albert Einstein. In particular, in 1915
Einstein found that his theory indeed predicts a precession of 43 seconds
of arc per century—a stunning confirmation of his theory (see [168, Part
I]). Shortly thereafter, Karl Schwarzschild (1916) found a solution of the
gravitational field equations for a circularly symmetric body—the Sun—
and he gave a rigorous derivation of the same relativistic correction to the
Newtonian solution for the orbit of Mercury (see, for example, [183, p. 247]
for more history).

While the derivation of Schwarzschild’s solution of the perihelion prob-
lem from the general theory of relativity is beyond the scope of this book
(see [104], [168], or [183] for readable accounts), it turns out that the recip-
rocal ρ of the distance r from the center of the Sun to Mercury, as Mercury
moves on a “geodesic” with respect to the “space-time metric” produced by
the Sun, is closely approximated by a solution of the differential equation

d2ρ

dφ2 =
1
β2 − ρ + αρ2 (5.76)

where

β2 =
M2

G0m1m2
2
, α =

3G0m1

c2 ,

M is the magnitude of the angular momentum, m1 is the mass of the Sun,
m2 is the mass of Mercury, G0 is the gravitational constant, and c is the
speed of light [104]. We will predict the precession of the perihelion of
Mercury from the differential equation (5.76).

In view of the results in Section 3.2.2, especially the harmonic oscillator
model (3.22) for Kepler motion, the system (5.76) with α = 0 is exactly
the same as the model predicted from Newton’s theory. In fact, as we have
seen, this model predicts a fixed elliptical orbit for Mercury. We will see
that the perturbed orbit precesses.

The sizes of the parameters in equation (5.76) depend on the choice of
the units of measurement. Thus, it is not meaningful to say that α is a small
parameter. This basic problem is ubiquitous in applied mathematics. While
most authors do not worry about the units, there is only one correct way
to proceed: rescale the variables so that the new system is dimensionless.
For equation (5.76), if we define a new dependent variable η := β2ρ, then
the differential equation is recast in the form

d2η

dφ2 + η = 1 + εη2 (5.77)
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where the ratio ε := α/β2 is dimensionless. To evaluate ε, use Exercise 3.10
to find an expression for the angular momentum M of Mercury, and then
use the physical constants

G0 = 6.668 × 10−11 m3

kg·sec2 , a = (387)(149, 598, 845)m,

c = 3 × 108 m
sec , mSun = (332700)(5.977) × 1024kg,

e = 0.206,

(5.78)

reported for example in [72] to compute the approximation

ε ≈ 7.973 × 10−8. (5.79)

The differential equation (5.77) has two rest points in the phase plane:
a center near the point with coordinates (1, 0), and a saddle near (1/ε, 0).
Moreover, the orbit corresponding to the perturbed motion of Mercury
corresponds to one of the periodic orbits surrounding the center (see Exer-
cise 5.44).

Exercise 5.44. Show that the phase portrait of the system (5.77) has exactly
two rest points: a saddle and a sink; approximate the positions of these rest
points with power series in ε; and show that the orbit of Mercury corresponds
to a periodic orbit. Note that it is not enough for this physical problem to prove
the result for “sufficiently small epsilon.” Rather, the value ε = α/β2 must be
used! Hint: Initial conditions for the orbit of Mercury can be approximated from
the physical data. The level sets of the “energy” corresponding to the differential
equation (5.77) are invariant manifolds in the phase plane. In fact, one of them
forms the boundary of the period annulus.

How can we find a useful approximation of the perturbed periodic orbit
corresponding to the motion of Mercury? To answer this question, let us
view ε as a parameter and observe that the differential equation (5.77) is
analytic. Thus, the periodic solution φ �→ η(φ, ε) that we wish to approxi-
mate is given by an analytic function η of two variables. Also, this solution
is an analytic function of the initial conditions. Thus, the perturbed solu-
tion can be expanded as a convergent power series in ε; at least this is true
if ε is sufficiently small. We will come back to this problem in a moment.
For now, let us assume that there is a series expansion of the form

η(φ, ε) = η0(φ) + η1(φ)ε + η2(φ)ε2 + O(ε3). (5.80)

A natural idea is to substitute the series (5.80) into the differential equa-
tion (5.77), and then try to solve for the unknown Taylor coefficients by
equating like powers of ε. In fact, if this is done, then (using dots to denote
derivatives with respect to φ) the order zero equation is

η̈0 + η0 = 1. (5.81)
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Note that we have some freedom in the choice of initial data for the
solution of the differential equation (5.81). For example, if we consider the
system in the phase plane, then there is an interval on the η-axis that lies
to the right of the unperturbed rest point at (1, 0) and contains one of the
intersection points of our perturbed periodic orbit with the η-axis. In fact,
this interval can be chosen to be a Poincaré section. Thus, we can suppose
that the desired periodic orbit corresponding to the solution φ �→ η(φ, ε)
starts at φ = 0 on this section at a point with coordinate 1 + b for some
b = b(ε) > 0. In other words, for sufficiently small ε > 0, we have the initial
conditions η(0, ε) = 1 + b and η̇(0, ε) = 0. In particular, η0(0) = 1 + b,
η̇0(0) = 0, and the corresponding solution or the order zero differential
equation is

η0(φ) = 1 + b cos φ.

Note that truncation at this order predicts elliptical motion for Mercury.
In fact, the zero order approximation is just the solution of the harmonic
oscillator model (3.22) of Kepler motion.

By using a trigonometric identity and some algebraic manipulation, the
first order term in the series expansion of η is seen to be the solution of the
initial value problem

η̈1 + η1 =
( 1
β2 +

b2

2
)

+
2b

β2 cos φ +
b2

2
cos 2φ,

η1(0) = 0, η̇1(0) = 0, (5.82)

and, by an application of the variation of constants formula, the solution
of this initial value problem has the form

η1(φ) = c1 + c2φ sin φ + c3 cos 2φ

where c1, c2, and c3 are nonzero constants.
We now have a problem: The first order approximation

η(φ) ≈ η0(φ) + εη1(φ)

is not periodic. Indeed, because one Fourier mode of the forcing function in
the differential equation (5.82) is in resonance with the natural frequency of
the harmonic oscillator, the expression for η1(φ) contains the secular term
c2φ sin φ. Indeed, the function φ �→ c2φ sin φ is unbounded as φ → ∞.

The word “secular” means an event that occurs once in a century. The
inference is clear: Even if its coefficient is small, a secular term will eventu-
ally have arbitrarily large values. In particular, if there is a secular term in
an approximation with a finite number of terms, then the approximation
will not be periodic unless there is a fortuitous cancellation.

We started with a periodic function φ �→ η(φ, ε), but the first order term
in its series expansion in powers of the perturbation parameter ε is not
periodic. How can this be?
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As an example to illustrate the reason for the appearance of secular
terms, let us consider the harmonic oscillator with small detuning given by

ü + (1 + ε)2u = 0

with the initial conditions u(0) = b and u̇(0) = 0. For this example, we
have that

u(t, ε) = b cos((1 + ε)t) = b cos t − (bt sin t)ε − 1
2
(bt2 cos t)ε2 + O(ε3).

Hence, even though the series represents a periodic function, every finite
order approximation obtained by truncation of the series is unbounded.
Clearly, these finite order approximations are not useful over long time in-
tervals. Also, note that the terms in this series expansion have the “wrong”
period. Whereas the solution is periodic with period 2π/(1+ε), the trigono-
metric terms on the right hand side all have period 2π.

Lindstedt observed that secular terms appear in the series for a perturbed
periodic solution because the parameter-dependent frequency of the per-
turbed periodic orbit is not taken into account. He showed that the secular
terms can be eliminated if the solution and its frequency are simultaneously
expanded in powers of the perturbation parameter.

As an illustration of Lindstedt’s method, let us consider a perturbed
linear system of the form

ü + λ2u = εf(u, u̇, ε) (5.83)

that has a family of periodic solutions t �→ u(t, ε) with the initial conditions
u(0, ε) = b and u̇(0, ε) = 0. In other words, the corresponding periodic orbits
in the phase plane all pass through the point with coordinates (b, 0). Also,
let us define the function ω given by ε �→ ω(ε) such that the frequency of
the periodic solution t �→ u(t, ε) is ω(ε).

Lindstedt introduces a new independent variable

τ = ω(ε)t

so that the desired periodic solution t �→ u(t, ε) is given by

u(t, ε) = v(ω(ε)t, ε)

where τ �→ v(τ, ε) is the 2π-periodic solution of the initial value problem

ω2(ε)v′′ + λ2v = εf(v, ω(ε)v′, ε), v(0, ε) = b, v′(0, ε) = 0 (5.84)

and v′ denotes the derivative of v with respect to τ .
Lindstedt’s computational method is the following: Write the 2π-periodic

function τ �→ v(τ, ε) and the frequency ε �→ ω(ε) as series

v(τ, ε) = v0(τ) + v1(τ)ε + v2(τ)ε2 + · · · ,

ω(ε) = λ + ω1ε + ω2ε
2 + · · · ,
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substitute these series into the differential equation (5.84), and then com-
pute the unknown coefficients recursively by equating the terms with like
powers of ε. Alternatively, the differential equations for the Taylor coeffi-
cients of v can be computed directly from the differential equation (5.84)
as variational equations.

To determine the order zero coefficient, set ε = 0 in equation (5.84) to
see that v0 is the solution of the initial value problem

λ2(w′′ + w) = 0, w(0) = b, w′(0) = 0,

and therefore

v0(τ) = b cos τ. (5.85)

Next, let us note that v1(τ) = vε(τ, 0). Hence, by differentiating both
sides of equation (5.84) with respect to ε and evaluating at ε = 0, the
function v1 is seen to be the solution of the initial value problem

λ2(w′′ + w) = f(b cos τ, −λb sin τ, 0) + 2λω1b cos τ,

w(0) = 0, w′(0) = 0. (5.86)

Because the function τ �→ v(τ, ε) is 2π-periodic independent of ε, so is the
function τ �→ vε(τ, 0), and therefore the point (b, 0) is a continuation point
of periodic solutions in the phase plane for the (usual) first order system
corresponding to the differential equation in display (5.86). By rescaling
and then applying Theorem 5.1 to this first order system, it follows that∫ 2π

0
(f(b cos τ, −λb sin τ, 0) + 2λω1b cos τ) sin τ dτ = 0.

Hence, the Fourier series for the function τ �→ f(b cos τ, −λb sin τ, 0), which
has the form

A0 + A1 cos τ + B1 sin τ +
∞∑

n=2

(An cos nτ + Bn sin nτ),

must be such that B1 = 0. If we impose this condition and also choose
ω1 = A1/(2λb), then the forcing function on the right hand side of the
linear system (5.86) has no resonant term. Thus, the corresponding solution
v1 contains no secular terms, and it is periodic with period 2π.

Using the second order variational equation, Theorem 5.1, and an appro-
priate choice of ω2, all secular terms can be eliminated in the corresponding
linear system, and the function v2 is therefore periodic with period 2π. In
fact, this procedure can be repeated to determine all of the coefficients
of the Taylor series in ε for the perturbed frequency ω(ε) and the solu-
tion v. Moreover, it follows from our assumptions that the resulting series
converge.
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The original periodic solution is represented by a series of form

u(t, ε) = v(ω(ε)t, ε) = b cos(ω(ε)t) + v1(ω(ε)t)ε + O(ε2) (5.87)

where v1 is determined above, and the frequency of the original periodic
solution is given by

ω(ε) = λ +
A1

2λb
ε + O(ε).

However, let us note that because the series coefficients of the series (5.87)
depend on ε, the Lindstedt series expansion for u is not a Taylor series.

If the Lindstedt procedure is carried out to some finite order—the only
possibility in most applied problems—then, to obtain an approximation to
the desired periodic solution, we must substitute a truncation of the series
for the frequency ω into a truncation of the Lindstedt series for the periodic
solution. This leads to the question “How well does the truncated Lindstedt
series approximate the original periodic solution?” The answer for the case
considered here is that the difference between the nth order truncation and
the solution is O(εn+1) on a time interval of length C/ε for some constant
C > 0. See [130] for a careful treatment of order estimates of this type.

The error estimate just mentioned for Lindstedt series for the case of a
one-dimensional oscillator can be obtained from the associated Taylor se-
ries for the same solution. However, the analysis is much more complicated
for multidimensional differential equations. For example, for Hamiltonian
perturbations of multidimensional Hamiltonian systems, the Lindstedt se-
ries generally diverge! This famous result of Poincaré is very important in
the history of mathematics. The divergence of these series suggests that the
underlying dynamics must be very complex. In fact, this observation led
Poincaré to several major results, for example, the discovery of chaotic dy-
namics in Hamiltonian dynamical systems (see [10], [17], [56], [113], [110],
[123], [127], [128], and [168]). On the other hand, Lindstedt series are useful
for approximating the periodic solutions that are obtained as continuations
of periodic orbits of the type considered in this chapter. In fact, it is no
accident that Theorem 5.1 is used to obtain the Lindstedt series for the
example analyzed above. The bifurcation functions (called the determining
equations in the context of Lindstedt series) can be used to obtain Lindst-
edt approximations for the continued periodic solutions in each case that
we have discussed (see Exercise 5.46).

Let us return to the perihelion of Mercury.
To apply Lindstedt series to obtain an approximation for the precession

of perihelion, introduce new variables

v := η − 1, τ = ω(ε)φ

into equation (5.77) so that

ω2(ε)v′′ + v = ε(1 + v)2
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(where v′ denotes dv/dτ), and use equations (5.85) and (5.86) to show that
v0(τ) = b cos τ and v1 is the solution of the initial value problem

w′′ + w =
(
1 +

b2

2
)

+ 2b(1 + ω1) cos τ +
b2

2
cos 2τ

with initial conditions w(0) = w′(0) = 0. Thus, following Lindstedt’s pro-
cedure, if ω1 := −1, then the secular terms are eliminated. In fact, if we
revert to the original variables, then we have

ρ(φ) =
1
β2 +

b

β2 cos
(
(1 − α/β2)φ

)
+ O(ε) (5.88)

where ε = α/β2. Moreover, the lowest order truncation of the Lindstedt
series (5.88) that includes the relativistic correction yields the approxima-
tion

ρ(φ) ≈ 1
β2 +

b

β2 cos
(
(1 − α/β2)φ

)
. (5.89)

In view of equation (5.89), the distance r = 1/ρ of Mercury to the center
of the Sun is approximated by

r ≈ β2

1 + b cos
(
(1 − α/β2)φ

) . (5.90)

Also, the perihelion for this elliptical orbit occurs when the argument of the
cosine is a multiple of 2π. Thus, if the orbit starts at perihelion at φ = 0,
then after one revolution it returns to perihelion when (1 − α/β2)φ = 2π,
that is, when φ has advanced by approximately 2πα/β2 radians from the
unperturbed value φ = 2π.

Using the expression for Kepler’s third law in Exercise 3.10 and the
physical constants (5.78), the orbital period of Mercury is seen to be

T ≈ 7.596 × 106sec.

In other words, Mercury orbits the Sun approximately 414.9 times in a
century. Using the estimate for α/β2 in display (5.79), the orbital advance
of the perihelion per century is thus found to be 2.08×10−4 radians, or ap-
proximately 43 seconds of arc per century. (Can you imagine how Einstein
must have felt when he computed this number?)

Exercise 5.45. For the perturbed harmonic oscillator ü + u = εu, the natural
frequency is “corrected” at first order in the perturbation parameter by ω(ε) =
1 − ε. What is the first order correction if the perturbation is εu2 or εu3? What
about εun.
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Exercise 5.46. Discuss the application of Lindstedt’s method to forced oscil-
lators. For example, find the first order approximation for the solution(s) of the
forced oscillator

ü + u = ε(α cos(ωt) + bu3).

Hint: Recall the theory in Section 5.3.2 for the continuation of periodic solutions
in an isochronous period annulus. In particular, recall that we expect to find
periodic solutions when the parameter ω is near a resonance, say ω(ε) = 1 + ω1ε.
In this case, assume the value of the detuning ω1 is known, and look for solutions
(harmonics) with frequency ω. This search can be conducted within the geometry
of the stroboscopic Poincaré map. Unlike the case of an autonomous perturbation;
here the frequency is known, but the initial position of the solution in the Poincaré
section is not known. Rather, the initial position, the continuation curve, is a
function of ε. This suggests the introduction of a new time variable τ = ω(ε)t so
that we can look for periodic solutions with period 2π of the scaled differential
equation

ω2(ε)v′′ + v = ε(α cos(τ) − βu3).

To apply the Lindstedt method, we must expand v(t, ε) as a power series in ε as
before, but, because the initial position of the periodic orbit is not known, we
must also expand the initial values v(0, ε) and v′(0, ε). The coefficients for these
series expansions of the initial data and the function v are to be determined by
equating coefficients. If

v(0, ε) = ζ10 + ζ11ε + O(ε2), v′(0, ε) = ζ20 + ζ21ε + O(ε2),

then the 2π-periodic zero order approximation is

v0(τ) = ζ10 cos τ + ζ20 sin τ.

The values of ζ10 and ζ20 are determined at the next order. Compute the first
order approximation, consider the condition required to make the approximation
2π-periodic, and compare your result with the bifurcation equations obtained at
the end of Section 5.3.2. Also, consider the form of the Lindstedt series in the
original time variable.

Exercise 5.47. Compute to at the least second order in the small parame-
ter the approximate period of the perturbed periodic orbit for the van der Pol
oscillator (5.3) (see [4] and [54]).

5.3.7 Entrainment Domains for van der Pol’s Oscillator
Consider the forced van der Pol oscillator in the form

ẍ + δ(x2 − 1)ẋ + x = ε cos Ωt. (5.91)

We will use the formulas of Section 5.3.5 together with Lindstedt approx-
imations to estimate—because the unperturbed system is not explicitly
integrable—the widths of the entrainment domains for system (5.91).
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For small δ, the second order Lindstedt approximation for the solution
corresponding to the unperturbed limit cycle Γ is given by [179]

x(t) = 2 cos s +
(3
4

sin s − 1
4

sin 3s
)
δ

+
(

− 1
8

cos s +
3
16

cos 3s − 5
96

cos 5s
)
δ2 + O(δ3) (5.92)

where s = (1−δ2/16+O(δ4))t, and the approximate period of the limit cycle
is τ := 2π(1 + δ2/16) + O(δ4). Moreover, these approximations are valid;
that is, the difference between the approximation and the exact solution is
bounded by a constant times δ3 on the time scale of one period of the limit
cycle Γ.

Recall the function C given in equation (5.73) and the formulas (5.74)
used to determine the width of the entrainment domains. To use these
formulas, let us approximate the extrema of the function C. This is accom-
plished by using the Lindstedt series (5.92) to approximate the phase plane
parameterization of Γ given by

θ �→ (x(t + θ), ẋ(t + θ)) .

If the resulting formulas are inserted into C and the terms of like order are
collected, then we obtain an approximation of the form

C(θ) ≈ c1(θ)δ + c2(θ)δ2.

This approximation vanishes unless m = n or m = 3n, a manifestation of
the resonances that appear in the approximation of the limit cycle as well
as the order of the approximation. At these resonances we have that

b(nτ) = 1 − 2nπδ + 2n2π2δ2 + O(δ3).

Also, for m = n the function C is given by

C(θ) = −(n2π2 cos θ)δ +
1
8
n2π2(sin 3θ − 3 sin 5θ

+ sin θ + 8nπ cos θ + 4 sin θ cos 2θ + 6 sin θ cos 4θ)δ2 + O(δ3),

while for m = 3n it is given by

C(θ) = −1
8
(
n2π2 sin 3θ

)
δ2.

In order to approximate the extrema of C in case m = n, note that the
extrema of the function θ �→ C(θ)/δ at δ = 0 occur at θ = 0 and θ = π.
The perturbed extrema are then approximated using the series expansion
of the left hand side of the equation C ′(θ) = 0. In fact, for m = n we have

Cmin = −n2π2δ + n3π3δ2 + O(δ3), Cmax = n2π2δ − n3π3δ2 + O(δ3),
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while for m = 3n we have

Cmin = −1
8
n2π2δ2 + O(δ3), Cmax =

1
8
n2π2δ2 + O(δ3).

By inserting these expressions into the formulas (5.74) for the tangent lines
of the entrainment domains at ε = 0 we obtain for m = n the O(δ4)
approximation

ε = ±
(
4 +

1
2
δ2)(Ω −

(
1 − 1

16
δ2)),

while for m = 3n we obtain the O(δ3) approximation

ε = ±
(32

3
δ−1 − 32nπ

3
+

4
3
δ − 4nπ

3
δ2)(Ω − 3

(
1 − 1

16
δ2)).

Of course, the accuracy of these computations can be improved and higher
order resonances can be studied by starting with higher order Lindstedt
approximations (see [4] and [54]). Also, the presence of the term containing
δ−1 in the slope of the tangent line for the (3 : 1) resonance indicates
that the entrainment domain has nearly vertical tangents for small δ, and
therefore this entrainment domain is very thin near the Ω-axis.

Exercise 5.48. Numerical values can be obtained from the approximation for-
mulas in this section. For example, if δ = 0.1 and (m : n) = (1 : 1), then the
tangents obtained from the Lindstedt series are approximately

ε = ±4.005(Ω − 0.999).

Find the entrainment domain for this case using a numerical simulation of the van
der Pol oscillator, approximate the tangents to the entrainment domains using
the results of your simulation, and compare the results with the approximations
given by Lindstedt series (see [32]). Hint: Find the frequency ω of the unperturbed
van der Pol limit cycle using a numerical simulation. Set up a grid of (Ω, ε) values
for Ω near ω and ε near zero. Then, for each choice of these parameter values set
initial conditions near the intersection of the unperturbed limit cycle with the x-
axis, iterate the Poincaré map several times and test to see if the iterates converge
to a fixed point. If they do, assume that entrainment has occurred and color the
corresponding grid point. If no entrainment occurs, then leave the corresponding
grid point uncolored. The entrainment domain will emerge from the display of
the colored grid points.

5.4 Forced Oscillators

In this section we will apply our continuation theory to the oscillator

ẍ + εh(x, ẋ)ẋ + f(x) = εg(t) (5.93)
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where the function t �→ g(t), the external force, has period 2π/Ω. As usual,
we will consider the differential equation (5.93) as the first order system

ẋ = y, ẏ = −f(x) + ε(g(t) − h(x, y)y), (5.94)

and we will assume that the unperturbed system

ẋ = y, ẏ = −f(x) (5.95)

has a period annulus A containing a resonant periodic solution Γm/n whose
period 2π/ω is in (m : n) resonance with the period of g. Also, we will
assume that the period function on A has a nonzero derivative at Γm/n.

Under the assumptions stated above, we have proved that the simple
zeros of the function φ �→ M(φ) given by

M(φ) =
∫ n2π/ω

0
y(t + φ, ξ)

(
g(t) − h(x(t + φ, ξ), y(t + φ, ξ))y(t + φ), ξ)

)
dt

(5.96)

are the continuation points for (m : n) (ultra)subharmonics. Here φ may
be viewed as a coordinate on Γm/n and ξ is a point on Γm/n that defines an
origin for the coordinate φ. For simplicity, we choose ξ to lie on the x-axis.

Note that the integrand of the integral used to define M is periodic with
period n2π/ω. If we suppress the variable ξ and change the variable of
integration to s = t + φ, then

M(φ) =
∫ φ+n2π/ω

φ

(
y(s)g(s − φ) − h(x(s), y(s))y2(s)

)
ds.

The function

θ �→
∫ θ+n2π/ω

θ

(
y(s)g(s − φ) − h(x(s), y(s))y2(s)

)
ds

is constant for each fixed value of φ. Thus, we can represent the bifurcation
function in the following convenient form:

M(φ) =
∫ n2π/ω

0

(
y(s)g(s − φ) − h(x(s), y(s))y2(s)

)
ds = I1(φ) + I2,

where

I1(φ) :=
∫ n2π/ω

0
y(s)g(s − φ) ds, I2 :=

∫ n2π/ω

0
h(x(s), y(s))y2(s) ds.

The function t �→ (x(−t),−y(−t)) is a solution of the unperturbed differ-
ential equation with initial value at the point (ξ, 0). Thus, by the uniqueness
of solutions, x is an even function and y is an odd function of time.
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Using Fourier series and the fact that s �→ y(s) is an odd function, we
have

y(s) =
∞∑

k=1

yk sin kωs, g(s) = g0 +
∞∑

k=1

gc
k cos kΩs +

∞∑
k=1

gs
k sin kΩs

where all coefficients are real. With these representations, it is easy to
compute

I1(φ) =
∞∑

k=1

∞∑
�=1

ykgs
�

∫ n2π/ω

0
sin(kωs) sin(�Ω(s − φ)) ds

+
∞∑

k=1

∞∑
�=1

ykgc
�

∫ n2π/ω

0
sin(kωs) cos(�Ω(s − φ)) ds.

Moreover, taking into account the resonance relation Ω = mω/n and ap-
plying the change of variables θ = ωs/n, we have

I1(φ) =
n

ω

∞∑
k=1

∞∑
�=1

ykgs
�

∫ 2π

0
sin(nkθ) sin(m�θ − �Ωφ)

+
n

ω

∞∑
k=1

∞∑
�=1

ykgc
�

∫ 2π

0
sin(nkθ) cos(m�θ − �Ωφ).

The integrals in the last formula vanish unless k = mj and � = nj for some
integer j > 0. Thus, we obtain a simplification that yields the formula

I1(φ) =
nπ

ω

( ∞∑
j=1

ymjg
s
nj cos(njΩφ) +

∞∑
j=1

ymjg
c
nj sin(njΩφ)

)
=

nπ

ω

( ∞∑
j=1

ymjg
s
nj cos(mjωφ) +

∞∑
j=1

ymjg
c
nj sin(mjωφ)

)
.

In particular, φ �→ I1(φ) is a 2π/(mω)-periodic function.
To simplify I2, let us note that the corresponding integrand is 2π/ω-

periodic, and therefore

I2 = n

∫ 2π/ω

0
h(x(s), y(s))y2(s) ds.

We are interested in the simple zeros of M on the interval 0 ≤ φ < 2π/ω.
Let us note that the graph of I1(φ) over this interval repeats m times
since φ �→ I1(φ) is 2π/(mω)-periodic. The constant I2 simply translates
the graph of I1(φ) to the graph of M . Also, if I1(φ) − I2 has k zeros on
0 ≤ φ < 2π/(mω), then M has mk zeros.

Generally, a periodic function has an even number of zeros over one pe-
riod. Hence, generally, there is a nonnegative integer N such that k =
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2N , and M has an even number of zeros. Thus, we expect 2mN (ul-
tra)subharmonics to continue from a given resonant periodic solution. It
is important to note that this number will be large if m is large. In this
regard, let us note that if the period of the unperturbed orbit Γ is large,
then there are resonances with m large.

In order for I1 to be nonzero, the forcing must contain some Fourier
modes that are the same as the modes present in the derivative y of the
unperturbed solution corresponding to the Γ. It is not clear how to deter-
mine which modes are present in this unperturbed solution without solving
the differential equation. However, because y is an odd function, we might
expect all odd modes to be present.

Under the assumption that I1 is not zero, M has zeros provided that I2
is not too large in absolute value. In effect, I2 serves to translate the graph
of the periodic function I1 in a vertical direction. This suggests that if the
damping is too large, then there will be no periodic solutions that continue
from the resonant unperturbed periodic orbits. However, there is a delicate
relationship between the amplitude of I1 and the magnitude of I2 that is
required to determine the global dynamics. The precise relationship that is
required must be obtained from each choice of the model equation.

Example 5.49. Consider the damped periodically forced oscillator

ẍ + εαx + f(x) = εβ cos Ωt.

Whereas gc
1 = β, all other Fourier modes vanish. Thus, on a resonant

unperturbed orbit, if we use the notation of this section, we must have
n = 1 and j = 1. In fact, we have

I1(φ) =
π

ω
ymβ sin(mωφ), I2 = α

∫ 2π/ω

0
y2(s) ds,

M(φ) =
π

ω
ymβ sin(mωφ) − α|y|22

where the norm is the L2-norm. Note that M has simple zeros if and only
if

0 <

(
πymβ

ω|y|22α

)−1

< 1.

In particular, if ym �= 0 and if the ratio α/β is sufficiently small, then there
are 2m zeros.

To determine the number and positions of the continuable periodic orbits,
we must know how the resonant periodic orbits are situated in the period
annuli of the unperturbed system (5.95). In other words, we must know the
behavior of the period function associated with the given period annulus.
The resonant unperturbed periodic orbits must be identified and, to apply
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our first order theory, the period function must have a nonzero derivative
at each resonant periodic orbit. On the other hand, it is sometimes possible
to determine if a resonant periodic orbit is continuable even if the period
function vanishes (see [31] and [147]). However, the problem of finding the
critical points of a period function is nontrivial even for system (5.95) (see
the survey [153], and also [35] and [36]).

Note that system (5.95) has all its rest points on the x-axis. If these rest
points are all nondegenerate (their linearizations have nonzero eigenvalues),
then the rest points will be either hyperbolic saddle points or centers. To
prove this fact, recall that system (5.95) has a first integral. Indeed, if
we view the differential equation ẍ + f(x) = 0 as a model equation for a
nonlinear spring, then we know that its total energy

H(x, y) =
1
2
y2 + F (x)

where
F (x) :=

∫ x

0
f(s) ds

is a first integral. Here the choice F (0) = 0 is arbitrary; the addition of a
constant to H just redefines the “potential energy.” We will use the fact
that H is constant on the trajectories of the differential equation (5.95).

Without loss of generality, suppose that system (5.95) has a rest point at
the origin. By our choice of the energy, H(0, 0) = 0. Also, since f(0) = 0,
we also have that Hx(0, 0) = 0. By the assumption that the rest point is
nondegenerate, we have Hxx(0, 0) = f ′(0) �= 0 and so

H(x, y) =
1
2
y2 +

f ′(0)
2

x2 + O(x3).

More generally, suppose H : R
n → R. We say that H has a singularity

at 0 ∈ R
n if H(0) = 0 and gradH(0) = 0. The singularity is called non-

degenerate if det(Hess H(0)) �= 0 where Hess H is the n × n matrix with
components

∂2H

∂xi∂xj
(x1, . . . , xn), i = 1, . . . , n, j = 1, . . . , n.

Theorem 5.50 (Morse’s Lemma). If H : R
n → R, given by

(x1, . . . , xn) �→ H(x1, . . . , xn),

has a nondegenerate singularity at the origin, then there is a smooth func-
tion h : R

n �→ R
n such that h(0) = 0, det Dh(0) �= 0, and

H(h(x1, . . . , xn)) =
n∑

i,j=1

∂2H

∂xi∂xj
(0)xixj .
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Informally, Morse’s lemma states that there is a nonlinear change of co-
ordinates defined in some neighborhood of the origin such that the function
H in the new coordinate system is given by the quadratic form determined
by the Hessian of H at the origin. For a proof of Morse’s lemma see [121].

Exercise 5.51. Suppose that H : R
n → R has a nondegenerate singularity at

the origin. Show that Hess H(0) has n real eigenvalues

λ2
1, . . . , λ2

k, −λ2
k+1, . . . , −λ2

n

where λi �= 0 for i = 1, . . . , n. The number n − k is called the index of the
singularity. Prove the following corollary of the Morse lemma: There is a change
of coordinates h : R

n → R
n such that

H(h(x1, . . . , xn)) =
k∑

i=1

λ2
i x

2
i −

n∑
i=k+1

λ2
i x

2
i .

For system (5.95), it follows from the Morse lemma that there is a new
coordinate system near each rest point such that the orbits of the sys-
tem (5.95) all lie on level curves of the conic y2 + f ′(0)x2. There are only
two cases: If f ′(0) > 0, then the origin is a center, and if f ′(0) < 0, then
the origin is a hyperbolic saddle.

Each center is surrounded by a period annulus A. Let us suppose that
there are rest points on the boundary of A. In this case, there are either
one or two hyperbolic saddle points on the boundary; the remainder of the
boundary is composed of the stable and unstable manifolds of these saddle
points. Because there are rest points on the boundary of A, the corre-
sponding period function grows without bound as its argument approaches
the boundary of A. In particular, the period annulus contains an infinite
number of resonant periodic orbits, and among these there are orbits with
arbitrarily large periods. Also, the period function approaches 2π/

√
f ′(0),

the period of the linearization of the system at the origin, as its argument
approaches the origin. Thus, there is at least one unperturbed periodic so-
lution with each preassigned period in the interval (2π/

√
f ′(0),∞). If the

period function is not an increasing function, then there may be more than
one unperturbed orbit in A with the same period. However, if there is a
rest point on the outer boundary of the period annulus, then the frequency
of the resonant periodic orbits approaches zero as the resonant orbits ap-
proach the boundary.

Since the rational numbers are a dense subset of R and since the res-
onance relation has the form n2π/ω = m2π/Ω, there are infinitely many
resonant periodic solutions in each subannulus containing two periodic or-
bits with different periods. In particular, a period annulus whose boundary
contains rest points has a subannulus with this property. Thus, it should
be clear that if the unperturbed system 5.95 has a period annulus contain-
ing periodic orbits with different periods, if the derivative of the period
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function does not vanish on each resonant orbit in the annulus, and if the
damping is sufficiently small, then there will be a large number of perturbed
(ultra)subharmonics.

Are there infinitely many (ultra)subharmonics? Our analysis does not
answer this question. To see why, recall our main result: If the function M
in display (5.96) has simple zeros along an (m : n) resonant unperturbed
periodic orbit, then for sufficiently small ε there are 2mN perturbed (ul-
tra)subharmonics where N is some positive integer. However, if we consider
an infinite number of resonant orbits, for example a sequence of periodic
orbits that approach the boundary of our period annulus, then it might
happen that the infinite number of requirements for ε to be sufficiently
small cannot be satisfied simultaneously without taking ε = 0. For this
reason, we cannot conclude that there is an ε > 0 such that the corre-
sponding perturbed system has infinitely many periodic solutions even if
(ultra)subharmonics continue from all resonant unperturbed periodic or-
bits. Thus, we are left with evidence that oscillators with an infinite number
of (ultra)subharmonics exist, but we have no proof. However, let us note
that if an oscillator has an infinite number of hyperbolic periodic orbits
of saddle type all contained in some compact subset of its extended phase
space, then we might expect the dynamical behavior of the oscillator in
a neighborhood of this set to be very complex: orbits in the neighbor-
hood might tend to follow a stable manifold, pass by a saddle point, follow
the motion on its unstable manifold, pass near another stable manifold,
and then repeat the process. Whatever the exact nature of such a flow, it
should be clear that we cannot hope to understand the dynamics of os-
cillators without considering this possible behavior. It turns out that by
using some new ideas introduced in Chapter 6 we will be able to show that
some periodically perturbed oscillators do indeed have an infinite number
of (ultra)subharmonics and that their flows are “chaotic”.



6
Homoclinic Orbits,
Melnikov’s Method, and Chaos

In the last chapter, we discussed the near resonance continuation theory
for periodic orbits of periodically perturbed oscillators. In case the un-
perturbed oscillator has a regular period annulus, we found that there is
generally an infinite number of resonances at which a first order pertur-
bation theory can be used to prove the existence of perturbed periodic
orbits. However, we cannot conclude from the results of our analysis that
the perturbed oscillator has infinitely many periodic orbits. To do so would
seem to require a condition that might be impossible to satisfy. Indeed, the
nonzero amplitude of the perturbation would have to be made sufficiently
small an infinite number of times corresponding to the unperturbed, reso-
nant, periodic orbits in an infinite sequence that approaches the boundary
of the period annulus. The subject of this chapter is a perturbation theory
that is valid at the boundary of the period annulus. When the theory is ap-
plied, the amplitude of the perturbation is only required to be sufficiently
small once.

Generally, the boundary of a period annulus for an unperturbed oscil-
lator consists of one or more saddle points connected by homoclinic or
heteroclinic orbits. Let us define a saddle connection to be an orbit whose
α- and ω-limit sets are hyperbolic saddle points. A saddle connection is
called a homoclinic orbit if its α- and ω-limit sets coincide. On the other
hand, the saddle connection is called a heteroclinic orbit if its α-limit set
is disjoint from its ω-limit set.

If the saddle points on the boundary of our period annulus are hyper-
bolic, then they persist along with their stable and unstable manifolds.
For simplicity, let us consider the case where there is just one hyperbolic
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FIGURE 6.1. A homoclinic loop.

FIGURE 6.2. Possible phase portraits of a planar system after perturbation of a
system with a homoclinic orbit.

saddle point p on the boundary of our period annulus such that this rest
point is “connected to itself” by a homoclinic orbit as in Figure 6.1. If the
perturbation is autonomous, then the portions of the perturbed stable and
unstable manifolds at p that form the homoclinic loop either coincide or
separate into one of the two configurations depicted in Figure 6.2. For a
periodic nonautonomous perturbation, we will consider the corresponding
(stroboscopic) Poincaré map. The saddle point p is a fixed (or periodic)
point for the unperturbed Poincaré map and the homoclinic orbit lies on
the invariant stable and unstable manifolds of p. After perturbation, the
perturbed stable and unstable manifolds can coincide, split, or cross. The
main problem addressed in this chapter is the determination of the relative
positions of the perturbed invariant manifolds for both the autonomous
and nonautonomous cases.

For autonomous perturbations, the splitting of saddle connections is im-
portant because it is related to the existence of limit cycles. For example,
suppose that the perturbed configuration of stable and unstable manifolds
is as depicted in the right hand panel of Figure 6.2. If the perturbation of
the rest point at the inner boundary of the unperturbed period annulus
is a source and the perturbation is sufficiently small, then no additional
rest points appear; and, by the Poincaré–Bendixson theorem, there must
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FIGURE 6.3. A homoclinic loop bifurcation: A periodic orbit appears after a
perturbation that breaks a homoclinic loop.

be at least one periodic orbit “inside” the original homoclinic loop (see
Figure 6.3).

For the case of a periodic perturbation, the most interesting case occurs
when the perturbed stable and unstable manifolds of the Poincaré map
cross. For the case of a homoclinic loop, a point of intersection is called a
transverse homoclinic point for the Poincaré map if the stable and unstable
manifolds meet transversally, that is, the sum of their tangent spaces at
the crossing point is equal to the tangent space of the two-dimensional
Poincaré section at this point. (There is an analogous concept for transverse
heteroclinic points.)

If there is a transverse homoclinic point, then, by a remarkable theorem
called the Smale–Birkhoff theorem, there is a nearby “chaotic invariant
set.” A weak version of this theorem states that if there is a transverse
homoclinic point, then the perturbed Poincaré map has infinitely many
unstable periodic points in a small neighborhood of the unperturbed ho-
moclinic loop. But even more is true: There is a compact invariant set that
contains these periodic points and also infinitely many nonperiodic solu-
tions that “wander as randomly as a sequence of coin tosses” in the vicinity
of the boundary of the original period annulus [159]. Moreover, the trajec-
tories of solutions starting in this invariant set are “sensitively dependent”
on their initial conditions; that is, no matter how close we take their initial
conditions, the corresponding points on two different trajectories will be at
least half of the diameter of the invariant set apart at some finite future
time. The existence of such an invariant set is what we mean when we say
the system is chaotic (see, for example, the mathematical references [80],
[127], [151], [159], [161], and [185], as well as the general references [12],
[56], [82], and [113]).

The proof of the existence of “chaotic dynamics” in the presence of a
transverse homoclinic point requires several new ideas which we will not
discuss here. However, it is very easy to see why the existence of a trans-
verse homoclinic point must lead to complicated dynamics. The idea is that
the forward iterates of a transverse homoclinic point, themselves all trans-
verse homoclinic points, must approach the corresponding saddle point
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FIGURE 6.4. Part of a homoclinic tangle for the stable and unstable manifolds
of a saddle fixed point of a Poincaré map.

along its stable manifold. However, as they do so, it is a consequence of
the fact that these points also lie on the unstable manifold of the same
saddle point that the unstable manifold must stretch and fold as shown
schematically in Figure 6.4. This homoclinic tangle is responsible for the
existence of a chaotic invariant set. It turns out that the chaotic invari-
ant sets in the homoclinic tangle are similar to hyperbolic saddle points in
the sense that these chaotic invariant sets have both stable and unstable
manifolds. Thus, roughly speaking, many solutions of the corresponding
differential equation that have their initial points near one of these chaotic
invariant sets will tend to approach the chaotic invariant set for a while
along the direction of the stable manifold, but eventually leave the vicin-
ity of the chaotic invariant set along the direction of the stable manifold.
Such an orbit will exhibit transient chaos. This is what usually happens if
the differential equation is not conservative. On the other hand, for Hamil-
tonian systems where the dimension of the phase space is not more than
four (for a mechanical system this means that there are not more than two
degrees-of-freedom), these “transient orbits” are often constrained to some
neighborhood of the original homoclinic loop. In this case, they continually
revisit the chaotic invariant sets obtained from the transverse homoclinic
points and they exhibit chaotic effects for all time. Finally, there are dissi-
pative systems that contain “chaotic attractors,” compact chaotic invariant
sets that attract all nearby orbits. These chaotic sets are not necessarily
associated with transverse homoclinic points. Chaotic attractors are poorly
understood. For example, it is generally very difficult to prove the existence
of a chaotic attractor for a system of differential equations. However, it is
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not at all difficult to “see” a chaotic attractor using numerical simulations
(see Exercise 6.1).

We will show how to detect the splitting of saddle connections by defin-
ing a function that determines the separation of the perturbed invariant
manifolds as a function of the bifurcation parameters. It turns out that the
appropriate function is the limit of the subharmonic Melnikov function as
the base points on the periodic orbits approach the boundary. For exam-
ple, for the case of the forced oscillator (5.94) where we have defined the
subharmonic Melnikov function M in display (5.96), the function we seek
is the limit of M as ξ approaches a point on the boundary that is not a rest
point. The limit function, again denoted by M , is again called the Melnikov
function. In fact, the Melnikov function for the differential equation (5.94)
is given by

M(φ) =
∫ ∞

−∞
y(t + φ, ξ)

(
g(t) − h(x(t + φ, ξ), y(t + φ, ξ))y(t + φ, ξ)

)
dt

or, after the obvious change of variables, by

M(φ) =
∫ ∞

−∞
y(s, ξ)

(
g(s − φ) − h(x(s, ξ), y(s, ξ))y(s, ξ)

)
ds

where ξ is a base point on the boundary and the coordinate φ specifies
position on the boundary.

For an autonomous perturbation, the Melnikov function does not depend
on the initial point for the unperturbed solution on the boundary. In this
case the sign of the Melnikov function determines the direction in which the
invariant manifolds split. For a time periodic perturbation, the Melnikov
function does depend on the initial point on the boundary, and its sim-
ple zeros correspond to positions where the perturbed stable and unstable
manifolds intersect transversally for sufficiently small ε �= 0.

The derivation and analysis of the Melnikov function for autonomous
perturbations is of course a special case of its derivation for nonautonomous
perturbations. However, since the analysis for autonomous perturbations
is conceptually simpler, we will give a detailed discussion of this case first.

Exercise 6.1. Write a report on numerical simulations of the Lorenz system

ẋ = σ(y − x), ẏ = ρx − y − xz, ż = −βz + xy

(see the original paper of Edward N. Lorenz [111] or any book on dynamical
systems theory). Start by setting the parameter values β = 8

3 , ρ = 28, and
σ = 10. Choose an initial condition in the first quadrant, for instance near the
unstable manifold of the saddle point at the origin, integrate forward in time,
and display the resulting approximate orbit using three-dimensional graphics.
The “Lorenz butterfly attractor” will appear. Also graph one of the observables,
say t �→ y(t), and compare the time series you obtain with the graph of a periodic



396 6. Homoclinic Orbits, Melnikov’s Method, and Chaos

function. Choose a second initial condition near the initial condition you started
with and plot the simulated graphs of t �→ y(t) for both initial conditions. Note
that these graphs will stay close together for a while (as they must due to the
smoothness of solutions with respect to initial conditions), but eventually they
will diverge. For this reason, it is impossible to predict the position of the state
vector from the initial conditions over long time periods with an accuracy that
is small compared with the diameter of the attractor; the system is extremely
sensitive to changes in the initial conditions. This is one of the hallmarks of a
chaotic flows.

6.1 Autonomous Perturbations:
Separatrix Splitting

Consider the planar system

u̇ = f(u, λ), u ∈ R
2, λ ∈ R

n (6.1)

and let ξ0 ∈ R
2 be a regular point for the unperturbed system

u̇ = f(u, 0). (6.2)

As usual, let t �→ u(t, ξ, λ) denote the solution of the differential equa-
tion (6.1) such that u(0, ξ, λ) = ξ, define f⊥(u) = Rf(u, 0) where

R :=
(

0 −1
1 0

)
,

and let t �→ Ψ(t, ξ) denote the flow of the orthogonal system u̇ = f⊥(u).
Here, of course, t �→ Ψ(t, ξ0) is transverse to t �→ u(t, ξ0, 0) at ξ0.

Define

Σ := {Ψ(t, ξ0) : t ∈ R}, (6.3)

and suppose that we have devised some construction that produces two
families of solutions of the differential equation (6.1), each parametrized by
λ, whose members are all transverse to Σ such that at λ = 0 the corre-
sponding solutions coincide with the unperturbed solution t �→ u(t, ξ0, 0).
Our objective is to obtain some information about the rate of separation
of the solutions belonging to the two parametrized families of solutions. In
fact, we will obtain a general conclusion about this separation rate follow-
ing the presentation given by Stephen Schecter [158]. This result will then
be used to address the problem of breaking saddle connections.

Suppose that our construction produces two smooth functions ρi : R
n →

R, i = 1, 2, given by λ �→ ρi(λ) such that ρi(0) = 0 where ρi(λ) gives the
point of intersection of the ith family with Σ. We desire information about
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the separation of the two solution families of the differential equation (6.1)
given by

γi(t, λ) := u(t, Ψ(ρi(λ), ξ0), λ), i = 1, 2. (6.4)

Let us view these families as “variations” of the unperturbed solution; that
is, γi is a family of solutions containing the unperturbed solution at λ = 0

γi(t, 0) = u(t, ξ0, 0), i = 1, 2.

Also, γi has initial value on the transverse section Σ. In fact,

γi(0, λ) = Ψ(ρi(λ), ξ0).

The separation of the variations from the unperturbed solution is defined
by the function λ �→ ρ1(λ) − ρ2(λ); it measures the distance between the
points where our variations cross Σ. Of course, in a perturbation problem,
it is unlikely that we will be given the functions ρ1 and ρ2 explicitly. At
best, we will be able to infer their existence (probably by an application of
the implicit function theorem). However, for small λ, a good approximation
of the separation is given by the separation function sep : R

n → R defined
by

sep(λ) := 〈Ψ(ρ1(λ), ξ0) − Ψ(ρ2(λ), ξ0), f⊥(ξ0)〉
= f(ξ0, 0) ∧ (Ψ(ρ1(λ), ξ0) − Ψ(ρ2(λ), ξ0)).

Let us note that, sep(0) = 0. Also, sep(λ) = 0 if and only if the solutions
γ1(t, λ) and γ2(t, λ) are identical. This last fact follows because a solution
of an initial value problem is unique.

As usual, we can determine the local nature of S := {λ : sep(λ) = 0}
provided that there is at least one j = 1, . . . , n such that sepλj

(0) �= 0. In
fact, if this condition holds, then by the implicit function theorem S is a
surface of dimension n − 1 passing through 0 ∈ R

n whose normal vector at
this point is just grad(sep)(0).

What have we done so far? In analogy with our continuation theory for
periodic solutions, we have defined a function akin to the displacement
function and we have reduced the study of its zero set to an application
of the implicit function theorem. Let us make this reduction useful by
identifying the partial derivatives of the separation function.

To identify the partial derivatives of the separation function using the
original differential equation (6.1), we expect to solve a variational equa-
tion. But to obtain a nontrivial variational equation we must have some
time dependence in the separation function. This requirement motivates
the definition of the time-dependent separation function S : R × R

n → R

given by

S(t, λ) := 〈γ1(t, λ) − γ2(t, λ), f⊥(ϕt(ξ0))〉
= f(ϕt(ξ0), 0) ∧ (γ1(t, λ) − γ2(t, λ))
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where ϕt is the flow of the system (6.2). Since S(0, λ) = sep(λ), the main
idea—originally due to Melnikov—is to compute the desired partial deriva-
tives of the separation function sep from the corresponding partial deriva-
tives of the time-dependent separation function S.

Let us define two auxiliary functions

Si(t, λ) := 〈γi(t, λ), f⊥(ϕt(ξ0))〉
= f(ϕt(ξ0), 0) ∧ γi(t, λ)

for i = 1, 2, and note that S(t, λ) = S1(t, λ) − S2(t, λ). To compute the
required partial derivatives, start with the formula

Si
λj

(t, 0) = f(ϕt(ξ0), 0) ∧ γi
λj

(t, 0), (6.5)

and use the fact that the function t �→ γi(t, λ) is a solution of the differential
equation (6.1) to obtain the variational equation

γ̇i
λi

(t, 0) = fu(ϕt(ξ0), 0)γi
λj

(t, 0) + fλj
(ϕt(ξ0), 0). (6.6)

Next, define A(t) := fu(ϕt(ξ0), 0) and use equation (6.5) to obtain the
differential equation

Ṡi
λj

(t, 0) = fu(ϕt(ξ0), 0)f(ϕt(ξ0), 0) ∧ γi
λj

(t, 0) + f(ϕt(ξ0), 0) ∧ γ̇i
λj

(t, 0)

= A(t)f(ϕt(ξ0), 0) ∧ γi
λj

(t, 0) + f(ϕt(ξ0), 0) ∧ A(t)γi
λj

(t, 0)
+ f(ϕt(ξ0), 0) ∧ fλj

(ϕt(ξ0), 0). (6.7)

Formula (6.7) can be simplified by an application of the following easily
proved proposition from vector analysis: If A is a 2×2 matrix and v, w ∈ R

2,
then

Av ∧ w + v ∧ Aw = (trA)v ∧ w.

In fact, with the aid of this proposition, we have

Ṡi
λj

(t, 0) = div f(ϕt(ξ0), 0)f(ϕt(ξ0), 0) ∧ γi
λj

(t, 0)
+ f(ϕt(ξ0), 0) ∧ fλj

(ϕt(ξ0), 0)

= div f(ϕt(ξ0), 0)Si
λj

(t, 0) + f(ϕt(ξ0), 0) ∧ fλj (ϕt(ξ0), 0). (6.8)

The differential equation (6.8) is a linear variational equation for the
function t �→ Si

λj
(t, 0). To solve it, let us assume that we know the behavior

of γ1(t, 0) as t → −∞ and the behavior of γ2(t, 0) as t �→ ∞. If we define

K(t) := e− ∫ t
0 div f(ϕt(ξ0),0) ds

and integrate both sides of the differential equation

d

dt

(
K(t)Si

λj
(t, 0)

)
= K(t)f(ϕt(ξ0)) ∧ fλj

(ϕt(ξ0), 0),
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then we obtain the identities

S1
λj

(0, 0) = K(t)S1
λj

(t, 0) +
∫ 0

t

K(s)f(ϕs(ξ0)) ∧ fλj (ϕs(ξ0), 0) ds,

−S2
λj

(0, 0) = −K(t)S2
λj

(t, 0) +
∫ t

0
K(s)f(ϕs(ξ0)) ∧ fλj (ϕs(ξ0), 0) ds.

Note that the right hand side of each of these identities is constant with
respect to t. Using this fact, the desired partial derivative is given by

sepλj
(0) = lim

t→−∞

[
K(t)f(ϕt(ξ0)) ∧ γ1

λj
(t, 0)

+
∫ 0

t

K(s)f(ϕs(ξ0)) ∧ fλj
(ϕs(ξ0), 0) ds

]
+ lim

t→∞

[
− K(t)f(ϕt(ξ0)) ∧ γ2

λj
(t, 0)

+
∫ t

0
K(s)f(ϕs(ξ0)) ∧ fλj (ϕs(ξ0), 0) ds

]
. (6.9)

We reiterate that the indicated limits exist because the quantities in square
brackets are constants. Of course, the summands of each expression in
square brackets are not necessarily constants.

The representation (6.9) of the partial derivatives of the separation func-
tion is useful because it is general. However, let us return to the main
topic of this section and apply this result to the perturbation of saddle
connections.

Suppose that ξ0 denotes a point on a saddle connection for system (6.2)
connecting the hyperbolic saddle points p0 and q0 (maybe p0 = q0); that
is,

lim
t→−∞ ϕt(ξ0) = p0, lim

t→∞ ϕt(ξ0) = q0.

Also, let Σ denote the section at ξ0 defined in display (6.3). By the im-
plicit function theorem, if λ is sufficiently small, then there are perturbed
hyperbolic saddle points

pλ = p0 + O(λ), qλ = q0 + O(λ)

for the system (6.1). Define t �→ γ1(t, λ) to be the solution of the sys-
tem (6.1) with initial condition on Σ (as in equation (6.4)) that lies on
the unstable manifold of pλ, and let t �→ γ2(t, λ) denote the corresponding
solution on the stable manifold of the hyperbolic saddle point qλ. The fact
that the stable and unstable manifolds γi, i = 1, 2, intersect the fixed curve
Σ is a consequence of Theorem 4.1. To see this, add the equation λ̇ = 0
to the system (6.1) and use the smoothness of the center stable manifold
corresponding to each rest point of the augmented system corresponding
to the saddle points p0 and q0.

We will outline a proof of the following proposition:
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Proposition 6.2. If system (6.1) with λ = 0 has a saddle connection and
if γ1 and γ2, as in display (6.4), are defined to be solutions on the unstable
and stable manifolds of the perturbed saddle points, then

lim
t→−∞ K(t)f(ϕt(ξ0)) ∧ γ1

λj
(t, 0) = 0, (6.10)

lim
t→∞ K(t)f(ϕt(ξ0)) ∧ γ2

λj
(t, 0) = 0. (6.11)

Moreover,

sepλj
(0) =

∫ ∞

−∞
e− ∫ t

0 div f(ϕs(ξ0),0) dsf(ϕt(ξ0), 0) ∧ fλj (ϕt(ξ0), 0) dt. (6.12)

The important formula (6.12) for the partial derivatives of the separation
function with respect to the parameters was probably known to Poincaré.
It was also discovered independently by several different authors (see, for
example, [120], [149], and [163]). However, the integral is now most often
called the Melnikov integral.

Since sep(0) = 0, the Taylor series of the separation function at λ = 0 is

sep(λ) =
n∑

j=1

λj sepλj
(0) + O(|λ|2). (6.13)

In particular, if n = 1 and ε := λ1, then

sep(ε) = ε(sepε(0) + O(ε)). (6.14)

Therefore, if sepε(0) �= 0 and if |ε| is sufficiently small, then formula (6.12)
can be used to determine the sign of sep(ε), and therefore the splitting
direction of the perturbed stable and unstable manifolds relative to the
direction determined by f⊥(ξ0).

An outline for a proof of the limit (6.11) will be given; a proof for the
limit (6.10) can be constructed similarly.

View the vector field f as a mapping f : R
2 × R

n → R
2. Since f(q0, 0) =

0 and since fu(q0, 0) : R
2 → R

2 is a nonsingular linear transformation
(it has no eigenvalue on the imaginary axis in the complex plane by the
hyperbolicity of q0), the implicit function theorem implies there is a map
q : R

n → R
2 defined near λ = 0 such that q(0) = q0 and f(q(λ), λ) ≡ 0. By

the continuous dependence of the eigenvalues of a matrix on its coefficients,
we have that q(λ) is a hyperbolic saddle point for |λ| sufficiently small.

As mentioned above, the stable manifold of q(λ) varies smoothly with
λ by Theorem 4.1. In particular, the function (t, λ) �→ γ2(t, λ) depends
smoothly on t and λ, and limt→∞ γ2(t, λ) = q(λ). The matrix fu(q0, 0)
has two real eigenvalues −µ1 < 0 < µ2. Moreover, as t → ∞ the curve
t �→ γ2(t, 0) approaches the saddle point q0 tangent to the eigenspace cor-
responding to the eigenvalue −µ.
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By an affine change of coordinates, if necessary, we may as well assume
that q0 is located at the origin and the unperturbed differential equation
u̇ = f(u, 0) has the form

ẋ = −µx + f1(x, y), ẏ = νy + f2(x, y) (6.15)

where both µ and ν are positive constants, and the functions f1 and f2
together with their first order partial derivatives vanish at the origin. In
these coordinates, the stable manifold of the hyperbolic saddle point at the
origin is given by the graph of a smooth function h : U → R where U ⊂ R

is an open interval containing the origin on the x-axis. Moreover, because
the stable manifold is tangent to the x-axis at the origin, we have h(0) = 0
and h′(0) = 0.

The estimate that we will use to compute the limit (6.11) is the content
of the following proposition.

Proposition 6.3. If |x0| is sufficiently small, then there is a positive con-
stant c such that the solution of the system (6.15) starting at (x0, h(x0))
satisfies the estimate

|x(t)| + |y(t)| ≤ ce−µt, t ≥ 0.

The next lemma (compare Theorem 2.42) will be used to prove Propo-
sition 6.3.

Lemma 6.4. If t �→ x(t) is the solution of the initial value problem

ẋ = −µx + g(x), x(0) = x0 ∈ R, µ > 0

where g is a smooth function such that g(0) = 0 and g′(0) = 0, then there
are constants ε > 0 and c > 0 such that |x(t)| ≤ ce−µt for t ≥ 0 whenever
|x0| < ε.

Proof. The function defined by

G(x) :=
{

x−2g(x), x �= 0
0, x = 0

is continuous at x = 0. Thus, there is some constant C such that |G(x)| ≤ C
for sufficiently small |x|.

For x �= 0, we have

− ẋ

x2 − µ

x
= −G(x).

If y := 1/x, then ẏ − µy = −G(x(t)) and

e−µty(t) = y(0) −
∫ t

0
e−µsG(x(s)) ds.
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Thus, we have the estimate

|e−µty(t)| ≥ |y(0)| −
∫ t

0
e−µs|G(x(s)| ds,

and for sufficiently small |x0|

|y(0)| ≤ |e−µty(t)| + C

∫ t

0
e−µs ds. (6.16)

We are using the fact that if |x0| is sufficiently small, then |x(t)| < |x0|
for t ≥ 0. This follows from the assumption that the point x = 0 is an
attracting rest point for our one-dimensional differential equation. How-
ever, a weaker assumption would also be sufficient. For example, it suffices
to assume that for |x0| sufficiently small, the interval (−|x0|, |x0|) is pos-
itively invariant. This follows immediately by considering the direction of
the vector field corresponding to our differential equation at the end points
of the appropriately chosen interval.

After an elementary integration, inequality (6.16) states that

|y(0)| ≤ |e−µty(t)| +
C

µ
(1 − e−µt).

Moreover, because t ≥ 0, it follows that

|y(0)| ≤ |e−µty(t)| +
C

µ
,

and therefore
1

|x0|
− C

µ
≤ 1

eµt|x(t)| .

If |x0| > 0 is sufficiently small, then

1
|x0|

− C

µ
>

1
c

> 0

for some c > 0. Thus, we have that

|x(t)| ≤ ce−µt.

�

Remark: Schecter [158] proves a sharper lemma. Under the same hy-
potheses as in Lemma 6.4, he proves that

lim
t→∞ eµtx(t) = L �= 0.

Let us prove Proposition 6.3.
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Proof. Consider the change of coordinates for the system (6.15) given by

p = x, q = y − h(x).

In these coordinates, the saddle point stays fixed at the origin, but the sta-
ble manifold is transformed to the p-axis. The restriction of the transformed
differential equation to the p-axis is given by

ṗ = −µp + f1(p, h(p)). (6.17)

If g(p) := f1(p, h(p)), then all the hypotheses of the lemma are satisfied,
and we conclude that there is some |p0| �= 0 such that solutions of the
differential equation (6.17) satisfy |p(t)| ≤ ce−µt for some c > 0 and all
t ≥ 0 whenever |p(0)| < |p0|. In the original coordinates, the corresponding
solution on the stable manifold is given by x(t) = p(t), y(t) = h(x(t)).
Since y = h(x) is tangent to the x-axis at x = 0, there is a constant c1 > 0
such that |h(x)| < c1x

2 for |x| sufficiently small. Thus, if the initial value
of the solution of the differential equation (6.15) on the stable manifold is
sufficiently close to the origin, then

|x(t)| + |y(t)| = |x(t)| + |h(x(t))| ≤ |x(t)|(1 + c1, |x(t)|) ≤ 2ce−µt. �

To conclude our discussion of the limit (6.11), we must analyze the
asymptotic behavior of the functions K(t), f(ϕt(ξ0), 0), and γ2

λj
(t, 0). Let

us note first that since f(u, 0) is Lipschitz, we have

||f(u, 0)|| = ||f(u, 0) − f(0, 0)|| ≤ L||u||

for some constant L > 0. By the proposition,

||f(ϕt(ξ0), 0)|| ≤ Lce−µt.

Likewise, using the smoothness of u �→ f(u, 0), we have

div f(u, 0) = tr fu(0, 0) + R(u)

where, for sufficiently small ||u||, there is a constant c2 > 0 such that the
remainder R satisfies ||R(u)|| ≤ c2||u||. Thus

K(t) = e− ∫ t
0 ν−µ due− ∫ t

0 R(u(s)) ds

≤ e(µ−ν)tec2
∫ t
0 ce−µs ds

≤ c3e
(µ−ν)t

for some c3 > 0. It follows that

lim
t→∞ K(t)f(ϕt(ξ0), 0) = 0.
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To complete the argument let us see that |γ2
λj

(t, 0)| is bounded. For this,
we use the smoothness of the stable manifold with respect to the parameter
λ. There is no loss of generality if we assume that the hyperbolic saddle
q(λ) remains at the origin with its stable manifold tangent to the x-axis as
in system (6.15). Indeed, this geometry can be achieved by a parameter-
dependent affine change of coordinates. More precisely, there is a smooth
function (x, λ) �→ h(x, λ) defined near (x, y) = (0, 0) such that the stable
manifold is the graph of the function x �→ h(x, λ). Of course, we also have
that h(0, λ) ≡ 0 and hx(0, λ) ≡ 0. Using this representation of the stable
manifold,

γ2(t, λ) = (x(t, λ), h(x(t, λ), λ))

where t �→ x(t, λ) is a solution of a differential equation

ẋ = −µx + g(x, λ)

similar to differential equation (6.17). After differentiation, we find that

γ2
λj

(t, 0) = (xλj
(t, 0), hx(x(t, 0), 0)xλj

(t, 0) + hλj
(x(t, 0), 0)).

By the smoothness of the function h, both hx(x, 0) and hλj
(x, 0) are

bounded for x in some fixed but sufficiently small interval containing x = 0.
Thus, the boundedness of the function t �→ γ2

λj
(t, 0) will be proved once we

show that t �→ xλj
(t, 0) is bounded as t → ∞. To obtain this bound, let us

use the fact that t �→ xλj (t, 0) is a solution of the variational equation

ẇ = −µw + gx(x(t, 0), 0)w + gλj (x(t, 0), 0). (6.18)

Because gx(0, 0) = 0 and the function g is smooth, we have the estimate

|gx(x, 0)| ≤ c1|x|

for some c1 > 0. In addition, since g(0, λ) ≡ 0, it follows that gλj (0, 0) = 0.
Also, by the smoothness of g, the partial derivative gλj is locally Lipschitz.
In fact, there is some c2 > 0 such that

|gλj
(x, 0)| = |gλj

(x, 0) − gλj
(0, 0)| ≤ c2|x|.

With the obvious choice of notation, the differential equation (6.18) has
the form

ẇ = (−µ + α(t))w + β(t) (6.19)

and the solution

w(t) = e−µte
∫ t
0 α(s) ds

(
w(0) +

∫ t

0
eµse− ∫ s

0 α(τ) dτβ(s) ds
)
.
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By Proposition 6.3, there is a constant c3 > 0 such that

|α(t)| ≤ c3e
−µt, |β(t)| ≤ c3e

−µt,

for t ≥ 0. Also, let us note that∫ t

0
|α(s)| ds ≤ c3

µ
(1 − e−µt) <

c3

µ
.

Thus, we obtain the following growth estimate for the solution of the dif-
ferential equation (6.19):

|w(t)| ≤ e−µtec3/µ|w(0)| + e−µtec3/µc3e
c3/µt.

In particular, |w(t)| is bounded for t ≥ 0. This completes the proof.

As an application of our result on the splitting of separatrices, let us
consider the damped van der Pol oscillator

ẍ + ε(x2 − 1)ẋ + x − c2x3 = 0

where c > 0 and ε is a small parameter. If, as usual, we define ẋ = y, then
the energy for the unperturbed system is given by

H(x, y) =
1
2
y2 +

1
2
x2 − 1

4
c2x4.

The unperturbed Hamiltonian system

ẋ = y, ẏ = −x + c2x3

has a pair of hyperbolic saddle points at (x, y) = (±1/c, 0) and a center at
the origin surrounded by a regular period annulus. The boundary of the
period annulus is a pair of heteroclinic orbits of the unperturbed system
that both lie on the curve with energy 1/(4c2).

The Melnikov integral has the form

M =
∫ ∞

−∞
y2(1 − x2) dt.

Using the fact that ẋ/y = 1 and the energy relation, let us note that the
time parameter on the heteroclinic orbits is given by

t =
∫ x

0

( 1
2c2 − σ2 +

c2

2
σ4)−1/2

dσ.

After integration, this fact yields the solution

x(t) =
1
c

tanh(t/
√

2 ), y(t) =
1

c
√

2
sech2(t/

√
2 ),
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and the formula

M =
1

2c2

∫ ∞

−∞
sech4(t/

√
2 )(1 − 1

c2 tanh2(t/
√

2 )) dt.

This elementary integral can be evaluated using the substitution u =
tanh(t/

√
2 ) to obtain the value

M =
2
√

2
15c2

(
5 − 1

c2

)
.

If, for example, c2 < 1
5 , then M < 0 and both heteroclinic orbits break.

If in addition ε > 0 is sufficiently small, then the system will have a limit
cycle surrounding the origin. (Why?)

Exercise 6.5. Discuss the splitting of saddle connections for the damped Duff-
ing equation

ẍ + εx − x + c2x3 = 0.

Does the perturbed system have limit cycles?

Exercise 6.6. A heteroclinic orbit of a planar Hamiltonian system does not
persist under a general (autonomous) Hamiltonian perturbation. Prove that a
homoclinic loop of a planar Hamiltonian system persists under (autonomous)
Hamiltonian perturbation. Determine the fate of the unperturbed heteroclinic
orbits in the phase plane for the pendulum in the family

θ̇ = v, v̇ = − sin θ + ε

as ε varies in the closed unit interval. Repeat the exercise for the perturbed
pendulum system viewed as a family on the phase cylinder?

6.2 Periodic Perturbations:
Transverse Homoclinic Points

In this section we will consider periodic perturbations of a planar Hamil-
tonian oscillator

ẋ = Hy(x, y), ẏ = −Hx(x, y) (6.20)

whose phase portrait has a homoclinic loop as depicted in Figure 6.1. Our
main objective is to prove that if the Melnikov function defined on the
homoclinic loop has simple zeros, then the periodically perturbed oscillator
has transverse homoclinic points.
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There are at least two reasons for the unnecessary restriction to unper-
turbed Hamiltonian systems. First, because Hamiltonian vector fields are
divergence free, the Liouville factor

e− ∫ t
0 div f(ϕt(ξ0),0) ds

is constant. Therefore, the expression for the Melnikov integral is simplified
(see, for example, formula (6.9)). The second reason is the recognition that
for the most important applications of the theory, the unperturbed system
is Hamiltonian.

To avoid writing the components of system (6.20), let us define the vector
ν = (x, y) and, with a slight abuse of notation, the function

f(ν) := (Hy(ν),−Hx(ν))

so that differential equation (6.20) has vector form

ν̇ = f(ν).

Also, let us suppose that g : R
2 × R × R → R

2 is a function given by
(ν, t, ε) �→ g(ν, t, ε) that is 2π/Ω-periodic in t. The corresponding periodi-
cally perturbed oscillator is given in vector form by

ν̇ = f(ν) + εg(ν, t, ε),

and in component form by

ẋ = Hy(x, y) + εg1(x, y, t, ε),
ẏ = −Hx(x, y) + εg2(x, y, t, ε). (6.21)

Let us denote the flow of the unperturbed Hamiltonian system (6.20) by
ϕt, the homoclinic loop at the hyperbolic saddle point ν0 for the unper-
turbed system (6.20) by Γ, and the solution of the perturbed system (6.21)
by t �→ V (t, ν, ε) where ν ∈ R

2 and V (0, ν, ε) ≡ ν. Also, as usual, let us
define the (stroboscopic) parameterized Poincaré map P : R

2 ×R → R
2 by

P (ν, ε) := V (2π/Ω, ν, ε).

Finally, the Melnikov function M : Γ → R for the perturbed oscilla-
tor (6.21) is defined by

M(ζ) :=
∫ ∞

−∞
f(ϕt(ζ)) ∧ g(ϕt(ζ), t, 0) dt (6.22)

where, of course, f ∧ g := f1g2 − g1f2.
The main result of this section on the existence of transverse homoclinic

points is stated in the following theorem.
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Theorem 6.7. If |ε| is sufficiently small, then the Poinaré map for the
system (6.21) has a hyperbolic saddle fixed point ν(ε) such that ν(ε) =
ν0 + O(ε). If ζ0 is a simple zero of the Melnikov function M defined on Γ
and |ε| �= 0 is sufficiently small, then the corresponding Poincaré map has
a transverse homoclinic point relative to the stable and unstable manifolds
of the hyperbolic fixed point ν(ε). If, on the other hand, M has no zeros
and |ε| �= 0 is sufficiently small, then the stable and unstable manifolds of
ν(ε) do not intersect.

For the applications of Theorem 6.7, it is often convenient to work with a
local coordinate on the homoclinic loop Γ. In fact, if we choose some point
z on Γ, then the homoclinic orbit is parameterized by the corresponding
solution of the differential equation, for example, by � �→ ϕ−�(z). Thus, the
function M : R → R defined by

M(�) := M(ϕ−�(z)) =
∫ ∞

−∞
f(ϕt−�(z)) ∧ g(ϕt−�(z), t, 0) dt (6.23)

is a local representation of the Melnikov function. Moreover, by the change
of variables σ := t − �, we also have the useful identity

M(�) =
∫ ∞

−∞
f(ϕσ(z)) ∧ g(ϕσ(z), σ + �, 0) dσ. (6.24)

As an important example, let us consider the first order system equivalent
to the periodically forced pendulum

θ̈ + λ sin θ = εa sin Ωt

on the phase cylinder, that is, the system

θ̇ = v,

v̇ = −λ sin θ + εa sin Ωt (6.25)

where θ is an angular coordinate modulo 2π. The unperturbed phase cylin-
der system has a hyperbolic saddle point with coordinates (θ, v) = (π, 0)
and two corresponding homoclinic loops. Moreover, the unperturbed sys-
tem is Hamiltonian with respect to the total energy

H(θ, v) :=
1
2
v2 − λ cos θ,

and both homoclinic loops lie on the energy surface in the phase cylinder
corresponding to the graph of the energy relation

v2 = 2λ(1 + cos θ).

If we use the fact that (1/v)dθ/dt = 1, the energy relation, and the
identity 1 + cos θ = 2 cos2(θ/2), then along the upper homoclinic orbit we
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have the scalar differential equation

2
√

λ =
1

cos(θ/2)
dθ

dt
.

If we impose the initial condition θ(0) = 0, then the initial value problem
has the elementary implicit solution

1
2

ln
(1 + sin(θ/2)

1 − sin(θ/2)

)
=

√
λ t,

or equivalently the solution

t �→ θ(t) = 2 arcsin(tanh(
√

λ t)).

The corresponding solution of the pendulum equation

θ = 2 arcsin(tanh(
√

λ t)) = 2 arctan(sinh(
√

λ t)),

v = 2
√

λ sech(
√

λ t) (6.26)

with the initial condition (θ, v) = (0, 2
√

λ ) is easily determined by substi-
tution of θ(t) into the energy relation or by differentiation of the function
t �→ θ(t) with respect to t.

In view of the solution (6.26) on the upper homoclinic loop, the Melnikov
function (6.24) for the periodically forced pendulum is given by

M(�) := 2a
√

λ

∫ ∞

−∞
sech(

√
λσ) sin(Ω(σ + �)) dσ.

By using the trigonometric identity for the sine of the sum of two angles
and the fact that the function σ �→ sech(

√
λσ) sin(Ωσ) is odd, the formula

for M can be simplified to the identity

M(�) = 2a
√

λ sin(Ω�)
∫ ∞

−∞
sech(

√
λσ) cos(Ωσ) dσ

where the value of the improper integral is given by∫ ∞

−∞
sech(

√
λσ) cos(Ωσ) dσ =

π

a
sech

( π

2a

)
. (6.27)

The function M has infinitely many simple zeros given by{
� =

mπ

Ω
: m ∈ Z

}
.

Thus, by Theorem 6.7, the Poincaré map for the system (6.25) has trans-
verse homoclinic points. (Treat yourself to an aesthetic experience. Find a
few quiet hours, sit alone, avoid all computer algebra systems, review the
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Hyperbolic periodic oribit
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Homoclinic manifold

FIGURE 6.5. Phase portrait for the system (6.30) on the phase cylinder. The
homoclinic manifold is the cylinder over the homoclinic loop of the corresponding
planar Hamiltonian system.

elements of complex analysis, and then use the residue calculus to com-
pute the value of the improper integral (6.27). Pure as light, let Cauchy’s
theorem, a crown jewel of 19th century mathematics, shine within.)

In preparation for the proof of Theorem 6.7, let us recast the differential
equation (6.21) as the first order system on the phase cylinder R

2 ×T given
by

ẋ = Hy(x, y) + εG1(x, y, τ, ε),
ẏ = −Hx(x, y) + εG2(x, y, τ, ε),
τ̇ = Ω (6.28)

where τ is an angular variable modulo 2π and

Gi(x, y, τ, ε) := gi(x, y, τ/Ω, ε)

for i = 1, 2. Also, let us note that the corresponding vector form of sys-
tem (6.28) is

V̇ = f(V ) + εG(V, τ, ε),
τ̇ = Ω. (6.29)

The unperturbed system

ẋ = Hy(x, y),
ẏ = −Hx(x, y),
τ̇ = Ω (6.30)
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has a two-dimensional homoclinic manifold S corresponding to the homo-
clinic loop of the corresponding planar Hamiltonian system as sketched
in Figure 6.5. Note that the original hyperbolic saddle point of the pla-
nar Hamiltonian system corresponds to a hyperbolic periodic orbit γ of
system (6.30) that has two-dimensional stable and unstable manifolds, de-
noted W s(γ) and Wu(γ), respectively. Moreover, the homoclinic manifold
is contained in W s(γ) ∪ Wu(γ).

To obtain a coordinate system on the homoclinic manifold, let us recall
that the local coordinate on the homoclinic loop is given by the function
� �→ ϕ−�(z) where z is fixed in Γ. The manifold S is parameterized in the
same manner. In fact, if p ∈ S, then there is a unique point (�, τ) ∈ R × T

such that

p = (ϕ−�(z), τ).

In other words, the map

(�, τ) �→ (ϕ−�(z), τ)

is a global chart whose image covers the manifold S.
We are interested in the fate of the homoclinic manifold for ε �= 0. The

first observation is that the periodic orbit γ is continuable for sufficiently
small |ε| and its continuation is a hyperbolic periodic orbit γ(ε) with a
two-dimensional stable manifold W s(γ(ε)) and a two-dimensional unstable
manifold Wu(γ(ε)). The persistence of γ, and hence the first statement of
Theorem 6.7, follows easily from the results of Chapter 5. The existence of
the perturbed stable and unstable manifolds follows from results similar to
those in Chapter 4. In fact, the existence of the perturbed invariant mani-
folds can be proved from the existence of invariant manifolds for the hyper-
bolic fixed point of the perturbed Poincaré map. The Hartman–Grobman
theorem for diffeomorphisms in Chapter 4 can be used to obtain the exis-
tence of continuous invariant manifolds at the hyperbolic fixed point of the
Poincaré map corresponding to the hyperbolic saddle point ν0. The proof of
the smoothness of these invariant sets is analogous to the proof of smooth-
ness given in Chapter 4 for the invariant stable and unstable manifolds at
a hyperbolic rest point of a differential equation.

We will prove a version of Theorem 6.7 that takes into account the ge-
ometry of the homoclinic manifold. The formulation of this result requires
an extension of the Melnikov function (6.23) to a function, also denoted by
the symbol M , that is defined on the homoclinic manifold S by

M(�, τ) :=
∫ ∞

−∞
f(ϕt−�(z)) ∧ G(ϕt−�(z), Ωt + τ, 0) dt. (6.31)

The statement in Theorem 6.7 concerning the existence of a transverse
homoclinic point is an easy consequence of the following result.
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FIGURE 6.6. Perturbed stable and unstable manifolds. The splitting distance
is computed with respect to the lines in the direction of the normals to the
homoclinic manifold.

Theorem 6.8. If there is a point in S with coordinates (�, τ) such that

M(�, τ) = 0, M�(�, τ) �= 0,

and if |ε| �= 0 is sufficiently small, then the stable manifold W s(γ(ε)) and
the unstable manifold Wu(γ(ε)) intersect transversally at a point in the
phase cylinder O(ε) close to the point (ϕ−�(z), τ).

A point p of transversal intersection of the stable and unstable manifolds
of the hyperbolic periodic orbit γ in the phase cylinder corresponds to a
point of transversal intersection of the stable and unstable manifolds of
the corresponding hyperbolic fixed point of the perturbed Poincaré map.
In fact, the corresponding point of transversal intersection on the Poincaré
section may be taken to be the first intersection of the orbit through p with
the Poincaré section.

The proof of Theorem 6.8 will require some additional notation and two
lemmas.

Let us measure the splitting of the stable and unstable manifolds relative
to the unperturbed homoclinic manifold S. To be precise, note first that
there is a natural choice for a normal vector at each point p := (ϕ−�(z), τ) ∈
S, namely the vector

N(�, τ) = (ϕ−�(z), τ, η(�), 0)
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with base point (ϕ−�(z), τ) and the first component of its principal part
given by

η(�) := DH(ϕ−�(z)) = (Hx(ϕ−�(z)), Hy(ϕ−�(z))).

Of course, the tangent space to S at the point p is generated by the two
vectors

(Hy(ϕ−�(z)),−Hx(ϕ−�(z)), 0), (0, 0, 1)

where the base point is suppressed and the last component is in R, the
tangent space to the circle T at the point with angle τ . Note that both of
these basis vectors are orthogonal to the vector N(�, τ) with respect to the
usual inner product of R

3.
The unperturbed stable and unstable manifolds are transverse to the line

L(p) through the point p on S with direction vector N(�, τ). Thus, for a
small perturbation, the perturbed stable and unstable manifolds must also
intersect L(p) transversally (see Figure 6.6). The idea is to use the distance
between the intersection points of the perturbed invariant manifolds and
the line L(p) as a measure of the distance between the perturbed manifolds
at the point p ∈ S. However, there is a problem: The perturbed invariant
manifolds might intersect the line more than once, perhaps even an infinite
number of times. So it is not immediately clear which intersection points to
choose in order to measure the distance at p between the perturbed stable
and unstable manifolds.

Suppose that ps(ε) is a point on L(p)∩W s(γ(ε)), and pu(ε) is a point on
L(p) ∩ Wu(γ(ε)). Also, recall that the point p depends on the coordinates
� and τ . If, in components relative to the phase cylinder,

ps(ε) = (zs(�, τ, ε), τ), pu(ε) = (zu(�, τ, ε), τ),

then there are corresponding solutions of the perturbed system (6.28) given
by

t �→ (V s(t, zs(�, τ, ε), ε), τ + Ωt), t �→ (V u(t, zu(�, τ, ε), ε), τ + Ωt).

Of course, the solution corresponding to ps(ε) is in the (invariant) stable
manifold W s(γ(ε)) and the solution corresponding to pu(ε) is in the unsta-
ble manifold Wu(γ(ε)). There is one choice for ps(ε) among all points in
L(p) ∩ W s(γ(ε)) such that the corresponding solution

t �→ (V s(t, zs(�, τ, ε), ε), τ + Ωt), (6.32)

does not intersect L(p) for all t > 0. Likewise, there is one choice for pu(ε)
among all points in L(p) ∩ Wu(γ(ε)) such that the corresponding solution

t �→ (V u(t, zu(�, τ, ε), ε), τ + Ωt), (6.33)
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does not intersect L(p) for all t < 0. In other words, these solutions are,
respectively, the “last” intersection point of the perturbed stable manifold
and the “first” intersection of the perturbed unstable manifold with the
line L(p). While it is intuitively clear that these special intersections points
exist, this fact can be proved (see, for example, [185, p. 495]). At any rate,
let us use these special intersection points to measure the distance between
the perturbed stable and unstable manifolds.

Lemma 6.9. If p ∈ S and |ε| is sufficiently small, then the first compo-
nents of the solutions (6.32) and (6.33) corresponding to the last inter-
section point ps(ε) and the first intersection point pu(ε) on L(p) have the
following representations:

V s(t, zs(�, τ, ε), ε) = ϕt−�(z) + εrs(t) + O(ε2), t ≥ 0,

V u(t, zu(�, τ, ε), ε) = ϕt−�(z) + εru(t) + O(ε2), t ≤ 0 (6.34)

where the functions rs : (0,∞) → R
2 and ru : (−∞, 0) → R

2 given by
rs(t) = V s

ε (t, zs(�, τ, 0), 0) and ru(t) = V u
ε (t, zu(�, τ, 0), 0) are bounded on

the indicated infinite time intervals.

Proof. We will prove the result for the solutions on the stable manifold;
the result for the unstable manifold is similar. Also, we will suppress the
variables � and τ by using the notation

V s(t, ε) := V s(t, zs(�, τ, ε), ε), V u(t, ε) := V u(t, zu(�, τ, ε), ε).

The basic estimate required to prove the lemma is obtained with an
application of Gronwall’s inequality (Lemma 2.1). Fix � and τ . Also, recall
that t �→ V s(t, ε) is a solution of the differential equation

V̇ = F (V, t, ε) := f(V ) + εG(V, t, ε),

and t �→ ϕt−�(z) is a solution of the differential equation V̇ = F (V, t, 0).
By integration, we have that

V s(t, ε) − zs(�, τ, ε) =
∫ t

0
F (V s(σ, ε), σ, ε) dσ,

ϕt−�(z) − ϕ−�(z) =
∫ t

0
F (ϕσ−�(z), σ, ε) dσ. (6.35)

Both solutions belong to the projection to the V -plane of a stable manifold
of a periodic orbit in the phase cylinder. Thus, both solutions for t ≥ 0 lie
in a compact subset K of the plane. By the smoothness of the function F ,
there is a Lipschitz constant C1 > 0 such that

|F (V1, t, ε) − F (V1, t, 0)| ≤ C(|V1 − V2| + |ε|)



6.2 Periodic Perturbations: Transverse Homoclinic Points 415

for Vi, i = 1, 2 in K and |ε| sufficiently small. Also, by the smoothness of
the stable manifold with respect to ε, if |ε| is sufficiently small, then there
is a constant C2 > 0 such that

|zs(�, τ, ε) − ϕ−�(z)| ≤ C2ε. (6.36)

If we subtract the equations in display (6.35) and use the inequalities
just mentioned, then we obtain the estimate

|V s(t, ε) − ϕt−�(z)| ≤ εC2 + εC1t + C1

∫ t

0
|V s(σ, ε) − ϕσ−�(z)| dσ.

Hence, by an application of Gronwall’s inequality,

|V s(t, ε) − ϕt−�(z)| ≤ ε(C2 + C1t)eC1t. (6.37)

Recall that ν(ε) denotes the perturbed hyperbolic saddle point and ν0
the hyperbolic saddle point for the planar Hamiltonian system. By a simple
application of the implicit function theorem, it follows that

ν(ε) = ν0 + O(ε).

Since the solutions in the inequality (6.37) belong to the respective stable
manifolds of ν(ε) and ν0, there is some constant C3 > 0 and some T > 0
such that if t > T , then

|V s(t, ε) − ϕt−�(z)| ≤ εC3. (6.38)

Therefore, if |ε| is sufficiently small, then, by the Gronwall estimate (6.37)
for 0 ≤ t ≤ T and the estimate (6.38) for t > T , there is a constant C > 0
such that

|V s(t, ε) − ϕt−�(z)| ≤ εC (6.39)

for all t ≥ 0.
Because the solution V is a smooth function of the parameter ε, there is

a smooth remainder R such that

V s(t, ε) = ϕt−�(z) + εrs(t) + ε2R(t, ε).

Thus, using the inequality (6.39), we have that

ε|rs(t) + εR(t, ε)| = |V s(t, ε) − ϕt−�(z)| ≤ εC.

Finally, let us divide this estimate by ε and then set ε = 0 to obtain the
desired result: |rs(t)| ≤ C for t ≥ 0. �
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Let us define the distance between the perturbed stable and unstable
manifolds at p = (ϕ�(z), τ) to be

sep(�, τ, ε) :=
〈pu

ε − ps
ε , N(�, τ)〉

|N(�, τ)|

=
〈zu(�, τ, ε) − zs(�, τ, ε), η(�)〉

|η(�)|

=
DH(ϕ−�(z))(zu(�, τ, ε) − zs(�, τ, ε))

|η(�)| (6.40)

Because sep(�, τ, 0) ≡ 0, we have the representation

sep(�, τ, ε) = sep(�, τ, 0) + ε sepε(�, τ, 0) + O(ε2)
= ε(sepε(�, τ, 0) + O(ε)). (6.41)

Also, by differentiation with respect to ε in equation (6.40), it follows that
the leading order coefficient of the separation function is given by

sepε(�, τ, 0) =
M̄(�, τ)

|DH(ϕ−�(z))| (6.42)

where

M̄(�, τ) := DH(ϕ−�(z))(V u
ε (0, zu(�, τ, 0), 0) − V s

ε (0, zs(�, τ, 0), 0)). (6.43)

In particular, up to a normalization, M̄(�, τ) is the leading coefficient in
the expansion (6.41).

Lemma 6.10. The function M̄ defined in display (6.43) is equal to the
Melnikov function defined in display (6.31); that is, if a point on the ho-
moclinic manifold is given in coordinates by (�, τ), then

M̄(�, τ) = M(�, τ).

Proof. (The proof of this lemma is similar to the proof of Proposition 6.2.)
Define the time-dependent Melnikov function

m(t, �, τ) := DH(ϕt−�(z))(V u
ε (t, 0) − V s

ε (t, 0))

where � and τ are suppressed as in the proof of Lemma 6.9, and note that
m(0, �, τ) = M̄(�, τ). Also, define two more auxiliary functions ms and mu

by

ms(t, �, τ) = DH(ϕt−�(z))V s
ε (t, 0), mu(t, �, τ) = DH(ϕt−�(z))V u

ε (t, 0)

so that m(t, �, τ) = mu(t, �, τ)−ms(t, �, τ). If m∗ denotes either mu or ms,
and likewise V ∗ denotes V s or V u, then

ṁ∗(t, �, τ) = D2H(ϕt−�(z))[f(ϕt−�(z)), V ∗
ε (t, 0)]

+ DH(ϕt−�(z))V̇ ∗
ε (t, 0). (6.44)
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Let us also recall that t �→ V ∗(t, ε) is defined to be a solution of the sys-
tem (6.21); that is,

V̇ ∗ = f(V ∗) + εG(V ∗, Ωt + τ, ε). (6.45)

By differentiation of equation (6.45) with respect to ε at ε = 0 we obtain
the second variational equation

V̇ ∗
ε = Df(ϕt−�(z))V ∗

ε + G(ϕt−�(z), Ωt + τ, 0). (6.46)

Let us substitute the expression for V̇ ∗
ε given by equation (6.46) into the

differential equation (6.44) and rearrange the terms to obtain

ṁ∗(t, �, τ) = DH(ϕt−�(z))G(ϕt−�(z), Ωt + τ, 0) + B(t)V ∗
ε (t, 0) (6.47)

where B(t) is the linear transformation of R
2 given by

B(t)V := D2H(ϕt−�(z))[f(ϕt−�(z)), V ]
+ DH(ϕt−�(z))Df(ϕt−�(z))V. (6.48)

Also, by differentiating both sides of the identity

DH(ξ)f(ξ) ≡ 0

with respect to ξ ∈ R
2, let us observe that

D2H(ξ)f(ξ) + DH(ξ)Df(ξ) ≡ 0.

Thus, it follows that B(t) ≡ 0, and the differential equation (6.47) for m∗

reduces to

ṁ∗(t, �, τ) = DH(ϕt−�(z))G(ϕt−�(z), Ωt + τ, 0). (6.49)

By integration of equation (6.49) separately for ms and mu, the following
formulas are obtained:

ms(t, �, τ) − ms(0, �, τ) =
∫ t

0
DH(ϕσ−�(z))G(ϕσ−�(z), Ωσ + τ, 0) dσ,

mu(0, �, τ) − mu(t, �, τ) =
∫ 0

−t

DH(ϕσ−�(z))G(ϕσ−�(z), Ωσ + τ, 0) dσ.

(6.50)

In view of Lemma 6.34, the function t �→ V s
ε (t, 0) is bounded. Also,

because DH vanishes at the hyperbolic saddle point ν0, we have that

lim
t→∞ DH(ϕt−�(z)) = 0,
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and therefore

lim
t→∞ ms(t, �, τ) = 0.

It follows that the improper integral on the right hand side of the first
equation in display (6.50) converges and

−ms(0, �, τ) =
∫ ∞

0
DH(ϕt−�(z))G(ϕt−�(z), Ωt + τ, 0) dt.

Similarly, we have that

mu(0, �, τ) =
∫ 0

−∞
DH(ϕt−�(z))G(ϕt−�(z), Ωt + τ, 0) dt.

To complete the proof, simply note the equality

mu(0, �, τ) − ms(0, �, τ) = M̄(�, τ)

and the fact that the sum of the integral representations of mu(0, �, τ) and
−ms(0, �, τ) is just the Melnikov integral. �

As a consequence of Lemma 6.10 and the representation of the separation
function (6.41), we have now proved that

sep(�, τ, ε) = ε
( M(�, τ)

|DH(ϕ−�(z))| + O(ε)
)
. (6.51)

In other words, the Melnikov function (properly normalized) is the leading
order term in the series expansion of the separation function in powers of
the perturbation parameter. This is the key result of Melnikov theory.

Let us now prove Theorem 6.8.

Proof. For notational convenience, let us define

S(�, τ, ε) :=
M(�, τ)
|η(�)| + O(ε).

where η(�) = DH(ϕ−�(z)) so that formula (6.51) is recast in the form

sep(�, τ, ε) = εS(�, τ, ε).

If M(�0, τ0) = 0 and M�(�0, τ0) �= 0, then (�0, τ0, 0) is a zero of S such that
S�(�0, τ0, 0) �= 0. Therefore, by the implicit function theorem, there is a
real-valued function h defined on some product neighborhood of ε = 0 and
τ = τ0 such that h(0, τ0) = �0 and S(h(ε, τ), τ, ε) ≡ 0. Or, in other words,
using the definition of the separation function, our result implies that if |ε|
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is sufficiently small, then the stable and unstable manifolds intersect at the
points given by

(V s(0, zs(h(ε, τ), ε), ε), τ) ≡ (V u(0, zu(h(ε, τ), ε), ε), τ), (6.52)

or equivalently at the points

(zs(h(ε, τ), ε), τ) ≡ (zu(h(ε, τ), ε), τ). (6.53)

To complete the proof we will show that if |ε| �= 0 is sufficiently small,
then the stable and unstable manifolds intersect transversally at the point
given in display (6.53).

Let us note that the curves in the phase cylinder given by

� �→ (zs(�, τ0, ε), τ0), τ �→ (zs(�0, τ, ε), τ)

both lie in W s(γ(ε)). Therefore, the vectors

(zs
� (�0, τ0, ε), 0), (zs

τ (�0, τ0, ε), 1)

span the tangent space to W s(γ(ε)) at the intersection point with coordi-
nates (�0, τ0). Indeed, using the fact that S�(�0, τ0, 0) �= 0, it follows from
the definition of the separation function and the continuity with respect
to ε that if |ε| �= 0 is sufficiently small, then zs

� (�0, τ0, ε) �= 0. Thus, the
first tangent vector is nonzero. Because the second component of the sec-
ond tangent vector is nonzero, the two vectors are linearly independent.
Similarly, the vectors

(zu
� (�0, τ0, ε), 0), (zu

τ (�0, τ0, ε), 1)

span the tangent space to the unstable manifold at the intersection point.
The stable and unstable manifolds meet transversally provided that three

of the four tangent vectors given above span R
3. To determine a linearly

independent subset of these tangent vectors, we will use the definition of
the Melnikov function and Lemma 6.34.

First, in view of the equalities

M(�0, τ0) = 0, zu(�0, τ0, ε) = zs(�0, τ0, ε),

and the definition of the Melnikov function, let us note that

∂

∂�

(DH(ϕ−�(z))(zu(�, τ0, ε) − zs(�, τ0, ε))
|η(�)|

)∣∣∣
�=�0

= ε
(M�(�0, τ0)

|η(�0)|
+ O(ε)

)
and
∂

∂�

(DH(ϕ−�(z))(zu(�, τ0, ε) − zs(�, τ0, ε))
|η(�)|

)∣∣∣
�=�0

=(DH(ϕ−�0(z))(zu
� (�0, τ0, ε) − zs

� (�0, τ0, ε))
|η(�0)|

)
.
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By combining the results of these computations, we have that

DH(ϕ−�0(z))(zu
� (�0, τ0, ε) − zs

� (�0, τ0, ε)) = ε(M�(�0, τ0) + O(ε)). (6.54)

Set t = 0 and τ = τ0 and differentiate both sides of both equations in
display (6.34) with respect to � at � = �0 to obtain the representations

zs
� (�0, τ0, ε) = −f(ϕ−�(z)) + εzs

ε�(�0, τ0, 0) + O(ε2),
zu

� (�0, τ0, ε) = −f(ϕ−�(z)) + εzu
ε�(�0, τ0, 0) + O(ε2).

Thus, by substitution into the equation (6.54), let us note that

ε
(
DH(ϕ−�0(z))(zu

ε�(�0, τ0, 0) − zs
ε�(�0, τ0, 0)) + O(ε)

)
= ε(M�(�0, τ0) + O(ε)). (6.55)

Also, using the fact that the determinant of a matrix is a multilinear form
with respect to the columns of the matrix, it follows by an easy computation
using the definition of the Hamiltonian vector field f that

det
(
zu

� (�0, τ0, ε), zs
� (�0, τ0, ε)

)
= ε

(
det

(
− f, zs

ε�

)
+ det

(
zu

ε�,−f
)

+ O(ε)
)

= ε(DH(ϕ−�0(z)(zu
ε�(�0, τ0, 0)

− zs
ε�(�0, τ0, 0)) + O(ε)). (6.56)

In view of the equations (6.55) and (6.56) we have that

det
(
zu

� (�0, τ0, ε), zs
� (�0, τ0, ε)

)
= M�(�0, τ0) + O(ε).

Therefore, the determinant is not zero, and the vectors

zu
� (�0, τ0, ε), zs

� (�0, τ0, ε)

are linearly independent. Hence, due to the independence of these vectors,
the tangent vectors

(zu
� (�0, τ0, ε), 0), (zs

� (�0, τ0, ε), 0), (zs
τ (�0, τ0, ε), 1)

are linearly independent, as required. As a result, if |ε| �= 0 is sufficiently
small, then the perturbed stable and unstable manifolds meet transversally
at the base point of these tangent vectors. �

Exercise 6.11. Discuss the existence of transverse homoclinic points for the
periodically perturbed Duffing oscillator

ẍ − x + x3 = ε sin(Ωt).
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Exercise 6.12. Discuss the existence of transverse homoclinic points for the
periodically perturbed damped pendulum

θ̈ + ω2 sin θ = εg(θ, t)

where

g(θ, t) := −λθ̇ + sin(Ωt).

How does the existence of transverse homoclinic points depend on the parame-
ters? What happens if the sinusoidal time periodic external force is replaced by
a smooth periodic function p(t). What happens if the viscous damping term is
replaced by −λθ̇2?

Exercise 6.13. Discuss the existence of transverse homoclinic points for the
parametrically excited pendulum

θ̈ + (ω2 + ε cos(Ωt)) sin θ = 0.

Exercise 6.14. Discuss the existence of transverse homoclinic points for the
pendulum with “feedback control”

θ̈ + sin θ + αθ − β = ε(−λθ̇ + γ cos(Ωt)

(see [188]). The “Melnikov analysis” of this system seems to require numerical
approximations of the Melnikov integral. Compute an approximation of the Mel-
nikov integral and find parameter values where your computations suggest the
existence of simple zeros. Plot some orbits of the stroboscopic Poincaré map to
obtain an approximation of its phase portrait. Also find parameter values where a
numerical experiment suggests the corresponding dynamical system has sensitive
dependence on initial conditions.

Exercise 6.15. Using formula (6.31), prove that M�(�, τ) �= 0 if and only if
Mτ (�, τ) �= 0. Note that a corollary of this result is the conclusion of Theorem 6.8
under the hypothesis that M(�, τ) = 0 and Mτ (�, τ) �= 0.

6.3 Origins of ODE: Fluid Dynamics

The description of the motion of fluids is a central topic in practical scien-
tific research with a vast literature in physics, engineering, mathematics,
and computation. The basic model is a system of partial differential equa-
tions of evolution type. Thus, as might be expected, many specializations of
this model lead to ordinary differential equations. In fact, some of the most
interesting and most important problems in ordinary differential equations
have their origin in fluid dynamics.

The purpose of this section is to briefly discuss the Euler and Navier–
Stokes model equations; to derive a system of ordinary differential equa-
tions, called the ABC system, that has been used to describe the steady
state motion of an ideal fluid in a certain ideal situation; and to discuss the
dynamics of the ABC system as an application of our analysis of perturbed
oscillators.

Caution: Treat this section as “a finger pointing at the moon.”
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6.3.1 The Equations of Fluid Motion
Let us consider a fluid with constant density ρ confined to some region
R in space, and let us assume that the motion of the fluid is given by
the time-dependent velocity field u : R × R → R

3 with (ξ, t) �→ u(ξ, t).
The position of a particle of the moving fluid is given by a smooth curve
t �→ γ(t) in R. Thus, the momentum of this fluid particle is ρu(γ(t), t),
and, according to Newton’s law, the motion of the particle is given by the
differential equation

ρ
d

dt
(u(γ(t), t)) = F

where F denotes the sum of the forces. Of course, a fluid is always subjected
to the force of gravity and perhaps to other external body forces. However,
let us ignore these forces and consider only the constitutive force laws that
model the internal shear forces that are essential to our understanding of
the physical nature of fluids, just as Hooke’s law is the essential constitutive
force law for springs.

Internal fluid forces can be derived from more basic physical laws (see,
for example, [48] and [105]); however, let us simply note that the basic force
law is

F = µ∆u − gradP

where µ is a constant related to the viscosity of the fluid, P is called the fluid
pressure, and the Laplacian operates on the velocity field componentwise.
Of course, the gradient and the Laplacian derivatives are with respect to the
space variables only. Let us also note that the viscosity term is a function of
the fluid velocity, but the pressure is a second unknown dependent variable
in the system. Thus, we will have to have two equations in the two unknown
functions u and P .

Using Newton’s law and the constitutive force law, the equation of motion
for a fluid is

ρ
(∂u

∂t
(ξ, t) + Du(ξ, t)u(ξ, t)

)
= µ∆u(ξ, t) − gradP (ξ, t)

where D denotes differentiation with respect to the space variables. In
fluid mechanics, if x, y, z are the Cartesian coordinates in R

3 and ex, ey, ez

are the usual unit direction vectors (here the subscripts denote coordinate
directions, not partial derivatives), then the gradient operator

∇ :=
∂

∂x
ex +

∂

∂y
ey +

∂

∂z
ez

is introduced and the advection term (Du)u is rewritten, using the usual
inner product, in the form 〈u, ∇〉u, or more commonly as u · ∇u. Here, ∇
acts componentwise on the vector field u.



6.3 Origins of ODE: Fluid Dynamics 423

The fluid density must satisfy the continuity equation (3.81)

∂ρ

∂t
+ div(ρu) = 0.

Thus, under our assumption that the density is constant (homogeneous
fluid), we must have that u is divergence free. This is equivalent to the
assumption that the fluid is incompressible.

Because our fluid is confined to a region of space, some boundary condi-
tions must be imposed. In fact, physical experiments show that the correct
boundary condition is u ≡ 0 on the boundary ∂R of the region R. To
demonstrate this fact yourself, consider cleaning a metal plate by using a
hose to spray it with water; for example, try cleaning a dirty automobile.
As the pressure of the water increases, the size of the particles of dirt that
can be removed decreases. However, it is very difficult to remove all the
dirt by spraying alone. This can be checked by polishing with a cloth. In
fact, the velocity of the spray decreases rapidly in the boundary layer near
the plate. Dirt particles with sufficiently small diameter are not subjected
to flow velocities that are high enough to dislodge them.

If units of length and velocity are introduced, then the system of equa-
tions for the velocity field and the pressure can be rescaled to the dimen-
sionless form of the Navier–Stokes equations for an incompressible fluid in
R given by

∂u

∂t
+ u · ∇u =

1
Re

∆ − grad p,

div u = 0,

u = 0 in ∂R (6.57)

where Re, the Reynolds number, is given by length multiplied by velocity
divided by viscosity. The existence of this scaling is important: If two flows
have the same Reynold’s number, then the flows have the same dynamics.
For example, flow around a scaled model of an airplane in a wind tunnel
might be tested at the same Reynold’s number expected for the airplane
under certain flight conditions. Perhaps the same Reynold’s number can
be obtained by increasing the velocity in the wind tunnel to compensate
for the smaller length scale of the model. In principle, the behavior of the
model is then exactly the same as the real aircraft.

Euler’s equations for fluid motion can be viewed as an idealization of the
Navier–Stokes equations for a fluid with zero viscosity. These equations
have the form

∂u

∂t
+ u · ∇u = − grad p,

div u = 0,

〈u, η〉 = 0 in ∂R (6.58)
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where η is the outward unit normal vector field on ∂R. Note that the “no
slip” boundary condition for the Navier–Stokes equations is replaced by the
condition that there is no fluid passing through the boundary. The reason
for the physically unrealistic Euler boundary conditions is to ensure that
Euler’s partial differential equations are “well posed”, that is, they have
unique solutions depending continuously on initial conditions.

A naive expectation is that the limit of a family of solutions of the
Navier–Stokes equations as the Reynold’s number increases without bound
is a solution of Euler’s equations. After all, the term ∆u/Re would seem
to go to zero as Re → ∞. However, it is also possible that the second
derivatives of the velocity field are unbounded in the limit. For this and
other reasons, the limiting behavior of the Navier–Stokes equations for large
values of the Reynold’s number is not yet completely understood. Thus, the
dynamical behavior of the family as the Reynold’s number grows without
bound is a fruitful area of research.

Flow in A Pipe

As an example of the solution of a fluid flow problem, let us consider per-
haps the most basic example of the subject: flow in a round pipe.

If we choose cylindrical coordinates r, θ, z with the z-axis being the axis
of symmetry of a round pipe with radius a, then it seems natural to expect
that there are some flow regimes for which the velocity field has its only
nonzero component in the axial direction of the pipe; that is, the velocity
field has the form

u(r, θ, z, t) = (0, 0, uz(r, θ, z, t)) (6.59)

where the components are with respect to the basis vector fields er, eθ, ez

that are defined in terms of the usual basis of Euclidean space by

er := (cos θ, sin θ, 0), eθ := (− sin θ, cos θ, 0), ez := (0, 0, 1).

Let us express the Euler and the Navier–Stokes equations in cylindrical
coordinates. Recall that if f is a function and F = Frer + Fθeθ + Fzez is a
vector field on Euclidean space, then in cylindrical coordinates,

∇f =
∂f

∂r
er +

1
r

∂f

∂θ
eθ +

∂f

∂z
ez,

div f =
1
r

∂

∂r
(rFr) +

1
r

∂Fθ

∂θ
+

∂Fz

∂z
,

∆f =
1
r

∂

∂r

(
r
∂f

∂θ

)
+

1
r2

∂2f

∂r2 +
∂2f

∂z2 . (6.60)

To obtain the Navier–Stokes equations in cylindrical coordinates, consider
the unknown velocity field u = urer + uθeθ + uzez. Write this vector
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field in the usual Cartesian components by using the definitions of the
direction fields given above, insert the result into the Navier–Stokes equa-
tions, and then compute the space derivatives using the operators given
in display (6.60). If we multiply the first two of the resulting component
equations—the equations in the directions ex and ey—by the matrix(

cos θ sin θ
− sin θ cos θ

)
,

then we obtain the equivalent system

∂ur

∂t
+ (u · ∇)ur − 1

r
u2

θ =
1

Re
(
∆ur − 1

r2 (ur + 2
∂uθ

∂θ
)
)

− ∂p

∂r
,

∂uθ

∂t
+ (u · ∇)uθ +

1
r
uruθ =

1
Re

(
∆uθ − 1

r2 (uθ − 2
∂ur

∂θ
)
)

− 1
r

∂p

∂θ
,

∂uz

∂t
+ (u · ∇)uz =

1
Re

∆uz − ∂p

∂z
,

div u = 0. (6.61)

The Euler equations in cylindrical coordinates for the fluid motion in the
pipe are obtained from system (6.61) by deleting the terms that are divided
by the Reynold’s number. If the velocity field u has the form given in
equation (6.59), then u automatically satisfies the Euler boundary condition
at the wall of the pipe. Thus, the Euler equations for the velocity field u
and the scaled pressure p reduce to the system

∂p

∂r
= 0,

∂p

∂θ
= 0,

∂uz

∂t
+ uz

∂uz

∂z
= −∂p

∂z
= 0,

∂uz

∂z
= 0.

It follows that p must be a function of z only, and

∂uz

∂t
= −∂p

∂z
. (6.62)

If we now differentiate equation (6.62) with respect to z, then we see im-
mediately that ∂2p/∂z2 = 0. Therefore, p = p0 + p1z for some constants p0
and p1, and we must also have that uz = −p1t + u0 for some constant u0.
Let us note that if we were to impose the no slip boundary conditions, then
the only possible solution is uz = 0 and p = p0. Thus, a nonzero initial
fluid velocity cannot be imposed.

There are two cases for the Euler flow: If p1 = 0, then the pressure is
constant in the pipe and the velocity field is constant. This is called plug
flow. If p1 �= 0, then both the pressure and the velocity become unbounded
as time passes to infinity. Both cases are not physically realistic. For exam-
ple, the first case does not satisfy the experimentally observed fact that the
velocity of the flow approaches zero at the wall of the pipe. Nonetheless, be-
cause of its mathematical simplicity, plug flow is often used as a model. For
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example, plug flow is often used to model flow in tubular reactors studied
in chemical engineering.

What about Navier–Stokes flow?
If we consider the same pipe, the same coordinate system, and the same

hypothesis about the direction of the velocity field, then the Navier–Stokes
equations reduce to

∂p

∂r
= 0,

∂p

∂θ
= 0,

∂uz

∂t
+ uz

∂uz

∂z
=

1
Re

∆uz − ∂p

∂z
= 0,

∂uz

∂z
= 0,

with the no slip boundary condition at the wall of the pipe given by

uz(a, θ, z, t) ≡ 0.

This system of equations is already difficult to solve! However, we can
obtain a solution if we make two additional assumptions: The velocity field
is in steady state and it is symmetric with respect to rotations about the
central axis of the pipe. With these assumptions, if we take into account
the equation ∂uz/∂z = 0, then it suffices to solve the single equation

1
Re

(1
r

∂

∂r

(
r
∂uz

∂r

))
= pz.

Because pr and pθ must be constant, we have that pz depends only on z
while the left hand side of the last equation depends only on r. Thus, the
functions on both sides of the equation must have the same constant value,
say c. If this is the case, then p = cz + p0.

The remaining ordinary differential equation

ru′′
z (r) + u′

z(r) = (cRe)r

with the initial condition uz(a) = 0 has the continuous solution

uz(r) =
1
4
cRe (r2 − a2).

Thus, we have derived the result that the steady state velocity field u pre-
dicted by the Navier–Stokes equations is parabolic with respect to the radial
coordinate. This flow field is physically realistic, at least if the Reynold’s
number is sufficiently small; it is called Poiseuille flow.

Exercise 6.16. Consider Poiseuille flow in a section of length L of an infinite
round pipe with radius a. If the pressure is p in at the inlet of the section and
the flow speed at the center of the pipe is v in, then determine the pressure at
the outlet. What happens in the limit as the Reynold’s number grows without
bound? Compare with the prediction of plug flow.
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Using the vector identity

1
2

grad(u · u) = u × curlu + u · ∇u

where · denotes the usual inner product on Euclidean space, let us rewrite
Euler’s equation in the form

ut − u × curlu = grad(−1
2
(u · u) − p).

If we now define α := − 1
2 |u|2−p, then we obtain Bernoulli’s form of Euler’s

equations

ut = u × curlu + gradα,

div u = 0,

u · η = 0 in ∂R. (6.63)

Potential Flow

Let us consider an important specialization of Bernoulli’s form of Euler’s
equations: potential flow in two space dimensions. The idea is the following.
Assume that the velocity field u is the gradient of a potential f so that u =
grad f . Substitution into system (6.63) using the fact that curl(gradu) = 0
and some rearrangement gives the equations of motion

grad(
∂f

∂t
+

1
2
| grad f |2 − p) = 0, ∆f = 0. (6.64)

As a result, we see immediately that the quantity

∂f

∂t
+

1
2
| grad f |2 − p

is constant with respect to the space variables. In particular, if u is a steady
state velocity field, then there is a constant c such that

p = c − 1
2
|u|2; (6.65)

that is, the pressure is a constant minus half the square of the velocity.
This is Bernoulli’s law.

In view of the second equation of system (6.64), the potential f is a
harmonic function. Therefore, in the plane with Cartesian coordinates x, y
where the velocity field is given by u = (ẋ, ẏ), the potential f is locally the
real part of a holomorphic function, say h = f + iψ. Moreover, the pair
f, ψ satisfies the Cauchy–Riemann equations

∂f

∂x
=

∂ψ

∂y
,

∂f

∂y
= −∂ψ

∂x
.
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Thus, the assumption that u = grad f implies the fluid motions are solu-
tions of an ordinary differential equation that can be viewed in two different
ways: as the gradient system

ẋ =
∂f

∂x
, ẏ =

∂f

∂y
;

or the Hamiltonian system

ẋ =
∂ψ

∂y
, ẏ = −∂ψ

∂x
. (6.66)

The function ψ, a Hamiltonian function for system (6.66), is called the
stream function. The orbits of system (6.66), called stream lines, all lie on
level sets of ψ. Let us also note that because the stream lines are orbits of
a gradient system, there are no periodic fluid motions in a region where the
function h is defined.

It should be clear that function theory can be used to study planar
potential flow. For example, if ψ is a harmonic function defined in a simply
connected region of the complex plane such that the boundary of the region
is a level set of ψ, then ψ is the imaginary part of a holomorphic function
defined in the region, and therefore ψ is the stream function of a steady
state flow. This fact can be used to find steady state solutions of Euler’s
equations in many regions of the complex plane.

As an example, let us start with plug flow in a pipe with radius a and
notice that every planar slice containing the axis of the pipe is invariant
under the flow. In fact, if we view the strip

S := {(x, y) : 0 < y < 2a}

as such a slice where we have taken x as the axial direction, then the
plug flow solution of Euler’s equations in S is given by the velocity field
u = (0, c) and the pressure p = p0 where c and p0 are constants. This is a
potential flow, with potential f(x, y) = cx, stream function ψ(x, y) = cy,
and complex potential h(x, y) = cz = c(x + iy).

Suppose that Q is an invertible holomorphic function defined on S and
that R is the image of S under Q, then w �→ h(Q−1(w)) for w ∈ R
is a holomorphic function on R. Moreover, by writing h = f + iψ, it is
easy to see that w �→ ψ(Q−1(w)) is a stream function for a steady state
potential flow in R. In particular, stream lines of ψ map to stream lines of
w �→ ψ(Q−1(w)).

For example, let us note that w := Q(z) =
√

z has a holomorphic branch
defined on the strip S such that this holomorphic function maps S into the
region in the first quadrant of the complex plane bounded above by the
parabola {(σ, τ) : στ = a}. In fact, Q−1(w) = w2 so that

x = σ2 − τ2, y = 2στ.
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The new “flow at a corner” has the complex potential h(Q−1(w)) = cw2 =
c(σ2 − τ2 + 2iστ). Thus, the velocity field is

u = (2cσ, −2cτ).

The corresponding pressure is found from Bernoulli’s equation (6.65). In
fact, there is a constant p1 such that

p = p1 − 2c2(σ2 + τ2). (6.67)

The stream lines for the flow at a corner are all parabolas. Moreover, the
flow near a wall is essentially plug flow. In fact, if we consider, for example,
the flow field on a vertical line orthogonal to the σ-axis, say the line with
equation σ = σ0, then the velocity field near the wall, where τ ≈ 0, is
closely approximated by the constant vector field (2cσ0, 0). In other words,
the velocity profile is nearly linear.

Exercise 6.17. Consider the plug flow vector field u = (c, 0) defined in a hori-
zontal strip in the upper half plane of width 2a. Find the push forward of u into
the first quadrant with respect to the map Q(z) =

√
z with inverse Q−1(w) = w2.

Is this vector field a solution of Euler’s equations at the corner? Explain.

A Boundary Layer Problem

We have just seen that planar steady state Euler flow has stream lines
that are (locally) orbits of both a Hamiltonian differential equation and a
gradient differential equation. Moreover, in our example of flow at a corner,
the velocity profile near the walls is linear. What about planar steady state
Navier–Stokes flow?

Let us again consider the physical problem of flow at a corner (see [119,
p. 222]). By physical reasoning, we might expect that the most prominent
difference between Euler flow and Navier–Stokes flow at a corner is pro-
duced near the walls at the corner. The stream lines of the Euler flow are
bent near the corner, but the velocity of the flow field does not approach
zero at the walls—the fluid in the Euler model moves as if it had zero vis-
cosity. However, for the Navier–Stokes flow, where the viscosity of the fluid
is taken into account, the fluid velocity vanishes at the walls. On the other
hand, the Navier–Stokes flow far away from the corner would be expected
to be essentially the same as the Euler flow.

In our model, the fluid velocity field is assumed to be divergence free.
Because we are working in two space dimensions, this assumption implies
that there is a stream function; that is, the velocity field is Hamiltonian.
In fact, if the planar coordinates at the corner are renamed to x, y and
the velocity field u has components v, w so that the associated differential
equation for the fluid motion is

ẋ = v(x, y), ẏ = w(x, y),
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then the orbits of this system correspond to solutions of the exact first or-
der differential equation dy/dx = w/v. Recall that the differential equation
is exact if the corresponding differential one-form wdx−vdy is closed; that
is, if ∂w/∂y+∂v/∂x = 0. Thus, there is a (locally defined) function ψ(x, y)
such that ∂ψ/∂x = −w and ∂ψ/∂y = v; that is, ψ is a stream function for
the flow. This result is proved in elementary courses in differential equa-
tions; it is also a special case of Poincaré’s lemma: If n > 0, then a closed
form on a simply connected region of R

n is exact.
Using the fact that the stream function for the Euler flow at the corner

is given by (x, y) �→ 2cxy and some physical reasoning, we might guess that
the stream function for the corresponding Navier–Stokes flow is given by
ψ(x, y) = xg(y) for some function g to be determined. Of course, we are
free to assume our favorite form for this stream function. The problem is to
show that there is a corresponding solution of the Navier–Stokes equations
and to use this solution to predict the velocity profile for the flow near the
corner.

For the stream function ψ(x, y) = xg(y), the velocity field is

(v(x, y), w(x, y)) = (xg′(y),−g(y)). (6.68)

In view of the formula for the pressure for the Euler flow given by equa-
tion (6.67) and the fact that the unknown function g depends only on the
second space variable, let us postulate that the pressure for the Navier–
Stokes flow is given by

p(x, y) = p0 − 2c2(x2 + G(y)) (6.69)

where p0 is a constant, and G is a function to be determined.
The steady state Navier–Stokes equations are

v
∂v

∂x
+ w

∂v

∂y
=

1
Re

∆v − ∂p

∂x
,

v
∂w

∂x
+ w

∂w

∂y
=

1
Re

∆w − ∂p

∂y
,

∂v

∂x
+

∂w

∂y
= 0 (6.70)

with the boundary condition that the velocity field (v(x, y), w(x, y)) van-
ishes at the wall.

If the velocity field (6.68) and the pressure (6.69) are inserted into the
Navier–Stokes equations (6.70), the system reduces to the equations

1
Re

g′′′ + gg′′ − (g′)2 + 4c2 = 0, G′ =
1

2c2 (gg′ +
1

Re
g′′) (6.71)

with the boundary conditions

g(0) = 0, g′(0) = 0.
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However, we also have made the assumption that the velocity field (6.68)
is the same as the Euler velocity field (2cx,−2cy) far away from the wall.
Ideally, we must have 2cx ≈ xg′(y) for large y, that is,

lim
y→∞ g′(y) = 2c.

We will be able to solve for the pressure and thus construct the desired
solution of the system (6.70) provided that there is a solution of the first
equation of system (6.71) with the specified initial and boundary condi-
tions. Let us rescale with g := 2cf and define ε = 1/(cRe) to reduce our
quest for a solution of system (6.70) to finding a function f that solves the
boundary value problem

εf ′′′ + ff ′′ − (f ′)2 + 1 = 0, f(0) = f ′(0) = 0, f ′(∞) = 1

for ε > 0 a small parameter (see Exercises 1.7 and 1.95). The ordinary dif-
ferential equation, essentially the Falkner–Skan equation (see [53], [62], and
[88]), is typical of a class of equations that arise in “boundary layer the-
ory,” the origin of an important class of “singular perturbation problems,”
(see [101], [130], [133], and [137]).

We will not “solve” the Falkner–Skan equation here. However, let us note
that the velocity profile is not linear near the walls at the corner.

6.3.2 ABC Flows
The dynamics of a fluid that is predicted by Euler’s equations (6.58) depend
on the region that confines the flow and on the initial velocity field. In this
section, we will study the fluid dynamics of an ideal family of steady state
solutions that are periodic in the entire space relative to all three directions.

Let us seek a steady state solution u, a rest point of the infinite dimen-
sional flow given by Euler’s equations in Bernoulli’s form (6.63), that is
periodic in each space variable with period 2π. If there is such a steady
state, then it exists on all of R3 so no additional boundary condition is
necessary. In effect, the usual boundary condition for Euler’s equations is
replaced by the periodicity requirements. For this reason our requirements
are called periodic boundary conditions. Also, if we like, we can view the
solution as a vector field on the (compact) three-dimensional torus T

3 de-
fined by considering each of the Cartesian coordinates of R

3 modulo 2π.
At any rate, such a steady state solution satisfies the system of equations

u × curlu = 0, div u = 0. (6.72)

System (6.72) has many solutions, but certainly the most famous are the
ABC flows induced by the velocity field

u = (A sin z + C cos y, B sin x + A cos z, C sin y + B cos x)
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where A, B, and C are constants (see [10], [14], [33], [38], [73], and [70]).
The corresponding system of ordinary differential equations

ẋ = A sin z + C cos y,

ẏ = B sin x + A cos z,

ż = C sin y + B cos x (6.73)

is a useful test example for the behavior of steady state Euler flow.
By rescaling the system and the time parameter, and by reordering the

variables if necessary, all the interesting cases for different parameter values
can be reduced to the consideration of parameters satisfying the inequalities
A = 1 ≥ B ≥ C ≥ 0. To obtain a perturbation problem, let us consider
the system with A = 1 > B = β > C = ε where ε is a small parameter.
Also, to simplify some formulas to follow, let us introduce a translation of
the first variable x �→ x + π/2. The ABC system that we will study then
has the form

ẋ = sin z + ε cos y,

ẏ = β cos x + cos z,

ż = −β sin x + ε sin y (6.74)

where 0 < β < 1, and ε ≥ 0 is a small parameter.
Note that the subsystem

ẋ = sin z, ż = −β sin x (6.75)

of system (6.74) is Hamiltonian with respect to the Hamiltonian function

H(x, z) := β cos x + cos z. (6.76)

Of course, the function H is constant on orbits of system (6.75).
A typical phase portrait for system (6.75) is depicted in Figure 6.7. In-

dependent of the choice of β, there is a rest point at the origin surrounded
by a period annulus A whose outer boundary consists of two hyperbolic
saddle points with coordinates (±π, 0) together with the heteroclinic orbits
connecting these saddles (see Exercise 6.18). If we view the system on T

3,
then these saddle points coincide, and the boundary of the period annulus
is just one saddle and a homoclinic orbit.

Exercise 6.18. Prove the statements made in this section about the phase
portrait of system (6.75).

Each orbit Γh in A corresponds to a level set of H given by

Γh := {(x, z) : H(x, z) = h}



6.3 Origins of ODE: Fluid Dynamics 433

-4 -2 0 2 4

-4

-2

0

2

4

FIGURE 6.7. Computer generated phase portrait for system (6.75) with β = 0.16.

for some h in the range 1 − β < h < 1 + β. The boundary of the period
annulus corresponds to the level set with h = 1 − β.

On each orbit in the closure of the period annulus A for the unperturbed
system (6.75) we have that

ẏ = β cos x + cos z = h

for some “energy” h > 0. It follows that ẏ is positive everywhere in an
open neighborhood of the closure of A. Let us therefore view y as a time-
like variable for the perturbed system and consider the associated system

x′ =
sin z

β cos x + cos z
+ ε

cos y

β cos x + cos z
,

z′ =
−β sin x

β cos x + cos z
+ ε

sin y

β cos x + cos z
(6.77)

where ′ denotes differentiation with respect to y. Of course, if we find a
solution

y �→ (x(y, ε), z(y, ε)) (6.78)

of system (6.77), then there are corresponding solutions

t �→ (x(y(t), ε), y(t), z(y(t), ε)) (6.79)

of system (6.74) obtained by solving the equation

ẏ = β cos x(y, ε) + cos z(y, ε). (6.80)



434 6. Homoclinic Orbits, Melnikov’s Method, and Chaos

Let us notice that system (6.77) with ε = 0 is the same as system (6.75)
up to a reparametrization of the independent variable. Moreover, the un-
perturbed system (6.77) is a Hamiltonian system with respect to the Hamil-
tonian function (6.76). Finally, we have the following useful proposition: If
y �→ (x(y), z(y)) is the solution of the unperturbed system (6.77) with the
initial condition x(0) = 0, z(0) = z0, then

−x(−y) = x(y), z(−y) = z(y), (6.81)

that is, x is odd and z is even. To see this, consider the new functions u
and v defined by

(u(y), v(y)) = (−x(−y), z(−y))

and verify that the function y �→ ((u(y), v(y)) is a solution of the unper-
turbed system (6.77) with the initial condition u(0) = 0, v(0) = z0.

6.3.3 Chaotic ABC Flows
The unperturbed system (6.77) has heteroclinic cycles. For example, a cycle
is formed by the hyperbolic saddle points at (x, z) = (±π, 0) and their
connecting orbits. (Note that this cycle is also the boundary of a period
annulus.) Or, if we view the system on the phase cylinder obtained by
considering the variable x as an angle, then this cycle has only one saddle
point and it is connected by two distinct homoclinic orbits. In this section
we will see that for all but one value of the parameter β in the interval
0 < β < 1, the Melnikov function along these heteroclinic orbits has simple
zeros. Thus, for sufficiently small ε > 0, system (6.77), and of course the
corresponding original ABC system, has a chaotic invariant set. This result
serves as an interesting application of our perturbation theory. It suggests
that “real” fluids have chaotic motions.

Let us recall that the unperturbed heteroclinic orbits lie on the set

{(x, z) : cos z + β cos x = 1 − β}, (6.82)

and let us consider the unperturbed solution y �→ (x(y), z(y)) starting
at the point (0, arccos(1 − 2β)). The Melnikov function is given (up to a
nonzero scalar multiple) by

M(φ) =
1

(1 − β)2

∫ ∞

−∞
(sin(z(y + φ)) sin y + β sin(x(y + φ)) cos y) dy.

(6.83)

However, the integral is easily transformed to the more useful representa-
tion

M(φ) =
sin φ

(1 − β)2

∫ ∞

−∞
(β sin x(s) sin s − sin z(s) cos s) ds (6.84)



6.3 Origins of ODE: Fluid Dynamics 435

by first changing the independent variable in the integral (6.83) to s := y+θ
and then by using the sum formulas for sine and cosine together with the
facts that the function y �→ sin x(y) is odd and y �→ sin z(y) is even. If, in
addition, we apply integration by parts to obtain the formula∫ ∞

−∞
sin z(s) cos s ds =

β

1 − β

∫ ∞

−∞
cos z(s) sin x(s) sin s ds,

and substitute for cos z(s) from the energy relation in display (6.82), then
we have the identity∫ ∞

−∞
sin z(s) cos s ds =

∫ ∞

−∞
β sin x(s) sin s ds

− β2

1 − β

∫ ∞

−∞
sin x(s) cos x(s) sin s ds.

Finally, by substitution of this identity into equation (6.84), we obtain the
following representation for the Melnikov function

M(φ) =
β2 sin φ

(1 − β)3

∫ ∞

−∞
sin x(s) cos x(s) sin s ds. (6.85)

Of course it is now obvious that the Melnikov function will have infinitely
many simple zeros along the heteroclinic orbit provided that the integral

Is :=
∫ ∞

−∞
sin x(s) cos x(s) sin s ds.

does not vanish.
To determine if Is is not zero, let us consider a method to evaluate

this improper integral. The first step is to find explicit formulas for the
unperturbed solution. Note that z(y) > 0 along the heteroclinic orbit.
Integrate the unperturbed differential equation

x′(y)
sin z(y)

=
1

1 − β

on the interval (0, y), and use the energy relation to obtain the equation

y

1 − β
=

∫ x(y)

0

1√
1 − ((1 − β) − β cos s)2

ds

=
1
β

∫ x(y)

0

1√
(1 + cos s)((2 − β(1 + cos s))

ds.

The form of the last integrand suggests the substitution u = 1 + cos s,
which transforms the integral so that the last equality becomes

y
√

β

1 − β
= −

∫ 1+cos x(τ)

2

1
u
√

(2 − u)(2 − βu)
du.
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Using the indefinite integral∫
1

u
√

(2 − u)(2 − βu)
du = −1

2
ln

(4
√

(2 − u)(2 − βu) − 2(β + 1)u + 8
u

)
and a simple algebraic computation, we have the equality

cos x(y) = − (β − 1)e4cy + 2(3 − β)e2cy + β − 1
(β − 1)e4cy − 2(β + 1)e2cy + β − 1

where

c :=
√

β

1 − β
.

Also, by the trigonometric identity sin2 x + cos2 x = 1, we have that

sin x(y) = −4
√

1 − β
ecy(ecy − 1)

(β − 1)e4cy − 2(β + 1)e2cy + β − 1
.

Define

F (w) := −4(1 − β)−3/2 w(w2 − 1)((1 − β)w4 + 2(β − 3)w2 + 1 − β)
(w4 + 2 1+β

1−β w2 + 1)2

and note that

Is =
∫ ∞

−∞
F (ecy) sin y dy

=
∫ ∞

−∞
F (eζ

√
β) sin((1 − β)ζ) dζ.

Also, note that the poles of the integrand of Is correspond to the zeros of the
denominator of F . To determine these zeros let us write the denominator
in the factored form

w4 + 2
1 + β

1 − β
w2 + 1 = (w2 − u1)(w2 − u2)

where

u1 :=
√

β − 1√
β + 1

, u2 :=
√

β + 1√
β − 1

.

The poles corresponding to e2ζ
√

β = u1 are

ζ =
1

2
√

β

(
ln(−u1) + πi + 2kπi

)
, k ∈ Z,
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where Z denotes the set of integers, and the poles corresponding to u2 are

ζ =
1

2
√

β

(
ln(−u2) − πi + 2kπi

)
, k ∈ Z.

The locations of the poles suggest integration around the rectangle Γ in
the complex plane whose vertices are T , T + iπ/

√
β, −T + iπ/

√
β, and

−T . In fact, for sufficiently large T > 0, Γ encloses exactly two poles of the
integrand, namely,

ζ1 :=
1

2
√

β

(
ln(−u1) + πi

)
, ζ2 :=

1
2
√

β

(
ln(−u2) + πi

)
.

The function F defined above is odd. It also has the following property:
If w �= 0, then F (1/w) = −F (w). Using these facts, the identity sin ζ =
(eiζ − e−iζ)/(2i), and a calculation, our integral can be recast in the form

Is = −i

∫ ∞

−∞
F
(
eζ

√
β
)
ei(1−β)ζ dζ.

For notational convenience, define

K := K(β) =
(1 − β)π

2
√

β
,

and also consider the contour integral∫
Γ

F
(
eζ

√
β
)
ei(1−β)ζ dζ.

The corresponding path integral along the upper edge of Γ is just e−2K

multiplied by the path integral along the lower edge. Also, by using the
usual estimates for the absolute value of an integral, it is easy to see that
the path integrals along the vertical edges of Γ approach zero as T increases
without bound. Thus, the real improper integral Is is given by

Is = −i
(
1 + e−2K)−1

∫
Γ

F
(
eζ

√
β
)
ei(1−β)ζ dζ

= 2π
(
1 + e−2K)−1(Res(ζ1) + Res(ζ2)) (6.86)

where the residues are computed relative to the function G given by

G(ζ) := F
(
eζ

√
β
)
ei(1−β)ζ .

Define

F1(w) := (w2 − u1)2F (w), F2(w) := (w2 − u2)2F (w)
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and compute the Laurent series of G at ζ1 and ζ2 to obtain the following
residues:

Res(ζ1) =
ei(1−β)ζ1

4βu2
1

(√
βeζ1

√
βF ′

1
(
eζ1

√
β
)

−
(
2
√

β − i(1 − β)
)
F1

(
eζ1

√
β
))

,

Res(ζ2) =
ei(1−β)ζ2

4βu2
2

(√
βeζ2

√
βF ′

2
(
eζ2

√
β
)

−
(
2
√

β − i(1 − β)
)
F2

(
eζ2

√
β
))

.

To simplify the sum of the residues, let us define

A := cos
(1 − β

2
√

β
ln(−u2)

)
, B := sin

(1 − β

2
√

β
ln(−u2)

)
so that

ei(1−β)ζ1 = e−K(A − Bi), ei(1−β)ζ2 = e−K(A + Bi),

and let us note that since u1 = 1/u2, we have

eζ1
√

βeζ2
√

β = −1.

Also, note that the function F1 is odd, F ′
1 is even, and verify the following

identities:

F1(1/w) = − 1
w4u2

2
F2(w),

F ′
1(1/w) =

1
w2u2

2
F ′

2(w) − 4
w3u2

2
F2(w).

Finally, for notational convenience, define L :=
√

−u2 .
Using the notation and the identities just mentioned, the residues are

given by

Res(ζ1) =
e−K

4βu2
2

(
(A − Bi)(−iL

√
β F ′

2(iL) +
(
2
√

β + i(1 − β)
)
F2(iL)

)
,

Res(ζ2) =
e−K

4βu2
2

(
(A + Bi)(iL

√
β F ′

2(iL) −
(
2
√

β − i(1 − β)
)
F2(iL)

)
.

Thus, in view of formula (6.86), we have

Is =
πe−K

βu2
2(1 + e−2K)

(
B
√

β
(

− 2iF2(iL) − LF ′
2(iL)

)
+ A(1 − β)iF2(iL)

)
.

(6.87)

The quantities

F ′
2(iL) =

4(1 +
√

β )2(β + 2
√

β ) − 1)√
1 − β (1 −

√
β )β3/2

,

−iF2(iL) = 4
(1 +

√
β

1 −
√

β

)1/2 (1 +
√

β )2√
1 − β (1 −

√
β )β
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FIGURE 6.8. Some orbits of the stroboscopic Poincaré map for system (6.77)
with ε = 0.01 and β = 0.1.
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FIGURE 6.9. Blowup of Figure (6.8) near the unperturbed hyperbolic saddle
point at (x, z) = (π, 0). Several orbits are depicted.
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are real and −iF2(iL) is nonzero for 0 < β < 1. Also, if the identity

2 + L F ′
2(iL)

iF2(iL)
=

1 − β√
β

is inserted into equation (6.87), then

Is =
π(1 − β)e−K

βu2
2(1 + e−2K)

(−iF2(iL))
(
B − A

)
.

Remark 2. The computation of the Melnikov function for the ABC flow
given here follows the analysis in [33] where there are a few computational
errors that are repaired in the analysis of this section. In particular, the
final value of Is reported in [33] is not correct.

Clearly, Is = 0 if and only if A = B, or equivalently if

tan
(1 − β

2
√

β
ln

(1 +
√

β

1 −
√

β

))
= 1.

The last equation has exactly one root for β in the open unit interval:
β ≈ 0.3. Thus, except at this one parameter value, our computation proves
that the perturbed stable and unstable manifolds intersect transversally,
and, as a result, the corresponding perturbed flow is chaotic in a zone near
these manifolds.

The results of a simple numerical experiment with the dynamics of sys-
tem (6.77) are depicted in Figure 6.8 and Figure 6.9. These figures each
depict several orbits of the stroboscopic Poincaré map—the independent
variable y is viewed as an angular variable modulo 2π. Figure 6.9 is a blowup
of a portion of Figure 6.8 near the vicinity of the unperturbed saddle point
at (x, z) = (π, 0). The results of this experiment suggest some of the fine
structure in the stochastic layer that forms after breaking the heteroclinic
orbits of the unperturbed Poincaré map. As predicted, the orbit structure
appears to be very complex (see [14]).

Exercise 6.19. Reproduce Figures 6.8 and 6.9. The value ε = 0.01 was used
to obtain an easily reproducible picture. However, our theory only predicts the
existence of chaotic invariant sets for sufficiently small ε. Probably ε = 0.01 is too
big. Perform a series of numerical experiments to illustrate how the stochastic
layer changes as ε changes for both smaller and larger values of ε.

Exercise 6.20. Discuss the statement: “The ABC system is conservative.”
Note that system (6.77) is a perturbed Hamiltonian system with no damping.
The nature of chaotic invariant sets for dissipative systems can be quite different
from the chaotic invariant sets for Hamiltonian systems. In particular, dissipa-
tive systems can have chaotic attractors. Roughly speaking, a chaotic attractor
S is a compact invariant set with a dense orbit such that S contains the ω-limit
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FIGURE 6.10. Poincaré map for the system θ̈+µθ̇+sin θ = −1/10+2 cos(2t) sin θ
where, from left to right, µ = 0.03, 0.0301, 0.1, 0.5, 0.56, 0.65.

set of every orbit in an open neighborhood of S. It is very difficult to prove the
existence of chaotic attractors. However, numerical evidence for the existence of
chaotic attractors is abundant. Consider the stroboscopic Poincaré map on the
phase cylinder for the parametrically excited pendulum with damping and torque
given by

θ̈ + µθ̇ + sin θ = −τ + a cos(2t) sin θ.

Let the usual coordinates on the phase cylinder be (v, θ) where v := θ̇. It is
convenient to render the graphics in a new coordinate system on the cylinder
that flattens a portion of the cylinder into an annulus on the plane. For example,
in Figure 6.10 iterates of the Poincaré map are plotted in the (x, y)-plane with

x = (2(4 − v))1/2 cos θ, y = (2(4 − v))1/2 sin θ

for the system

θ̈ + µθ̇ + sin θ = − 1
10

+ 2 cos(2t) sin θ

for six different values of µ. In each case a single orbit is depicted. The same
picture is obtained independent of the initial value for the iterations as long as
the first few iterations are not plotted. Thus, it appears that each depicted orbit
is near an attractor. Reproduce Figure 6.10. Also, explore other regions of the
parameter space of the oscillator by performing numerical experiments. To learn
more about chaotic attractors, see, for example, [80], [151], and [185].

Periodic Orbits of ABC Flows

In the last section we proved that the ABC system has chaotic invariant sets
for some choices of the parameters. If such a set exists as a consequence
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of the transversal intersection of stable and unstable manifolds near an
unperturbed heteroclinic cycle it follows from a general theory (one which
we have not presented here) that the chaotic invariant set contains infinitely
many periodic orbits. However, this fact does not tell us if any of the
unperturbed periodic orbits in the various resonant tori are continuable.
While the rigorous determination of the continuable unperturbed periodic
orbits seems to be a difficult problem which is not yet completely solved,
we will use this problem as a vehicle to introduce some new techniques.

Before we begin the continuation analysis, let us note that if we find a
continuable subharmonic of the unperturbed system (6.77), then there is
a corresponding family of periodic solutions of system (6.74). To see this,
let us suppose that the family of solutions (6.78) is a continuation of an
unperturbed periodic orbit with period 2πm for some positive integer m,
and let us consider the solutions of the equation (6.80) with the initial
condition y(0) = 0. Because the family (6.78) at ε = 0 is a periodic orbit
of the unperturbed system (6.77), there is a number h such that

β cos x(y, 0) + cos z(y, 0) = h.

Thus, t �→ ht is a solution of equation (6.80). Since this solution is complete,
if ε is sufficiently small, then the solution t �→ y(t, ε) of system (6.80) such
that y(0, ε) = 0 exists at least on the interval

0 ≤ t ≤ 2πm

h
.

Moreover, there is a positive function ε �→ η(ε) such that η(0) = 2πm/h
and

y(η(ε), ε) = 2πm.

The corresponding vector function

t �→ (x(y(t, ε), ε), y(t, ε), z(y(t, ε), ε)) (6.88)

is a solution of system (6.74). Moreover, we have, for example, the equations

x(y(η(ε), ε), ε) = x(2πn, ε) = x(0, ε) = x(y(0, ε), ε);

that is, the function s �→ x(y(s, ε), ε) is periodic with period η(ε). Of course,
the same is true for the function s �→ x(z(s, ε), ε), and it follows that, for
each fixed small ε, the function (6.88) is a periodic solution of the ABC
system.

As we have seen, the unperturbed system (6.77) has a period annulus A
surrounding the origin whose boundary contains hyperbolic saddle points.
These saddle points are fixed points of the stroboscopic Poincaré map that
persist under perturbation (see Exercise 6.21). In the perturbed system
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their continuations are unstable periodic orbits, as are the corresponding
periodic orbits of the ABC system. This fact is important for proving the
hydrodynamic instability of the ABC systems (see [70]).

Exercise 6.21. Prove that the hyperbolic saddle points in the phase plane for
the unperturbed system (6.77) viewed as periodic orbits in the corresponding
phase cylinder persist as hyperbolic periodic orbits under perturbation in sys-
tem (6.77) and that these perturbed periodic orbits are hyperbolic saddle type
periodic orbits for the corresponding ABC system.

As the periodic orbits in A approach the outer boundary of this period
annulus, the corresponding periods increase without bound. Therefore, the
period annulus A is certainly not isochronous. Instead, we might expect
this period annulus to be regular. However, the period annulus A itself is
not always regular, a fact that is the underlying cause for many complica-
tions in the analysis of this perturbation problem. However, let us recall
that the continuation theory will apply if we can find a resonant unper-
turbed periodic orbit Γ for the system (6.77) such that the derivative of
the associated period function does not vanish at Γ and simultaneously the
associated subharmonic Melnikov function (5.67) has simple zeros.

As discussed in the last section, periodic orbits in A are in one-to-one
correspondence with their energy h, with 1 − β < h < 1 + β. Also, let us
consider the corresponding period function h �→ T (h) where T (h) is the
minimum period of the periodic orbit denoted Γ(h). Because the perturba-
tion terms are periodic with period 2π, the periodic orbit Γ(h) is in (m : n)
resonance provided that

2πm = nT (h).

Let us fix h and assume for the moment that T ′(h) �= 0 so that the
required regularity assumption is satisfied, and let us consider the solution
y �→ (x(y), z(y)) of the unperturbed system with orbit Γ(h) and initial
condition (x(0), y(0)) = (0, arccos(h − β)). Because the divergence of the
unperturbed system vanishes, simple zeros of the function

M(φ) =
1
h2

∫ 2πm

0
(sin(z(y + φ)) sin y + β sin(x(y + φ)) cos y) dy

correspond to continuation points. By an argument similar to the one used
to derive equation (6.85), it is easy to show that

M(φ) =
β2

h3 sin φ

∫ 2πm

0
sin x(s) cos x(s) sin s ds.

Thus, using our continuation analysis, in particular Theorem 5.36, we have
proved the following proposition.
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Proposition 6.22. Suppose that Γ(h) is an (m : n) resonant unperturbed
periodic orbit of system (6.77) with energy h in a period annulus with period
function T and s �→ (x(s), y(s)) is an unperturbed solution with orbit Γ(h).
If T ′(h) �= 0 and

I(h) :=
∫ 2πm

0
sin(2x(s)) sin s ds �= 0, (6.89)

then there are 2m continuation points on Γ(h).

To apply Proposition 6.22 to prove that there are in fact 2m continuation
points on the orbit Γ(h) we must show that I(h) �= 0 and T ′(h) �= 0.
However, even if we cannot do this rigorously, our analysis is still valuable.
For example, if we fix β, then we can use numerical approximations to graph
the functions I and T as an indication of the validity of the requirements.
This is probably a more reliable method than a direct search for the periodic
solutions by numerical integration of the perturbed differential equations.

There is no simple argument to show that I(h) �= 0. In fact, for most res-
onances, I(h) vanishes and our first order method fails. A precise statement
is the content of the next proposition.

Proposition 6.23. If n �= 1, then I(h) = 0.

Proof. To prove the proposition, use the periodicity of the integrand to
recast the integral as

I(h) =
∫ πm

−πm

sin(2x(s)) sin s ds.

Then, by the change of variables s = mσ and the resonance relation we
have that

I(h) = m

∫ π

−π

sin
(
2x

(nT (h)
2π

σ
))

sin mσ ds.

The function

t �→ sin
(
2x

(T (h)
2π

t
)
)

is odd and 2π-periodic. Thus, it can be represented by a (convergent)
Fourier sine series, say

∞∑
ν=1

bν(h) sin νt.

If this series is evaluated at t = nσ and inserted into the integral, all but
one of the summands vanish. The exceptional term is

bν(h)
∫ π

−π

sin nνσ sin mσ dσ
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with nν = m. However, m and n are relatively prime. Thus, this term can
only be nonzero if n = 1 and ν = m, as required. Moreover, I(h) �= 0 if
and only if the Fourier coefficient bν(h) �= 0. �

Exercise 6.24. Prove: If t �→ y(t) is an odd periodic function with period 2π/ω
and 2πn/ω = 2πm/Ω for relatively prime integers m and n with n > 1, then

∫ 2πn/ω

0
y(t) sin Ωt dt = 0.

An antiderivative for the integrand of I(h) at an (m : 1) resonance can-
not be expressed in elementary functions. However, this integral can be
evaluated using Jacobi elliptic functions. We will indicate the procedure
for doing this below. Unfortunately, the resulting value seems to be too
complex to yield a simple statement of precisely which of the (m : 1)
resonances are excited at first order. Therefore we will not give the full
derivation here. Rather we will use this problem to introduce the Jacobi
elliptic functions and the Picard–Fuchs equation for the period function.
However, for a partial result on the existence of continuable periodic orbits
see [33] and Exercise (6.25). In fact, most of the (m : 1) resonances are
excited.

Exercise 6.25. This exercise is a research project. For which (m : 1) resonances
of system (6.77) is the integral (6.89) not zero?

Let us now glimpse into the wonderful world of elliptic integrals, a gem of
19th century mathematics that remains a very useful tool in both modern
pure and applied mathematics (see [25] and [186]). Perhaps the best way
to approach the subject of special functions is to view it in analogy with
trigonometry. The trigonometric functions are so familiar that we tend not
to notice how they are used. Often, we operate with these functions simply
by using their properties—periodicity and trigonometric identities. We do
not consider their values, except at a few special values of their arguments.
The complete elliptic integrals and the Jacobi elliptic functions that we will
mention below can be treated in the same way. Of course, it is clear why
the trigonometric functions show up so often: Circles appear everywhere in
mathematics! The reason why elliptic functions show up so often is deeper;
perhaps after more familiarity with the subject this reason will become
apparent.

What are these elliptic functions? For 0 ≤ φ ≤ π/2 and 0 ≤ k ≤ 1, define

u := u(φ, k) =
∫ φ

0

1√
1 − k2 sin2 θ

dθ.
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The Jacobi elliptic functions are functions of two variables defined as fol-
lows:

sn(u, k) := sin φ, cn(u, k) := cos φ, dn(u, k) :=
√

1 − k2 sn2(u, k)

where the argument k it is called the elliptic modulus. The complete elliptic
integrals of the first and second kinds are defined, respectively, by

K(k) :=
∫ π/2

0

1√
1 − k2 sin2 θ

dθ, E(k) :=
∫ π/2

0

√
1 − k2 sin2 θ dθ.

The domain of the Jacobi elliptic functions can be extended to the entire
complex plane where each of these functions is “doubly periodic”; for ex-
ample, sn has the periods 4K(k) and 2iK(

√
1 − k2 ), and cn has the periods

4K(k) and 2K(k) + 2iK(
√

1 − k2 ). In fact, more generally, a doubly peri-
odic meromorphic function for which the ratio of its periods is not real is
called an elliptic function. By the definitions of the Jacobi elliptic functions,
we have the identities

sn2(u, k) + cn2(u, k) = 1, dn2(u, k) + k2 sn2(u, k) = 1.

These are just two simple examples of the many relations and identities
that are known.

Exercise 6.26. Consider the solution t �→ (x(t), y(t)) of the system of differ-
ential equations ẋ = −y, ẏ = x with the initial condition x(0) = 1 and y(0) = 0,
and define the sine and cosine functions by

(x(t), y(t)) = (cos t, sin t).

Prove the basic trigonometric identities and periodicity properties of the sine and
cosine using this definition. Also, prove that

θ =
∫ sin θ

0

1√
1 − s2

ds.

Suppose that 0 < k < 1 and consider the solution of the system of differential
equations

ẋ = yz, ẏ = −xz, ż = −k2xy

with initial condition (x(0), y(0), z(0)) = (0, 1, 1). Show that this solution is given
by

(x(t), y(t), z(t)) = (sn(t, k), cn(t, k), dn(t, k)).

If this solution is taken as the definition of the Jacobi elliptic functions, then it
is possible to derive many of the most important properties of these functions
without too much difficulty (see [18, p. 137]).
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Exercise 6.27. Consider the pendulum model given by θ̈ + λ sin θ = 0, define
the phase plane in the usual manner by defining a new variable v := θ̇, and note
that there is a center at the origin of the phase plane. The period function for the
corresponding period annulus is not constant. Fill in the details of the following
derivation of a formula for this period function.

If the periodic orbit meets the θ-axis at θ = θ0, then the energy surface corre-
sponding to the periodic orbit is the graph of the relation

v2 = 2λ(cos θ − cos θ0).

Note that dθ/dt = v and consider the symmetries of the periodic orbit to deduce
that the period T of the orbit is given by

T =
4√
2λ

∫ θ0

0

1√
cos θ − cos θ0

dθ.

Use the identity cos θ = 1 − 2 sin2(θ/2) to rewrite both of the terms cos θ and
cos θ0 in the integrand, and then change variables in the integral using

sin φ =
sin(θ/2)
sin(θ0/2)

to obtain the formula

T =
4√
λ

∫ π/2

0

1√
1 − k2 sin2 φ

dφ =
4√
λ

K(k), k = sin(θ0/2).

Show that the limit of the period function as the periodic orbits approach the
origin is T (0) := 2π/

√
λ and that the period function grows without bound as

the periodic orbits approach the outer boundary of the period annulus. Suppose
that the bob of a physical pendulum is pulled out 15◦, 30◦, or 90◦ from the
downward vertical position and released from rest. Approximate the periods of
the corresponding periodic motions using a numerical integration or a careful
analysis of the series expansion of K in powers of k. What percent error is made
if these periods are approximated by T (0)? (Galileo is said to have deduced
that the period of the librational motion of a pendulum does not depend on its
amplitude. He made this deduction while sitting in a cathedral and observing a
chandelier swinging in the breeze blowing through an open window. Discuss his
theory in light of your approximations.)

How do the elliptic functions arise for the ABC flows? To answer this
question, let us consider the solution y �→ (x(y), z(y)) of the unperturbed
system (6.77) defined above with the initial condition

x(0) = 0, z(0) = arccos((h − β))

and note that the corresponding orbit Γ(h) meets the positive x-axis at the
point with coordinates

(arccos((h − 1)/β), 0).
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The first equation of the unperturbed system (6.77) can be rewritten in
the form

1
sin z(y)

x′(y) =
1
h

.

If we restrict attention for the moment to the portion of Γ(h) in the first
quadrant with y > 0, then after integration, we have the identity

y

h
=

∫ y

0

x′(τ)
sin z(τ)

dτ.

If we apply the change of variables s = x(τ) followed by t = − cos s and
rearrange the integrand, then we have the identity

βy

h
=

∫ − cos x(y)

c

1√
a − t

√
b − t

√
t − c

√
t − d

dt

where

a := 1, b :=
1 − h

β
, c := −1, d := −1 + h

β

and a > b ≥ − cos x(y) > c > d. This integral can be evaluated using the
Jacobi elliptic functions (see [25, p. 112]) to obtain

βy

h
=

√
β sn−1(sin φ, k)

where

k2 =
(1 + β)2 − h2

4β
, sin φ =

( 2β(1 − cos x(y))
(1 − h + β)(1 + h − β cos x(y)

)1/2
.

It follows that

cos x(y) =
1 − A2 sn2(βy/h, k)
1 − B2 sn2(βy/h, k)

with

A2 :=
(1 − h + β)(1 + h)

2β
, B2 :=

1 − h + β

2
,

and, using the trigonometric identity sin2 θ + cos2 θ = 1, we also have

sin x(y) =
√

2
√

A2 − B2 sn(βy/h, k) dn(βy/h, k)
1 − B2 sn2(βy/h, k)

.

Moreover, it is easy to see that the solution formulas for sin x(y) and
cos x(y) are valid for all y.
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Using the fact that sn has real period 4K, the period of Γ(h) is given by

T =
4h√
β

K(k(h)) = 8
√

C2 − k2 K(k)

where

C2 =
(1 + β)2

4β
.

Because dh/dk < 0, the critical points of T are in one-to-one correspon-
dence with the critical points of the period function viewed as a function
of the elliptic modulus k.

There is a beautiful approach to the study of the monotonicity properties
of T that depends on the fact that the derivatives of the complete elliptic
integrals E and K can be expressed as linear combinations (with function
coefficients) of the same complete elliptic integrals. In fact, we have

E′(k) =
E(k) − K(k)

k
, K ′(k) =

E(k) − (1 − k2)K(k)
k(1 − k2)

.

Of course, this means that K ′′ and E′′ can also be expressed in the same
manner. As a result, the three expressions for T (k), T ′(k), and T ′′(k) are
all linear combinations of the two functions E(k) and K(k). Thus, T , T ′,
and T ′′ must be linearly dependent; that is, T satisfies a second order
differential equation. In fact, T satisfies the Picard–Fuchs equation

C2 − k2

k(1 − k2)
T ′′ +

k4 + (1 − 3C2)k2 + C2

k2(1 − k2)2
T ′

+
(1 − 2C2)k2 + C2(2 − C2)

k(C2 − k2)(1 − k2)2
T = 0.

The function T is positive, 0 < k < 1, and 1 < C2 < ∞. By the Picard–
Fuchs equation, if T ′(k) = 0, then the sign of T ′′(k) is the same as the sign
of the expression

C := C2(C2 − 2) + (2C2 − 1)k2.

We also have the Taylor series expansion

T (k) = 4πC +
π(C2 − 2)

C
k2 + O(k4).

These facts are the key ingredients required to prove the following two
propositions: 1) If C2 > 2, then T has no critical points. 2) T has at most
two critical points. The proofs are left as exercises.
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Exercise 6.28. Prove: If f and g are two functions such that f ′, f ′′, g′, and
g′′ are all linear combinations (with function coefficients) of f and g, then every
linear combination T of f and g is a solution of a second order ODE.

Find a second order ODE satisfied by the function given by x �→ a sin x +
b cos x where a and b are constants. Prove that this function does not have a
positive relative minimum. Find a second order ODE satisfied by the function
x �→ aJν(x) + xJ ′

ν(x) where Jv is the Bessel function of the first kind of order ν
and a is a constant.

Formulate a general theorem that uses properties of the coefficients of the
second order ODE satisfied by T and the asymptotics of T at the origin to imply
that T is a monotone function. Apply your result to prove that the function
T : (0, 1) → R given by T (k) = 2E(k) − (2 − k2)K(k) is negative and monotone
decreasing (see [36, page 290]).



7
Averaging

This chapter is an introduction to the method of averaging—a far-reaching
and rich mathematical subject that has many important applications. Our
approach to the subject is through perturbation theory; for example, we will
discuss the existence of periodic orbits for periodically forced oscillators.
However, we will also introduce some additional ideas from the theory of
averaging that have far-reaching implications beyond the scope of this book.

Recall that we have already discussed informally in Section 3.2 appli-
cations of the method of averaging to various perturbations of a Keple-
rian binary. While an understanding of these applications is not required
as background for the mathematical theory in this chapter, a review of
the Keplerian perturbation problem in celestial mechanics is highly recom-
mended as a wonderful way to gain an appreciation for the subject at hand.
For further study there are many excellent mathematical treatments of the
theory and applications of the method of averaging (see, for example, [10],
[12], [83], [110], [130], [157] and [80], [101], [113], [133], [185].)

7.1 The Averaging Principle

Let us consider a family of differential equations given by

u̇ = f(u) + εg(u, t, ε), u ∈ R
M (7.1)
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where the perturbation term is periodic in time with period η > 0. Also,
let us suppose that the unperturbed system

u̇ = f(u), u ∈ R
M (7.2)

is “integrable.” The precise definition of an integrable system will not be
needed; rather, we will assume that a region of the phase space for the
unperturbed system is foliated by invariant tori. In the planar case, this is
exactly the assumption that the unperturbed system has a period annulus.

Special coordinates, called action-angle variables, can always be defined
on the region of the phase space foliated by invariant tori so that the
unperturbed system, when expressed in the new coordinates, has a useful
standard form (see Section 7.3). In this section we will construct the action-
angle variables for the harmonic oscillator; the Delaunay elements defined
for the Kepler problem in Section 3.2 provide a more substantial example.

Recall that the Hamiltonian H : R × R → R for the harmonic oscillator,
the total energy of the mechanical system, is given by

H(q, p) :=
1
2
p2 +

1
2
ω2q2,

and the entire punctured plane is a period annulus for the corresponding
Hamiltonian system

q̇ = p, ṗ = −ω2q. (7.3)

Moreover, the periodic orbits of this system correspond to level sets of H.
In particular, each level set is an ellipse. Similarly, if a general one-degree-
of-freedom Hamiltonian system

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(7.4)

with Hamiltonian H : R×R → R has a period annulus A, then the periodic
orbits in A are regular level sets of H.

In case A is a period annulus for the Hamiltonian system (7.4), let
M(q0, p0) denote the periodic orbit that passes through the point (q0, p0) ∈
A, and note that M(q0, p0) is a subset of the regular energy surface

{(q, p) ∈ R
2 : H(q, p) = H(q0, p0)}.

The function I : A → R defined by

I(q, p) :=
1
2π

∫
M(q,p)

p dq (7.5)

is called the action of the Hamiltonian system on the period annulus. Its
value at (q, p) is the normalized area of the region in the phase space
enclosed by the periodic orbit M(q, p).
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For the harmonic oscillator, the action at (q0, p0) �= (0, 0) is 1/(2π) mul-
tiplied by the area enclosed by the ellipse M(q0, p0) with equation

1
2
p2 +

1
2
ω2q2 =

1
2
a2

where a := (p2
0 + ω2q2

0)1/2. The intercept of this ellipse with the p-axis
is (q, p) = (0, a) and its intercept with the q-axis is (a/ω, 0). Using the
fact that the area of an ellipse is π times the product of the lengths of
its semimajor and semiminor axes, let us observe that the action for the
harmonic oscillator is proportional to its Hamiltonian; in fact,

I(q, p) =
a2

2ω
=

1
ω

H(q, p).

Since the Hamiltonian is constant on orbits, the action is a first integral,
that is, İ = 0.

To define the angular variable, let Σ be a Poincaré section in the period
annulus A, and let T denote the associated period function. Also, for each
point (q, p) ∈ A that lies on an orbit that crosses Σ, define the time map
τ that assigns to the point (q, p) the minimum positive time required to
reach (q, p) along the solution of the system that starts at the intersection
point σ(q, p) of the orbit M(q, p) and the section Σ. With this notation,
the angular variable θ is defined by

θ(q, p) :=
2π

T (σ(q, p))
τ(q, p). (7.6)

For the harmonic oscillator, every periodic orbit has the same period
2π/ω. Moreover, the flow is given by a uniform linear rotation. Thus, for
the time map τ , we have that τ̇ = 1. Hence, the angular variable satisfies
the differential equation θ̇ = ω. In the general case, the frequency of the
periodic orbit may be a nonconstant function of the action, and in this
case, the differential equation for the angular variable is θ̇ = ω(I).

The fact that the function (q, p) �→ (I(q, p), θ(q, p)) defines a polar coor-
dinate chart on an annular subset of A is proved in Section 7.3 below. Thus,
the change to action-angle variables is nonsingular, and the Hamiltonian
system in action-angle variables, that is, the system

İ = 0, θ̇ = ω(I),

can be viewed as a system of differential equations on the phase cylinder:
the product of a line with coordinate I and a one-dimensional torus with
coordinate θ (see Section 1.7.4).

More generally, a multidimensional integrable system has an invariant
manifold that is topologically the cross product of a Cartesian space R

M
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and a torus T
N . In this case, action-angle variables I and θ can be defined

in R
M × T

N such that the integrable system is given by

İ = 0, θ̇ = ω(I) (7.7)

where I ∈ R
M and θ ∈ T

N are vector variables. This is the standard
form for an integrable system, the starting point for classical perturbation
theory.

The method of averaging is a powerful tool that is used to obtain and
analyze approximate solutions for perturbations of integrable systems, that
is, for systems of differential equations of the form

İ = εF (I, θ), θ̇ = ω(I) + εG(I, θ) (7.8)

where θ is a vector of angular variables defined modulo 2π, both F and G
are 2π-periodic functions of their second argument, and ε > 0 is considered
a small parameter. Poincaré called the analysis of systems of the form (7.8)
“the fundamental problem of dynamical systems.”

In a physical application, the mathematical model is usually not derived
directly in action-angle variables. Thus, even if the unperturbed model
system is integrable, and even if we can construct action-angle variables in
a region of its phase space, then in order to obtain a perturbation problem
in the standard form (7.8) we still have the formidable task of transforming
the perturbed vector field to the new coordinates given by the action-angle
variables for the unperturbed system. However, the benefits of working
with the standard form system (7.8) often justify the effort required to
perform the coordinate transformation. This fact is clearly illustrated by
the analysis of the perturbed Kepler problem in Section 3.2.

The dynamics of the unperturbed system (7.7) are very simple. In fact,
the solution with the initial condition (I, θ) = (I0, θ0) is given by I(t) ≡ I0
and θ(t) = ω(I0)t + ω0. In effect, the actions specify a particular torus in
the phase space, and the angles vary linearly on this torus.

Definition 7.1. Suppose that I0 is in R
M . The N -dimensional invariant

torus

{(I, θ) ∈ R
M × R

N : I = I0}

for the system (7.7) is resonant if there is an integer vector K of length N
such that 〈K, ω(I0)〉 = 0 where 〈 〉 denotes the usual inner product. In this
case we also say that the frequencies, the components of the vector ω(I0),
are in resonance.

If an invariant torus for the system (7.7) is not resonant, then every orbit
on the torus is dense. In case N = 2, every orbit on a resonant torus is
periodic. Matters are not quite so simple for N > 2 where the existence
of a resonance relation does not necessarily mean that all orbits on the
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corresponding invariant torus are periodic. This is just one indication of
the fact that the dynamics of systems with more than two frequencies is in
general quite different from the dynamics of systems with one frequency.
However, in all cases, the existence of resonant tori plays a central role in
the analysis of the perturbed dynamical system.

In Chapter 5 some aspects of the near resonant behavior of the planar
case of system (7.1) are discussed in detail, especially, the continuation
theory for resonant unperturbed periodic solutions. As we have seen, this
special case, and the general multidimensional time-periodic system (7.1)
can be viewed as systems on a phase cylinder by the introduction of a new
angular variable so that the extended system is given by

u̇ = f(u) + εg(u, τ, ε), τ̇ = 1. (7.9)

Let us note the obvious fact that if the system u̇ = f(u) is integrable, then
so is system (7.9) at ε = 0.

If u ∈ R
2 and the system u̇ = f(u) has a period annulus A, then it is

integrable. In this case, a subset of the three-dimensional phase space for
the extended system (7.9) at ε = 0 is filled with invariant two-dimensional
tori corresponding to the periodic orbits in A. Thus, there is one action
variable, which has a constant value on each periodic orbit, and two angle
variables. One of the angular variables is τ ; the other is the angle variable
defined for the action-angle variables of the unperturbed planar system.

The basic idea that leads to the development of the method of averaging
arises from an inspection of the system (7.8). The time derivatives of the
actions are all proportional to ε. Hence, if ε is small, the actions would be
expected to remain near their constant unperturbed values over a long time
scale. On the other hand, the angles are oscillating rapidly relative to the
slow change of the actions. Thus, the slow evolution of the actions away
from their initial values is revealed by averaging over the high frequency
oscillations due to the relatively fast changes of the angles.

In most applications, we are indeed interested in the evolution of the
actions, not the angles. For example, in the Kepler problem, the distance of
a planet from a star is given by an action variable whereas its exact position
in the sky also requires the specification of an angle. As we observe a planet
and make predictions about its future, we are probably more interested in
the evolution of the distance between the planet and the star than the exact
position of the planet relative to the star.

Averaging Principle. If I = I0 is the initial value for the action variables
in system (7.8), then, for sufficiently small ε, a useful approximation of the
evolution of the actions of this system is given by the solution of the initial
value problem

J̇ = εF̄ (J), J(0) = I0, (7.10)
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called the averaged system, where F̄ is the function defined by

F̄ (J) :=
1

(2π)N

∫
TN

F (J, θ) dθ.

The averaging principle has a long history that is deeply rooted in pertur-
bation problems that arise in celestial mechanics (see, for example, [157]).
However, it is clear from the use of the phrase “useful approximation” that
the averaging principle is not a theorem. In a physical application, it might
be reasonable to use the averaging principle to replace a mathematical
model in the form of the differential equation (7.8) by the corresponding
averaged system (7.10), to use the averaged system to make a prediction,
and then to test the prediction against the results of a physical experi-
ment. However, to ascertain the utility of the approximation obtained by
averaging, a mathematical theory is required.

The next theorem (the averaging theorem) validates the averaging prin-
ciple under the hypothesis that there is exactly one angular variable. The
statement of the theorem is rather complicated. However, attention must
be paid to the main points: There is a change of variables for system (7.8)
such that the first order truncation with respect to ε of the transformed
differential equation for the actions is exactly the averaged system (7.10);
and the solution of this averaged system is O(ε) close to the solutions of
the original differential equation with the same initial action over a time
interval whose length is O(1/ε).

Theorem 7.2 (Averaging Theorem). Suppose that system (7.8) is de-
fined on U × T where U is an open subset of R

M .

(i) If there is some number λ such that ω(I) > λ > 0 for all I ∈ U ,
then there is a bounded open ball B contained in U , a number ε1 > 0,
and a smooth function k : B × T → B such that for each I ∈ B the
function θ �→ k(I, θ) is 2π-periodic, the function I → I + εk(I, θ) is
invertible on B for 0 ≤ ε < ε1, and the change of coordinates given
by

L = I + εk(I, θ) (7.11)

transforms the system (7.8) to the form

L̇ = εF̄ (L) + ε2F1(L, θ, ε), θ̇ = ω(L) + εG1(L, θ, ε) (7.12)

where

F̄ (L) =
1
2π

∫ π

0
F (L, θ) dθ

and both of the functions F1 and G1 are 2π-periodic with respect to
their second arguments.
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(ii) If in addition T > 0, B0 is an open ball whose closure is contained
in the interior of B, and if for each I0 ∈ B the number τ(I0) denotes
the largest number less than or equal to T such that the solution of
the averaged system (7.10) with initial condition J(0) = I0 is in the
closure of B0 for 0 ≤ t ≤ τ(I0), then there are positive numbers
ε2 ≤ ε1 and C such that for each I0 ∈ B0 and for 0 ≤ ε < ε2
all solutions t �→ (I(t), θ(t)) of the system (7.8) with initial value
I(0) = I0 are approximated by the solution t �→ J(t) of the averaged
system (7.10) with J(0) = I0 as follows:

|I(t) − J(t)| < Cε

on the time interval given by 0 ≤ εt < τ(I0).

Proof. To prove statement (i), define a new function F̃ on U ×T given by

F̃ (L, θ) := F (L, θ) − F̄ (L),

and let k denote the solution of the differential equation

∂k

∂θ
(L, θ) = − 1

ω(L)
F̃ (L, θ) (7.13)

with the initial condition k(L, 0) = 0; that is, k is given by

k(L, θ) = − 1
ω(L)

∫ θ

0
F̃ (L, s) ds.

Note that k is defined on U × T. Moreover, the function θ �→ k(L, θ) is
2π-periodic. Indeed, if we fix L and define a new function

k̂(θ) = k(L, θ + 2π) − k(L, θ),

then the result follows from the fact that k̂(0) = 0 and k̂′(θ) ≡ 0. (The
definition of k uses the fact that there is only one angle. It is precisely
the definition of the “averaging transformation” that is problematic when
there are several angles.)

In order to have L = I + εk(I, θ) define an averaging transformation, we
must show that the transformation is invertible. To this end, consider the
smooth function K : U × U × T × R → R

M given by

(I, L, θ, ε) �→ I + εk(I, θ) − L.

For each point ξ = (L, θ) in c�(B) × T (here, the notation c� denotes
the closure of the set), we have that K(L, L, θ, 0) = 0 and the partial
derivative KI(L, L, θ, 0) is the identity transformation of R

M . Therefore,
by the implicit function theorem, there is a product neighborhood Γξ × γξ
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contained in (U × T) × R and containing the point (ξ, 0), and a smooth
function Hξ : Γξ × γξ → U such that

Hξ(L, θ, ε) + εk(Hξ(L, θ, ε), θ) = L

for all ((L, θ), ε) ∈ Γξ × γξ. In other words the function L �→ Hξ(L, θ, ε) is
a local inverse for the function I �→ I + εk(I, θ). Moreover, if (I, (L, θ), ε) ∈
U × Γξ × γξ is such that K(I, L, θ, ε) = 0, then I = Hξ(L, θ, ε).

Using the fact that c�(B)×T is compact, let us note that there is a finite
collection of the neighborhoods Γξ ×γξ that cover B×T. Also, let Γ denote
the union of the corresponding Γξ, and let γ denote the intersection of the
corresponding intervals on the real line. We have that B ⊂ Γ and that there
is some ε0 such that γ contains the closed interval [0, ε0].

The function k has a global Lipschitz constant Lip(k) on the compact
set c�(B) × T. Let us define ε1 > 0 such that

ε1 < min
{ 1

Lip(k)
, ε0

}
.

If θ ∈ T and 0 ≤ ε ≤ ε1, then the map I �→ I + εk(I, θ) is injective. In fact,
if

I1 + εk(I1, θ) = I2 + εk(I2, θ),

then

|I1 − I2| = |ε|Lip(k)|I1 − I2| < |I1 − I2|,

and therefore I1 = I2. It follows that there is a function H : Γ×T×[0, ε1] →
B such that H is the “global” inverse; that is,

H(L, θ, ε) + εk(H(L, θ, ε), θ) = L.

By the uniqueness of the smooth local inverses Hξ, the function H must
agree with each function Hξ on the intersection of their domains. Thus, H
is smooth and we have defined a coordinate transformation L := I+εk(I, θ)
on B×T× [0, ε1]. Moreover, by expanding H in a Taylor series at ε = 0 and
with the first order remainder given by H, we see that I = L + εH(I, θ, ε).
Moreover, it is easy to check that θ �→ H(I, θ, ε) is a 2π-periodic function.

Using the coordinate transformation, we have that

L̇ = İ + ε
∂k

∂I
İ + ε

∂k

∂θ
θ̇

= εF (I, θ) + ε
∂k

∂I
(I, θ)(εF (I, θ)) + ε

∂k

∂θ
(I, θ)(ω(I) + εG(I, θ))

= ε(F (I, θ) +
∂k

∂θ
(I, θ)ω(I)) + ε2α(I, θ)
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where

α(I, θ) :=
∂k

∂I
(I, θ)F (I, θ) +

∂k

∂θ
(I, θ)G(I, θ).

Moreover, using the inverse transformation and Taylor’s theorem, there is
a function F1 such that

L̇ = ε(F (L, θ) +
∂k

∂θ
(L, θ)ω(L)) + ε2F1(L, θ, ε). (7.14)

If the formula for the partial derivative of k, equation (7.13), is inserted
into the equation (7.14), the new differential equation is given by

L̇ = ε(F̃ (L, θ) + F̄ (L) − F̃ (L, θ)) + ε2β(L, θ, ε).

Thus, the coordinate transformation (7.11) applied to the system (7.8)
yields a new system of the form

L̇ = εF̄ (L) + ε2F1(L, θ, ε),
θ̇ = ω(L) + εG1(L, θ, ε). (7.15)

This completes the proof of statement (i).
To prove the asymptotic estimate in statement (ii), consider the differ-

ential equation for L−J obtained by subtracting the averaged system from
the first differential equation of the system (7.15), and then integrate to
obtain

L(t) − J(t) = L(0) − J(0) + ε

∫ t

0
F̄ (L(s)) − F̄ (J(s)) ds

+ ε2
∫ t

0
F1(L(s), θ(s), ε) ds.

If Lip(F ) > 0 is a Lipschitz constant for F̄ , and if B is an upper bound
for the function

(L, θ, ε) �→ |F1(L, θ, ε)|

on the compact space c�(B) × T × [0, ε1], then we have the estimate

|L(t) − J(t)| ≤ |L(0) − J(0)| + ε Lip(F )
∫ t

0
|L(s) − J(s)| ds + ε2Bt

(7.16)

provided that L(t) remains in c�(B).
An application of the specific Gronwall lemma from Exercise 2.3 to the

inequality (7.16) yields the following estimate

|L(t) − J(t)| ≤
(
|L(0) − J(0)| + ε

B

Lip(F )

)
eε Lip(F )t.
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We also have that

L(0) = I(0) + εk(I(0), θ(0)), I(0) = J(0).

Thus, if 0 ≤ εt ≤ τ(I(0)), where τ is defined in the statement of the
theorem, then there is a constant C0 such that

|L(t) − J(t)| ≤ C0ε (7.17)

provided that L(t) remains in c�(B).
Note that L(t) is in c�(B), as long as |L(t)−J(t)| is less than the minimum

distance between the boundaries of B0 and B. If 0 < ε2 < ε1 is chosen so
that C0/ε2 is less than this distance, then the estimate (7.17) ensures that
L(t) is in c�(B) on the time interval 0 ≤ εt ≤ τ(I(0)).

Finally, let C1 be an upper bound for the function

(L, θ) �→ |k(L, θ)|

and note that for t in the range specified above we have the inequality

|I(t) − J(t)| ≤ |I(t) − L(t)| + |L(t) − J(t)| ≤ εC1 + εC0.

Therefore, with C := C0 + C1, we have the required asymptotic estimate.

�

7.2 Averaging at Resonance

In this section we will demonstrate the remarkable fact that some of the
important features of the near resonant dynamics of all oscillators are de-
termined by the dynamical behavior of an associated one-degree-of-freedom
oscillator that resembles a perturbed pendulum with torque. We will also
give some examples to show that the averaging principle is not always ap-
plicable in multifrequency systems.

Let us consider the system (7.1) with u ∈ R
M+N where the period of

the perturbation is η = 2π/Ω and where the unperturbed system has an
invariant set that is foliated by N -dimensional invariant tori. In this case, if
action-angle variables (I, ϕ) ∈ R

M×T
N are introduced, then the differential

equation is expressed in the form

İ = εF (I, ϕ, t) + O(ε2),
ϕ̇ = ω(I) + εG(I, ϕ, t) + O(ε2). (7.18)

Moreover, it is 2π-periodic in each component of the N -dimensional vector
of angles and 2π/Ω-periodic in time. By introducing an additional angular



7.2 Averaging at Resonance 461

variable τ , system (7.18) is equivalent to the autonomous system with M
actions and N + 1 angles given by

İ = εF (I, ϕ, τ/Ω) + O(ε2),
ϕ̇ = ω(I) + εG(I, ϕ, τ/Ω) + O(ε2),
τ̇ = Ω. (7.19)

Suppose that there is a resonance relation given in the form

〈K, ω(I)〉 = nΩ (7.20)

where K is an integer vector of length M , and n is an integer such that
the components of K and the integer n have no common factors. The set

RK,n := {(I, ϕ, τ) : 〈K, ω(I)〉 = nΩ}

corresponding to the resonance relation (7.20), which is generally a hyper-
surface in the phase space, is called a resonant manifold. Our goal is to
describe the perturbed dynamics of the system (7.19) near this resonant
manifold. To do this, we will use yet another set of new coordinates that
will be introduced informally and abstractly. In practice, as we will demon-
strate later, the appropriate new coordinates are chosen using the ideas of
the abstract construction; but, their precise definition depends on special
features of the system being studied.

The set

AK,n := {I : 〈K, ω(I)〉 = nΩ},

is the intersection of the resonant manifold with the “action space.” This set
is generally a manifold in R

M and is also often called a resonant manifold.
However, to distinguish AK,n from RK,n, let us call AK,n the resonant
layer associated with the resonance relation (7.20).

A point in the action space is determined by its “distance” from the
resonant layer and by its projection to the resonant layer. In particular,
there are local coordinates defined in a neighborhood of the resonant layer,
or at least near a portion of this manifold, given by

r = 〈K, ω(I)〉 − nΩ, z = A(I)

where r is a measure of the distance of the point with action I to the
resonant layer and the (M−1)-dimensional vector z is the vector coordinate
of the projection, denoted by the smooth map A, of the point I to the
resonant layer AK,n. However, as we will soon see, it is convenient to use the
stretched distance ρ = r/

√
ε as a new coordinate rather than the distance

measured by r.
Let us also define new angular variables

ψ = 〈K, ϕ〉 − nτ, χ = B(ϕ, τ)
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where the vector function B : T
N+1 → T

N+1 is chosen so that the transfor-
mation to the new angles is invertible. Of course, B must also be 2π-periodic
in each component of ϕ and in τ .

In the new coordinates ρ, z, ψ, χ, the system (7.19) has the form

ρ̇ =
√

ε〈K, Dω(I)F (I, φ, τ/Ω)〉 + O(ε),
ż = O(ε),
ψ̇ =

√
ερ + O(ε3/2),

χ̇ = O(1) (7.21)

provided that I, φ, and τ are viewed as functions of the new coordinates.
In system (7.21), ρ and ψ are slow variables, the M − 1 variables repre-

sented by the vector z are “super slow,” and χ is an N -dimensional vector
of fast variables. In keeping with the averaging principle, we will average
over the fast (angular) variables, although we have provided no theoret-
ical justification for doing so unless N = 1. At any rate, the differential
equations obtained by averaging over the fast variables in system (7.21) is
called the partially averaged system at the resonance.

To leading order in µ :=
√

ε, the partially averaged system at the reso-
nance is

ρ̇ = µ〈K, Dω(I)F ∗(I, ψ)〉,
ż = 0,

ψ̇ = µρ (7.22)

where F ∗ is obtained by averaging the function

χ �→ F (I, φ(ψ, χ), τ(ψ, χ)/Ω).

Here we have used the names of the original variables for the corresponding
averaged variables even though this is a dangerous practice!

The function F ∗ is periodic in its second argument with period some
integral multiple of 2π. In particular, using Fourier series, there is a constant
vector c(I) and a vector-valued periodic function ψ �→ h(I, ψ) with zero
average such that

F ∗(I, ψ) = c(I) + h(I, ψ).

Also, we can easily obtain the expansion, in powers of µ, of the function
Dω expressed in the new coordinates. In fact, because

I(r, z) = I(µρ, z) = I(0, z) + O(µ),

it follows that Dω(I) = Dω(I(0, z)) + O(µ).
Under the generic assumption that

〈K, Dω(I(0, z))F ∗(I(0, z), ψ)〉 �= 0,
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that is, the vector field corresponding to the averaged system is trans-
verse to the resonant manifold, if we take into account system (7.22) and
the above definitions, then there are real-valued functions z �→ p(z) and
(z, ψ) �→ q(z, ψ) such that our first order approximation to the partially
averaged system has the form

ρ̇ = µ(p(z) + q(z, ψ)),
ż = 0
ψ̇ = µρ. (7.23)

Finally, if we define a slow time variable s = µt and take into account
the fact that z is a constant of the motion, then we may as well view the
system (7.23) as the following parametrized family of differential equations
with parameter z:

dρ

ds
= p(z) + q(z, ψ),

dψ

ds
= ρ, (7.24)

or equivalently

d2ψ

ds2 − q(z, ψ) = p(z) (7.25)

where the function ψ �→ q(z, ψ) is periodic with average zero.
In accordance with the usual physical interpretation of the differential

equation (7.25), we have just obtained a wonderful result: Near a reso-
nance, every oscillator behaves like a “pendulum” influenced by a constant
torque. Of course, the precise nature of the dynamical behavior near the res-
onance depends on the functions p and q in the differential equation (7.25)
and on the perturbation terms that appear in the higher order approxima-
tions of the partially averaged system. In particular, let us note that the
coefficients of the pendulum equation are functions of the super slow vari-
ables. Thus, they vary slowly with the slow time. A rigorous description of
the motion predicted by the partially averaged system is highly nontrivial
and not yet completely understood. However, our result certainly provides
a fundamental insight into the near resonant dynamics of oscillators. Also,
this result provides a very good reason to study the dynamics of perturbed
pendulum models.

Consider the simple pendulum with constant torque (equation (7.25)
with p(z) = c and q(z, ψ) := −λ sin ψ) given by

ρ̇ = c − λ sin ψ, ψ̇ = ρ (7.26)

where λ > 0 and c ≥ 0. The phase space of this system is the cylinder
(ρ, ψ) ∈ R×T. Also, let us note that the circle given by the equation ρ = 0
would correspond to the resonant manifold in our original oscillator.
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FIGURE 7.1. Phase portrait of pendulum with “large” constant torque. All orbits
pass through the resonant value of the action.

FIGURE 7.2. Phase portrait for pendulum with “small” constant torque. The
region bounded by the homoclinic orbit corresponds to the trajectories that are
captured into resonance. The corresponding action oscillates around its resonant
value.
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FIGURE 7.3. Phase portrait for pendulum with “small” constant torque and
“small” viscous friction. A thin strip of trajectories are captured into the reso-
nance. The corresponding action with initial condition in the strip moves toward
its resonant value and then begins to oscillate around its resonant value.

If c/λ > 1, then ρ̇ > 0 and it is clear that all trajectories pass through the
resonant manifold as depicted in Figure 7.1. If, on the other hand, c/λ < 1,
then there are two rest points on the resonant manifold, a saddle and a sink,
and the phase portrait will be as depicted in Figure 7.2. In particular, some
orbits still pass through the resonant manifold, but now the periodic orbits
surrounded by the homoclinic loop are captured into the resonance. These
orbits correspond to orbits for which an action librates near its resonant
value on a long time scale. In the pendulum model, the libration goes on
for ever. However, if a pendulum system is obtained by partial averaging at
a resonance, then its coefficients are expected to vary slowly with time. In
particular, the ratio c/λ will change over time and perhaps reach a value
that exceeds one. In this case, the corresponding action can drift away from
its resonance value.

If the averaging procedure is carried to the next higher order in µ, then
a typical perturbation that might appear in the pendulum model is a small
viscous friction. For example, the perturbed system might be

ρ̇ = c − µρ − λ sin ψ, ψ̇ = ρ. (7.27)

The phase portrait of this system on the phase cylinder for the case c/λ < 1
is depicted in Figure 7.3. Note that there is a “thin” set of trajectories, some
with their initial point far from the resonant manifold, that are eventually
captured into the resonance. Again, by taking into account the fact that the
coefficients of system (7.27) will generally vary slowly with time, it is easy to
imagine the following scenario will occur for the original system: An action
variable of our multidimensional oscillator evolves toward a resonance, it is
captured into the resonance and begins to librate about its resonant value.
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FIGURE 7.4. Two schematic time signals of an action variable I are depicted for
orbits with slightly different initial conditions. One time trace passes through the
resonant value I = I0; the other is captured into the resonance on a long time
scale before it leaves the vicinity of its resonant value.

After perhaps a long sojourn near the resonance, the action variable slowly
drifts away from its resonant value. Meanwhile, the same action variable
for a solution with a slightly different initial condition evolves toward the
resonant value, but the action values pass through the resonance without
oscillating about the resonant value (see Figure 7.4).

The dynamics of the differential equation (7.25) are similar to the dynam-
ics of the simple pendulum. However, there are generally several alternating
saddles and centers along the resonant manifold. Thus, for a perturbation
of this system, there can be several “thin” subsets of the phase space cor-
responding to trajectories that are eventually captured into the resonance.
Again trajectories that are captured into a resonance will tend to remain
near the resonant manifold on a long time interval. But as the remaining
super slow action variables drift, the trajectory will often move into a re-
gion near the resonant manifold where it will pass through the resonance.
After it reaches this region, the trajectory will eventually move away from
the influence of the resonance—at least for a while. However, to compli-
cate matters further, the set of resonant manifolds is dense in the action
space (the rational numbers are dense in the real line); and, for the case
of at least three angle variables, resonant manifolds corresponding to dif-
ferent integer vectors can intersect. Thus, there is a complex web, called
the Arnold web, of resonant manifolds that each influence the perturbed
motion of nearby orbits. The precise dynamics in the phase space and the
corresponding fluctuations of the action variables is usually very difficult
to analyze. However, the resonance capture mechanism, which is partly re-
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sponsible for the complexity of the motions in phase space for dissipative
systems, is made reasonably clear by our analysis.

The study of pendulum-like equations with slowly varying parameters is
the subject of hundreds of research articles. You should now see why there
is so much interest in such models. Perhaps the simplest case to analyze
is the pendulum with periodic forcing or with periodic changes in some of
its parameters. While we have not discussed all of the known dynamical
behavior associated with such models, we have discussed the possibility
that periodic orbits continue (Chapter 5) and chaotic invariant sets appear
(Chapter 6). This general subject area is certainly not closed; it remains a
fruitful area of mathematical research.

Exercise 7.3. Consider the pendulum model with slowly varying torque given
by

ρ̇ = a sin(
√

εt) − λ sin ψ, ψ̇ = ρ

where a, λ, and ε are parameters. Identify the region in phase space correspond-
ing to the librational motions of the pendulum at the parameter value ε = 0.
Determine (by numerical integration if necessary) the behavior in forward and
backward time of the corresponding solutions for the system with ε > 0 that have
initial conditions in the librational region.

Exercise 7.4. Consider the phase modulated pendulum (remember that our
pendulum model (7.27) is only a special case of the type of equation that is
obtained by partial averaging) given by

ψ̈ + sin(ψ + a sin(εt)) = 0.

What can you say about the dynamics?

Exercise 7.5. Show that resonant manifolds do not intersect in systems with
just two angle variables, but that they can intersect if there are three or more
angles.

The possibility that a trajectory can be captured into resonance accounts
for the fact that the averaging principle is not generally valid for systems
with more than one angular variable. To see why, note that a solution of
the averaged system might pass through a resonance while the correspond-
ing solution of the original system is captured into the resonance. If this
occurs, then the norm of the difference of the evolving actions and the cor-
responding averaged variables, given by |I(t) − J(t)|, may grow to a value
that is O(1) in the perturbation parameter as time evolves and the solu-
tion t �→ I(t) is trapped in the resonance. In particular, this scenario would
violate the expected estimate; that is, |I(t) − J(t)| < C1ε.

A complete analysis for the dynamics of multifrequency systems is not
known. Thus, this is an area of much current research (see, for example,
[10], [12], [113], and [157]). One of the most important issues is to determine
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the “diffusion rates” for the actions to leave the vicinity of a resonance and
to arrive at a second resonance. The long term stability of the models of the
motion of many-body systems, for example our solar system, is essentially
bound up with this question. This is currently one of the great unsolved
problems in mathematics.

A concrete counterexample to the validity of averaging for the case of
two or more angles is provided by the system

İ1 = ε,

İ2 = ε cos(θ2 − θ1),
θ̇1 = I1,

θ̇2 = I2, (7.28)

introduced in [157] (see Exercise 7.6).

Exercise 7.6. Find the averaged system for the oscillator (7.28) and the gen-
eral analytical solution of the averaged system. Show that a solution of the orig-
inal system is given by

I1(t) = εt + I0,

I2(t) = I1(t),

θ1(t) = ε
1
2
t2 + I0t + θ1(0),

θ2(t) = θ1(t).

For these solutions, show that the estimate expected from the averaging theorem
(Theorem 7.2) is not valid.

Let us note that system (7.28) has a resonant manifold given by the
resonance relation I2 −I1 = 0. As prescribed above in our partial averaging
procedure, consider new coordinates defined by

√
ε ρ = I2 − I1, z = I2, ψ = θ2 − θ1, χ = θ2,

and note that system (7.28), when expressed in these coordinates, is given
by

ρ̇ =
√

ε (cos ψ − 1),
ż = ε cos ψ,

ψ̇ =
√

ε ρ,

χ̇ = z. (7.29)
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Averaging over the fast angle χ in system (7.29) produces the partially
averaged system

˙̄ρ =
√

ε (cos ψ̄ − 1),
˙̄z = 0,

˙̄ψ =
√

ε ρ̄. (7.30)

For each fixed z̄, there is an orbit O1 whose ω-limit set is the rest point
(ρ̄, z̄, ψ̄) = (0, z̄, 0) and a second orbit O2 with this rest point as its α-limit
set. (Prove this!) The trajectories corresponding to the orbit O1 are all
captured into the resonance relative to the first order approximation of the
partially averaged system, and the rest point is captured for all time. But
the action corresponding to z̄, a super slow variable, drifts from its initial
value so that the trajectories corresponding to the orbit O1 eventually pass
through the resonance. This example thus provides a clear illustration of the
mechanism that destroys the possibility that the averaged system—not the
partially averaged system—gives a good approximation to the full system
over a long time scale. In effect, the averaged system for this example does
not “feel the influence of the resonance.”

Exercise 7.7. The partially averaged system (7.30) is obtained by averaging
over just one angle. Thus, the averaging theorem ensures that under appropriate
restrictions the partially averaged system is a good approximation to the original
system. Formulate appropriate restrictions on the domain of definition of the
partially averaged system and determine an appropriate time scale for the validity
of averaging. Give a direct proof that your formulation is valid.

Exercise 7.8. In applied mathematics, often only the lowest order resonances
are considered; they seem to have the most influence on the dynamics. As an
example to illustrate why this observation might be justified, consider the near
resonance dynamics of system (7.28) at a “high” order resonance given by the
resonance relation mI1 = nI2 where m and n are relatively prime, and m �= n.
Show that there are integers k and � such that the matrix

R :=
(

m −n
k �

)

is unimodular. Next, define new angular coordinates by(
φ1

φ2

)
= R

(
θ1

θ2

)
.

Also, define new action variables by
√

ε ρ = mI1 − nI2, z = kI1 + �I2.

Change to the new coordinates, find the partially averaged system, and show
that, in this approximation, all orbits pass through the resonance. Does this
mean that the averaging principle is valid for orbits starting near the higher
order resonances in this example?
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Let us consider the system (7.1) with u ∈ R
2; that is, a planar period-

ically perturbed oscillator. Furthermore, let us assume that action-angle
variables have been introduced—in this case, the resonant invariant man-
ifold given by the resonance relation mω(I) = nΩ is a point I = I0 in the
one-dimensional action space.

In order to find the partially averaged system at the resonant layer given
by I = I0, let ρ denote the scaled distance to the resonant manifold; that
is,

√
ε ρ = I − I0.

Also, let τ = Ωt, and introduce a new angular variable by

ψ = mφ − nτ.

Then, to first order in the perturbation parameter
√

ε, the differential equa-
tion in these new coordinates is given by the system

ρ̇ =
√

ε F (I0, ψ/m + nτ/m, τ/Ω) + O(ε),
ψ̇ =

√
ε mω′(I0)ρ + O(ε),

τ̇ = Ω.

Whereas the variables ρ and ψ are slow variables, τ , corresponding to the
time variable in our nonautonomous perturbation, is a single fast angular
variable. By the averaging theorem, there is a change of coordinates such
that the transformed system, to leading order in µ =

√
ε, is given by

J̇ = µF̄ (θ), θ̇ = µmω′(I0)J (7.31)

where

F̄ (θ) :=
1

2πm

∫ 2πm

0
F (I0, θ/m + nτ/m, τ/Ω) dτ.

Under the assumption that ω′(I0) �= 0—in other words, under the as-
sumption that the unperturbed resonant periodic orbit corresponding to
the action I = I0 is normally nondegenerate—the averaged system for
ε > 0 has a nondegenerate rest point at (J0, θ0) if and only if J0 = 0 and
the function F̄ has θ0 as a simple zero.

Note that the solution of the system

J̇ = µF̄ (θ), θ̇ = µmω′(I0)J, τ̇ = Ω

starting at the point (J, θ, τ) = (0, θ0, 0) is a periodic orbit, and in addi-
tion if the rest point is hyperbolic, then this periodic orbit is hyperbolic.
We would like to conclude that there is a corresponding periodic orbit for
the original oscillator. This fact is implied by the following more general
theorem.
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Theorem 7.9. Consider the system

İ = εF (I, θ) + ε2F2(I, θ, ε),
θ̇ = ω(I) + εG(I, θ, ε) (7.32)

where I ∈ R
M and θ ∈ T, where F , F2, and G are 2π-periodic functions

of θ, and where there is some number c such that ω(I) > c > 0. If the
averaged system has a nondegenerate rest point, then for sufficiently small
ε system (7.32) has a periodic orbit. If in addition ε > 0 and the rest
point is hyperbolic, then the periodic orbit has the same stability type as
the hyperbolic rest point; that is, the dimensions of the corresponding stable
and unstable manifolds are the same.

Proof. The averaged differential equation is given by J̇ = εF̄ (J) where
F̄ is the average of the function θ �→ F (I, θ). Let us suppose that J0 is a
nondegenerate rest point of the averaged system; that is, F̄ (J0) = 0 and
the derivative DF̄ (J0) is an invertible transformation.

By the averaging theorem, if ε is sufficiently small, then there is a 2π-
periodic change of coordinates of the form J = I + εL(I, θ), defined in
an open set containing {J0} × T, such that system (7.32) in these new
coordinates is given by

J̇ = εF̄ (J) + O(ε2),
θ̇ = ω(J) + O(ε). (7.33)

Let t �→ (J(t, ξ, ε), θ(t, ξ, ε)) denote the solution of the system (7.33)
such that J(0, ξ, ε) = ξ and θ(0, ξ, ε) = 0. By an application of the implicit
function theorem, there is a smooth function (ξ, ε) �→ T (ξ, ε) that is defined
in a neighborhood of (J, θ) = (J0, 0) such that T (J0, 0) = 2π/ω(J0) and
θ(T (ξ, ε), ξ, ε) ≡ 2π. Moreover, let us define a (parametrized) Poincaré map
with the same domain as the transit time map T by

P (ξ, ε) := J(T (ξ, ε), ξ, ε).

By expanding the function ε �→ P (ξ, ε) into a Taylor series at ε = 0, we
obtain

P (ξ, ε) = J(T (ξ, 0), ξ, 0) + ε(J̇(T (ξ, 0), ξ, 0)Tε(ξ, 0)
+ Jε(T (ξ, 0), ξ, 0)) + O(ε2).

Note that J(T (ξ, 0), ξ, 0) ≡ ξ and J̇(T (ξ, 0), ξ, 0) = 0. Moreover, the func-
tion t �→ Jε(t, ξ, 0) is the solution of the variational initial value problem
given by

Ẇ = F̄ (J(t, ξ, 0)), W (0) = 0.
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FIGURE 7.5. Phase portrait of the first order approximation of the partially
averaged system (7.36) in case F̄ = 0.

Using the fact that J(t, ξ, 0) ≡ ξ and T (ξ, 0) ≡ 2π/ω(ξ), it follows that
Jε(t, ξ, 0) = tF̄ (ξ) and

P (ξ, ε) = ξ + ε
2π

ω(ξ)
F̄ (ξ) + O(ε2). (7.34)

Consider the displacement function δ(ξ, ε) := P (ξ, ε) − ξ and note that
its zeros correspond to the fixed points of the Poincaré map. Also, the
zeros of the displacement function are the same as the zeros of the reduced
displacement function defined by

∆(ξ, ε) :=
2π

ω(ξ)
F̄ (ξ) + O(ε).

An easy computation shows that ∆(J0, 0) = 0 and

∆ξ(J0, 0) =
2π

ω(J0)
DF̄ (J0).

Thus, by an application of the implicit function theorem, there is a function
ε �→ β(ε) defined on some interval containing ε = 0 such that β(0) = J0
and such that for each ε in the domain of β, the vector β(ε) ∈ R

M is a
fixed point of the Poincaré map ξ �→ P (ξ, ε). In particular, (J, θ) = (β(ε), 0)
is the initial condition for a periodic orbit of the system (7.33). Since the
original system (7.32) is obtained from system (7.33) by an (appropriately
periodic) change of coordinates, there are corresponding periodic orbits in
the original system.

Finally, to determine the stability type of the periodic orbit, we must
compute the derivative of the Poincaré map with respect to the space
variable. Using the formula (7.34), if the derivative with respect to ξ is
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J
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FIGURE 7.6. Phase portrait of the first order approximation of the partially
averaged system (7.36) in case F̄ is a positive function.

�

J

FIGURE 7.7. Phase portrait of the first order approximation of the partially
averaged system (7.36) in case F̄ has simple zeros.

FIGURE 7.8. Phase portrait of the stroboscopic Poincaré map for the perturbed
system (7.36). The left panel depicts entrainment, the right panel depicts chaos.
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evaluated at the initial point ξ = β(ε) of the perturbed periodic orbit and
the result is expanded in a Taylor series at ε = 0, the following formula is
obtained:

Pξ(β(ε), ε) = I + ε
2π

ω(J0)
DF̄ (J0) + O(ε), (7.35)

where, in deference to tradition, I in this formula is the identity map of
R

M , not the variable I in the original differential equation.
Abstractly, the matrix equation (7.35) has the form

P − I = ε(A + R(ε))

where A is infinitesimally hyperbolic with, say, N eigenvalues with positive
real parts and M −N eigenvalues with negative real parts. If ε is sufficiently
small, then the matrix A + R(ε) has the same number of such eigenvalues.
If in addition ε > 0, then the matrix ε(A + R(ε)) has the same number of
such eigenvalues that are all as close to the origin in the complex plane as
desired. Using this fact, together with the fact that there are only a finite
number of eigenvalues, and the fact that the eigenvalues of P are exactly
eigenvalues of the matrix ε(A + R(ε)) shifted one unit to the right in the
complex plane, it follows that, for sufficiently small positive ε, the matrix
P has N eigenvalues outside the unit circle and M − N eigenvalues inside
the unit circle, as required. The proof that this structure is preserved by
the inverse of the averaging transformation and is therefore inherited by
the original system is left to the reader. �

The partially averaged system (7.31) obtained above is given more pre-
cisely by the system

J̇ = µF̄ (θ) + O(µ2), θ̇ = µmω′(I0)J + O(µ2) (7.36)

where the presence of perturbation terms is indicated by the order symbol.
Let us assume that ω′(I0) > 0 and consider some of the possible phase por-
traits of this system. The phase portrait (of the phase plane) of the first or-
der approximation of system (7.36) in case F̄ = 0 is depicted in Figure 7.5.
The J-axis, the intersection of the resonant manifold with the (J, θ)-plane,
consists entirely of rest points. A higher order analysis is required to deter-
mine the dynamics of the perturbed system. The phase portrait for the first
order approximation in case F̄ has fixed sign (taken here to be positive)
is shown in Figure 7.6. In this case all orbits pass through the resonance.
A typical phase portrait for the case where F̄ has simple zeros is depicted
in Figure 7.7. There are several regions corresponding to librational mo-
tions where orbits are permanently captured into resonance. Finally, in
Figure 7.8, two possible phase portraits of the stroboscopic Poincaré map
of the perturbed system are illustrated. Whereas the left panel corresponds
to resonance capture—in the context of a periodically perturbed oscillator
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this would also be called entrainment—the right hand panel corresponds to
transient chaos; that is, the chaotic invariant set is of saddle type so that
nearby orbits approach the chaotic set along a stable manifold, they “feel”
the chaos on some finite time scale, and they eventually drift away along
an unstable manifold.

Exercise 7.10. In Theorem 7.9, suppose that the rest point is nondegenerate
but not hyperbolic. What can be said about the stability type of the correspond-
ing periodic orbit?

Exercise 7.11. Compare and contrast the continuation theory for periodic or-
bits of planar periodically perturbed oscillators given in Chapter 5 and the theory
presented in this chapter.

Exercise 7.12. Consider the following modification of an example introduced
in [77] and [80], namely, the system

ẋ = y(1 − x2 − y2) + ε[δx − x(x2 + y2) + γx cos(Ωt)],

ẏ = −x(1 − x2 − y2) + ε[δy − y(x2 + y2)] (7.37)

where δ, γ, and Ω are positive constants and ε is a small parameter.
Here the action-angle variables are trigonometric. Show that (I, θ) defined by

the transformation

x =
√

2I sin θ, y =
√

2I cos θ

are action-angle variables for the system (7.37). The square root is employed
to make the transformation have Jacobian equal to one. This is important in
Hamiltonian mechanics where it is desirable to have coordinate transformations
that respect the Hamiltonian structure—such transformations are called sym-
plectic or canonical. At any rate, to find continuable periodic orbits, consider
the (m : n) = (2 : 1) resonance. Partially average the system at this resonance
and use Theorem 7.9 to conclude that the original system has periodic orbits for
small ε > 0.

There are some interesting dynamics going on in this example. Try some numer-
ical experiments to approximate the phase portrait of the stroboscopic Poincaré
map. What is the main feature of the dynamics? Can you see the subharmonic
solutions near the (2 : 1) resonance? In addition to the references given above,
look at [34].

Exercise 7.13. If a linear oscillator is periodically perturbed, its response is
periodic with the same frequency as the perturbation. However, the amplitude
of the response depends on the frequency. In particular, the amplitude is large
if the input frequency is (nearly) resonant with the natural frequency of the
oscillator. A lot of important scientific work and a lot of engineering has been
accomplished under the impression that the above statements are true when the
first sentence begins with the phrase “If an oscillator is periodically forced . . . .”
By reading to this point in this book you are in a strong position to challenge
these statements when the word “linear” is left out. Prove that the statements
are true for linear oscillators and give examples to show that nonlinear oscillators
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FIGURE 7.9. Response signal for v := θ̇ versus time for the system θ̇ = v,
v̇ = − sin θ − ε(m1 + m2v − B cos(Ω(t − t0)) sin θ) with t0 = 0, Ω = 2, m1 = 10,
m2 = 1, B = 32, and ε = .001. The left panel depicts an orbit that is cap-
tured into resonance; the initial initial condition is (θ, θ̇) = (0, 3.940252). The
right panel depicts the corresponding signal for the orbit with initial condition
(θ, θ̇) = (0, 3.940253).

do not always behave so simply. However, suppose that a nonlinear oscillator,
say ẋ = f(x), is periodically perturbed with a periodic perturbation of frequency
Ω and the function t �→ xi(t) is observed where xi is one of the component
functions of a solution t �→ (x1(t), . . . , xn(t)). Will the signal t �→ xi(t) retain
some “trace” of the periodic input? For example, consider the power spectrum
of this function, that is, the square of the absolute value of its Fourier transform.
Will the frequency Ω have a large amplitude in the power spectrum? Try some
numerical experiments. The previous question does not have a simple answer.
But questions of this type arise all the time in physics and engineering where
we are confronted with multivariable systems that are often far too complex to
be analyzed with analytic methods. Discuss the reasons why the study of simple
models might be valuable for understanding complex systems.

Exercise 7.14. Consider the system

θ̇ = v, v̇ = − sin θ − ε(m1 + m2v − B cos(Ω(t − t0)) sin θ),

a parametrically excited pendulum with damping and torque. Reproduce the
Figure 7.9 as an illustration of passage through resonance. Determine an ap-
proximate neighborhood of the point (θ, θ̇) = (0, 3.940252) corresponding to the
initial conditions for orbits that are captured into resonance. Can you automate
a criterion for “capture into resonance”? Explore other regions of the parameter
space by using numerical experiments.
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7.3 Action-Angle Variables

To use the theory presented so far in this chapter we must be able to
express our oscillator in action-angle variables. In practice, the construction
of action-angle variables is a formidable task—recall the construction of
the Delaunay variables in Chapter 3. For linear oscillators the appropriate
coordinate change can be constructed using polar coordinates, while the
construction of action-angle variables for the pendulum requires the use of
Jacobi elliptic functions. A general construction of action angle-variables
for planar oscillators is presented in this section. The construction uses
some of the ideas discussed in Chapter 5.

Let us consider a differential equation of the form

u̇ = f(u) + εg(u, t)

where the unperturbed system

u̇ = f(u) (7.38)

has a period annulus A. We will construct action-angle variables near a
periodic orbit Γ contained in A. The differential equation (7.38), expressed
in the new coordinates that we denote by I and ϑ, has the form

İ = 0, ϑ̇ = ω(I).

Interpreted geometrically, these new coordinates are related to polar co-
ordinates in that I is a radial variable and ϑ is an angular variable. In
fact, whereas I is constant on each periodic solution, ϑ changes linearly on
each periodic solution. In case the system (7.38) is Hamiltonian, the new
coordinates reduce to the usual action-angle variables on A.

With reference to system (7.38), define the orthogonal system

u̇ = f⊥(u), u ∈ X (7.39)

where, in oriented local coordinates, f⊥(u) := Jf(u) with

J =
(

0 −1
1 0

)
.

We mention that J rotates vectors in the plane through a positive angle
of π/2 radians. The same symbol J is often used in this context with the
opposite sign.

Let ϕt denote the flow of the differential equation (7.38) and let ψt denote
the flow of the differential equation (7.39). Also, for vectors ξ1 and ξ2 in
R

2, define ξ1 ∧ ξ2 := 〈ξ1, Jξ2〉, where the brackets denote the usual inner
product in R

2.
A periodic orbit Γ of (7.38) has an orientation determined by its time

parameterization. To specify an orientation, we define ε = ε(f) = 1 in case
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for each ζ ∈ Γ the vector f⊥(ζ) is the outer normal at ζ. If f⊥(ζ) is the
inner normal, then ε := −1. Also, the orientation of the period annulus
A is defined to be the orientation inherited from its constituent periodic
solutions.

Choose a point ζ ∈ A and note that there is an open interval U ⊂ R

containing the origin such that the image of the map ρ �→ ψρ(ζ) for ρ ∈ U
is a section Σζ transverse to the orbits of system (7.38) in A. Also, define
Υ : U × R → A by

Υ(ρ, φ) = ϕφ(ψρ(ζ)). (7.40)

Clearly, Υ is smooth. In fact, Υ is a covering map, that is, a periodic coordi-
nate system on A. We will see below that Υ defines “flow box” coordinates:
coordinates that straighten out the flow in a neighborhood of the periodic
orbit containing the point ζ.

To construct the action-angle variables, let us begin by considering the
derivative of the map Υ defined in display (7.40). Diliberto’s theorem (The-
orem 5.5) states that if

b(t, ζ) :=
||f(ζ)||2

||f(ϕt(ζ))||2 e
∫ t
0 div f(ϕs(v)) ds,

a(t, ζ) :=
∫ t

0

(
2κ(s, ζ)||f(ϕs(ζ))|| − curl f(ϕs(ζ))

)
b(s, ζ) ds, (7.41)

where κ denotes the signed scalar curvature along the curve t �→ ϕt(ζ),
ζ ∈ A, then

DΥ(ρ, φ)
∂

∂φ
= f(Υ(ρ, φ)),

DΥ(ρ, φ)
∂

∂ρ
= b(φ, ψρ(v))f⊥(Υ(ρ, φ)) + a(φ, ψρ(v))f(Υ(ρ, φ)).

In other words, the matrix representation of the derivative DΥ(ρ, φ) relative
to the ordered bases {∂/∂ρ, ∂/∂φ} and {f⊥(Υ(ρ, φ)), f(Υ(ρ, φ))} is given
by

DΥ(ρ, φ) =
(

b(φ, ψρ(v)) 0
a(φ, ψρ(v)) 1

)
.

Since b does not vanish for ζ ∈ A, it follows that Υ is a local diffeomorphism
and in fact Υ is a covering map onto its image.

To express the original system (7.38) in (ρ, φ)-coordinates, note first that
there are smooth functions (u, t) �→ p(u, t) and (u, t) �→ q(u, t) such that

g(u, t) = p(u, t)f⊥(u) + q(u, t)f(u) (7.42)

for all (u, t) ∈ A×R. Thus, to change system (7.38) to the new coordinates,
we simply solve for

j(u, t)
∂

∂ρ
+ k(u, t)

∂

∂φ
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in the matrix equation (
b 0
a 1

)(
j
k

)
=

(
εp

1 + εq

)
to obtain (

j
k

)
=

(
ε 1

b p
1 + ε(q − a

b p)

)
.

It follows that system (7.38) in the new coordinates is given by

ρ̇ = ε
1

b(φ, ψρ(v))
p(Υ(ρ, φ), t),

φ̇ = 1 + ε
(
q(Υ(ρ, φ), t) − a(φ, ψρ(v))

b(φ, ψρ(v))
p(Υ(ρ, φ), t)

)
. (7.43)

To compress notation, let us write (7.43) in the form

ρ̇ = εQ(ρ, φ, t), φ̇ = 1 + εR(ρ, φ, t). (7.44)

Define a second change of coordinates by

ρ = β(I), φ = α(I)ϑ (7.45)

where I �→ α(I) and I �→ β(I) are smooth functions to be specified below.
Here, since the coordinate transformation must be invertible, we need only
assume that α(I)β′(I) �= 0. In the (I, ϑ)-coordinates, system (7.43) has the
form

İ = ε
1

β′(I)
Q(β(I), α(I)ϑ, t),

ϑ̇ =
φ̇ − ϑα′(I)İ

α(I)
(7.46)

=
1

α(I)
+ ε

( 1
α(I)

R(β(I), α(I)ϑ, t) − ϑ
α′(I)

α(I)β′(I)
Q(β(I), α(I)ϑ, t)

)
.

To specify the functions α and β we require two auxiliary functions—
the period function and the area function. To define the period function,
recall that the image of the map ρ �→ ψρ(ζ) for ρ ∈ U is a section for
the unperturbed flow on the period annulus A. The period function on A
relative to this section is the map T̃ : U → R that assigns to each ρ ∈ U
the minimum period of the solution of system (7.38) that passes through
the point φρ(ζ) ∈ A. In the “standard” case, A is an annulus whose inner
boundary is a rest point. In this case, we define the area function ζ �→ A(ζ);
it assigns to each ζ ∈ A the area enclosed by the unperturbed solution
through ζ.
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The function β is defined to be the solution of the initial value problem

dρ

dI
= ε

2π

T̃ (ρ)

1
||f(ψρ(ζ))||2 , ρ(I0) = 0 (7.47)

where in the standard case I0 = A(ζ)/(2π), and in the case where A has
a nontrivial inner boundary I0 = 0. The choice of initial condition for the
standard case agrees with tradition. However, a different choice of initial
condition simply results in a constant translation of the “action” variable.
The function α is defined by

α(I) := −ε
T̃ (β(I))

2π
(7.48)

where ε = ±1 according to the orientation of the period annulus A.
Using the definition T (I) := T̃ (β(I)), the system (7.46) has the form

İ = εε
T (I)
2π

||f(ψρ(ζ))||2Q(β(I), α(I)ϑ, t),

ϑ̇ = −ε
2π

T (I)
− εε

( 2π

T (I)
R(β(I), α(I)ϑ, t)

+ ϑ
T ′(I)
2π

||f(ψρ(ζ))||2Q(β(I), α(I)ϑ, t)
)
. (7.49)

From equation (7.42), we have the identities

p =
1

||f ||2 〈g, f⊥〉 =
1

||f ||2 f ∧ g, q =
1

||f ||2 〈f, g〉.

Thus, in view of system (7.43) the system (7.49) can be rewritten in the
form

İ = εε
T (I)
2π

E(I, ϑ)f(Υ(β(I), α(I)ϑ)) ∧ g(Υ(β(I), α(I)ϑ), t),

ϑ̇ = −ε
2π

T (I)

− εε
[ 2π

T (I)
||f(Υ(β(I), α(I)ϑ))||−2〈f, g〉 +

(
ϑ

T ′(I)
2π

||f(ψβ(I)(ζ))||2

− 2π

T (I)
a(α(I)ϑ, ψβ(I)(ζ))

)
||f(φβ(I)(ζ))||−2E(I, ϑ)f ∧ g

]
(7.50)

where

E(I, ϑ) := e− ∫ α(I)ϑ
0 div f(Υ(β(I),α(I)s)) ds.

Again, for notational convenience, let us write the first order system (7.50)
in the compact form

İ = εF (I, ϑ, t), ϑ̇ = ω(I) + εG(I, ϑ). (7.51)
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Note that both F and G are 2π-periodic in ϑ and 2π/Ω-periodic in t.
Thus, we have transformed the original perturbed system to action-angle
coordinates.

To prove that the action-angle coordinate transformation

u = Υ(β(I), α(I)ϑ) (7.52)

is canonical in case the unperturbed system is Hamiltonian, it suffices to
show the transformation is area preserving, that is, the Jacobian of the
transformation is unity. In fact, the Jacobian is

det
[(

−f2(u) f1(u)
f1(u) f2(u)

)(
a(φ, ψρ(ζ)) 1

)(
β′(I) 0
α′(I)ϑ α(I)

)]
=

||f(u)||2
||f(ψρ(ζ))||2 b(φ, ψρ(ζ)).

But, if f is a Hamiltonian vector field, then div f = 0, and

b(φ, ψρ(ζ)) =
||f(ψρ(ζ))||2

||f(u)||2 ,

as required. Moreover, in case f is the Hamiltonian vector field for the
Hamiltonian H, we have f(u) = −J gradH(u). Recall that ρ = β(I) and
define h := H(ψρ(ζ)). Then,

dI

dh
= ε

T̃ (ρ(h))
2π

.

Thus, the derivative of the action with respect to energy is the normalized
energy-period function, as it should be.



8
Local Bifurcation

Consider the family of differential equations

u̇ = f(u, ε), u ∈ R
n, ε ∈ R. (8.1)

If f(u0, ε0) = 0, then the differential equation with parameter value ε = ε0
has a rest point at u0 and the linearized system at this point is given by

Ẇ = fu(u0, ε0)W. (8.2)

If the eigenvalues of the linear transformation fu(u0, ε0) : R
n �→ R

n are
all nonzero, then the transformation is invertible, and by an application of
the implicit function theorem there is a curve ε �→ β(ε) in R

n such that
β(ε0) = u0 and f(β(ε), ε) ≡ 0. In other words, for each ε in the domain of
β the point β(ε) ∈ R

n corresponds to a rest point for the member of the
family (8.1) at the parameter value ε.

Recall that if all eigenvalues of the linear transformation fu(u0, ε0) have
nonzero real parts, then the transformation is called infinitesimally hyper-
bolic and the rest point u0 is called hyperbolic. Also, in this case, since the
eigenvalues of Df(u, ε) depend continuously on u and the parameter ε, if
|ε − ε0| is sufficiently small, then the rest point u = β(ε) of the differential
equation (8.1) at the parameter value ε has the same stability type as the
rest point u0 = β(ε0). In particular, if the rest point u0 is hyperbolic, then
for sufficiently small ε the perturbed rest point β(ε) is also hyperbolic.

If fu(u0, ε0) is not infinitesimally hyperbolic, then there is at least one
eigenvalue with zero real part. It turns out that the topology of the lo-
cal phase portrait of the corresponding differential equation (8.1) at this



484 8. Local Bifurcation

rest point may change under perturbation; if it does, we will say that a
bifurcation occurs. For example, the phase portrait for a nearby differential
equation may have no rest points or several rest points in the vicinity of
the original rest point. In this chapter, we will consider such bifurcations in
case the linear transformation fu(u0, ε0) has a simple zero eigenvalue; that
is, a zero eigenvalue with algebraic (and geometric) multiplicity one, or a
pair of pure imaginary complex conjugate eigenvalues each with algebraic
multiplicity one, and we will describe some of the “generic” bifurcations
that occur under these conditions.

While only the loss of stability at a rest point of a differential equation
will be discussed, the basic results presented here can be modified to cover
the case of the loss of stability of a fixed point of a map; and in turn the
modified theory can be applied to the Poincaré map to obtain a bifurcation
theory for periodic orbits. However, the extension of bifurcation theory from
rest points to periodic orbits is only the beginning of a vast subject that
has been developed far beyond the scope of this book. For example, the
loss of stability of a general invariant manifold can be considered. On the
other hand, bifurcation theory is by no means complete: Many interesting
problems are unresolved. (See the books [6] and [50] for detailed and wide
ranging results on bifurcations of planar vector fields, and [9], [49], [74],
[75], [80], [117], [163], [184], and [185] for more general bifurcation theory.)

Exercise 8.1. Prove that the eigenvalues of an n × n matrix depend continu-
ously on the components of the matrix.

8.1 One-Dimensional State Space

We will consider the most important bifurcation associated with rest points
of scalar differential equations, namely, the saddle-node bifurcation, to il-
lustrate some of the general concepts of bifurcation theory. In addition, we
will see how bifurcation problems arise in applied mathematics.

8.1.1 The Saddle-Node Bifurcation
Consider the family of differential equations

u̇ = ε − u2, u ∈ R, ε ∈ R (8.3)

and note that if f(u, ε) := ε − u2, then

f(0, 0) = 0, fu(0, 0) = 0, fuu(0, 0) = −2, fε(0, 0) = 1.

Also, the rest points for members of this family are given by ε = u2. Thus,
if ε < 0, then there are no rest points; if ε = 0, then there is one rest
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point called a saddle-node (the system matrix for the linearization has a
simple zero eigenvalue); and if ε > 0, then there are two rest points given
by u = ±

√
ε, one stable and the other unstable. This family provides an

example of a saddle-node bifurcation (see Figure 1.6 for the bifurcation
diagram).

The next proposition lists sufficient conditions for a saddle-node bifurca-
tion to occur at u = 0, ε = 0 in case system (8.1) is a scalar differential equa-
tion; a more general theorem on saddle-node bifurcation (Theorem 8.12)
will be formulated and proved below.

Proposition 8.2. Suppose that n = 1 and the differential equation (8.1)
is given by a smooth (parameter-dependent) vector field (u, ε) �→ f(u, ε). If

f(0, 0) = 0, fu(0, 0) = 0, fuu(0, 0) �= 0, fε(0, 0) �= 0,

then there is a saddle-node bifurcation at u = 0, ε = 0. In particular,
there is a number p0 > 0 and a unique smooth curve β in R × R given by
p �→ (p, γ(p)) for |p| < p0 such that each point in the range of β corresponds
to a rest point, and the range of β is quadratically tangent to R × {0}; that
is,

f(p, γ(p)) ≡ 0, γ(0) = γ′(0) = 0, γ′′(0) �= 0.

Moreover, the stability type of the rest points corresponding to β changes
at p = 0; that is, p �→ fu(p, γ(p)) changes sign at p = 0. Also, γ′′(0) =
−fuu(0, 0)/fε(0, 0).

Proof. Using the fact that fε(0, 0) �= 0, let us apply the implicit function
theorem to obtain the existence of a curve p �→ γ(p) such that γ(0) = 0
and f(p, γ(p)) ≡ 0 for |p| < p0 where p0 is some positive real number. Since
the derivative of the function p �→ f(p, γ(p)) is zero, we have the identity

fu(p, γ(p)) + fε(p, γ(p))γ′(p) = 0.

In particular,
fu(0, 0) + fε(0, 0)γ′(0) = 0,

and, in view of the hypotheses, γ′(0) = 0. Since the second derivative of
the function p �→ f(p, γ(p)) is also zero, we have the equation

fuu(0, 0) + fε(0, 0)γ′′(0) = 0.

By rearrangement of this equation and by the hypotheses of the proposition,
it follows that

γ′′(0) = −fuu(0, 0)
fε(0, 0)

�= 0.

Finally, because the derivative of the map p �→ fu(p, γ(p)) at p = 0 is the
nonzero number fuu(0, 0), this map indeed changes sign at p = 0. �
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8.1.2 A Normal Form
If f satisfies all the hypotheses of Proposition 8.2, then by an application
of the preparation theorem (Theorem 5.14) this function can be factored
in the form

f(u, ε) = (a0(u) + ε)U(u, ε)

where a0(0) = 0 and U(0, 0) �= 0. Thus, the flow of the differential equation

u̇ = f(u, ε) (8.4)

is topologically equivalent to the flow of the differential equation u̇ =
a0(u)+ε by the identity homeomorphism. Or, if you like, the two differential
equations are equivalent by a rescaling of time (see Proposition 1.14). More-
over, taking into account our hypotheses fu(0, 0) = 0 and fuu(0, 0) �= 0, we
have that a′

0(0) = 0 and a′′
0(0) �= 0. As a result, the function a is given by

a0(u) =
1
2
a′′
0(0)u2 + O(u3).

By the Morse lemma (Theorem 5.50) there is a change of coordinates
u = µ(y) with µ(0) = 0 that transforms the differential equation (8.4) into
the form

ẏ =
1

µ′(y)
(ε ± y2)

where, of course, µ′(y) �= 0 because the change of coordinates is invertible.
By a final rescaling of time and, if necessary, a change in the sign of ε, we
obtain the equivalent differential equation

ẏ = ε − y2. (8.5)

The family (8.5) is a normal form for the saddle-node bifurcation: Ev-
ery one-parameter family of scalar differential equations that satisfies the
hypotheses of Proposition 8.2 at a point of the cross product of the phase
space and the parameter space can be (locally) transformed to this normal
form by a (nonlinear) change of coordinates and a rescaling of time. In this
context, the differential equation (8.5) is also called a versal deformation
or a universal unfolding of the saddle-node.

The reader may suspect that the use of such terms as “versal deforma-
tion” and “universal unfolding” is indicative of a rich and mature underly-
ing theory. This is indeed the case. Moreover, there are a number of excel-
lent books on this subject. For example, the book of Vladimir Arnold [9]
has a masterful exposition of the “big ideas” of bifurcation theory while the
books of Martin Golubitsky and David G. Schaeffer [74] and Golubitsky,
Ian Stewart, and Schaeffer [75] contain a more comprehensive study of the
subject (see also [49] and [50]).

In the next two sections we will explore some of the philosophy of bifur-
cation theory and discuss how bifurcation problems arise in applied math-
ematics.
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8.1.3 Bifurcation in Applied Mathematics
Is bifurcation theory important in applied mathematics? To discuss this
question, let us suppose that we have a model of a physical system given
by a family of differential equations that depends on some parameters. We
will consider the process that might be used to identify these parameters
and the value of the resulting model for making physical predictions.

In a typical scenario, a model has “system parameters” and “control pa-
rameters.” System parameters specify the measurements of intrinsic physi-
cal properties, whereas control parameters correspond to adjustments that
can be made while maintaining the integrity of the physical system. By
changing the control parameters in the mathematical model, we can make
predictions so as to avoid expensive physical experiments. Also, we can ex-
plore the phenomena that occur over the range of the control parameters.

Ideally, system parameters are identified by comparing predictions of the
model with experimental data. However, for a realistic model with several
system parameters, the parameter identification will almost always require
a complicated analysis. In fact, parameter identification is itself a fascinat-
ing and important problem in applied mathematics that is not completely
solved. However, let us simply note that the parameter identification pro-
cess will not be exact. Indeed, if an approximation algorithm is combined
with experimental data, then some uncertainty is inevitable.

Suppose the model system of differential equations that we obtain from
our parameter identification process contains a degenerate rest point for
some choices of the control parameters. Have we just been unlucky? Can we
adjust the parameters to avoid the degeneracy? What does the appearance
of a degenerate rest point tell us about our original model?

Let us first consider the case where there are no control parameters. If,
for example, our original model is given by the differential equation (8.5)
and our parameter identification process results in specifying the system
parameter value ε = 0 so that the corresponding differential equation has a
degenerate rest point, then it would seem that we have been very unlucky.
Indeed, predictions from the model with ε = 0 would seem to be quite
unreliable. By an arbitrarily small change in the estimated value of the
system parameter, we can construct a model differential equation with two
hyperbolic rest points or no rest points at all. The choice ε = 0 for the
system parameter produces a model that is not structurally stable. On the
other hand, by arbitrarily small changes of the system parameter, we can
produce two structurally stable models with completely different qualitative
behavior (see Exercise 8.3).

Clearly, it is important to know if the choice of system parameters pro-
duces a structurally unstable model or a model that is “close” to one that
is structurally unstable; if this is the case, then it is important to analyze
the qualitative behavior of the models that are produced by small changes
in the system parameters. Whereas in the scalar model (8.5) the analysis
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is transparent, it is not at all obvious how we might detect such struc-
tural instabilities in a multiparameter or multidimensional model. On the
other hand, because system parameters are viewed as fixed once they are
identified, we can theoretically avoid the structural instabilities by simply
reassigning the system parameters.

For the record, two vector fields defined on the same state space are called
topologically equivalent if there is a homeomorphism of the state space that
maps all orbits of the first vector field onto orbits of the second vector
field, and preserves the direction of time along all the orbits (the time
parameterization of the orbits is ignored). Of course, if two vector fields
are topologically equivalent, then their phase portraits are qualitatively the
same. A vector field (and the corresponding differential equation) is called
structurally stable if there is an open set of vector fields in the C1 topology
that contains the given vector field, and all vector fields in this open set
are topologically equivalent to the given vector field. The idea is that the
topological type of a structurally stable vector field is not destroyed by a
small smooth perturbation (recall Exercise 1.73).

While it might seem reasonable to suspect that most models are struc-
tural stable (for instance, we might expect that the set of structurally stable
vector fields is open and dense in the C1 topology), this is not the case. On
the other hand, there is a rich mathematical theory of structural stability.
In particular, deep theorems in this subject state necessary and sufficient
conditions for a vector field to be structurally stable. An introduction to
these results is given in the book of Stephen Smale [160] and the references
therein. However, from the perspective of applied mathematics, the defini-
tion of structural instability is perhaps too restrictive. A system is deemed
unstable if its topological type is destroyed by an arbitrary C1 perturba-
tion. But in mathematical modeling the differential equations that arise
are not arbitrary. Rather, they are derived from physical laws. Thus, the
structural stability of a model with respect to its parameters—the subject
matter of bifurcation theory—is often a more important consideration than
the C1 structural stability of the model.

Let us now consider a model system that does contain control parame-
ters. For example, let us suppose that the original system is given by the
differential equation

u̇ = ε − au2

where a is a system parameter and ε is a control parameter. If our parameter
identification algorithm produces a nonzero value for the system parameter
a, then our model is a one-parameter family of differential equations that
has a saddle-node at the control parameter value ε = 0. Moreover, if ε = 0 is
in the range of the control parameter, then this instability is unavoidable for
all nearby choices of the system parameter. This observation suggests the
reason why bifurcation theory is important in the analysis of models given
by families of differential equations: While a nondegenerate member of a
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FIGURE 8.1. Two families of vector fields, represented as curves, meet the set
of structurally unstable vector fields represented by hyperplanes. The family in
the left hand illustration is tangent to the hyperplane. Thus, it is close to a
family consisting entirely of structurally stable vector fields. On the other hand,
all sufficiently small perturbations of the family depicted as the curve in the right
hand illustration have structurally unstable members.

family may be obtained by a small change of its parameter, all sufficiently
small perturbations of the family may contain members with a degeneracy.
We will discuss this essential fact in more detail in the next section.

Exercise 8.3. Consider the set S of all smooth functions defined on R endowed
with the C1([0, 1]) topology; that is, the distance between f and g in S is

‖f − g‖ = ‖f − g‖0 + ‖f ′ − g′‖0

where the indicated C0-norm is just the usual supremum norm over the unit
interval. Also, let S denote the subset of S consisting of the functions f ∈ S that
satisfy the following properties: (i) f(0) �= 0 and f(1) �= 0. (ii) If a is in the open
interval (0, 1) and f(a) = 0, then f ′(a) �= 0. Prove that each element in S is
structurally stable relative to S. Also, prove that S is an open and dense subset
of S.

8.1.4 Families, Transversality, and Jets
The fact that a structurally unstable system occurs in a family of differ-
ential equations leads to the question “Is such a degeneracy avoidable for
some family obtained by an arbitrarily small perturbation of the given
family?” We might also ask if a system in a structurally stable family can
contain a nonhyperbolic rest point.

One way to gain some insight into the questions that we have just asked,
is to construct a geometric interpretation of the space of vector fields as in
Figure 8.1. Indeed, let us consider the space of all smooth vector fields and
the subset of all vector fields that have a nonhyperbolic rest point. Suppose
that vector fields are represented heuristically by points in usual Euclidean
three-dimensional space and degenerate vector fields are represented by the
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points on a hypersurface D. (A three-parameter family of vector fields would
be represented by a point in three-dimensional Euclidean space.) Since the
complement of the set D is dense, if f is a point in D, then there are
points in the complement of D that are arbitrarily close to f . By analogy,
if our geometric interpretation is faithful, then there is an arbitrarily small
C1 perturbation of our vector field f that is nondegenerate; that is, the
corresponding system has only hyperbolic rest points. This is indeed the
case if we restrict our vector fields to compact domains.

Next, consider a one-parameter family of vector fields as a curve in the
space of all smooth vector fields, and suppose that this curve meets the
hypersurface D that represents the degenerate vector fields. If the curve
meets the surface so that its tangent vector at the intersection point is not
tangent to the surface—we call this a transversal intersection—then every
sufficiently small deformation of the curve will have a nonempty transversal
intersection with D. In other words, the degeneracy that is encountered by
our curve cannot be removed by a perturbation of the curve. By analogy,
if our original family of vector fields meets a “surface” corresponding to a
degenerate set in the space of all vector fields, and if the intersection of the
curve with this degenerate surface is “transversal,” then the degeneracy
cannot be removed by a small deformation of the family. This is one of the
main reasons why bifurcation theory is important in applied mathematics
when we are studying a model that is given by a family of differential
equations.

The geometric picture we have discussed gives the correct impression
for structural instabilities due to the nonhyperbolicity of rest points, the
subject of this chapter. Indeed, we will show how to make a precise in-
terpretation of this geometry for scalar vector fields. However, there is an
important warning: Our picture is misleading for some more complicated
structural instabilities, a topic that is beyond the scope of this book (see,
for example, [150] and [160]).

Let us identify the set of all scalar vector fields with the space of smooth
functions C∞(R, R). In view of Proposition 8.2, only a finite set of the
partial derivatives of a scalar family is required to determine the presence
of a saddle-node bifurcation. In fact, this observation is the starting point
for the construction of a finite dimensional space, called the space of k-jets,
that corresponds to the ambient space in our geometric picture.

The “correct” definition of the space of k-jets requires the introduction
of vector bundles (see, for example, [3]). However, we will enjoy a brief
glimpse of this theory by considering the special case of the construction
for the space C∞(R, R) where everything is so simple that the mention of
vector bundles can be avoided.

Consider the space R×C∞(R, R) and let k denote a nonnegative integer.
We will say that two elements (x, f) and (y, g) in the cross product space
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FIGURE 8.2. The sum of the tangent space to g(X) at g(p) and the tangent space
to M at g(p) is the tangent space to Y at g(p). In this case, the map g : X → Y
is transverse to the submanifold M ⊂ Y .

are equivalent if

(x, f(x), f ′(x), f ′′(x), . . . , f (k)(x)) = (y, g(y), g′(y), g′′(y), . . . , g(k)(y))

where the equality is in the vector space R
k+2. The set of all equivalence

classes is denoted Jk(R, R) and called the space of k-jets.
Let us denote the equivalence class determined by (x, f) with the symbol

[x, f ] and define the natural projection πk of Jk(R, R) into R by πk([x, f ]) =
x. The k-jet extension of f ∈ C∞(R, R) is the map jk(f) : R → Jk(R, R)
defined by

jk(f)(u) = [u, f ].

Because πk(jk(f)(u)) ≡ u, the k-jet extension is called a section of the fiber
bundle with total space Jk(R, R), base R, and projection πk. The fiber over
the base point x ∈ R is the set {[x, f ] : f ∈ C∞(R, R)}. Also, let us define
Zk to be the image of the zero section of Jk(R, R); that is, Zk is the image
of the map ζ : R → Jk(R, R) given by ζ(u) = [u, 0].

The k-jet bundle can be “realized” by a choice of local coordinates. In
fact, the usual choice for the local coordinates is determined by the map
Φk : Jk(R, R) → R × R

k+1 defined by

Φk([u, f ]) = (u, f(u), f ′(u), . . . , fk(u)).

It is easy to check that Φk is well-defined and that we have the commutative
diagram

Jk(R, R) Φk

−→ R × R
k+1(πk

(π1

R
identity−→ R

where π1 is the projection onto the first factor of R×R
k+1. Thus, Jk(R, R)

is identified with R × R
k+1 as a smooth manifold. Also, the set Z is given
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in the local coordinates by Z := R × {0}. The jet space is the desired
finite dimensional space that incorporates all the data needed to consider
bifurcations that depend only on a finite number of partial derivatives of a
family of scalar vector fields.

We will need the concept of transversality of a map and a submanifold
(see Figure 8.2).

Definition 8.4. Suppose that g : X → Y is a smooth map and M denotes
a submanifold of the manifold Y . We say that the map g is transverse to
M at a point p ∈ X if either g(p) �∈ M , or g(p) ∈ M and the sum of the
tangent space of M at g(p) and the range of the derivative Dg(p) (both
viewed as linear subspaces of the tangent space of Y at p) is equal to the
entire tangent space of Y at g(p). The function g is said to be transverse
to the manifold M if it is transverse to M at every point of X.

The next theorem is stated with some informality. However, it is clearly
a far-reaching generalization of the implicit function theorem.

Theorem 8.5 (Thom’s Transversality Theorem). The set S of maps
whose k-jet extensions are transverse to a submanifold M of the space of
k-jets is a dense subset of the space of all sufficiently smooth maps, and
moreover S is a countable intersection of open dense sets. In addition, if
M is closed in the space of k-jets, then S is open.

To make Thom’s theorem precise, we would have to define topologies on
our function spaces. The usual Cr topology is induced by the norm defined
as the sum of the suprema of the absolute values of the partial derivatives
of a function up to order r. However, this topology is not defined on the
space Cr(R, R) because some of the functions in this space are unbounded
or have an unbounded partial derivative. To get around this problem, we
can restrict attention to functions defined on a compact domain in R, or we
can use one of the two useful topologies on Cr(R, R) called the weak and
the strong topology. Roughly speaking, if f is a function, α > 0, and K is a
compact subset of R, then a basic open set in the weak topology, also called
the compact open topology, is defined to be the set of functions g such that
the distance between f and g in the Cr-norm, relative to the compact set
K, is less than the positive number α. The strong topology is similar, but it
includes the neighborhoods defined by requiring that functions be close on
(infinite) families of compact subsets of their domains. The strong topology
is important because some of its open neighborhoods control the size of the
function and its partial derivatives “at infinity.” These topologies are the
same if the functions in Cr(R, R) are all restricted to a compact set. In
this case, the corresponding function space is the usual Banach space of Cr

functions defined on the compact set. However, the important observation
for our discussion is that Thom’s theorem is valid for both the weak and
strong topologies. (See the book of Morris Hirsch [92] for a precise definition
of these topologies and a proof of Thom’s theorem.)
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A set is called residual if it is the (countable) intersection of open and
dense subsets. By Baire’s theorem, every residual set in a complete metric
space is dense (see [156]). Also, a property that holds on a residual set is
called generic. It turns out that even though the weak and strong topolo-
gies on C∞(R, R) are not metrizable, the set C∞(R, R) is a Baire space
with respect to these topologies; that is, in these topologies a countable
intersection of open and dense sets is dense. Using these notions, Thom’s
transversality theorem can be restated as follows: The property of transver-
sal intersection is generic.

As a simple example of an application of Thom’s theorem, let us consider
the transversality of the 0-jet extensions of functions in C∞(R, R) with the
image of the zero section. Note that by the definition of transversality the 0-
jet extension of f ∈ C∞(R, R) is transversal to the image of the zero section
Z0 at u ∈ R if either j0(f)(u) �= [u, 0], or j0(f)(u) = [u, 0] and the image
of the derivative of the 0-jet extension j0(f) at u plus the tangent space to
Z0 at [u, 0] is the tangent space to J0(R, R) at [u, 0]. We will determine this
transversality condition more explicitly and use Thom’s theorem to state
a fact about the genericity of vector fields with hyperbolic rest points.

The differentiability of the map j0(f) and the properties of its deriva-
tive are local properties that can be determined in the local coordinate
representation of the jet bundle. In fact, with respect to the local co-
ordinates mentioned above, the local representative of the map j0(f) is
u �→ Φ0(j0(f)(u)). In other words, the local representation of j0(f) is the
map F : R → R × R defined by u → (u, f(u)); and, in these coordinates,
the range of the derivative of F is spanned by the vector (1, f ′(u)).

The local representation of Z0 is given by the linear manifold Z0 :=
{(x, y) ∈ R × R : y = 0}. Hence, the tangent space of Z0 at each of its
points can be identified with Z0. Moreover, let us note that Z0, viewed as
a subspace of R × R, is spanned by the vector (1, 0).

The 0-jet extension of the function f is transverse to the zero section at
the point u ∈ R if and only if f ′(u) �= 0; it is transverse to the zero section
if it is transverse at every u ∈ R. In other words, the 0-jet extension of f is
transverse to the zero section if and only if all zeros of f are nondegenerate;
or equivalently if and only if all rest points of the corresponding differential
equation u̇ = f(u) are hyperbolic.

By Thom’s theorem, if f is in C∞(R, R), then there is an arbitrarily
small perturbation of f such that the corresponding differential equation
has only hyperbolic rest points. Moreover, the set of all scalar differential
equations with hyperbolic rest points is open.

The proof of Thom’s theorem is not trivial. However, for the simple case
that we are considering, we can obtain part of Thom’s result as a corollary
of the implicit function theorem. In fact, we will show that if f has finitely
many nondegenerate zeros, then every sufficiently small perturbation of f
has the same property.
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Consider the Banach space C1(R, R) consisting of all elements of C1(R, R)
that are bounded in the C1-norm. Suppose that f ∈ C1(R, R) has only
nondegenerate zeros and consider the map ρ : R × C1(R, R) → R given by
(u, f) �→ f(u). This map is smooth. Moreover, if ρ(u0, f0) = 0, then we
have ρu(u0, f0) = f ′(u0) �= 0. Thus, there is a map f �→ β(f) defined on a
neighborhood U of f0 in C1(R, R) with image in an open subset V ⊂ R such
that β(f0) = u0 and f(β(f)) ≡ 0. Moreover, if (u, f) ∈ V ×U and f(u) = 0,
then u = β(f). In other words, every function in the neighborhood U has
exactly one zero in V . Also, there are open subsets U0 ⊆ U and V0 ⊆ V
such that for each function f in U0 we have f ′(u) �= 0 whenever u ∈ V0.
Hence, every function in U0 has a unique nondegenerate zero in V0. If, in
addition, the function f has only finitely many zeros, then we can be sure
that every perturbation of f has only nondegenerate zeros.

Exercise 8.6. Consider the set of differential equations of the form u̇ = f(u),
where u ∈ R

n, that have a finite number of rest points, and show that the subset
of these systems with hyperbolic rest points is open and dense in the C1 topology.

We have used jet spaces to analyze the perturbations of scalar differential
equations that have only hyperbolic rest points. We will discuss differential
equations with saddle-nodes and show that the conditions required for a
saddle-node are the same as the conditions for a certain jet extension map
to be transversal to the zero section of a jet bundle.

Consider the 1-jet extensions of smooth scalar maps and the image of
the zero section Z1 ⊂ J1(R, R). If j1(f)(u) ∈ Z1, then f has a saddle-node
at u; that is, f(u) = 0 and f ′(u) = 0. However, to study the saddle-node
bifurcation, we must consider families of maps in C∞(R, R). In fact, we
will identify these families as elements of the space C∞(R × R, R) where a
typical element f is given by a function of two variables (u, ε) �→ f(u, ε).

Let us define a new jet bundle with total space J (1,0)(R×R, R) consisting
of all equivalence classes of triples (u, ε, f) ∈ R × R × C∞(R × R, R) where
the triples (v, δ, f) and (w, ν, g) are equivalent if

v = w, δ = ν, f(v, δ) = g(w, ν), fu(v, δ) = gu(w, ν),

and the bundle projection is given by [u, ε, f(u, ε), fu(u, ε)] �→ (u, ε). Our
somewhat nonstandard jet space J (1,0)(R×R, R) may be viewed as a space
of families of sections of the 1-jet bundle of functions in C∞(R, R).

The (1, 0)-jet extension of f ∈ C∞(R × R, R) is the map

j(1,0)(f) : R × R → J (1,0)(R × R, R)

given by j(1,0)(f)(u, ε) = [u, ε, f(u, ε), fu(u, ε)], and the image of the zero
section Z(1,0) is the set of all equivalence classes of triples of the form
(u, ε, 0).
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Let us note that the local representative of the (1, 0)-jet extension is
given by

(u, ε) �→ (u, ε, f(u, ε), fu(u, ε)).

Note also that the (1, 0)-jet extension is transverse to the zero section Z(1,0)

at a point (u, ε) where f(u, ε) = 0 and fu(u, ε) = 0 if the following obtains:
The vector space sum of
(i) the range of the derivative of the local representative of the (1, 0)-jet

extension; and
(ii) the tangent space of the local representation of Z(1,0) at (u, ε, 0, 0)

is equal to the entire space R
4. By (i) and (ii) we mean

(i) the span of the vectors

(1, 0, fu(u, ε), fuu(u, ε)) and (0, 1, fε(u, ε), fεu(u, ε)); and

(ii) the span of the vectors (1, 0, 0, 0) and (0, 1, 0, 0).
This transversality condition is met provided that

fε(u, ε) �= 0 and fεu(u, ε) �= 0,

exactly the conditions for a nondegenerate saddle-node bifurcation!
Just as for the case of nondegenerate zeros, the subset of all families of

smooth maps that have a saddle-node bifurcation is dense, and this set can
be identified as the countable intersection of open and dense subsets of the
space C∞(R×R, R). Moreover, by using the implicit function theorem, it is
easy to prove that if a family has a saddle-node bifurcation at some point,
then a small perturbation of this family also has a saddle-node bifurcation
at a nearby point. Thus, we have a rigorous argument that the saddle-
node bifurcation can be unavoidable in all families obtained as the result
of sufficiently small perturbations of some one-parameter family of maps;
and, as a result, we have a positive answer to the question “Is bifurcation
theory important?”

Exercise 8.7. Formulate and prove a theorem based on the implicit function
theorem that can be used to show that a small perturbation of a family of maps
with a saddle-node bifurcation has a nearby saddle-node bifurcation.

We have discussed the unavoidability of the saddle-node bifurcation in
one-parameter families of maps. This leads to the question “Are saddle-
nodes unavoidable in two-parameter families of maps?” The answer is
“yes.” In fact, nothing new happens for the saddle-node bifurcation relative
to multiparameter families of maps. The reason is that the set correspond-
ing to the saddle-node has codimension one in an appropriate function
space.
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In the remainder of this chapter we will not pursue the ideas that we have
discussed in this section. Rather, we will only consider sufficient conditions
to obtain nondegenerate bifurcation in one-parameter families. However,
transversality theory can be applied in each case that we will consider to
show that, in an appropriate sense, the bifurcations are generic.

Finally, bifurcation theory in families with two or more parameters is
generally much more difficult than the theory for one-parameter families.
For example, the analysis of generic bifurcations at a degenerate rest point
in two-parameter families requires that global features of the dynamics be
taken into account (see, for example, [49], [50], [80], and [185]).

Exercise 8.8. Prove: The map R × C1([a, b], R) �→ R given by (u, f) �→ f(u) is
smooth.

Exercise 8.9. Prove: There is a saddle-node bifurcation for some values of the
parameter ε in the family

u̇ = cos ε − u sin u.

Exercise 8.10. Draw the bifurcation diagram for the scalar family of differen-
tial equations

ẋ = εx − x2.

The bifurcation at ε = 0 is called transcritical. Prove a proposition similar to
Proposition 8.2 for the existence of a transcritical bifurcation.

Exercise 8.11. Draw the bifurcation diagram for the scalar family of differen-
tial equations

ẋ = εx − x3.

The bifurcation at ε = 0 is called the pitchfork. Prove a proposition similar to
Proposition 8.2 for the existence of a pitchfork bifurcation.

8.2 Saddle-Node Bifurcation by
Lyapunov–Schmidt Reduction

In this section we will consider the saddle-node bifurcation for the n-
dimensional system (8.1). It should be clear from the previous discus-
sion that the conditions for the saddle-node bifurcation do not mention
the solutions of the differential equations in this family, rather our anal-
ysis so far is framed entirely in terms of a parameter-dependent function
f : R

n × R → R
n that defines the vector field associated with our family of

differential equations. In view of this fact, we say that u0 ∈ R
n is a saddle-

node for f : R
n × R → R

n at ε0 if f(u0, ε0) = 0, the linear transformation
fu(u0, ε0) : R

n → R
n has zero as an eigenvalue with algebraic multiplicity
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one, and all other eigenvalues have nonzero real parts. Also, a saddle-node
bifurcation is said to occur at a saddle-node u = u0 for the parameter value
ε = ε0 if the following conditions are met:

SNB1 There is a number p0 > 0 and a smooth curve p �→ β(p) in R
n ×R

such that β(0) = (u0, ε0) and f(β(p)) ≡ 0 for |p| < p0.
SNB2 The curve β has a quadratic tangency with R

n × {ε0} at (u0, ε0).
More precisely, if the components of β are defined by

β(p) = (β1(p), β2(p)),

then β2(0) = ε0, β′
2(0) = 0, and β′′

2 (0) �= 0.
SNB3 If p �= 0, then the matrix fu(β(p)) is infinitesimally hyperbolic.

Also, exactly one eigenvalue of the matrix crosses the imaginary
axis with nonzero speed at the parameter value p = 0.

The next theorem, called the saddle-node bifurcation theorem, gives suf-
ficient generic conditions for a saddle-node bifurcation to occur.

Theorem 8.12. Suppose that f : R
n × R �→ R

n is a smooth function,
u = u0 is a saddle-node for f at ε = ε0, and the kernel of the linear
transformation fu(u0, ε0) : R

n → R
n is spanned by the nonzero vector

k ∈ R
n. If fε(u0, ε0) ∈ R

n and fuu(u0, ε0)(k, k) ∈ R
n are both nonzero and

both not in the range of fu(u0, ε0), then there is a saddle-node bifurcation
at u = u0 (that is SNB1, SNB2, and SNB3 are met). Moreover, among all
C∞ one-parameter families that have a saddle-node, those that undergo a
saddle-node bifurcation form an open and dense subset.

The second derivatives that appear in the statement of Theorem 8.12
are easily understood from the correct point of view. Indeed, suppose that
g : R

n → R
n is a smooth function given by u �→ g(u) and recall that its

(first) derivative Dg is a map from R
n into the linear transformations of R

n;
that is, Dg : R

n → L(Rn, Rn). If u, v, w ∈ R
n, then the derivative of g at u

in the direction w is denoted by Dg(u)w. Consider the map u �→ Dg(u)w.
If g ∈ C2, then its derivative at u ∈ R

n in the direction v is defined by

d

dt
Dg(u + tv)w

∣∣∣
t=0

= (D2g(u)w)v = D2g(u)(w, v).

Hence, if g ∈ C2, then to compute the second derivative D2g, it suffices to
compute the first derivative of the map u �→ Dg(u)w.

Exercise 8.13. Define g : R × R → R by

g(x, y, ε) = (ε − x2 + xy, −2y + x2 + y2)

and u := (x, y). Compute guu(0, 0, 0)(e1, e1) where e1 = (1, 0).
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Exercise 8.14. Prove that if g ∈ C2, then D2g(u)(v, w) = D2g(u)(w, v).

We now turn to the proof of Theorem 8.12.

Proof. Assume, with no loss of generality, that u = 0 is a saddle-node
for f at ε = 0. Also, assume that zero is an eigenvalue of the linearization
fu(0, 0) : R

n → R
n with algebraic multiplicity one, and the kernel K of this

linear transformation is one-dimensional, say K = [k].
Using the Lyapunov–Schmidt reduction and linear algebra, let us choose

an (n − 1)-dimensional complement K⊥ to K in R
n whose basis is

k⊥
2 , . . . , k⊥

n .

Corresponding to these choices, there is a coordinate transformation Ψ :
R × R

n−1 → R
n given by

(p, q) �→ pk +
n∑

i=2

qik
⊥
i

where, in the usual coordinates of R
n−1, the point q is given by q =

(q2, . . . , qn). Likewise, the range R of fu(0, 0) is (n − 1)-dimensional with
a one-dimensional complement R⊥. Let Π : R

n → R and Π⊥ : R
n → R⊥

be corresponding complementary linear projections.
With the notation defined above, consider the map � : R × R

n−1 ×
R → R given by (p, q, ε) �→ Πf(Ψ(p, q), ε). Since f(0, 0) = 0, we have
that �(0, 0, 0) = 0. From equation (5.60) of the abstract formulation of the
Lyapunov–Schmidt reduction, we see that �q(0, 0, 0) is invertible as a linear
transformation R

n−1 → R
n−1. Thus, there is a function h : R × R → R

n−1

given by (p, ε) �→ h(p, ε) with h(0, 0) = 0 such that for (p, ε) in a sufficiently
small neighborhood of the origin in R

n−1 × R we have

Πf(Ψ(p, h(p, ε), ε)) ≡ 0. (8.6)

It is instructive to check the invertibility of the derivative directly. In
fact, we have

�q(0, 0, 0) = Πfu(0, 0)Ψq(0, 0).

But Ψq(0, 0) : R
n−1 → R

n is given by

Ψq(0, 0)q =
n∑

i=2

qik
⊥
i .

Hence, the range of Ψq is the complement of the Kernel fu(0, 0) previously
chosen. Also Ψq is an isomorphism onto its range. On the complement of
its kernel, fu(0, 0) is an isomorphism onto its range and Π is the identity
on this range. In other words, �q(0, 0, 0) is an isomorphism.
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Viewed geometrically, the function h defines a two-dimensional surface
in R × R

n−1 × R given by {(p, h(p, ε), ε) : (p, ε) ∈ R
n × R} which lies in

the zero set of �. In addition, the (Lyapunov–Schmidt) reduced function is
τ : R × R → R⊥ defined by

(p, ε) �→ Π⊥f(Ψ(p, h(p, ε)), ε).

Of course, if (p, ε) is a zero of τ , then f(Ψ(p, h(p, ε)), ε) = 0.
We have τ(0, 0) = 0. If τε(0, 0) �= 0, then by the implicit function theorem

there is a unique curve p �→ γ(p) in R such that γ(0) = 0 and τ(p, γ(p)) ≡ 0.
Moreover, in this case, it follows that

f(Ψ(p, h(p, γ(p))), γ(p)) ≡ 0.

In other words, the image of the function β defined by

p �→ (Ψ(p, h(p, γ(p)), γ(p))

is a curve in the zero set of f(u, ε) that passes through the point (u, ε) =
(0, 0).

To show SNB1, we will prove that τε(0, 0) �= 0. Let us note first that

τε(0, 0) = Π⊥(fu(0, 0)Ψq(0, 0)hε(0, 0) + fε(0, 0)).

Since Π⊥ projects to the complement of the range of fu(0, 0), the last
formula reduces to

τε(0, 0) = Π⊥fε(0, 0).

But by hypothesis, fε(0, 0) �∈ R and τε(0, 0) �= 0, as required.
To prove SNB2, we will show that γ′(0) = 0 and γ′′(0) �= 0. Note first

that the derivative of the identity τ(p, γ(p)) ≡ 0 with respect to p is given
by

τp(p, γ(p)) + τε(p, γ(p))γ′(p) ≡ 0. (8.7)

Moreover, if we set p = 0 and use the equality γ(0) = 0, then

τp(0, 0) + τε(0, 0)γ′(0) = 0.

Next, recall that τε(0, 0) �= 0. Also, use the definition of τ to compute

τp(p, ε) = Π⊥fu(Ψ(p, h(p, ε)), ε)
(
Ψp(p, h(p, ε)) + Ψq(p, h(p, ε))hp(p, ε)

)
,

(8.8)

and, in particular,

τp(0, 0) = Π⊥fu(0, 0)
(
Ψp(0, 0) + Ψq(0, 0)hp(0, 0)

)
.
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Because Π⊥ projects to the complement of the range of fu(0, 0), it follows
that τp(0, 0) = 0, and therefore γ′(0) = 0. Also, from equation (8.7) and
the fact that γ′(0) = 0, we obtain the equality

τpp(0, 0) + τε(0, 0)γ′′(0) = 0.

Thus, it follows that

γ′′(0) = −τpp(0, 0)
τε(0, 0)

.

To prove the inequality τpp(0, 0) �= 0, first use equation (8.8) and the fact
that Π⊥ projects to the complement of the range of fu(0, 0) to obtain the
equality

τpp(0, 0) = Π⊥fuu(0, 0)
(
Ψp(0, 0) + Ψq(0, 0)hp(0, 0)

)2

where “the square” is shorthand for the argument of the bilinear form
fuu(0, 0) on R

n.
Next, differentiate the identity (8.6) with respect to p at p = 0 to obtain

the equation

Πfu(0, 0)
(
Ψp(0, 0) + Ψq(0, 0)hp(0, 0)

)
= 0. (8.9)

Then using the fact that Π projects to the range of fu(0, 0) we see that
equation (8.9) is equivalent to the equation

fu(0, 0)(Ψp(0, 0) + Ψq(0, 0)hp(0, 0)) = 0,

and therefore the vector

Ψp(0, 0) + Ψq(0, 0)hp(0, 0)

is in the kernel K of fu(0, 0). But by the definition of Ψ we have Ψp(0, 0) =
k ∈ K and Ψq(0, 0)hp(0, 0) ∈ K⊥. Thus, hp(0, 0) = 0, and it follows that
τpp(0, 0) �= 0 if and only if

fuu(0, 0)(k, k) �= 0, fuu(0, 0)(k, k) �∈ R. (8.10)

This completes the proof of SNB2.
To prove SNB3, and thus complete the proof of the theorem, let us

consider the curve β of rest points given by p �→ (Ψ(p, h(p, γ(p)), γ(p)). We
must show that the matrix fu(β(p)) is invertible for small nonzero p ∈ R

and a single eigenvalue of fu(β(p)) passes through zero with nonzero speed
at p = 0. In other words, the rest points on the curve β are hyperbolic for
p �= 0, and there is a generic change of stability at p = 0. Of course, the
first condition follows from the second.

To analyze the second condition, let us consider the eigenvalues of the
linearization f(β(p)). By the hypothesis of the theorem, there is exactly one
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zero eigenvalue at p = 0. Thus, there is a curve p �→ λ(p) in the complex
plane such that λ(0) = 0 and such that λ(p) is an eigenvalue of f(β(p)).
Also, there is a corresponding eigenvector V (p) such that

fu(β(p))V (p) = λ(p)V (p), (8.11)
V (0) = k.

If the identity (8.11) is differentiated with respect to p at p = 0, then, after
some simplification, we obtain the equation

fuu(0, 0)(k, k) + fu(0, 0)V ′(0) = λ′(0)k,

and its projection
Π⊥fuu(k, k) = λ′(0)Π⊥k.

By the inequality (8.10), we have that Π⊥fuu(0, 0)(k, k) �= 0, and therefore
λ′(0) is a nonzero real number. �

Exercise 8.15. Prove: With the notation as in the proof of Theorem 8.12, if
Π⊥k = 0 and n ≥ 2, then zero is an eigenvalue of fu(0, 0) with multiplicity at
least two.

Exercise 8.16. Suppose that A : R
n → R

n is a linear transformation with
exactly one zero eigenvalue. Show that there is a nonzero “left eigenvector” w ∈
R

n such that wTA = 0. Also, show that v is in the range of A if and only if
〈v, w〉 = 0. Discuss how this exercise gives a method to verify the hypotheses of
Theorem 8.12.

Exercise 8.17. Verify the existence of a saddle-node bifurcation for the func-
tion f : R

2 × R → R
2 given by

f(x, y, ε) = (ε − x2, −y).

Exercise 8.18. Determine the bifurcation diagram for the phase portrait of
the differential equation

xẍ + aẋ2 = b

where a and b are parameters.

Exercise 8.19. [Hamiltonian saddle-node] Suppose that

u̇ = f(u, λ), u ∈ R2 (8.12)

is a planar Hamiltonian family with parameter λ ∈ R. Prove that if f(u0, λ0) = 0
and the corresponding linearization at u0 has a zero eigenvalue, then this eigen-
value has algebraic multiplicity two. In particular, a planar Hamiltonian system
cannot have a saddle-node. Define (u0, λ0) to be a Hamiltonian saddle-node at
λ0 if f(u0, λ0) = 0 and fu(u0, λ0) has a zero eigenvalue with geometric multiplic-
ity one. A Hamiltonian saddle-node bifurcation occurs if the following conditions
hold:
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• There exist s0 > 0 and a smooth curve γ in R2×R such that γ(0) = (u0, λ0)
and f(γ(s)) ≡ 0 for |s| < s0.

• The curve of critical points γ is quadratically tangent to R2 × {λ0} at
(u0, λ0).

• The Lyapunov stability type of the rest points on the curve γ changes at
s = 0.

Prove the following proposition formulated by Jason Bender [20]: Suppose that
the origin in R

2 × R is a Hamiltonian saddle-node for (8.12) and k ∈ R2 is a
nonzero vector that spans the one-dimensional kernel of the linear transformation
fu(0, 0). If the two vectors fλ(0, 0) ∈ R2 and fuu(0, 0)(k, k) ∈ R2 are nonzero and
not in the range of fu(0, 0), then a Hamiltonian saddle-node bifurcation occurs
at the origin.

Reformulate the hypotheses of the proposition in terms of the Hamiltonian
for the family so that there is no mention of the vector k. Also, discuss the
Hamiltonian saddle-node bifurcation for the following model of a pendulum with
feedback control

ẋ = y, ẏ = − sin x − αx + β

(see [188]). Generalize the proposition to Hamiltonian systems on R
2n. (See [123]

for the corresponding result for Poincaré maps at periodic orbits of Hamiltonian
systems.)

8.3 Poincaré–Andronov–Hopf Bifurcation

Consider the family of differential equations

u̇ = F (u, λ), u ∈ R
N , λ ∈ R

M (8.13)

where λ is a vector of parameters.

Definition 8.20. An ordered pair (u0, λ0) ∈ R
N × R

M consisting of a
parameter value λ0 and a rest point u0 for the corresponding member of
the family (8.13) is called a Hopf point if there is a curve C in R

N × R
M ,

called an associated curve, that is given by ε �→ (C1(ε), C2(ε)) and satisfies
the following properties:

(i) C(0) = (u0, λ0) and F (C1(ε), C2(ε)) ≡ 0.

(ii) The linear transformation given by the derivative Fu(C1(ε), C2(ε)) :
R

N → R
N has a pair of nonzero complex conjugate eigenvalues α(ε)±

β(ε) i, each with algebraic (and geometric) multiplicity one. Also,
α(0) = 0, α′(0) �= 0, and β(0) �= 0.

(iii) Except for the eigenvalues ±β(0) i, all other eigenvalues of Fu(u0, λ0)
have nonzero real parts.
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Stable sink Weak focus

FIGURE 8.3. Super critical Hopf bifurcation: A limit cycle emerges from a weak
focus as the bifurcation parameter is increased.

Our definition says that a one-parameter family of differential equations
has a Hopf point if as the parameter changes a single pair of complex
conjugate eigenvalues, associated with the linearizations of a correspond-
ing family of rest points, crosses the imaginary axis in the complex plane
with nonzero speed, whereas all other eigenvalues have nonzero real parts.
We will show that if some additional generic assumptions are met, then
there are members of the family (8.13) that have a limit cycle “near” the
Hopf point. However, we will first show that it suffices to consider this bi-
furcation for a planar family of differential equations associated with the
family (8.13).

Using the fact that the linear transformation, given by the derivative
Fu(u0, λ0) at the Hopf point (u0, λ0) has exactly two eigenvalues on the
imaginary axis and the results in Chapter 4, especially equation (4.24), it
follows that there is a center manifold reduction for the family (8.13) that
produces a family of planar differential equations

u̇ = f(u, λ), u ∈ R
2, λ ∈ R

M , (8.14)

with a corresponding Hopf point. Moreover, there is a product neighbor-
hood U × V ⊂ R

N × R
M of the Hopf point (u0, λ0) such that if λ ∈ V

and the corresponding member of the family (8.13) has a bounded orbit in
U , then this same orbit is an invariant set for the corresponding member
of the planar family (8.14). Thus, it suffices to consider the bifurcation of
limit cycles from the Hopf point of this associated planar family.

There are important technical considerations related to the smoothness
and uniqueness of the planar family obtained by a center manifold reduction
at a Hopf point. For example, let us note that by the results in Chapter 4
if the family (8.13) is C1, then the augmented family, obtained by adding
a new equation corresponding to the parameters, has a local C1 center
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manifold. But this result is not strong enough for the proof of the Hopf
bifurcation theorem given below. In fact, we will require the reduced planar
system (8.14) to be C4. Fortunately, the required smoothness can be proved.
In fact, using the fiber contraction principle as in Chapter 4, together with
an induction argument, it is possible to prove that if 0 < r < ∞ and the
family (8.13) is Cr, then the reduced planar system at the Hopf point is also
Cr in a neighborhood of the Hopf point. Let us also note that whereas local
center manifolds are not necessarily unique, it turns out that all rest points,
periodic orbits, homoclinic orbits, et cetera, that are sufficiently close to
the original rest point, are on every center manifold. Thus, the bifurcation
phenomena that are determined by reduction to a center manifold do not
depend on the choice of the local center manifold (see, for example, [50]).

Let us say that a set S has radius (r1, r2) relative to a point p if S is
contained in a ball of radius r1 > 0 centered at p and the distance from S
to p is r2 ≥ 0.

Definition 8.21. The planar family (8.14) has a supercritical Hopf bifur-
cation at a Hopf point with associated curve ε �→ (c1(ε), c2(ε)) if there are
three positive numbers ε0, K1, and K2 such that for each ε in the open
interval (0, ε0) the differential equation u̇ = f(u, c2(ε)) has a hyperbolic
limit cycle with radius

(K1
√

ε + O(ε), K2
√

ε + O(ε))

relative to the rest point u = c1(ε). If there is a similar limit cycle for
the systems with parameter values in the range −ε0 < ε < 0, then the
bifurcation is called subcritical. Also, we say that the family (8.13) has a
supercritical (respectively, subcritical) Hopf bifurcation at a Hopf point if
the corresponding (center manifold) reduced system (8.14) has a supercrit-
ical (respectively, subcritical) Hopf bifurcation.

To avoid mentioning several similar cases as we proceed, let us consider
only Hopf points such that the parametrized eigenvalues α±β i satisfy the
additional assumptions

α′(0) > 0, β(0) > 0. (8.15)

In particular, we will restrict attention to the supercritical Hopf bifurcation
as depicted in Figure 8.3.

Under our standing hypothesis (8.15), a rest point on the associated curve
ε �→ c(ε) of the Hopf point is a stable hyperbolic focus for the corresponding
system (8.14) for ε < 0 and an unstable hyperbolic focus for ε > 0. We will
introduce an additional hypothesis that implies “weak attraction” toward
the rest point u0 at the parameter value λ0. In this case, there is a stable
limit cycle that “bifurcates from this rest point” as ε increases through ε =
0. This change in the qualitative behavior of the system as the parameter
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changes is the bifurcation that we wish to describe, namely, the supercritical
Hopf bifurcation.

Before defining the notion of weak attraction, we will simplify the fam-
ily (8.14) by a local change of coordinates and a reduction to one-parameter.
In fact, after the translation v = u − c1(ε), the differential equation (8.14)
becomes

v̇ = f(v + c1(ε), λ)

with f(0 + c1(ε), c2(ε)) ≡ 0. In particular, in the new coordinates, the
associated rest points remain at the origin for all values of the parameter
ε. Thus, it suffices to consider the family (8.14) to be of the form

u̇ = f(u, λ), u ∈ R
2, λ ∈ R, (8.16)

only now with a Hopf point at (u, λ) = (0, 0) ∈ R
2 × R and with the

associated curve c given by λ �→ (0, λ).

Proposition 8.22. If (u, λ) = (0, 0) ∈ R
2 × R is a Hopf point for the

family (8.16) with associated curve λ �→ (0, λ) and eigenvalues α(λ)±β(λ) i,
then there is a smooth parameter-dependent linear change of coordinates of
the form u = L(λ)z that transforms the system matrix A(λ) := fu(0, λ) of
the linearization at the origin along the associated curve into the Jordan
normal form (

α(λ) −β(λ)
β(λ) α(λ)

)
.

Proof. Suppose that w(λ) = u1(λ) + u2(λ) i is a (nonzero) eigenvector for
the eigenvalue α(λ) + β(λ) i. We will show that there is an eigenvector of
the form (1

0

)
−

(
v1(λ)
v2(λ)

)
i.

To prove this fact, it suffices to find a family of complex numbers c(λ) +
d(λ) i such that

(c + d i)(u1 + u2 i) =
(1

0

)
−

(
v1
v2

)
i

for a family of numbers v1, v2 ∈ R where the minus sign is inserted to
determine a convenient orientation. Equivalently, it suffices to solve the
equation

cu1 − du2 =
(1

0

)
which is expressed in matrix form as follows:

(u1,−u2)
(

c
d

)
=

(1
0

)
.
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Since the eigenvectors w and w̄ corresponding to the distinct eigenvalues
α ± β i are linearly independent and

(u1,−u2)
(

1 1
−i i

)
= (w, w̄) ,

it follows that det [u1,−u2] �= 0, and therefore we can solve (uniquely) for
the vector (c, d).

Using this fact, we have the eigenvalue equation

A
((

1
0

)
− i

(
v1
v2

))
= (α + iβ)

((
1
0

)
− i

(
v1
v2

))
,

as well as its real and imaginary parts

A

(
1
0

)
= α

(
1
0

)
+ β

(
v1
v2

)
, A

(
v1

v2

)
= −β

(
1
0

)
+ α

(
v1
v2

)
. (8.17)

Hence, if

L :=
(

1 v1
0 v2

)
,

then

AL = L

(
α −β
β α

)
.

Again, since the vectors u1 and u2 are linearly independent, so are the
following nonzero scalar multiples of these vectors(

1
0

)
,

(
v1
v2

)
.

Thus, we have proved that the matrix L is invertible. Moreover, we can
solve explicitly for v1 and v2. Indeed, using the equations (8.17), we have

(A − αI)
(

1
0

)
= β

(
v1
v2

)
.

If we now set

A =
(

a11 a12
a21 a22

)
,

then
v1 =

a11 − α

β
, v2 =

a21

β
.

Here β := β(λ) is not zero at λ = 0, so the functions λ �→ v1(λ) and λ �→
v2(λ) are smooth. Finally, the change of coordinates v = L(λ)z transforms
the family of differential equations (8.16) to ż = L−1(λ)f(L(λ)z, λ), and
the linearization of the transformed equation at z = 0 is given by(

α(λ) −β(λ)
β(λ) α(λ)

)
.
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The matrix function λ �→ L−1(λ) is also smooth at the origin. It is given
by

L−1 =
1
v2

(
v2 −v1
0 1

)
where 1/v2(λ) = β(λ)/a21(λ). But, if a21(λ) = 0, then the linearization has
real eigenvalues, in contradiction to our hypotheses. �

By Proposition (8.22), there is no loss of generality if we assume that
the differential equation (8.16) has the form

ẋ = α(λ)x − β(λ)y + g(x, y, λ),
ẏ = β(λ)x + α(λ)y + h(x, y, λ) (8.18)

where the functions g and h together with their first partial derivatives
with respect to the space variables vanish at the origin. Also, the real func-
tions λ �→ α(λ) and λ �→ β(λ) are such that α(0) = 0 (the real part of
the linearization must vanish at λ = 0) and, by our standing assumption,
α′(0) > 0 (the derivative of the real part does not vanish at λ = 0). Also,
by the assumption that β(0) > 0, the eigenvalues α(λ)± iβ(λ) for |λ| suffi-
ciently close to zero are nonzero complex conjugates. In particular, there is
no loss of generality if we assume that β(0) = 1. Indeed, this normalization
can be achieved by a reparametrization of time in the family (8.18).

We will seek a periodic orbit of the family (8.18) near the origin of the
coordinate system by applying the implicit function theorem to find a zero
of the associated displacement function that is defined along the x-axis.
However, for this application of the implicit function theorem, we have to
check that the displacement function has a smooth extension to the origin.
While it is clear that the displacement has a continuous extension to the
origin—define its value at the rest point to be zero—it is not clear that
the extended displacement function is smooth. Indeed, the proof that the
return map exists near a point p on a Poincaré section is based on the
implicit function theorem and requires that the vector field be transverse
to the section at p. But this condition is not satisfied at the origin for
members of the family (8.18) because the vector field vanishes at this rest
point.

Let us show that the displacement function for the system (8.18) is indeed
smooth by using the blowup construction discussed in Section 1.7.4. The
idea is that we can bypass the issue of the smoothness of the displacement
at the origin for the family (8.18) by blowing up at the rest point. In fact,
by changing the family (8.18) to polar coordinates we obtain the family

ṙ = α(λ)r + p(r, θ, λ), θ̇ = β(λ) + q(r, θ, λ) (8.19)
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where

p(r, θ, λ) := g(r cos θ, r sin θ, λ) cos θ + h(r cos θ, r sin θ, λ) sin θ,

q(r, θ, λ) :=
1
r

(
h(r cos θ, r sin θ, λ) cos θ − g(r cos θ, r sin θ, λ) sin θ

)
.

In this formulation, it is very important to notice that q has a removable
singularity at r = 0. This follows because the functions (x, y) �→ g(x, y, λ)
and (x, y) �→ h(x, y, λ) and their first partial derivatives vanish at the
origin.

By the change to polar coordinates, the singularity at the origin in the
plane has been blown up to the circle {0}× T on the phase cylinder R × T.
In our case, where β(λ) �= 0, the singularity at the origin corresponds to
the family of periodic orbits on the cylinder given by the solutions r(t) ≡ 0
and θ(t) = β(λ)t+θ0. A Poincaré section on the cylinder for these periodic
orbits, for example the line θ = 0, has a smooth (parametrized) return map
that is equivalent to the corresponding return map on the x-axis for the
family (8.18). Thus, if we blow down—that is, project back to the plane—
then the image of our transversal is a smooth section for the flow with a
smooth return map and a smooth return time map. In particular, both
maps are smooth at the origin. In other words, the displacement function
on the x-axis of the plane is exactly the same as the smooth displacement
function defined on the line θ = 0 in the cylinder. However, let us take
advantage of the geometry on the phase cylinder where our bifurcation
problem has become a problem concerning the bifurcation of periodic orbits
from a periodic orbit, rather than the bifurcation of periodic orbits from a
rest point.

On the phase cylinder, Hopf bifurcation is analogous to the bifurcation
from a multiple limit cycle as in our previous discussion following the Weier-
strass preparation theorem (Theorem 5.14) on page 333. In fact, we will
soon see that in the generic case the limit cycle, given on the cylinder by
the set {(r, θ) : r = 0} for the family (8.19) at λ = 0, has multiplicity three.
However, the general theory for bifurcation from a multiple limit cycle with
multiplicity three does not capture an essential feature of the Hopf bifur-
cation that is revealed by the geometry of the blowup: The family (8.19)
has a symmetry. In fact, each member of the family is invariant under the
change of coordinates given by

R = −r, Θ = θ − π. (8.20)

While this symmetry has many effects, it should at least be clear that if
a member of the family (8.19) has a periodic orbit that does not coincide
with the set {(r, θ) : r = 0}, then the system has two periodic orbits: one
in the upper half cylinder, and one in the lower half cylinder. Also, if the
set {(r, θ) : r = 0} is a limit cycle, then it cannot be semistable, that
is, attracting on one side and repelling on the other (see Exercise 8.23).
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The Hopf bifurcation theory for this case serves as a simple example of a
bifurcation with symmetry—an important topic that is covered in detail in
the excellent books [74] and [75].

Exercise 8.23. Prove: If the set Γ := {(r, θ) : r = 0} on the cylinder is a limit
cycle for the member of the family (8.19) at λ = 0, then this limit cycle is not
semistable. State conditions that imply Γ is a limit cycle and conditions that
imply it is a hyperbolic limit cycle.

By our hypotheses, if |r| is sufficiently small, then the line {(r, θ) : θ = 0}
is a transversal to the flow of system (8.19) on the phase cylinder. More-
over, as we have mentioned above, there is a smooth displacement function
defined on this transversal. In fact, let t �→ (r(t, ξ, λ), θ(t, ξ, λ)) denote the
solution of the differential equation (8.19) with the initial condition

r(0, ξ, λ) = ξ, θ(0, ξ, λ) = 0,

and note that

θ(2π, 0, 0) = 2π, θ̇(2π, 0, 0) = β(0) �= 0.

By an application of the implicit function theorem, there is a product neigh-
borhood U0×V0 of the origin in R×R, and a function T : U0×V0 → R such
that T (0, 0) = 2π and θ(T (ξ, λ), ξ, λ) ≡ 2π. Thus, the desired displacement
function δ : U0 × V0 → R is defined by

δ(ξ, λ) := r(T (ξ, λ), ξ, λ) − ξ. (8.21)

The displacement function (8.21) can be difficult to work with because of
the presence of the implicitly defined return time function T . However, we
will see that problem can be avoided by yet another change of coordinates.
Indeed, since T (0, 0) = 2π and θ̇(t, ξ, 0) = β(0) �= 0, it follows from the
continuity of the functions T and θ that there is a product neighborhood
U ×V of the origin with U ×V ⊆ U0 ×V0 such that for each (ξ, λ) ∈ U ×V
the function t �→ θ(t, ξ, λ) is invertible on some bounded time interval
containing T (ξ, λ). Moreover, if the inverse function is denoted by s �→
θ−1(s, ξ, λ), then the function ρ : R × U × V → R defined by

ρ(s, ξ, λ) = r(θ−1(s, ξ, λ), ξ, λ)

is a solution of the initial value problem

dρ

ds
=

α(λ)ρ + p(ρ, s, λ)
β(λ) + q(ρ, s, λ)

, ρ(0, ξ, λ) = ξ

and

ρ(2π, ξ, λ) = r(T (ξ, λ), ξ, λ).
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If we rename the variables ρ and s to new variables r and θ, then the
displacement function δ : U × V → R as defined in equation (8.21) with
respect to the original variable r is also given by the formula

δ(ξ, λ) = r(2π, ξ, λ) − ξ (8.22)

where θ �→ r(θ, ξ, λ) is the solution of the initial value problem

dr

dθ
=

α(λ)r + p(r, θ, λ)
β(λ) + q(r, θ, λ)

, r(0, ξ, λ) = ξ. (8.23)

In particular, with respect to the differential equation (8.23), the “return
time” does not depend on the position ξ along the Poincaré section or the
value of the parameter λ; rather, it has the constant value 2π.

Definition 8.24. Suppose that (u, λ) = (0, 0) ∈ R
2 × R is a Hopf point

for the family (8.16). The corresponding rest point u = 0 is called a weak
attractor (respectively, a weak repeller) if the associated displacement func-
tion (8.22) is such that δξξξ(0, 0) < 0 (respectively, δξξξ(0, 0) > 0). In
addition, the Hopf point (u, λ) = (0, 0) is said to have multiplicity one if
δξξξ(0, 0) �= 0.

Theorem 8.25 (Hopf Bifurcation Theorem). If the family of differ-
ential equations (8.16) has a Hopf point at (u, λ) = (0, 0) ∈ R

2 ×R and the
corresponding rest point at the origin is a weak attractor (respectively, a
weak repeller), then there is a supercritical (respectively, subcritical) Hopf
bifurcation at this Hopf point.

Proof. Let us assume that the family (8.16) is C4. By Proposition 8.22,
there is a smooth change of coordinates that transforms the family (8.16)
into the family (8.18). Moreover, because β(0) �= 0, the function

S(r, θ, λ) :=
α(λ)r + p(r, θ, λ)
β(λ) + q(r, θ, λ)

,

and therefore the family of differential equations

dr

dθ
= S(r, θ, λ), (8.24)

is as smooth as the original differential equation (8.16); that is, it is at least
in class C4.

The associated displacement function δ defined in equation (8.22) is given
by the C4 function

δ(ξ, λ) := r(2π, ξ, λ) − ξ (8.25)

where θ �→ r(θ, ξ, λ) is the solution of the differential equation (8.24) with
initial condition r(0, ξ, λ) = ξ. Moreover, each function ξ �→ δ(ξ, λ) is de-
fined in a neighborhood of ξ = 0 in R.
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Since δ(0, λ) ≡ 0, the displacement function is represented as a series,

δ(ξ, λ) = δ1(λ)ξ + δ2(λ)ξ2 + δ3(λ)ξ3 + O(ξ4),

whose first order coefficient is given by

δ1(λ) = δξ(0, λ) = rξ(2π, 0, λ) − 1

where θ �→ rξ(θ, 0, λ) is the solution of the variational initial value problem

drξ

dθ
= Sr(0, θ, λ) =

α(λ)
β(λ)

rξ, rξ(0, 0, λ) = 1.

Hence, by solving the scalar first order linear differential equation, we have
that

δ1(λ) = rξ(2π, 0, λ) − 1 = e2πα(λ)/β(λ) − 1.

Moreover, since α(0) = 0, it follows that

δ(ξ, 0) = ξ2(δ2(0) + δ3(0)ξ + O(ξ2)
)
.

Note that if δ2(0) �= 0, then δ(ξ, 0) has constant sign for sufficiently small
|ξ| �= 0, and therefore the trajectories of the corresponding system (8.19) at
λ = 0 do not spiral around the origin of its phase plane (draw a picture);
equivalently, the periodic orbit {(r, θ) : r = 0} on the phase cylinder is
a semistable limit cycle. But using the assumptions that α(0) = 0 and
β(0) �= 0 and Exercise 8.23, this qualitative behavior cannot occur. In
particular, the existence of a semistable limit cycle on the phase cylinder
violates the symmetry (8.20). Thus, we have proved that δ2(0) = 0.

Consider the function ∆ : R × R → R defined on the domain of the
displacement function by

∆(ξ, λ) = δ1(λ) + δ2(λ)ξ + δ3(λ)ξ2 + O(ξ3),

and note that

∆(0, 0) = e2πα(0)/β(0) − 1 = 0,

∆ξ(0, 0) = δ2(0) = 0,
∆ξξ(0, 0) = 2δ3(0) = δξξξ(0, 0)/3 �= 0,

∆λ(0, 0) = 2πα′(0)/β(0) > 0.

By Theorem 8.2, the function ∆ has a saddle-node bifurcation at ξ = 0 for
the parameter value λ = 0. In particular, there is a curve ξ �→ (ξ, γ(ξ)) in
R × R with γ(0) = 0, γ′(0) = 0, and γ′′(0) �= 0 such that ∆(ξ, γ(ξ)) ≡ 0.
As a result, we have that

δ(ξ, γ(ξ)) = ξ∆(ξ, γ(ξ)) ≡ 0,
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and therefore if λ = γ(ξ), then there is a periodic solution of the corre-
sponding member of the family (8.18) that meets the Poincaré section at
the point with coordinate ξ.

For the remainder of the proof, let us assume that δξξξ(0, 0) < 0; the
case where δξξξ(0, 0) > 0 is similar.

By Theorem 8.2, we have the inequality

γ′′(0) = −∆ξξ(0, 0)
∆λ(0, 0)

= − β(0)
6πα′(0)

δξξξ(0, 0) > 0,

and therefore the leading order term of the series

λ = γ(ξ) =
γ′′(0)

2
ξ2 + O(ξ3)

does not vanish. Hence, the position coordinate ξ > 0 corresponding to a
periodic solution is represented as follows by a power series in

√
λ :

ξ =
(

−λ
12πα′(0)

β(0)δξξξ(0, 0)

)1/2

+ O(λ). (8.26)

Thus, the radius of the corresponding periodic solution relative to the origin
satisfies the estimates required for a Hopf bifurcation.

The proof will be completed by showing that the periodic solution cor-
responding to ξ given by the equation (8.26) is a stable limit cycle.

Consider the Poincaré map defined by

P (ξ, λ) := δ(ξ, λ) + ξ = ξ(∆(ξ, λ) + 1)

and note that
Pξ(ξ, λ) = ξ∆ξ(ξ, λ) + ∆(ξ, λ) + 1.

At the periodic solution we have λ = γ(ξ), and therefore

Pξ(ξ, γ(ξ)) = ξ∆ξ(ξ, γ(ξ)) + 1.

Moreover, because ∆(ξ, γ(ξ)) ≡ 0, we have the identity

∆ξ(ξ, γ(ξ)) = −∆λ(ξ, γ(ξ))γ′(ξ).

Using the relations ∆λ(0, 0) > 0, γ′(0) = 0, and γ′′(0) > 0, it follows that
if |ξ| �= 0 is sufficiently small, then

∆ξ(ξ, γ(ξ)) = −∆λ(ξ, γ(ξ))ξ(γ′′(0) + O(ξ)) �= 0.

In fact, for sufficiently small ξ > 0 we have γ′(ξ) > 0 and −∆λ(ξ, γ(ξ)) < 0;
hence, ∆ξ(ξ, γ(ξ)) < 0 and 0 < Pξ(ξ, γ(ξ)) < 1. In other words, the periodic
solution is a stable limit cycle. �
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8.3.1 Multiple Hopf Bifurcation
The hypothesis in the Hopf bifurcation theorem, which states that the Hopf
point has multiplicity one, raises at least two important questions: How can
we check that δξξξ(0, 0) �= 0? What happens if δξξξ(0, 0) = 0?

The first question will be answered below. With regard to the second
question, let us note that, in the proof of the Hopf bifurcation theorem,
the condition δξξξ(0, 0) �= 0 ensures that the series representation of the
displacement function has a nonzero coefficient at the lowest possible order.
If this condition is not satisfied because δξξξ(0, 0) = 0, then the Hopf point
is called multiple and the corresponding Hopf bifurcation is called a multiple
Hopf bifurcation.

Let us consider the multiple Hopf bifurcation for the case of a planar
vector field that depends on a vector of parameters. More precisely, we will
consider the parameter λ in R

M and a corresponding family of differential
equations

u̇ = f(u, λ), u ∈ R
2 (8.27)

with the following additional properties: the function f is real analytic, at
the parameter value λ = λ∗ the origin u = 0 is a rest point for the differen-
tial equation u̇ = f(u, λ∗), and the eigenvalues of the linear transformation
fu(0, λ∗) are nonzero pure imaginary numbers. Under these assumptions,
the displacement function δ as defined above is represented by a convergent
power series of the form

δ(ξ, λ) =
∞∑

j=1

δj(λ)ξj . (8.28)

Definition 8.26. The rest point at u = 0 for the member of the fam-
ily (8.27) at the parameter value λ = λ∗ is called a weak focus of order k
if k is a positive integer such that

δ1(λ∗) = · · · = δ2k(λ∗) = 0, δ2k+1(λ∗) �= 0.

It is not too difficult to show—a special case is proved in the course of the
proof of the Hopf bifurcation theorem—that if δ1(λ∗) = · · · = δ2k−1(λ∗) =
0, then δ2k(λ∗) = 0. In fact, this is another manifestation of the symmetry
given in display (8.20). (Prove this.)

The next theorem is a corollary of the Weierstrass preparation theorem
(Theorem 5.14).

Proposition 8.27. If the family (8.27) has a weak focus of order k at
u = 0 for the parameter value λ = λ∗, then at most k limit cycles appear
in a corresponding multiple Hopf bifurcation. More precisely, there is some
ε > 0 and some ν > 0 such that u̇ = f(u, λ) has at most k limit cycles in
the open set {u ∈ R

2 : |u| < ν} whenever |λ − λ∗| < ε.
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While Proposition 8.27 states that at most k limit cycles appear in a
multiple Hopf bifurcation at a weak focus of order k, additional informa-
tion about the set of coefficients {δ2j+1(λ) : j = 0, . . . , k} is required to
determine precisely how many limit cycles appear. For example, to obtain
the maximum number k of limit cycles, it suffices to have these coefficients
be independent in the following sense: There is some δ > 0 such that for
each j ≤ k and each ε > 0, if |λ0 − λ∗| < δ and

δ1(λ0) = δ2(λ0) = · · · = δ2j−1(λ0) = 0, δ2j+1(λ0) �= 0,

then there is a point λ1 such that |λ1 − λ0| < ε and

δ1(λ1) = · · · = δ2j−3(λ1) = 0, δ2j−1(λ1)δ2j+1(λ1) < 0.

The idea is that successive odd order coefficients can be obtained with
opposite signs by making small changes in the parameter vector. However,
the reason why this condition is important will be made clear later.

Before we discuss the multiple Hopf bifurcation in more detail, let us
turn to the computation of the coefficients of the displacement function.
To include the general case where the vector field depends on a vector of
parameters, and in particular to include multiparameter bifurcations, we
will consider an analytic family of differential equations of the form

ẋ = εx − y + p(x, y), ẏ = x + εy + q(x, y) (8.29)

where p and q together with their first order partial derivatives vanish at
the origin. Moreover, the coefficients of the Taylor series representations of
p and q at the origin are considered as parameters along with the parameter
ε that is the real part of the eigenvalues of the linearization at the origin. We
will show how to compute the Taylor coefficients of the Taylor series (8.28)
corresponding to the displacement function for the system at ε = 0. As a
convenient notation, which is consistent with the notation used in the Hopf
bifurcation theorem, let us consider the displacement function at the origin
for the family (8.29) to be the function given by (ξ, ε) �→ δ(ξ, ε) where the
additional parameters are suppressed.

Consider the system (8.29) in polar coordinates, as in the differential
equation (8.23), to obtain an initial value problem of the form

dr

dθ
=

r2A(r, θ)
1 + rB(r, θ)

, r(0, ξ) = ξ (8.30)

where ξ is viewed as the coordinate on the Poincaré section corresponding
to a segment of the line {(r, θ) : θ = 0}. The solution r is analytic and it is
represented by a series of the form

r(θ, ξ) =
∞∑

j=1

rj(θ)ξj . (8.31)
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However, as we proceed note that only the first few terms of this series
are required to determine δξξξ(0, 0). Therefore, the analyticity of the fam-
ily (8.30) is not necessary to verify the nondegeneracy condition for the
Hopf bifurcation.

In view of the initial condition for the solution of the differential equa-
tion (8.31), it follows that r1(θ) ≡ 1 and rj(0) = 0 for all j ≥ 2. Hence,
if the series (8.31) is inserted into the differential equation (8.30) and like
powers of ξ are collected, then the sequence {rj(θ)}∞

j=2 of coefficients can
be found recursively.

Since r1(θ) ≡ 1, the displacement function has the representation

δ(ξ, 0) = r(2π, ξ) − ξ = r2(2π)ξ2 + r3(2π)ξ3 + O(ξ4).

Also, since δ2(0) = 0, it follows that r2(2π) = 0, and therefore

δ(ξ, 0) = r3(2π)ξ3 + O(ξ4). (8.32)

Thus, we have proved that

δξξξ(0, 0) = 3!r3(2π). (8.33)

Since the coefficient r3(2π) can be computed by power series, formula (8.33)
can be used to compute the derivative δξξξ(0, 0) (see Exercise 8.28 and the
formula (8.43)).

Exercise 8.28. Find an expression for r3(2π) in terms of the Taylor coefficients
of the functions p and q in equation (8.29). Hint: Only the coefficients of order
two and three are required.

The method proposed above for determining the Taylor coefficients of the
displacement function has the advantage of conceptual simplicity. However,
its disadvantage is the requirement that a differential equation be solved to
complete each step of the algorithm. We will describe a more computation-
ally efficient procedure—introduced by Lyapunov—that is purely algebraic.
The idea of the procedure is to recursively construct polynomial Lyapunov
functions for the system (8.29) that can be used to determine the stability
of the rest point at the origin.

To implement Lyapunov’s procedure, let

p(x, y) =
∞∑

j=2

pj(x, y), q(x, y) =
∞∑

j=2

qj(x, y)

where pj and qj are homogeneous polynomials of degree j for each j =
2, . . . ,∞; let V denote the proposed Lyapunov function represented for-
mally as the series

V (x, y) =
1
2
(x2 + y2) +

∞∑
j=3

Vj(x, y) (8.34)
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where each Vj is a homogeneous polynomial of degree j; and let

X(x, y) := (−y + p(x, y))
∂

∂x
+ (x + q(x, y))

∂

∂y

denote the vector field associated with the system (8.29).

Exercise 8.29. Suppose V as defined by equation (8.34) represents an analytic
function. Show there is a neighborhood U of the origin such that V (x, y) > 0 for
(x, y) ∈ U .

To determine the stability of the rest point at the origin for the sys-
tem corresponding to the vector field X, let us begin by defining the Lie
derivative of V in the direction of the vector field X by

(LXV )(x, y) =
d

dt
V (ϕt(x, y))

∣∣∣
t=0

= gradV (x, y) · X(x, y)

where ϕt denotes the flow of X. Also, let us recall the discussion of Lya-
punov’s direct method in Section 1.6. In particular, using the language of
Lie derivatives, recall that if V (x, y) > 0 and LXV (x, y) ≤ 0 on some punc-
tured neighborhood of the origin, then V is called a Lyapunov function for
system (8.29) at (x, y) = (0, 0), and we have the following theorem:

Theorem 8.30. If V is a Lyapunov function at (x, y) = (0, 0) for the
system (8.29) at ε = 0 and LXV (x, y) < 0 for each point (x, y) in some
punctured neighborhood of the origin, then the rest point at the origin is
asymptotically stable.

Lyapunov’s idea for applying Theorem 8.30 to the system (8.29) at ε = 0
is to construct the required function V recursively. We will explain this
construction and also show that it produces the coefficients of the Taylor
series of the displacement function.

Define Hn to be the vector space of all homogeneous polynomials of
degree n in the variables x and y. Also, consider the vector field on R

2

given by R(x, y) = (x, y,−y, x), and observe that if V is a function defined
on R

2, then the Lie derivative LRV can be viewed as the action of the
linear differential operator LR, defined by

LR := −y
∂

∂x
+ x

∂

∂y
,

on V . In particular, LR acts on the vector space Hn as follows:

(LRV )(x, y) = −yVx(x, y) + xVy(x, y)

(see Exercise (8.31)).
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Exercise 8.31. Prove that Hn is a finite dimensional vector space, compute
its dimension, and show that the operator LR is a linear transformation of this
vector space.

Using the definition of the Lie derivative, we have that

LXV (x, y) =
(
x +

∞∑
j=3

Vjx(x, y)
)(

− y +
∞∑

j=2

pj(x, y)
)

+
(
y +

∞∑
j=3

Vjy(x, y)
)(

x +
∞∑

j=2

qj(x, y)
)

where the subscripts x and y denote partial derivatives. Moreover, if we
collect terms on the right hand side of this identity according to their
degrees, then

LXV (x, y) = xp2(x, y) + yq2(x, y) + (LRV3)(x, y) + O((x2 + y2)2)

where xp2(x, y) + yq2(x, y) ∈ H3.

Proposition 8.32. If n is an odd integer, then LR : Hn → Hn is a linear
isomorphism.

Assuming for the moment the validity of Proposition 8.32, it follows that
there is some V3 ∈ H3 such that

(LRV3)(x, y) = −xp2(x, y) − yq2(x, y).

Hence, with this choice of V3, the terms of order three in the expression for
LXV vanish, and this expression has the form

LXV (x, y) = xp3(x, y) + yq3(x, y) + V3x(x, y)p2(x, y) + V3y(x, y)q2(x, y)

+ (LRV4)(x, y) + O((x2 + y2)5/2).

Proposition 8.33. If n is an even integer, say n = 2k, then the linear
transformation LR : Hn → Hn has a one-dimensional kernel generated by
(x2 + y2)k ∈ Hn. Also, the homogeneous polynomial (x2 + y2)k generates a
one-dimensional complement to the range of LR.

Assuming the validity of Proposition 8.33, there is a homogeneous poly-
nomial V4 ∈ H4 such that

LXV (x, y) = L4(x2 + y2)2 + O((x2 + y2)5/2) (8.35)

where L4 is a constant with respect to the variables x and y.
Equation (8.35) is useful. Indeed, if L4 �= 0, then the function

V (x, y) =
1
2
(x2 + y2) + V3(x, y) + V4(x, y) (8.36)
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determines the stability of the rest point at the origin. More precisely, if
L4 < 0, then V is a Lyapunov function in some sufficiently small neigh-
borhood of the origin and the rest point is stable. If L4 > 0, then the rest
point is unstable (to see this fact just reverse the direction of time).

Remark 3. These stability results do not require the vector field X to be an-
alytic. Also, the formal computations with the series V are justified because
the Lyapunov function (8.36) that is a requisite for applying Theorem 8.30
turns out to be a polynomial.

It should be clear that if L4 = 0, then by the same procedure used
to obtain L4 we can produce a new V such that the leading term of the
expression for LXV is L6(x2 + y2)3, and so on. Moreover, we have a useful
stability theorem.

Theorem 8.34. If L2n = 0, n = 2, . . . , N , but L2N+2 �= 0, then the
stability of the rest point at the origin is determined: If L2N+2 < 0, then
the rest point is stable. If L2N+2 > 0, then the rest point is unstable.

The constant L2k is called the kth Lyapunov quantity. By Theorem 8.34
and the algorithm for computing these Lyapunov quantities, we have a
method for constructing Lyapunov functions at linear centers of planar
systems. If after a finite number of steps a nonzero Lyapunov quantity is
obtained, then we can produce a polynomial Lyapunov function and use it
to determine the stability of the rest point. However, we have not exhausted
all the possibilities: What happens if all Lyapunov quantities vanish? This
question is answered by the Lyapunov center theorem [114]:

Theorem 8.35 (Lyapunov Center Theorem). If the vector field X is
analytic and L2n = 0 for n = 2, . . . ,∞, then the origin is a center. More-
over, the formal series for V is convergent in a neighborhood of the origin
and it represents a function whose level sets are orbits of the differential
equation corresponding to X.

Exercise 8.36. Write a program using an algebraic processor that upon input
of system (8.29) and an integer N outputs L2n, n = 2, . . . , N . Use your program
to compute L4 for the system (8.29) in case the coefficients of p and q are regarded
as parameters. Hint: Look ahead to page 526.

We will prove Propositions 8.32 and 8.33 on page 520. But, before we do
so, let us establish the relationship between the Taylor coefficients of the
displacement function and the Lyapunov quantities.

Proposition 8.37. Suppose that ξ �→ δ(ξ, 0) is the displacement function
for the system (8.29) at ε = 0, and L2n for n ≥ 2, are the corresponding
Lyapunov quantities. If k is a positive integer and L2j = 0 for the integers
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j = 1, . . . , k − 1, then

∂2k−1δ

∂ξ2k−1 (0, 0) = (2k − 1)!2πL2k.

In particular, δξξξ(0, 0) = 3!2πL4.

Proof. We will prove only the last statement of the theorem; the general
proof is left as an exercise.

By equation (8.33), we have that δξξξ(0, 0) = 3!r3(2π). Thus, it suffices
to show that r3(2π) = 2πL4.

In polar coordinates, the polynomial

V (x, y) =
1
2
(x2 + y2) + V3(x, y) + V4(x, y)

as in equation (8.36) is given by

V := V (r cos θ, r sin θ) =
1
2
r2 + r3V3(cos θ, sin θ) + r4V4(cos θ, sin θ).

Define ρ =
√

2V and let r := r(θ, ξ) denote the (positive) solution of the
initial value problem (8.30). If we also define vj(θ) := 2Vj(cos θ, sin θ) for
j = 3, 4, then we have

ρ = (r2(1 + v3(θ)r + v4(θ)r2))1/2

= r(1 +
v3(θ)

2
r + φ(θ)r2 + O(r3)) (8.37)

where φ(θ) = v4(θ)/2 − (v3(θ))2/8. Moreover, if r ≥ 0 is sufficiently small,
then ρ is represented as indicated in display (8.37).

Define
∆(ξ) := ρ(2π, ξ) − ρ(0, ξ),

and use the initial condition r(0, ξ) = ξ together with equation (8.37), to
express ∆ in the form

∆(ξ) = r(2π, ξ)(1 +
v3(2π)

2
r(2π, ξ) + φ(2π)r2(2π, ξ))

− ξ(1 +
v3(0)

2
ξ + φ(0)ξ2) + O(ξ4) + O(r4(2π, ξ)).

Also, since vj(0) = vj(2π), we have the equation

∆(ξ) = r(2π, ξ)(1 +
v3(0)

2
r(2π, ξ) + φ(0)r2(2π, ξ))

− ξ(1 +
v3(0)

2
ξ + φ(0)ξ2) + O(ξ4) + O(r4(2π, ξ)).



520 8. Local Bifurcation

Using formula (8.31), namely,

r(2π, ξ) = ξ + r3(2π)ξ3 + O(ξ4),

and a computation, it is easy to show that

∆(ξ) = r3(2π)ξ3 + O(ξ4). (8.38)

Also, by a direct computation we have the equality

∆(ξ) = ρ(2π, ξ) − ρ(0, ξ)

=
∫ 2π

0

dρ

dθ
(θ, ξ) dθ =

∫ 2π

0

1
ρ

dV

dθ
dθ =

∫ 2π

0

1
ρ

dV

dt

dt

dθ
dθ

=
∫ 2π

0

1
r(1 + 1

2v3(θ)r + O(r2))
(L4r

4 + O(r6))
1

1 + rB(r, θ)
dθ

=
∫ 2π

0
L4r

3 + O(r4) dθ

=
∫ 2π

0
L4(ξ + r3(θ)ξ3 + O(ξ4))3 + O(ξ4) dθ

= 2πL4ξ
3 + O(ξ4).

By equating the last expression for ∆ to the expression in display (8.38),
it follows that r3(2π) = 2πL4, as required. �

Exercise 8.38. Our definition of the Lyapunov quantities depends on the basis
for the complement of the range of LR : Hn → Hn for each even integer n. If a
different basis is used, “Lyapunov quantities” can be defined in a similar manner.
Describe how these quantities are related to the original Lyapunov quantities.

Exercise 8.39. Describe all Hopf bifurcations for the following equations:

1. ẋ = y, ẏ = −x + εy − ax2y where a ∈ R.

2. ẋ = εx − y + p(x, y), ẏ = x + εy + q(x, y) where p and q are homogeneous
quadratic polynomials.

3. ẍ + ε(x2 − 1)ẋ + x = 0 where ε ∈ R.

4. ẋ = (x − βy)x + εy, ẏ = (x2 − y)y where β, ε ∈ R.

Propositions 8.32 and 8.33 can be proved in a variety of ways. The proof
given here uses some of the elementary ideas of Lie’s theory of symmetry
groups for differential equations (see [136]). The reader is encouraged to
construct a purely algebraic proof.

Proof. Recall that the operator LR : Hn → Hn defines Lie differentiation
in the direction of the vector field given by R(x, y) = (x, y,−y, x). Geomet-
rically, the vector field R represents the infinitesimal (positive) rotation of
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the plane centered at the origin. Its flow is the linear (positive) rotation
given by

ϕt(x, y) = etA

(
x
y

)
=

(
cos t − sin t
sin t cos t

)(
x
y

)
(8.39)

where

A :=
(

0 −1
1 0

)
.

If f : R
2 → R denotes a smooth function and z := (x, y), then we have

LRf(z) =
d

dt
(f(ϕt(z)))

∣∣∣
t=0

.

A fundamental proposition in Lie’s theory is the following statement: If
h is an infinitesimally invariant function with respect to a vector field X
(that is, LXh = 0), then h is constant along integral curves of X. This
simple result depends on the fact that the flow of the vector field is a
one-parameter group.

To prove Lie’s proposition in our special case, first define h(t, z) =
f(ϕt(z)) and compute

d

dt
h(t, z)

∣∣∣
t=s

= lim
τ→0

1
τ

[h(s + τ, z) − h(s, z)]

= lim
τ→0

1
τ

[f(ϕτ (ϕs(z))) − f(ϕs(z))]

= LRf(ϕs(z)). (8.40)

If s �→ LRf(ϕs(z)) vanishes identically (that is, f is infinitesimally invari-
ant), then the function t �→ h(t, z) is a constant, and therefore f(ϕt(z)) =
f(z) for each t ∈ R. For our special case where LR : Hn → Hn and H ∈ Hn

we have the following corollary: The homogeneous polynomial H is in the
kernel of LR if and only if H is rotationally invariant.

If n is odd and H ∈ Hn is in the kernel of LR, then

H(x, y) = H(ϕπ(x, y)) = H(−x,−y) = (−1)nH(x, y) = −H(x, y),

and therefore H = 0. In other words, since Hn is finite dimensional, the
linear operator LR is invertible.

If n is even and H ∈ Hn is rotationally invariant, then

H(cos θ, sin θ) = H(1, 0), 0 ≤ θ < 2π.

Moreover, since H ∈ Hn is homogeneous, we also have that

H(r cos θ, r sin θ) = rnH(1, 0);
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in other words, H(x, y) = H(1, 0)(x2 + y2)n/2. Thus, the kernel of LR

is one-dimensional and it is generated by the homogeneous polynomial
(x2 + y2)n/2.

To show that the polynomial (x2 +y2)n/2 generates a complement to the
range of LR, note first, by linear algebra and the fact that the kernel of LR

is one-dimensional, that its range has codimension one. Thus, it suffices to
show that the nonzero vector (x2 + y2)n/2 is not in the range.

If there is some H ∈ Hn such that LRH(x, y) = (x2 + y2)n/2, then
choose z = (x, y) �= 0 and note that LRH(ϕt(z)) = ||z||n �= 0. By the
formula (8.40), the function t �→ H(ϕt(z)) is the solution of the initial
value problem

u̇ = ||z||n, u(0) = H(z),

and therefore H(ϕt(z)) = ||z||nt+H(z). Since t �→ H(ϕt(z)) is 2π-periodic,
it follows that ||z|| = 0, in contradiction. �

We have just developed all the ingredients needed to detect (multiple)
Hopf bifurcation from a weak focus of finite order for a family of the form

ẋ = λ1x − y + p(x, y, λ), ẏ = x + λ1y + q(x, y, λ) (8.41)

where λ = (λ1, . . . , λN ) is a vector-valued parameter. For simplicity, let
us assume that the coefficients of the Taylor series at the origin for the
functions (x, y) �→ p(x, y, λ) and (x, y) �→ q(x, y, λ) are polynomials in
the components of λ. Also, let us recall that the Lyapunov quantities are
computed at the parameter values where λ1 = 0. Thus, as a convenient
notation, let Λ = (0, λ2, . . . , λN ) be the vector variable for points in this
hypersurface of the parameter space so that the Lyapunov quantities are
functions of the variables λ2, . . . , λN . Moreover, if k is a positive integer
and for some fixed Λ∗ in the hypersurface we have L2j(Λ∗) = 0 for j =
2, . . . , k−1, and L2k(Λ∗) �= 0, then by Proposition 8.27 at most k −1 limit
cycles appear near the origin of the phase plane for the members of the
family corresponding to parameter values λ with |λ−Λ∗| sufficiently small.

If L2k(Λ∗) = 0 for each integer k ≥ 2, then the theory discussed so far
does not apply because the bifurcation point does not have finite multi-
plicity. To include this case, the rest point at the origin is called an infinite
order weak focus if the Taylor coefficients of the displacement function at
the origin are such that δj(Λ∗) = 0 for all integers j ≥ 1. We will briefly
discuss some of the beautiful ideas that can be used to analyze the bifur-
cations for this case (see for example [19], [36], [154], and [190]).

The starting point for the general theory is the observation that the
Lyapunov quantities for an analytic family are polynomials in the Taylor
coefficients of the corresponding vector field, and therefore each Lyapunov
quantity can be computed, in principle, in a finite number of steps. This fact
is proved below (see page 525). Moreover, as we have seen, the Lyapunov
quantities are closely related to the Taylor coefficients of the displacement
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function. Thus, there is good reason to believe that the problem of the
appearance of limit cycles at an infinite order weak focus can be approached
by working with polynomials.

Let us recall that the displacement function for the family (8.41) has the
form

δ(ξ, λ) = δ1(λ)ξ +
∞∑

j=2

δj(λ)ξj

where δ1(λ) = e2πλ1 − 1. Moreover, if the rest point at the origin is an
infinite order weak focus at λ = Λ∗, then δj(Λ∗) = 0 for each integer j ≥ 1.

Two analytic functions are said to define the same germ, at a point in
the intersection of their domains if they agree on an open set containing
this point; or equivalently if they have the same Taylor series at this point.
The set of all germs of analytic functions of the variables λ1, . . . , λN at the
point Λ∗, that is, convergent power series in powers of

λ1, λ2 − λ∗
2, . . . , λN − λ∗

N ,

has (by the Hilbert basis theorem) the structure of a Noetherian ring (see,
for example, [24]). Therefore, the chain of its ideals

(δ1) ⊆ (δ1, δ2) ⊆ (δ1, δ2, δ3) ⊆ · · · ,

must stabilize. More precisely, there is an ideal

(δ1, δ2, δ3, . . . , δK)

that contains all subsequent ideals in the chain; in other words, there is
an ideal generated by a finite initial segment of Taylor coefficients of the
displacement function that contains all of the Taylor coefficients. Hence,
for each positive integer J , there is a set of analytic functions {µJk(λ) :
k = 1, . . . , K} such that

δJ(λ) =
K∑

k=1

µJk(λ)δk(λ). (8.42)

By using the representation (8.42) and a formal calculation, it is easy to
obtain the following series expansion for the displacement function:

δ(ξ, λ) = δ1(λ)ξ(1 +
∞∑

j=K+1

µj1(λ)ξj−1)

+ δ2(λ)ξ2(1 +
∞∑

j=K+1

µj2(λ)ξj−2)

+ · · · + δK(λ)ξK(1 +
∞∑

j=K+1

µjK(λ)ξj−K).



524 8. Local Bifurcation

While it is certainly not obvious that this formal rearrangement of the
Taylor series of the displacement function is convergent, the convergence
can be proved (see, for example, [36] and the references therein). However,
by an inspection of this series, it is reasonable to expect and not too difficult
to prove that if |ξ| and |λ − λ∗| are sufficiently small, then the appearance
of limit cycles is determined by an analysis of the zero set of the function

B(ξ, λ) := δ1(λ)ξ + δ2(λ)ξ2 + · · · + δK(λ)ξK .

In particular, because B is a polynomial of degree K in the variable ξ, the
displacement function δ cannot have more than K “local” zeros.

It turns out that, by the symmetry of the problem, only the odd order
Taylor coefficients of the displacement function are important. In fact, there
is some positive integer k such that the initial segment of Taylor coefficients
given by (δ1, δ3, δ5, . . . , δ2k+1) generates the ideal of all Taylor coefficients.
In this case, the multiple bifurcation point is said to have order k. Of course,
the reason for this definition is that at most k local limit cycles can appear
after perturbation of a bifurcation point of order k. Indeed, let us note that
the origin ξ = 0 accounts for one zero of the displacement function and each
limit cycle accounts for two zeros because such a limit cycle must cross both
the positive and the negative ξ-axis. Since the displacement function has
at most 2k + 1 zeros, there are at most k local limit cycles.

As mentioned previously, additional conditions must be satisfied to de-
termine the exact number of limit cycles. For example, let us suppose that
the function

B1(λ, ξ) := δ1(λ) + δ2(λ)ξ + · · · + δ2k+1(λ)ξ2k

is such that δ2k+1(Λ1) > 0 and δj(Λ1) = 0 for j = 1, . . . , 2k. For example,
this situation might arise if we found that L2j(Λ1) vanishes for j = 1, . . . k
and then noticed that the value of the polynomial L2k+2 at Λ1 is positive.
At any rate, if there is a parameter value Λ2 so that

δ2k+1(Λ2) > 0, δ2k(Λ2) < 0, δj(Λ2) = 0

for j = 1, . . . , 2k − 1, and |Λ2 − Λ1| is sufficiently small, then the function
ξ �→ B1(ξ,Λ2) will have two zeros near ξ = 0, one positive zero and one
zero at the origin. By continuity, if |Λ3 − Λ2| is sufficiently small, then the
corresponding function at the parameter value Λ3 also has continuations
of these zeros. Moreover, if there is a choice of Λ3 in the required open
subset of the parameter space such that δ2k−1(Λ3) > 0, then B1(ξ,Λ3) has
three zeros, and so on. Well, almost. We have used Λj for j = 1, 2, 3, . . . to
indicate that λ1 = 0. However, at the last step, where δ1(λ) = e2πλ1 − 1 is
adjusted, we can take a nonzero value of λ1.

To implement the theory just outlined, we must compute some finite set
of Taylor coefficients, say {δj : j = 1, . . . , 2k + 1}, and then prove that the
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ideal generated by these Taylor coefficients contains all subsequent Taylor
coefficients. This is a difficult problem that has only been solved in a few
special cases. The most famous result of this type was proved by Nikolai
N. Bautin [19] for quadratic systems—that is, for

ẋ = εx − y + p(x, y), ẏ = x + εy + q(x, y)

where p and q are homogeneous quadratic polynomials and where λ is the
vector consisting of ε and the coefficients of p and q. In this case, Bautin
showed that the ideal of all Taylor coefficients is generated by (δ1, δ3, δ5, δ7).
Thus, at most three limit cycles can bifurcate from the origin. Moreover,
it is possible to construct an example where three limit cycles do appear
(see [19] and [190]).

From the above remarks, it should be clear that it is not easy to count
the exact number of limit cycles of a polynomial system. Indeed, this is the
content of Hilbert’s 16th problem: Is there a bound for the number of limit
cycles of a polynomial system in terms of the degrees of the polynomials
that define the system? This problem is not solved, even for quadratic sys-
tems. The best result obtained so far is the following deep theorem of Yuri
Il’yashenko [97].

Theorem 8.40. A polynomial system has at most a finite number of limit
cycles.

(See the book of Il’yashenko [97] and the review [30] for a mathematical
history of the work on Hilbert’s problem, and see [145] for a complete
bibliography of quadratic systems theory.)

The remainder of this section is devoted to the promised proof that
the Lyapunov quantities for an analytic system are polynomials in the
Taylor coefficients of the vector field corresponding to the system and to
a description of an algorithm that can be used to compute the Lyapunov
quantities.

Consider the vector field

X(x, y) := (−y
∂

∂x
+ x

∂

∂y
) +

( ∞∑
j=2

pj(x, y)
∂

∂x
+

∞∑
j=2

qj(x, y)
∂

∂y

)

where pj , qj ∈ Hj for each integer j ≥ 1. Also, let

V (x, y) :=
1
2
(x2 + y2) +

∞∑
j=3

Vj(x, y)
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where Vj ∈ Hj for each j ≥ 1. The Lie derivative of V in the direction X
is given by

LXV =
∞∑

j=3

LRVj + x
∞∑

j=2

pj + y
∞∑

j=2

qj +
∞∑

j=2

pj

∞∑
j=3

Vjx +
∞∑

j=2

qj

∞∑
j=3

Vjy

=
∞∑

j=3

LRVj +
∞∑

j=2

(xpj + yqj) +
∞∑

j=2

( j−2∑
i=0

pj−iV(i+3)x + qj−iV(i+3)y
)

= LRV3 + xp2 + yq2 +
∞∑

j=4

(
LRVj + xpj−1 + yqj−1

+
j−4∑
i=0

pj−i−2V(i+3)x + qj−i−2V(i+3)y
)
.

For each even integer j ≥ 2, let Πj : Hj → Hj denote the linear projec-
tion whose kernel is the range of the operator LR and whose range is our
one-dimensional complement to the range of the operator LR; that is, the
subspace of H2j generated by the vector (x2 + y2)j . Also, for each integer
j ≥ 4, define Hj ∈ Hj by

Hj := xpj−1 + yqj−1 +
j−4∑
i=0

(
pj−i−2V(i+3)x + qj−i−2V(i+3)y

)
so that

LXV = LRV3 + xp2 + yq2 +
∞∑

j=4

(
LRVj + Hj

)
.

The following algorithm can be used to compute the Lyapunov quantities:

Input (k, p2, . . . , p2k−1, q2, . . . , q2k−1)
V3 := −L−1

R (xp2 + yq2)
For j from 4 to 2k do

If j is odd, then Vj := −L−1
R (xpj−1 + yqj−1 + Hj)

If j is even, then
Lj := Πj(Hj)/(x2 + y2)j/2

Vj := −L−1
R

(
Hj − Lj(x2 + y2)j/2

)
End for loop;
Output (L4, L6, . . . , L2k).

To implement the algorithm, it is perhaps best to first choose a basis for
each vector space Hj and then to represent the linear transformations Πj

and LR in this basis (see Exercise (8.42)).
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Remark 4. The value of L4 in case

pj(x, y) =
j∑

i=0

aj−i,ix
j−iyi, qj(x, y) =

j∑
i=0

bj−i,ix
j−iyi

is given by

L4 =
1
8
(a20a11 + b21 + 3a30 − b02b11

+ 3b03 + 2b02a02 − 2a20b20 − b20b11 + a12 + a02a11). (8.43)

The sign of this quantity is the same as the sign of the third Taylor coef-
ficient of the displacement function. Thus, the sign of L4 can be used to
determine the stability of a weak focus as required in the Hopf bifurcation
theorem.

Finally, we will show that if k is a positive integer, then the Lyapunov
quantity L2k is a polynomial in the Taylor coefficients of p and q at the
origin. To prove this fact, note that

LRV2k + H2k − L2k(x2 + y2)k = 0.

Moreover, the linear flow of the vector field R is given by

ϕt(x, y) = etA

(
x
y

)
where A =

(
0 −1
1 0

)
,

and, by Exercise (8.41), the projection Π2k is represented by

Π2kH(x, y) =
1
2π

∫ 2π

0
H(ϕt(x, y)) dt. (8.44)

Since the rotationally invariant elements of H2k are in the complement
of the range of LR, the composition Π2kLR is equal to the zero operator,
and therefore

L2k(x2 + y2)k = Π2kH2k(x, y).

In particular, the desired Lyapunov quantity is given by the integral

L2k =
1
2π

∫ 2π

0
Hk(cos t, sin t) dt.

Hence, by inspection of the algorithm for computing the Lyapunov quanti-
ties, it is clear that L2k is a polynomial in the coefficients of the polynomials

p2, . . . , p2k−1, q2, . . . , q2k−1.
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Exercise 8.41. Demonstrate that the representation (8.44) is valid by showing:
a) Π2k is linear, b) Π2kH is rotationally invariant, and c) Π2k(x2 + y2)k = (x2 +
y2)k.

Exercise 8.42. Show that {xn−iyi | i = 0, . . . , n} is a basis for Hn and LR

has the following (n+1)×(n+1) matrix representation with respect to the given
(ordered) basis:

LR =




0 1 0 0 0 · · ·
−n 0 2 0 0 · · ·
0 1 − n 0 3 0 · · ·
0 0 2 − n 0 4 · · ·
· · · · · · · ·


 .

Also, the kernel of LR on H2n, for n ≥ 2, is generated by the vector

K = (Bn,0, 0, Bn,1, 0, Bn,2, . . . , 0, Bn,n)

where the numbers

Bn,j =
n!

j!(n − j)!

are the binomial coefficients, and

{(a1, . . . , an, 0) : (a1, . . . , an) ∈ R
n}

is a vector space complement to the kernel. If LR on H2n is represented by
the matrix (�1, . . . , �n+1) partitioned by the indicated columns, then show that
the matrix representation for LR, restricted to the complement of the kernel,
is represented by (�1, . . . , �n, 0). Also, consider the equation LRV = H where
V, H ∈ Hj and the associated matrix equation

(�1, . . . , �n, K)H = K.

Show that the matrix (�1, . . . , �n, K) is invertible and that H has the form H =∑
aj�j + LK where L is the corresponding Lyapunov quantity.

Exercise 8.43. Determine the stability of the rest point at the origin for the
system

ẋ = −y − x2 + xy, ẏ = x + 2xy.

Exercise 8.44. Discuss the Hopf bifurcation for the following systems:

1. ẋ = εx − y − x2 + xy, ẏ = x + εy + 2xy.

2. ẋ = εx − y − x2 + εxy, ẏ = x + εy + 2y2.

3. ẋ = x(x − βy) + εy, ẏ = y(x2 − y).

Exercise 8.45. Consider the quadratic system in Bautin normal form:

ẋ = λ1x − y − λ3x
2 + (2λ2 + λ5)xy + λ6y

2,

ẏ = x + λ1y + λ2x
2 + (2λ3 + λ4)xy − λ2y

2.

Find the corresponding Lyapunov quantities L2, L4, and L6. Construct a curve in
the parameter space with a supercritical Hopf bifurcation. Construct a quadratic
system with two limit cycles surrounding the origin and a quadratic system with
three limit cycles surrounding the origin. (If you need help, see [37][141, p. 449].)
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Exercise 8.46. The family

θ̈ + sin θ − Ωcos θ sin θ = Iθ̇,

where Ω and I are real parameters, is a simple model in dimensionless form of
a whirling pendulum with a feedback control. Discuss the existence of a Hopf
bifurcation for the rest point at the origin in the phase plane at the control
coefficient value I = 0. How does the existence of a Hopf bifurcation depend on
the rotation speed Ω? Draw the bifurcation diagram.

Exercise 8.47. Consider the following model for the dimensionless concentra-
tions x and y of certain reacting chemicals

ẋ = a − x − 4xy

1 + x2 , ẏ = bx
(
1 − y

1 + x2

)
,

and the curve C in the first quadrant of the (a, b)-parameter space given by
b = 3a/5−25/a. Prove that a supercritical Hopf bifurcation occurs when a curve
in the parameter space crosses C from above. This exercise is taken from [172, p.
256] where the derivation of the model and typical phase portraits are described.
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phase portrait, 432
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action-angle variables, 220
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adjoint representation, 148
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forced oscillator, 470
with two angles, 468

averaging, 205, 226–233, 451–475
action-angle variables, 452
and celestial mechanics, 456
and diffusion, 467
and fundamental problem

of dynamical
systems, 454

and integrable systems, 452
and periodic orbits, 471
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passage through, 463, 474

and slow evolution
of action, 455
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pendulum model, 463–467

counterexample, 468
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Kepler problem, 228–232
disturbed binary system, 226
entrainment, 475
general invalidity of, 467
origins of, 226
partial, 462
planar forced oscillator, 470
principle, 455
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layer, 461
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theorem, 456
transient chaos, 475

Baire space, 493

Baire’s theorem, 493
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calculus in, 93–117
integration in, 100–105
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Bautin’s theorem, 525
Bautin, N., 90, 525
Bender, J., 502
Bendixson’s Criterion, 89
Bernoulli’s equation, 53
Bessel function, 222
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527
and loss of stability, 484
blue sky, 12
diagram, 10
function, 363, 369
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337, 363, 369

reduced, 361
reduction, 321, 337
subharmonic, 370

Hopf, 502–527
order k, 524

pitchfork, 496
saddle-node, 12, 372, 484–501,

511
Hamiltonian, 501

theory, 483–527
and applied

mathematics, 487–489
and families, 488
and jets, 489–496
and transversality, 489–496
normal forms, 486
one-dimensional

state space, 484–496
transcritical, 496

big O notation, 320
bilinear form

coercive, 267
continuous, 267

binary system
action-angle coordinates, 207
and celestial mechanics, 207
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and fundamental problem
of dynamics, 220

angular momentum, 209
completely integrable, 220
Delaunay elements, 215
diamagnetic Kepler problem

averaging, 232
diamagnetic Kepler

problem, 228–232
disturbed, 215

in Delaunay elements, 219
equations of motion, 206–214
Euler angles, 210
harmonic oscillator

model, 213
invariant tori, 213, 220
Kepler

ellipse, 214
equation, 221
third law, 215

osculating plane, 210
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planet, 222–228
averaging, 226
critical inclination, 227

birational map, 56
blow up

in finite time, 3, 4
blowup
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at rest point, 64–70
of singularity, 64–66, 507

blue sky catastrophe, 12
Bogoliubov, N., 317
boundary layer, 429–431

singular
perturbation, 431

boundary value problem
at boundary layer, 430
Dirichlet, 249
Neumann, 250

branch point, 372
Brouwer fixed point

theorem, 73, 77, 88
bundle map, 110

Cr

function, 40
-norm, 94

calculus, 93–117
canonical coordinates, 228
Cauchy’s

theorem, 410
center, 18, 22

linear, 22
center manifold, 30, 284, 299
center-stable manifold, 299
central projection, 67
chain rule, 93
change of coordinates, 53
chaos

chaotic attractor, 394
informal definition, 393
theory, 391

Melnikov method, 391
transverse homoclinic

points, 406–420
transient, 394

chaotic attractor, 440
Chapman–Kolmogorov

identities, 133
characteristic

exponent, 167
multiplier, 166

characteristics
of PDE, 279

charged particle
and Lorentz force, 205
motion of, 205
relativistic motion, 205

Chebyshev polynomial, 282
Cherkas, L., 91
cocycle, 134
Cole, J., 317
compactification

at infinity, 66
polynomial vector field, 68

complete
elliptic integral, 446
forward orbit, 79

complex
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potential, 428
solution, 135

configuration space, 32
connecting orbit, 82
conservation law, 278, 281
constitutive laws, 204
continuable periodic orbit, 321
continuation

point, 321, 334, 337, 361
subharmonic, 344, 345, 363,

365, 367, 369, 370
theory, 317–390

and entrainment for
van der Pol, 382

Arnold tongue, 350, 372
autonomous

perturbations, 326
entrainment, 367
for multidimensional

oscillators, 366
forced oscillators, 384
forced van der Pol, 347
from rest points, 343
isochronous period

annulus, 343
limit cycles, 367
Lindstedt series, 374
Lyapunov–Schmidt

reduction, 358–361
Melnikov function, 339, 365
nonautonomous

perturbations, 340
normal nondegeneracy, 356
perihelion of Mercury, 374
regular period annulus, 356
resonance zone, 367
unforced van der Pol, 318

continuity equation, 249, 422
continuous dependence

of solutions, 3
contraction

constant, 106
definition of, 106
fiber contraction, 111
mapping theorem, 106

principle, 106–116
uniform, 107

convection, 249
coordinate

chart, 37, 40
map, 38
system, 40

coordinate system
angular, 56
polar, 57

coordinates
cylindrical, 58
polar, 56–61
spherical, 58, 67

covering map, 56
critical inclination, 227
critical point, 9
curl, 330
curve, 28
cut-off function, 298
cylindrical coordinates, 58

degrees of freedom, 32
Delaunay elements, 207
desingularized vector field, 59
determining equations, 380
detuning parameter, 340, 371–373
diagonal set, 52
diamagnetic Kepler

problem, 228–232
diffeomorphism, 39
differentiable function, 39, 93
differential

1-form, 61
of function, 62

differential equation
ABC, see ABC system
autonomous, 4
Bernoulli’s, 53
binary system, 206
Burgers’, 281
charged particle, 205
continuity, 249, 422
coupled pendula, 233
diffusion, 249
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Duffing’s, 273, 406
Euler’s

fluid motion, 423
rigid body, 35

Euler–Lagrange, 200
Falkner–Skan, 431
Fermi–Ulam–Pasta, 236
Fisher’s, 274
for fluids, see fluid dynamics
for projectile, 86
harmonic oscillator, 9
heat, 249
Hill’s, 179
inverted pendulum, 242
Lorenz, 395
Loud’s, 344
Mathieu, 175
Maxwell’s, 203
Navier–Stokes, 423
Newton’s, 26, 32, 203
nonautonomous, 4
order of, 5
ordinary, 1
pendulum, see pendulum
Picard–Fuchs, 449
quadratic, 79
reaction diffusion, 249
Riccati, 183
singular, 70
solution of, 2
spatial oscillator, 206
van der Pol, 2, 5, 91, 92, 318,

405
variational, 76
Volterra–Lotka, 42

diffusion, 249
equation, 249
rates, 468

diffusivity constant, 249
Diliberto, S., 331
Diliberto’s theorem, 330
dipole potential, 64
directional derivative, 200
Dirichlet problem, 249
discrete dynamical system, 305

discriminant locus, 352
displacement function, 73, 320, 342

reduced, 321
divergence

and Bendixson’s criterion, 89
and Diliberto’s theorem, 330
and limit cycles, 85, 90
and volume, 88

Dulac
criterion, 90
function, 90, 91

eccentric anomaly, 218
eigenvalue

definition of, 135
eigenvalues

and adapted norms, 189
and characteristic

multipliers, 167, 175
and Floquet theory, 165
and fundamental matrix, 137
and generic bifurcation, 484
and Hopf bifurcation, 502
and hyperbolic

fixed points, 306
and hyperbolicity, 22
and index of singularity, 389
and invariant manifolds, 284
and Lyapunov exponents, 177
and normal modes, 237
and perturbation series, 347
and spectrum, 252
and stability, 20, 21, 127, 151,

155, 158, 275
of periodic orbits, 187, 472
of subharmonics, 346
of time-periodic

systems, 168, 171
and stability for PDE, 251
continuity of, 484
of derivative of

Poincaré map, 187
of matrix exponential, 167
stability, 154

eigenvector
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definition of, 135
Einstein, A., 375
elliptic functions

integrals, 445
Jacobi, 446

elliptic modulus, 446
energy method

for PDE, 254
energy surface, 32

regular, 32, 452
entrainment, 349, 367–374, 382–

384, 475
domain, 348, 371

equation
continuity, 249
Duffing’s, 273
Falkner–Skan, 431
Fisher’s, 274
functional, 299, 306
Kepler’s, 218, 221
Lyapunov’s, 161
Newton’s, 256
spring, 318
van der Pol, 92, 318

equilibrium point, 9
ergodic, 315
Euclidean space, 61, 62
Euler’s equations

fluid dynamics, 423
rigid body motion, 35

Euler–Lagrange equation, 200–203
and extremals, 201
and Hamilton’s principle, 202
and Lagrangian, 202
of free particle, 202

evaluation map, 98
evolution

family, 133
group, 133

existence theory, 1–4, 117–126
by contraction, 120
by implicit function

theorem, 118
maximal extension, 124

smoothness by fiber
contraction, 122

exponential map, 139
extremal, 201

Falkner–Skan equation, 431
family of differential equations, 2
Farkas, M., 317
fast

time, 70
variable, 462

Fermi, E., 236
Fermi–Ulam–Pasta

oscillator, 236–240
experiments, 240
normal modes, 240

Feynman, R., 203
fiber

contraction, 111
contraction theorem, 111
of tangent bundle, 48
of trivial bundle, 110

Fife, P., 278
first integral, 33, 281
first variational equation, 329
fixed point, 106, 305

globally attracting, 106
Floquet

exponent, 167
normal form, 165
theorem, 162
theory, 162–175

and limit cycles, 170
and matrix exponential, 162
and periodic solutions, 172
and resonance, 170
characteristic exponents, 167
characteristic multipliers, 165
Marcus–Yamabe

example, 171
monodromy operator, 165
reduction to constant

system, 168
flow, 13

complete, 12
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flow box theorem, 53
fluid dynamics, 421–449

ABC flow, see ABC system
Bernoulli’s

equation, 427
law, 427

boundary conditions, 423
continuity equation, 423
corner flow, 429
equations of motion, 422
Euler’s equations, 423
Falkner–Skan equation, 431
flow in a pipe, 424
Navier–Stokes

equations, 422
plug flow, 425
Poiseuille flow, 426
potential flow, 427
Reynold’s number, 423
stream function, 428

foliation, 197
forced oscillator, 384–390
formal solution, 253
formula

Lie–Trotter product, 145
Liouville’s, 134
variation of constants, 155

forward orbit, 79, 85
Fréchet differentiable, 93
Fredholm

index, 359
map, 359

frequency, 318
function

Bessel, 222
bifurcation, 363, 369
contraction, 106
differentiable, 39
displacement, 73
Dulac, 90
exponential, 139
Lipschitz, 120, 157
local representation, 39
Lyapunov, 80, 161, 516
Melnikov, 365, 395

period, 389
real analytic, 3, 40
regulated, 100
separation, 397
simple, 100
smooth, 1, 40
subharmonic bifurcation, 370
uniform contraction, 107

functional equation, 299, 306
fundamental

matrix, 132
set, 132

Galërkin
approximation, 263, 281
method, 261
principle, 263

general linear group, 140
generic, 139, 484, 493, 496, 497
geodesic, 62
germ

of analytic function, 523
Golubitsky, M., 486
Gröbner basis, 350
gradient

in cylindrical coordinates, 63
omega-limit set of, 88
system, 35, 61
with respect to Riemannian

metric, 62
graph of function, 36
Gronwall

inequality, 128
specific Gronwall lemma, 130

Guckenheimer, J., 317

Hale, J., 317
Hamilton–Jacobi equation, 278
Hamiltonian

classical, 32
system, 31, 61, 63, 207, 352

integral of, 33
Hamilton’s principle, 202
harmonic, 325

function, 427
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solution, 341, 348
and entrainment, 351

harmonic oscillator, 9, 26, 31, 318
action-angle variables, 452
and motion of Mercury, 375
and motion of moon, 179
and secular perturbation, 378
model for binary system, 213
perturbed, 339
phase portrait of, 319

Hartman–Grobman theorem, 22,
305–315

for diffeomorphisms, 305
for differential equations, 311
statement of, 306

Hayashi, C., 317
heat equation, 249
heteroclinic

cycle, 434
orbit, 51, 391

Hilbert basis theorem, 523
Hilbert space basis, 263
Hilbert’s 16th problem, 79, 525
Hill’s equation, 179–182

and trace of monodromy
matrix, 181

characteristic multipliers
of, 180

Lyapunov’s theorem on
stability, 182

stability of zero solution, 180
Hill, G., 179
Hirsch, M., 492
Holmes, P., 317
homoclinic

manifold, 411
orbit, 51, 232, 391
tangle, 394

homogeneous linear system, 127,
130

Hopf bifurcation, 355, 502–527
and Lyapunov quantities, 518
and polynomial ideals, 523
at weak focus, 513
finite order, 522

infinite order, 522
multiple, 513
multiplicity one, 510
order k, 524
point, 502
subcritical, 504
supercritical, 504
theorem, 510

hyperbolic
fixed point, 306
linear transformation, 22
periodic orbit, 328, 332, 333
rest point, 22, 483
saddle, 22
sink, 22
source, 22
theory, 283–315

hyperbolic toral
automorphism, 315

ideal
of Noetherian ring, 523

Il’yashenko’s theorem, 525
implicit function theorem, 116–117

and continuation, 320, 324
and existence

of ODE, 118
and inverse function

theorem, 55
and persistence, 332
and Poincaré map, 72, 327
and regular level sets, 43
and separation function, 397
proof of, 116
statement of, 43

index
Fredholm, 359
of singularity, 389

inertia matrix, 35
inertial manifold, 262
infinite dimensional

ODE, 249–261
infinite order weak focus, 522
infinitesimal

displacement, 368
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invariant, 521

infinitesimally
hyperbolic, 184, 483
hyperbolic matrix, 154

initial
condition, 2
value problem, 2, 118

integral curve, 2
invariant

function, 281
infinitesimal, 521
manifold, 28–34, 42, 283–304

applications of, 302–304
linear, 42

set, 28
sphere, 51
submanifold, 49

invariant foliation, 197
inverse function theorem, 54
isochronous period annulus, 343
isolated rest point, 51
isospectral, 149

Jacobi elliptic function, 446
jet

extension, 491
space, 490, 491
theory of, 490–495

Jordan curve theorem, 81

Kepler
equation, 218, 221
motion, see binary system
system, 207

Kevorkian, J., 317
Khaiken, S., 317
Kolmogorov, A., 278

Lagrangian, 200, 233
Lax pair, 149
level set

regular, 43
Levi, M., 241
Liénard

system, 91
transformation, 91

Lie
algebra, 148
derivative, 516
group, 148
infinitesimal invariant, 521

limit cycle
and asymptotic period, 194
and asymptotic phase, 194,

197
definition of, 82
globally attracting, 85
infinitely flat, 337
multiple, 334, 336
semistable, 508
stability of, 193
time-periodic

perturbation of, 326
uniqueness of, 85, 90

limit set, 79–90
alpha-, 79
compact, 80
connected, 80
invariance of, 80
omega-, 79

Lindstedt series, 374–381
and forced oscillators, 382
and perihelion

of Mercury, 380
and period of van der Pol

oscillator, 382
divergence of, 380
truncation of, 380

Lindstedt, A., 374
line of nodes, 210
linear center, 22
linear system

Chapman–Kolmogorov
identities, 133

constant coefficients, 135–147
and Jordan

canonical form, 143
and matrix

exponential, 138–144
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fundamental matrix, 137,
143

Lax pairs, 148
Lie Groups, 148
Lie–Trotter formula, 145
solutions of, 136

evolution family, 133
extensibility, 130
fundamental matrix, 132
fundamental set

of solutions, 132
homogeneous, 127–147
Liouville’s formula, 134
matrix solution, 132
nonconstant coefficients

and matrix exponential, 148
on infinite dimensional

space, 150
principal fundamental

matrix, 132
stability of, 151–155

and eigenvalues, 155
and hyperbolic

estimates, 151
and infinitesimal

hyperbolicity, 154
state transition matrix, 133
superposition, 131–135

linearity
of differential equations, 131

linearization, 20
of a vector field, 20

linearized
stability, 21, 155

Liouville’s formula, 134, 333
Lipschitz function, 120, 157
little o notation, 134
Liu, Weishi, 149
local

coordinate, 327
property, 21
versus global, 71

Lorentz force, 204
Lorenz system, 395
Loud’s

system, 344
theorem, 344

Lyapunov
algorithm, 515, 526
center theorem, 518
direct method, 19, 23, 516
equation, 161
exponent, 176–179
function, 23, 27, 80, 161, 516
indirect method, 19
linearized stability

theorem, 158, 161
quantities

are polynomials, 525
quantity, 518
stability, 18, 23–26
stability theorem, 24
stability theorem

for Hill’s equation, 182
Lyapunov–Perron

method, 285
operator, 291

Lyapunov–Schmidt
reduction, 358–361, 368

manifold, 38
abstract definition, 40
center, 283
invariant, 28, 283–304
invariant linear, 42
linear, 41
smooth, 36–44
stable, 30, 283
submanifold, 38

map
adjoint representation, 148
bundle, 110
contraction, 106
coordinate, 38
exponential, 139
fiber contraction, 111
Poincaré, 72, 185
return, 71, 72
uniform contraction, 107

Marcus–Yamabe example, 171
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mass matrix, 272
Mathieu equation, 175
matrix

infinitesimally
hyperbolic, 154

solution of linear system, 132
Maxwell’s laws, 203
mean anomaly, 218
mean value theorem, 98, 99, 105
Melnikov

and separation function, 398
function, 364, 395

autonomous, 339
for ABC flows, 434, 435
for periodically forced

pendulum, 409
homoclinic loop, 407
homoclinic points, 406
meaning of, 365
subharmonic, 365

integral, 400, 405
method, 391

Minorsky, N., 317
Mitropolsky, Y., 317
momentum, 204
monodromy operator, 165
Morse’s lemma, 388
motion, 202
multiple Hopf bifurcation, 513
multiplicity

of limit cycle, 334
Murdock, J., 317

Navier–Stokes equations, 423
Nayfey, A., 317
nearest neighbor coupling, 236
Neumann problem, 250
Newton’s

equation, 256
law, 5, 203
polygon, 353

Newtonian to Lagrangian
mechanics, 229

Noetherian ring, 523

nonautonomous differential
equation, 4

nonlinear system
stability of, 155–161

and linearization, 158
and Lipschitz condition, 157
and Lyapunov functions, 161
Poincaré–Lyapunov

theorem, 161
stability of periodic orbits, 185

norm
Cr, 94
Euclidean, 3
operator, 94
supremum, 94

normal form, 486
normal modes, 235, 236
normally hyperbolic

manifold, 367
torus, 349, 367

normally nondegenerate, 356, 368

ODE, see ordinary differential
equation

omega
limit point, 79
limit set, 79

omega lemma, 98
orbit, 2

connecting, 82
heteroclinic, 51, 391
homoclinic, 391
saddle connection, 391

order k bifurcation, 524
order of differential equation, 5
ordinary differential

equation, 1, 118
infinite

dimensional, 249–261
oscillator

harmonic, 318
van der Pol, 2, 5, 91, 92, 318–

323
osculating plane, 209
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PAH curve, 353
Palais, R., 240
partial averaging, 462
partial differential

equations, 247–280
as infinite dimensional

ODE, 249–261
Burgers’ equation, 281
energy method, 254
first order, 278–280

characteristics, 278
fluids, see fluid dynamics
Fourier series, 254
Galërkin

approximation, 261–273
heat equation, 249
linearization, 251
reaction diffusion, 247
reaction-diffusion-convection,

248
rest points of, 256

period function, 257
traveling wave, 274–278

Fisher’s model, 274
passage through resonance, 465
Pasta, J., 236
pendulum

and Galileo, 447
and Hamiltonian, 34
at resonance, 463
coupled, 233–235

beats, 235
normal modes, 235
small oscillation of, 234

inverted, 241–247
stability of, 242

mathematical, 23
period function, 447
periodically forced, 408
phase modulated, 467
whirling, 529
with oscillating support, 175
with torque, 85, 463

periastron
argument of, 218

perihelion of Mercury, 374
period

annulus
definition of, 212, 337
drawing of, 212
isochronous, 343
regular, 358

function, 339, 389
of periodic orbit, 13

periodic orbit
and time-periodic

perturbations, 340–366
asymptotic stability of, 187
asymptotically stable, 19
continuable, 321
continuation, see continuation
continuation of, 317–390
definition of, 8
existence by averaging, 471
hyperbolic, 332–334, 357, 358,

367, 370
limit cycle

and asymptotic period, 194
and asymptotic phase, 194,

197
asymptotic stability, 190

of inhomogeneous linear
system, 183

persistence of hyperbolic, 332
persistent, 321
stability

and eigenvalues of Poincaré
map, 187

stable
definition of, 19

periodic solution, 71–90
perturbation theory,

see continuation
Petrovskii, I., 278
phase

curve, 2
cylinder, 60, 340
flow, 12

notations for, 14
plane, 319
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portrait, 9
shift, 372

and Arnold tongue, 373
space, 32

phase locked, 352
phase space, 9
physics

classical, 203–232
constitutive laws, 204

Picard–Fuchs equation, 449
Piskunov, N., 278
pitchfork bifurcation, 496
plug flow, 425
Poincaré

and fundamental problem
of dynamics, 220

compactification, 66
geometric theory of, 71
map, 71–78, 184, 185, 327,

340
and displacement

function, 73
and period orbits, 72
example of, 73
linearized, 346

plane, 62
section, 72, 185, 327, 340
sphere, 67

Poincaré, H., 66, 70, 71, 400
Poincaré–Andronov–Melnikov

function, 339
Poincaré–Bendixson theorem, 81,

87
Poiseuille flow, 426
polar coordinates, 56

removable singularity, 59
system of, 57

polynomial systems, 66
positive branches, 334
positively invariant, 82
Preparation theorem, 333
principal fundamental

matrix, 132, 169, 322
principle

averaging, 451, 455

contraction, 106–116
determinism, 4
Hamilton’s, 202
linearized stability, 21, 155,

161, 252
of superposition, 131

problem
critical inclination, 227
diamagnetic Kepler, 228
diffusion in multifrequency

systems, 468
fundamental problem of

dynamics, 220
Hilbert’s 16th, 79, 525
initial value, 118
periodic orbits

of ABC flows, 445
structural stability

of gradients, 51
Puiseux series, 353
punctured plane, 57
push forward

of vector field, 53

quadratic system, 79
quadrature

reduced to, 33
quasi-periodic solution, 174, 350

radius
of set, 504

Rayleigh, Lord, 318
reaction-diffusion models, 247
real analytic, 3
rectification lemma, 53
recurrence relation, 238
reduced displacement

function, 321
reduction, 321
regular

level set, 43
point, 53

regular perturbation theory, 324
regulated

function, 100
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integral of, 102
reparametrization

of time, 14–17
complete, 16
geometric interpretation, 14

rescaling, 16
and diamagnetic Kepler

problem, 232
and small parameter, 224
binary system, 206
coupled pendula, 234
in Falkner–Skan

equation, 431
in Fisher’s equation, 274
in Navier–Stokes

equations, 423
inverted pendulum, 242

residual set, 493
resonance

(m : n), 340
and averaging, 454
capture into, 465
definition of, 454
passage through, 465
relation, 340
zone, 372

resonant
definition of, 454
layer, 461
manifold, 461

rest point, 8, 352
basin of attraction, 27
hyperbolic, 22
isolated, 51, 65
location of, 20
nondegenerate, 22

return
map, 72, 320
time map, 72, 327, 328

Reynold’s number, 281, 423
Riccati equation, 183
Riemannian metric, 62
rigid body motion, 35, 91
Robbin, J., 118
Roberts, A., 304

roll up, 351

saddle connection, 391
breaking of, 51, 396
separation function, 397

saddle-node, 485, 496
bifurcation, 485, 497, 511

at entrainment
boundary, 372

bifurcation
theorem, 485, 497

Hamiltonian, 501
scalar curvature, 330
Schaeffer, D., 486
Schecter, S., 396
Schwarzschild, K., 375
second variational

equation, 337
section, 72
secular term, 377
semi-flow, 255
semi-group, 255
semistable

limit cycle, 508
rest point, 12

separation function, 397
time-dependent, 397

separatrix splitting
autonomous

perturbations, 396–406
nonautonomous

perturbations, 406–420
shock waves, 281
simple function, 100

integral of, 100
simple zero, 321
singular

differential equation, 70
perturbation, 71, 431

singularity
index of, 389
nondegenerate, 388

sink, 18, 276
slow

manifold, 71
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time, 70, 366, 463
variable, 462

Smale, S., 488
Smale–Birkoff theorem, 393
smooth

function, 1, 40
manifold, 36

solution
of ODE, 2
stable, 18
unstable, 19

Sotomayor, J., 122
source, 19
space of k-jets, 490
spectral

gap, 285
mapping theorem, 168
radius, 188

spectrum, 252
spherical coordinates, 58, 67
spring equation, 318
stability, 323

by linearization, 17–23
Lyapunov’s method, 23–26
periodic orbit, 185

stable
eigenspace, 30
in the sense of

Lyapunov, 18
manifold, 30, 351
steady state, 12
subharmonic, 346
subspace, 30

stable manifold, 284
state space, 8, 9, 32
state transition matrix, 133
steady state, 9

stable, 12, 18
Stewart, I., 486
stiffness matrix, 269
Stoker, J., 317
straightening out theorem, 53
stream function, 428
stream line, 428
strong solution

of PDE, 264
strong topology, 492
structural stability, 51, 488

and heteroclinic orbit, 51
of vector field, 51

subharmonic, 341
bifurcation function, 370
continuation point, 344, 363
stable, 346

submanifold, 38
open sets of, 39

superposition, 131
supremum norm, 94
symplectic form, 63

and Hamiltonian systems, 63
synchronization domain, 348
system of differential equations, 2

tangent
bundle, 48

fiber of, 48
map, 48
space, 44–50

definition of, 46
geometric definition, 50
of invariant manifold, 44
of submanifold, 46

Taylor’s theorem, 105
theorem

asymptotic stability, 21
averaging, 456

periodic orbits, 471
Baire’s, 493
Bautin’s, 525
Bautin’s Dulac function, 90
Bendixson’s, 89
Brouwer fixed point, 73, 77,

88
Cauchy’s, 410
chain rule, 93
continuous dependence, 3
contraction mapping, 106
Diliberto’s, 330
Dulac’s criterion, 90
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existence and uniqueness, 3,
118, 120

extensibility, 3
fiber contraction, 111
Floquet’s, 162
flow box, 53
Gronwall’s, 128
Hartman–Grobman, 22, 306,

311
Hilbert basis, 523
Hopf bifurcation, 510
Il’yashenko’s, 525
implicit function, 43, 116, 320
inverse function, 54
Jordan curve, 81
Lax–Milgram, 267
Lie’s, 521
Lie–Trotter, 145
Liouville’s, 134, 333
Loud’s, 344
Lyapunov

center, 518
instability, 27
linearized stability, 161
on Hill’s equation, 182
stability, 24

mean value, 98, 99, 105
Morse’s lemma, 388
omega lemma, 98
Poincaré–Bendixson, 81, 87
saddle-node bifurcation, 485,

497
Smale–Birkoff, 393
specific Gronwall, 130
spectral mapping, 168
Taylor’s, 105
Thom’s transversality, 492–

493
uniform contraction, 107
Weierstrass preparation, 333,

513
thermalization, 240
Thom’s transversality

theorem, 492–493
time t map, 305

time map
and action-angle

variables, 453
time-dependent

separation function, 397
topological equivalence, 488
topology

strong, 492
weak, 492

toral automorphism, 315
torus

normally hyperbolic, 349, 367
trajectory, 2
transcritical bifurcation, 496
transformation, 457
transient chaos, 394, 475
transversal, 490
transversality

of map to submanifold, 492
of vector to manifold, 72

transverse homoclinic point, 393
traveling wave, 275
trivial bundle, 110
trivial solution, 127
Trotter product formula, 145

Ulam, S., 236
ultrasubharmonic, 341
uniform contraction

mapping, 107
theorem, 107

unit
in algebra of functions, 333

unit sphere, 66
universal unfolding, 486
unperturbed system, 319
unstable steady state, 12

van der Mark, J., 318
van der Pol oscillator, 2, 318–323

continuation theory, 321
Melnikov integral for, 405
periodic solution of, 319
weakly damped, 339

van der Pol, B., 318
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variation of
constants, 155, 322
curves, 200, 397

variational equation, 76, 321, 329,
331, 337, 345, 357, 369

solution of planar, 330
vector field, 6

base point, 45
conservative, 162
principal part, 45

velocity profile, 429
Vitt, E., 317
Volterra–Lotka system, 42

weak
attractor, 510

multiplicity of, 510
focus, 513

infinite order, 522
repeller, 510

weak solution
of PDE, 264

weak topology, 492
Weierstrass

polynomial, 334
preparation theorem, 333, 513

Wiggins, S., 317
Wronskian, 180

zero solution, 127






