Ordinary Differential
Equationswith
Applications

Carmen Chicone

Springer



Springer
New York
Berlin
Heidelberg
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Texts in Applied Mathematics 84:

Editors

J-E. Marsden
L. Sirovich
M. Golubitsky
W. Jager

Advisors

G. Iooss

P. Holmes

D. Barkley

M. Dellnitz
P. Newton



Texts in Applied Mathematics

14.
15.
16.
17.
18.
19.
20.
21.
22,
23.
24,
25.
26.
27.
28.
29.

30.

Sirovich: Introduction to Applied Mathematics.

Wiggins: Introduction to Applied Nonlinear Dynamical Systems and
Chaos.

Hale/Kocak: Dynamics and Bifurcations.

Chorin/Marsden: A Mathematical Introduction to Fluid Mechanics,
3rd ed.

Hubbard/West: Differential Equations: A Dynamical Systems
Approach: Ordinary Differential Equations.

Sontag: Mathematical Control Theory: Deterministic Finite
Dimensional Systems, 2nd ed.

Perko: Differential Equations and Dynamical Systems, 2nd ed.

Seaborn: Hypergeometric Functions and Their Applications.

Pipkin: A Course on Integral Equations.

Hoppensteadt/Peskin: Mathematics in Medicine and the Life
Sciences.

Braun: Differential Equations and Their Applications, 4th ed.

Stoer/Bulirsch: Introduction to Numerical Analysis, 2nd ed.

Renardy/Rogers: A First Graduate Course in Partial Differential
Equations.

Banks: Growth and Diffusion Phenomena: Mathematical
Frameworks and Applications.

Brenner/Scott: The Mathematical Theory of Finite Element
Methods.

Van de Velde: Concurrent Scientific Computing.

Marsden/Ratiu: Introduction to Mechanics and Symmetry, 2nd ed.

Hubbard/West: Differential Equations: A Dynamical Systems
Approach: Higher-Dimensional Systems.

Kaplan/Glass: Understanding Nonlinear Dynamics.

Holmes: Introduction to Perturbation Methods.

Curtain/Zwart: An Introduction to Infinite-Dimensional Linear
Systems Theory.

Thomas: Numerical Partial Differential Equations: Finite Difference
Methods.

Taylor: Partial Differential Equations: Basic Theory.

Merkin: Introduction to the Theory of Stability of Motion.

Naber: Topology, Geometry, and Gauge Fields: Foundations.

Polderman/Willems: Introduction to Mathematical Systems Theory:
A Behavioral Approach.

Reddy: Introductory Functional Analysis with Applications to
Boundary-Value Problems and Finite Elements.

Gustafson/Wilcox: Analytical and Computational Methods of
Advanced Engineering Mathematics.

Tveito/ Winther: Introduction to Partial Differential Equations: A
Computational Approach.

Gasquet/Witomski: Fourier Analysis and Applications: Filtering,
Numerical Computation, Wavelets.

(continued after index)



Carmen Chicone

Ordinary Differential
Equations with Applications

With 68 Illustrations

\f/\:\:\/ # Springer




Carmen Chicone

Department of Mathematics
University of Missouri

Columbia, MO 65211

USA
carmen@chicone.math.missouri.edu

Series Editors

J.E. Marsden L. Sirovich

Control and Dynamical Systems, 107-81  Division of Applied Mathematics
California Institute of Technology Brown University

Pasadena, CA 91125 Providence, RI 02912

USA USA

M. Golubitsky W. Jager

Department of Mathematics Department of Applied Mathematics
University of Houston Universitit Heidelberg
Houston, TX 77204-3476 Im Neuenheimer Feld 294

USA 69120 Heidelberg

Germany

Mathematics Subject Classification (1991): 34-01, 34A34, 34C35, 58Fxx

Library of Congress Cataloging-in-Publication Data
Chicone, Carmen Charles.
Ordinary differential equations with applications/
Carmen Chicone.

. cm. — (Texts in applied mathematics; 34)
Includes bibliographical references and index.
ISBN 0-387-98535-2 (hardcover: alk. paper)

1. Differential equations.  I. Title. I Series.
QA372.C5117 1999
515".35-dc21 99-26376

© 1999 Springer-Verlag New York, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue,
New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or heraf-
ter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even
if the former are not especially identified, is not to be taken as a sign that such names, as
understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely
by anyone.

ISBN 0-387-98535-2 Springer-Verlag New York Berlin Heidelberg SPIN 10678928



To Jenny, for giving me the gift of time.



Preface

This book is based on a two-semester course in ordinary differential equa-
tions that I have taught to graduate students for two decades at the Uni-
versity of Missouri. The scope of the narrative evolved over time from
an embryonic collection of supplementary notes, through many classroom
tested revisions, to a treatment of the subject that is suitable for a year (or
more) of graduate study.

If it is true that students of differential equations give away their point of
view by the way they denote the derivative with respect to the independent
variable, then the initiated reader can turn to Chapter 1, note that I write
2, not z’, and thus correctly deduce that this book is written with an eye
toward dynamical systems. Indeed, this book contains a thorough intro-
duction to the basic properties of differential equations that are needed to
approach the modern theory of (nonlinear) dynamical systems. However,
this is not the whole story. The book is also a product of my desire to
demonstrate to my students that differential equations is the least insular
of mathematical subjects, that it is strongly connected to almost all areas
of mathematics, and it is an essential element of applied mathematics.

When I teach this course, I use the first part of the first semester to pro-
vide a rapid, student-friendly survey of the standard topics encountered in
an introductory course of ordinary differential equations (ODE): existence
theory, flows, invariant manifolds, linearization, omega limit sets, phase
plane analysis, and stability. These topics, covered in Sections 1.1-1.8 of
Chapter 1 of this book, are introduced, together with some of their im-
portant and interesting applications, so that the power and beauty of the
subject is immediately apparent. This is followed by a discussion of linear
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systems theory and the proofs of the basic theorems on linearized stabil-
ity in Chapter 2. Then, I conclude the first semester by presenting one
or two realistic applications from Chapter 3. These applications provide a
capstone for the course as well as an excellent opportunity to teach the
mathematics graduate students some physics, while giving the engineering
and physics students some exposure to applications from a mathematical
perspective.

In the second semester, I introduce some advanced concepts related to
existence theory, invariant manifolds, continuation of periodic orbits, forced
oscillators, separatrix splitting, averaging, and bifurcation theory. However,
since there is not enough time in one semester to cover all of this material
in depth, I usually choose just one or two of these topics for presentation in
class. The material in the remaining chapters is assigned for private study
according to the interests of my students.

My course is designed to be accessible to students who have only stud-
ied differential equations during one undergraduate semester. While I do
assume some knowledge of linear algebra, advanced calculus, and analysis,
only the most basic material from these subjects is required: eigenvalues and
eigenvectors, compact sets, uniform convergence, the derivative of a func-
tion of several variables, and the definition of metric and Banach spaces.
With regard to the last prerequisite, I find that some students are afraid
to take the course because they are not comfortable with Banach space
theory. However, I put them at ease by mentioning that no deep properties
of infinite dimensional spaces are used, only the basic definitions.

Exercises are an integral part of this book. As such, many of them are
placed strategically within the text, rather than at the end of a section.
These interruptions of the flow of the narrative are meant to provide an
opportunity for the reader to absorb the preceding material and as a guide
to further study. Some of the exercises are routine, while others are sections
of the text written in “exercise form.” For example, there are extended ex-
ercises on structural stability, Hamiltonian and gradient systems on man-
ifolds, singular perturbations, and Lie groups. My students are strongly
encouraged to work through the exercises. How is it possible to gain an un-
derstanding of a mathematical subject without doing some mathematics?
Perhaps a mathematics book is like a musical score: by sight reading you
can pick out the notes, but practice is required to hear the melody.

The placement of exercises is just one indication that this book is not
written in axiomatic style. Many results are used before their proofs are pro-
vided, some ideas are discussed without formal proofs, and some advanced
topics are introduced without being fully developed. The pure axiomatic
approach forbids the use of such devices in favor of logical order. The other
extreme would be a treatment that is intended to convey the ideas of the
subject with no attempt to provide detailed proofs of basic results. While
the narrative of an axiomatic approach can be as dry as dust, the excite-
ment of an idea-oriented approach must be weighed against the fact that
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it might leave most beginning students unable to grasp the subtlety of the
arguments required to justify the mathematics. I have tried to steer a mid-
dle course in which careful formulations and complete proofs are given for
the basic theorems, while the ideas of the subject are discussed in depth
and the path from the pure mathematics to the physical universe is clearly
marked. I am reminded of an esteemed colleague who mentioned that a
certain textbook “has lots of fruit, but no juice.” Above all, I have tried to
avoid this criticism.

Application of the implicit function theorem is a recurring theme in the
book. For example, the implicit function theorem is used to prove the rec-
tification theorem and the fundamental existence and uniqueness theorems
for solutions of differential equations in Banach spaces. Also, the basic re-
sults of perturbation and bifurcation theory, including the continuation of
subharmonics, the existence of periodic solutions via the averaging method,
as well as the saddle node and Hopf bifurcations, are presented as appli-
cations of the implicit function theorem. Because of its central role, the
implicit function theorem and the terrain surrounding this important re-
sult are discussed in detail. In particular, I present a review of calculus in
a Banach space setting and use this theory to prove the contraction map-
ping theorem, the uniform contraction mapping theorem, and the implicit
function theorem.

This book contains some material that is not encountered in most treat-
ments of the subject. In particular, there are several sections with the title
“Origins of ODE,” where I give my answer to the question “What is this
good for?” by providing an explanation for the appearance of differential
equations in mathematics and the physical sciences. For example, I show
how ordinary differential equations arise in classical physics from the fun-
damental laws of motion and force. This discussion includes a derivation
of the Euler-Lagrange equation, some exercises in electrodynamics, and
an extended treatment of the perturbed Kepler problem. Also, I have in-
cluded some discussion of the origins of ordinary differential equations in
the theory of partial differential equations. For instance, I explain the idea
that a parabolic partial differential equation can be viewed as an ordinary
differential equation in an infinite dimensional space. In addition, traveling
wave solutions and the Galérkin approximation technique are discussed.
In a later “origins” section, the basic models for fluid dynamics are intro-
duced. I show how ordinary differential equations arise in boundary layer
theory. Also, the ABC flows are defined as an idealized fluid model, and I
demonstrate that this model has chaotic regimes. There is also a section on
coupled oscillators, a section on the Fermi-Ulam—Pasta experiments, and
one on the stability of the inverted pendulum where a proof of linearized
stability under rapid oscillation is obtained using Floquet’s method and
some ideas from bifurcation theory. Finally, in conjunction with a treat-
ment of the multiple Hopf bifurcation for planar systems, I present a short
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introduction to an algorithm for the computation of the Lyapunov quanti-
ties as an illustration of computer algebra methods in bifurcation theory.

Another special feature of the book is an introduction to the fiber con-
traction principle as a powerful tool for proving the smoothness of functions
that are obtained as fixed points of contractions. This basic method is used
first in a proof of the smoothness of the flow of a differential equation
where its application is transparent. Later, the fiber contraction principle
appears in the nontrivial proof of the smoothness of invariant manifolds
at a rest point. In this regard, the proof for the existence and smoothness
of stable and center manifolds at a rest point is obtained as a corollary of
a more general existence theorem for invariant manifolds in the presence
of a “spectral gap.” These proofs can be extended to infinite dimensions.
In particular, the applications of the fiber contraction principle and the
Lyapunov—Perron method in this book provide an introduction to some of
the basic tools of invariant manifold theory.

The theory of averaging is treated from a fresh perspective that is in-
tended to introduce the modern approach to this classical subject. A com-
plete proof of the averaging theorem is presented, but the main theme of
the chapter is partial averaging at a resonance. In particular, the “pen-
dulum with torque” is shown to be a universal model for the motion of a
nonlinear oscillator near a resonance. This approach to the subject leads
naturally to the phenomenon of “capture into resonance,” and it also pro-
vides the necessary background for students who wish to read the literature
on multifrequency averaging, Hamiltonian chaos, and Arnold diffusion.

I prove the basic results of one-parameter bifurcation theory—the saddle
node and Hopf bifurcations—using the Lyapunov-Schmidt reduction. The
fact that degeneracies in a family of differential equations might be un-
avoidable is explained together with a brief introduction to transversality
theory and jet spaces. Also, the multiple Hopf bifurcation for planar vector
fields is discussed. In particular, and the Lyapunov quantities for polyno-
mial vector fields at a weak focus are defined and this subject matter is
used to provide a link to some of the algebraic techniques that appear in
normal form theory.

Since almost all of the topics in this book are covered elsewhere, there is
no claim of originality on my part. I have merely organized the material in
a manner that I believe to be most beneficial to my students. By reading
this book, I hope that you will appreciate and be well prepared to use the
wonderful subject of differential equations.

Columbia, Missouri Carmen Chicone
June 1999
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1

Introduction to Ordinary Differential
Equations

This chapter is about the most basic concepts of the theory of differential
equations. We will answer some fundamental questions: What is a differen-
tial equation? Do differential equations always have solutions? Are solutions
of differential equations unique? However, the most important goal of this
chapter is to introduce a geometric interpretation for the space of solutions
of a differential equation. Using this geometry, we will introduce some of
the elements of the subject: rest points, periodic orbits, and invariant man-
ifolds. Finally, we will review the calculus in a Banach space setting and
use it to prove the classic theorems on the existence, uniqueness, and ex-
tensibility of solutions. References for this chapter include [8], [11], [49],
[51], [78], [83], [95], [107], [141], [164], and [179].

1.1 Existence and Uniqueness

Let J C R, U C R*, and A C R* be open subsets, and suppose that
f:JxUxA— R"is a smooth function. Here the term “smooth” means
that the function f is continuously differentiable. An ordinary differential
equation (ODE) is an equation of the form

&= f(t,z,\) (1.1)

where the dot denotes differentiation with respect to the independent vari-
able ¢ (usually a measure of time), the dependent variable z is a vector of
state variables, and ) is a vector of parameters. As convenient terminology,
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especially when we are concerned with the components of a vector differ-
ential equation, we will say that equation (1.1) is a system of differential
equations. Also, if we are interested in changes with respect to parameters,
then the differential equation is called a family of differential equations.

Example 1.1. The forced van der Pol oscillator

€Tl = T2,

iy = b(1 — 23)zy — Wz +acos
is a differential equation with J = R, z = (21, 22) € U = R?,
A ={(a,b,w,Q) : (a,b) € R*,w > 0,Q > 0},
and f: R x R? x A — R? defined in components by
(t,x1, 20, a,b,w, Q) — (22,b(1 — 22)xy — W2z + acos Q).

If A € A is fixed, then a solution of the differential equation (1.1) is a
function ¢ : Jy — U given by t — ¢(t), where Jy is an open subset of J,
such that

dg

) = F(E0(0),0) (12)

for all t € Jy.

In this context, the words “trajectory,” “phase curve,” and “integral
curve” are also used to refer to solutions of the differential equation (1.1).
However, it is useful to have a term that refers to the image of the solution
in R™. Thus, we define the orbit of the solution ¢ to be the set {¢(t) € U :
t e JO}

When a differential equation is used to model the evolution of a state
variable for a physical process, a fundamental problem is to determine the
future values of the state variable from its initial value. The mathematical
model is then given by a pair of equations

bR 14

= f(t,x,\), x(tg) = g

where the second equation is called an initial condition. If the differential
equation is defined as equation (1.1) and (to,xo) € J x U, then the pair
of equations is called an initial value problem. Of course, a solution of this
initial value problem is just a solution ¢ of the differential equation such
that qb(to) = X9-

If we view the differential equation (1.1) as a family of differential equa-
tions depending on the parameter vector and perhaps also on the initial
condition, then we can consider corresponding families of solutions—if they
exist—Dby listing the variables under consideration as additional arguments.
For example, we will write ¢ — ¢(¢, tg, 2o, A) to specify the dependence of
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a solution on the initial condition z(tp) = z¢ and on the parameter vector
A

The fundamental issues of the general theory of differential equations
are the existence, uniqueness, extensibility, and continuity with respect to
parameters of solutions of initial value problems. Fortunately, all of these
issues are resolved by the following foundational results of the subject:
Every initial value problem has a unique solution that is smooth with respect
to initial conditions and parameters. Moreover, the solution of an initial
value problem can be extended in time until it either reaches the domain of
definition of the differential equation or blows up to infinity.

The next three theorems are the formal statements of the foundational
results of the subject of differential equations. They are, of course, used
extensively in all that follows.

Theorem 1.2 (Existence and Uniqueness). If J C R, U C R", and
A C R* are open sets, f : J x U x A — R"™ is a smooth function, and
(to,xo,Ao) € J X U x A, then there exist open subsets Jo C J, Uy C U,
Ao C A with (to,x0,X0) € Jo X Uy X Ag and a function ¢ : Jy x Jy X
Uog x Ag — R™ given by (t,s,z,A) — @(t,s,x,\) such that for each point
(t1,21,\1) € Jo x Uy X Ao, the function t — ¢(t,t1,21, A1) is the unique
solution defined on Jy of the initial value problem given by the differential
equation (1.1) and the initial condition x(t1) = x1.

Recall that if £k = 1,2,... , 00, a function defined on an open set is called
C* if the function together with all of its partial derivatives up to and
including those of order k are continuous on the open set. Similarly, a func-
tion is called real analytic if it has a convergent power series representation
with a positive radius of convergence at each point of the open set.

Theorem 1.3 (Continuous Dependence). If, for the system (1.1), the
hypotheses of Theorem 1.2 are satisfied, then the solution ¢ : Jy X Jo x Uy X
Ao — R™ of the differential equation (1.1) is a smooth function. Moreover,
if f is % for some k = 1,2,... ,00 (respectively, f is real analytic), then
¢ is also O (respectively, real analytic).

As a convenient notation, we will write |z| for the usual Euclidean norm
of x € R™. However, because all norms on R" are equivalent, the results of
this section are valid for an arbitrary norm on R"™.

Theorem 1.4 (Extensibility). If, for the system (1.1), the hypotheses of
Theorem 1.2 hold, and if the mazimal open interval of existence of the so-
lution t — ¢(t) (with the last three of its arguments suppressed) is given by
(o, B) with co < o < B < 00, then |¢(t)| approaches oo or ¢(t) approaches
a point on the boundary of U ast — (3.

In case there is some finite T and lim;_, 7 |¢(¢)| approaches oo, we say
the solution blows up in finite time.
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The existence and uniqueness theorem is so fundamental in science that
it is sometimes called the “principle of determinism.” The idea is that if
we know the initial conditions, then we can predict the future states of the
system. The principle of determinism is of course validated by the proof
of the existence and uniqueness theorem. However, the interpretation of
this principle for physical systems is not as clear as it might seem. The
problem is that solutions of differential equations can be very complicated.
For example, the future state of the system might depend sensitively on
the initial state of the system. Thus, if we do not know the initial state
exactly, the final state may be very difficult (if not impossible) to predict.

The variables that we will specify as explicit arguments for the solution
¢ of a differential equation depend on the context, as we have mentioned
above. However, very often we will write t — ¢(t,x) to denote the solution
such that ¢(0, ) = z. Similarly, when we wish to specify the parameter vec-
tor, we will use t — ¢(t, x, A) to denote the solution such that ¢(0, x, \) = x.

Example 1.5. The solution of the differential equation & = 22, x € R, is
given by the elementary function

Blt,a) =
For this example, J = R and U = R. Note that ¢(0,z) = z. If © > 0, then
the corresponding solution only exists on the interval Jy = (—oo,z71).
Also, we have that |¢(t,z)| — oo as t — x~!. This illustrates one of the
possibilities mentioned in the extensibility theorem, namely, blow up in
finite time.

Exercise 1.6. Consider the differential equation £ = —/z, * € R. Find the
solution with dependence on the initial point, and discuss the extensibility of
solutions.

1.2 Types of Differential Equations

Differential equations may be classified in several different ways. In this
section we note that the independent variable may be implicit or explicit,
and that higher order derivatives may appear.

An autonomous differential equation is given by

&= f(x,\), zeR” XeRF; (1.3)

that is, the function f does not depend explicitly on the independent vari-
able. If the function f does depend explicitly on ¢, then the corresponding
differential equation is called nonautonomous.
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In physical applications, we often encounter equations containing second,
third, or higher order derivatives with respect to the independent variable.
These are called second order differential equations, third order differential
equations, and so on, where the the order of the equation refers to the order
of the highest order derivative with respect to the independent variable that
appears explicitly. In this hierarchy, a differential equation is called a first
order differential equation.

Recall that Newton’s second law—the rate of change of the linear mo-
mentum acting on a body is equal to the sum of the forces acting on
the body—involves the second derivative of the position of the body with
respect to time. Thus, in many physical applications the most common
differential equations used as mathematical models are second order differ-
ential equations. For example, the natural physical derivation of van der
Pol’s equation leads to a second order differential equation of the form

i + b(u? — 1)0 + w?u = a cos Q. (1.4)

An essential fact is that every differential equation is equivalent to a first
order system. To illustrate, let us consider the conversion of van der Pol’s
equation to a first order system. For this, we simply define a new variable
v := % so that we obtain the following system:

U=,
0= —w?u 4 b(1 — u*)v + acos Q. (1.5)

Clearly, this system is equivalent to the second order equation in the sense
that every solution of the system determines a solution of the second or-
der van der Pol equation, and every solution of the van der Pol equation
determines a solution of this first order system.

Let us note that there are many possibilities for the construction of
equivalent first order systems—we are not required to define v := . For
example, if we define v = a@ where a is a nonzero constant, and follow the
same procedure used to obtain system (1.5), then we will obtain a family
of equivalent first order systems. Of course, a differential equation of order
m can be converted to an equivalent first order system by defining m — 1
new variables in the obvious manner.

If our model differential equation is a nonautonomous differential equa-
tion of the form & = f(¢,x), where we have suppressed the possible de-
pendence on parameters, then there is an “equivalent” autonomous system
obtained by defining a new variable as follows:

T = f(T7 l’),
F=1. (1.6)

For example, if t — (¢(t), 7(¢)) is a solution of this system with ¢(tg) = xg
and 7(tg) = to, then 7(¢) =t and

o(t) = f(t.6(1),  &(to) = 0.
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Thus, the function ¢ — ¢(t) is a solution of the initial value problem

&= f(t,x), z(to) = 0.

In particular, every solution of the nonautonomous differential equation
can be obtained from a solution of the autonomous system (1.6).

We have just seen that all ordinary differential equations correspond to
first order autonomous systems. As a result, we will pay special attention
to the properties of autonomous systems. In most cases, the conversion of
a higher order differential equation to a first order system is useful. On
the other hand, the conversion of nonautonomous equations (or systems)
to autonomous systems is not always wise. However, there is one notable
exception. Indeed, if a nonautonomous system is given by & = f(¢, ) where
f is a periodic function of ¢, then, as we will see, the conversion to an
autonomous system is very often the best way to analyze the system.

Exercise 1.7. Find a first order system that is equivalent to the third order
differential equation

ex” +ax’ — (') +1=0

where ¢ is a parameter and the ' denotes differentiation with respect to the
independent variable.

1.3 Geometric Interpretation of Autonomous
Systems

In this section we will describe a very important geometric interpretation
of the autonomous differential equation

i=flz), zeR™ (1.7)

The function given by = — (z, f(z)) defines a vector field on R™ associ-
ated with the differential equation (1.7). Here the first component of the
function specifies the base point and the second component specifies the
vector at this base point. A solution ¢ — ¢(t) of (1.7) has the property that
its tangent vector at each time t is given by

(6(£), (1)) = (6(2), F($(1)))-

In other words, if £ € R™ is on the orbit of this solution, then the tangent
line to the orbit at £ is generated by the vector (&, f(£)), as depicted in
Figure 1.1.

We have just mentioned two essential facts: (i) There is a one-to-one
correspondence between vector fields and autonomous differential equa-
tions. (i4) Every tangent vector to a solution curve is given by a vector in
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FIGURE 1.1. Tangent vector field and associated integral curve.

FIGURE 1.2. Closed trajectory (left) and fictitious trajectory (right) for an au-
tonomous differential equation.

the vector field. These facts suggest that the geometry of the associated
vector field is closely related to the geometry of the solutions of the dif-
ferential equation when the solutions are viewed as curves in a Euclidean
space. This geometric interpretation of the solutions of autonomous dif-
ferential equations provides a deep insight into the general nature of the
solutions of differential equations, and at the same time suggests the “ge-
ometric method” for studying differential equations: qualitative features
expressed geometrically are paramount; analytic formulas for solutions are
of secondary importance. Finally, let us note that the vector field associ-
ated with a differential equation is given explicitly. Thus, one of the main
goals of the geometric method is to derive qualitative properties of solutions
directly from the vector field without “solving” the differential equation.
As an example, let us consider the possibility that the solution curve
starting at o € R™ at time ¢ = 0 returns to the point ¢ at t = 7 > 0.
Clearly, the tangent vector of the solution curve at the point ¢(0) = xq is
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the same as the tangent vector at ¢(7). The geometry suggests that the
points on the solution curve defined for ¢t > 7 retraces the original orbit.
Thus, it is possible that the orbit of an autonomous differential equation is
a closed curve as depicted in the left panel of Figure 1.2. However, an orbit
cannot cross itself as in the right panel of Figure 1.2. If there were such a
crossing, then there would have to be two different tangent vectors of the
same vector field at the crossing point.

The vector field corresponding to a nonautonomous differential equation
changes with time. In particular, if a solution curve “returns” to its starting
point, the direction specified by the vector field at this point generally
depends on the time of arrival. Thus, the curve will generally “leave” the
starting point in a different direction than it did originally. For example,
suppose that t — (g(t), h(t)) is a curve in R? that has a transverse crossing
as in the right panel of Figure 1.2, and consider the following system of
differential equations

e, dy .,

Cogw, L=we). (1)
We have just defined a differential equation with the given curve as a solu-
tion. Thus, every smooth curve is a solution of a differential equation, but
not every curve is a solution of an autonomous differential equation.

The fact that solution curves of nonautonomous differential equations
can cross themselves is an effect caused by not treating the explicit time
variable on an equal footing with the dependent variables. Indeed, if we
consider the corresponding autonomous system formed by adding time as
a new variable, then, in the extended state space (the domain of the state
and time variables), orbits cannot cross themselves. For example, the state
space of the autonomous system of differential equations

corresponding to the nonautonomous differential equation (1.8), is R3. The
system’s orbits in the extended state space cannot cross—the corresponding
vector field in R? is autonomous.

If the autonomous differential equation (1.7) has a closed orbit and ¢ —
¢(t) is a solution with its initial value on this orbit, then it is clear that
there is some T' > 0 such that ¢(T) = ¢(0). In fact, as we will show in
the next section, even more is true: The solution is T-periodic; that is,
ot +T) = ¢(t) for all ¢ € R. For this reason, closed orbits of autonomous
systems are also called periodic orbits.

Another important special type of orbit is called a rest point. To define
this concept, note that if f(xg) = 0 for some zy € R™, then the constant
function ¢ : R — R™ defined by ¢(t) = ¢ is a solution of the differential
equation (1.7). Geometrically, the corresponding orbit consists of exactly
one point. Thus, if f(z¢) = 0, then x( is a rest point. Such a solution is
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.
S/

FIGURE 1.3. A curve in phase space consisting of four orbits of an autonomous
differential equation.

also called a steady state, a critical point, an equilibrium point, or a zero
(of the associated vector field).

What are all the possible orbit types for autonomous differential equa-
tions? The answer depends on what we mean by “types.” However, we have
already given a partial answer: An orbit can be a point, a simple closed
curve, or the homeomorphic image of an interval. A geometric picture of
all the orbits of an autonomous differential equation is called its phase por-
trait or phase diagram. This terminology comes from the notion of phase
space in physics, the space of positions and momenta. But here the phase
space is simply the space R", the domain of the vector field that defines
the autonomous differential equation. For the record, the state space in
physics is the space of positions and velocities. However, when used in the
context of abstract vector fields, the terms state space and phase space are
synonymous. The fundamental problem of the geometric theory of differen-
tial equations is evident: Given a differential equation, determine its phase
portrait.

Because there are essentially only the three types of orbits mentioned in
the last paragraph, it might seem that phase portraits would not be too
complicated. However, as we will see, even the portrait of a single orbit can
be very complex. Indeed, the homeomorphic image of an interval can be a
very complicated subset in a Euclidean space. As a simple but important
example of a complex geometric feature of a phase portrait, let us note the
curve that crosses itself in Figure 1.1. Such a curve cannot be an orbit of
an autonomous differential equation. However, if the crossing point on the
depicted curve is a rest point of the differential equation, then such a curve
can exist in the phase portrait as a union of the four orbits indicated in
Figure 1.3.

Exercise 1.8. Consider the harmonic oscillator (a model for an undamped
spring) given by the second order differential equation i + w?u = 0 with the
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FIGURE 1.4. Phase portrait of the harmonic oscillator

equivalent first order system
U = wu, U= —wu. (1.9)

The phase portrait, in the phase plane, consists of one rest point at the origin
of R? with all other solutions being simple closed curves as in Figure 1.4. Solve
the differential equation and verify these facts. Find the explicit time dependent
solution that passes through the point (u,v) = (1,1) at time ¢ = 0. Note that
the system

is also equivalent to the harmonic oscillator. Is its phase portrait different from
the phase portrait of the system (1.9)? Can you make precise the notion that two
phase portraits are the same?

Exercise 1.9. Suppose that F' : R — R is a positive periodic function with
period p > 0. If ¢ — x(t) is a solution of the differential equation ¢ = F(x) and

7 / Ty
= ,
o F(x)

then prove that z(¢t+7)—x(t) = p for all t € R. What happens for the case where
F is periodic but not of fixed sign? Hint: Define G to be an antiderivative of %
Show that the function z — G(z +p) — G(z) is constant and G(z(b)) — G(z(a)) =
b—a.

In case our system depends on parameters, the collection of the phase
portraits corresponding to each choice of the parameter vector is called a
bifurcation diagram.

As a simple but important example, consider the differential equation
i = p— 2% x € R, that depends on the parameter u € R. If 1 = 0, then
the phase portrait, on the phase line, is depicted in Figure 1.5. If we put
together all the phase portrait “slices” in R x R, where a slice corresponds
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FIGURE 1.5. Phase portrait of & = u — 2% for pn = 0.

FIGURE 1.6. Bifurcation diagram & = p — 2.
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to a fixed value of u, then we produce the bifurcation diagram, Figure 1.6.
Note that if p < 0, there is no rest point. When p = 0, a rest point is
born in a “blue sky catastrophe.” As u increases from p = 0, there is a
“saddle-node” bifurcation; that is, two rest points appear. If u < 0, this
picture also tells us the fate of each solution as t — oo.

No matter which initial condition we choose, the solution goes to —oo
in finite positive time. When g = 0 there is a steady state. If ¢ > 0, then
the solution t — ¢(t,x¢) with initial condition ¢(0,xz¢) = z¢ approaches
this steady state; that is, ¢(¢,29) — 0 as t — co. Whereas, if 29 < 0, then
d(t,xg) = 0 as t — —oo. In this case, we say that xq is a semistable rest
point. However, if > 0 and z¢ > 0, then the solution ¢(¢,z9) — /1 as
t = oo. Thus, zg = /p is a stable steady state. The point xg = —,/p is an
unstable steady state.

1.4 Flows

An important property of the set of solutions of the autonomous differential
equation (1.7),

i=f(z), =zeR"

is the fact that these solutions form a one-parameter group that defines a
phase flow. More precisely, let us define the function ¢ : R x R — R"™ as
follows: For z € R™, let ¢t — ¢(¢, z) denote the solution of the autonomous
differential equation (1.7) such that ¢(0,z) = z.

We know that solutions of a differential equation may not exist for all
t € R. However, for simplicity, let us assume that every solution does exist
for all time. If this is the case, then each solution is called complete, and the
fact that ¢ defines a one-parameter group is expressed concisely as follows:

¢(t + 571') - ¢(t, qb(s,x))

In view of this equation, if the solution starting at time zero at the point
x is continued until time s, when it reaches the point ¢(s,z), and if a new
solution at this point with initial time zero is continued until time ¢, then
this new solution will reach the same point that would have been reached if
the original solution, which started at time zero at the point z, is continued
until time ¢ + s.

The prototypical example of a flow is provided by the general solution
of the ordinary differential equation & = ax, x € R, a € R. The solution is
given by ¢(t,zg) = ez, and it satisfies the group property

Bt + 8,30) = ez = e (e mg) = (t, e x0) = (L, (s, 70)).-

For the general case, let us suppose that ¢ — ¢(¢,x) is the solution of
the differential equation (1.7). Fix s € R, x € R", and define

"/’(t> = (b(t + 5, .7;), fY(t) = (b(ta ¢(87 CL‘))
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Note that ¢(s,z) is a point in R™. Therefore, v is a solution of the differ-
ential equation (1.7) with v(0) = ¢(s, ). The function ¢ is also a solution
of the differential equation because

d d

W= D4 s0) = 10l 4 5,2) = FWO)).
Finally, note that ¥(0) = ¢(s,x) = v(0). We have proved that both ¢ —
¥(t) and t — (t) are solutions of the same initial value problem. Thus, by
the uniqueness theorem, (t) = ¥ (t). The idea of this proof—two functions
that satisfy the same initial value problem are identical—is often used in
the theory and the applications of differential equations.

By the theorem on continuous dependence, ¢ is a smooth function. In
particular, for each fixed ¢ € R, the function = — ¢(¢,z) is a smooth
transformation of R™. In particular, if ¢ = 0, then & — ¢(0,z) is the
identity transformation. Let us also note that

Tr = ¢(O,I) = d)(t —t, ‘T) = ¢(t7 ¢(7tvx)) = (b(*tv gf)(t,l’))

In other words, z — ¢(—t,x) is the inverse of the function z — ¢(t,z).
Thus, in fact, z — ¢(¢, x) is a diffeomorphism for each fixed ¢ € R.

If J x U is a product open subset of R x R", and if ¢ : J x U — R"
is a function given by (t,z) — ¢(t,x) such that ¢(0,z) = z and such
that ¢(t + s,z) = ¢(t, #(s,2z)) whenever both sides of the equation are
defined, then we say that ¢ is a flow. Of course, if t — ¢(t,x) defines the
family of solutions of the autonomous differential equation (1.7) such that
#(0,x) = x, then ¢ is a flow.

Exercise 1.10. For each integer p, construct the flow of the differential equa-
tion & = xP.

Exercise 1.11. Consider the differential equation @ = ¢. Construct the family
of solutions ¢t — ¢(t, &) such that ¢(0,£) = £ for & € R. Does ¢ define a flow?
Explain.

Suppose that zg € R®, T > 0, and that ¢(T,z¢) = xo; that is, the
solution returns to its initial point after time 7. Then ¢(t + T,zo) =
o(t, d(T,z0)) = &(t,z0). In other words, ¢t — ¢(t,zo) is a periodic func-
tion with period T. The smallest number 7" > 0 with this property is called
the period of the periodic orbit through xg.

Exercise 1.12. Write ii + au = 0, u € R, @ € R as a first order system.
Determine the flow of the system, and verify the flow property directly. Also,
describe the bifurcation diagram of the system.

Exercise 1.13. Determine the flow of the first order system

i=1y® — Y= —2xy.
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Show that (almost) every orbit lies on an circle. Note that the flow gives rational
parameterizations for the circular orbits. Hint: Define z := = + iy.

In the mathematics literature, the notations ¢ — ¢;(z) and t — ¢*(z)
are often used in place of t — ¢(t,z) for the solution of the differential
equation

= f(z), x € R™,

that starts at = at time ¢t = 0. We will use all three notations. The only
possible confusion arises when subscripts are used for partial derivatives.
However, the meaning of the notation will be clear from the context in
which it appears.

1.4.1 Reparametrization of Time

Suppose that U is an open set in R, f : U — R”™ is a smooth function, and
g : U — R is a positive smooth function. What is the relationship among
the solutions of the differential equations

i = f(x), (1.10)
i = g(x)f(2)? (1.11)

The vector fields defined by f and gf have the same direction at each
point in U, only their lengths are different. Thus, by our geometric inter-
pretation of autonomous differential equations, it is intuitively clear that
the differential equations (1.10) and (1.11) have the same phase portraits
in U. This fact is a corollary of the next proposition.

Proposition 1.14. If J C R is an open interval containing the origin and
v :J = R"™ is a solution of the differential equation (1.10) with v(0) =
xg € U, then the function B : J — R given by

t
:/o s

is invertible on its range K C R. If p : K — J is the inverse of B, then
the identity

holds for allt € K, and the function o : K — R™ given by o(t) = v(p(t)) is
the solution of the differential equation (1.11) with initial condition o(0) =
Zo-
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Proof. The function s — 1/g(y(s)) is continuous on J. So B is defined
on J and its derivative is everywhere positive. Thus, B is invertible on its
range. If p is its inverse, then

and

Exercise 1.15. Use Proposition 1.14 to prove that differential equations (1.10)
and (1.11) have the same phase portrait in U.

The fact that p in Proposition 1.14 is the inverse of B can be expressed

by the formula
L 1
= ——ds
/0 9(7(s))

Thus, if we view p as a new time-like variable (that is, a variable that
increases with time), then we have

dt 1

dp g(v(p))’

and therefore the differential equation (1.11), with the change of indepen-
dent variable from ¢ to p, is given by

dr dzx dt
o _ B _ ).
dp dtdp

In particular, this is just differential equation (1.10) with the independent
variable renamed.

The same result is obtained from a different point of view by using the
definition of the solution of a differential equation to obtain the identity

%[v(p(t))] = 9(v(p®))) (v (p(1))-

Equivalently, we have that

and therefore
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If we view this equation as a differential equation for «y, then we can express
it in the form

T~ 1)

As a convenient expression, we say that the differential equation (1.10)
is obtained from the differential equation (1.11) by a reparametrization of
time.

In the most important special cases the function g is constant. If its con-
stant value is ¢ > 0, then the reparametrization of the differential equation
& = cf(x) by p = ct results in the new differential equation

dx
]
Reparametrization in these cases is also called rescaling.
Note that rescaling, as in the last paragraph, of the differential equation
& = cf(x) produces a differential equation in which the parameter ¢ has
been eliminated. This idea is often used to simplify differential equations.
Also, the same rescaling is used in applied mathematics to render the inde-
pendent variable dimensionless. For example, if the original time variable ¢
is measured in seconds, and the scale factor ¢ has the units of 1/sec, then
the new variable p is dimensionless.
The next proposition is a special case of the following claim: Every au-
tonomous differential equation has a complete reparametrization (see Ex-
ercise 1.19).

Proposition 1.16. If the differential equation © = f(x) is defined on R™,
then the differential equation

B 1
1+ f@))?

is defined on R™ and its flow is complete.

T

f(@) (112)

Proof. The vector field corresponding to the differential equation (1.12) is
smoothly defined on all of R™. If ¢ is one of its solutions with initial value
0(0) = zp and ¢ is in the domain of o, then, by integration with respect to
the independent variable, we have that

t 1
o(t) — 0(0) = / R s

Note that the integrand has norm less than one and use the triangle in-
equality (taking into account the fact that ¢ might be negative) to obtain
the following estimate:

o (®)] < |wol + [t]-
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FIGURE 1.7. Phase portrait of an asymptotically stable (spiral) sink.

In particular, the solution does not blow up in finite time. By the extensi-
bility theorem, the solution is complete. O

n

Exercise 1.17. Consider the function g : (0,00) — R given by g(z) = z~
for a fixed positive integer n. Construct the flow ¢, of the differential equation
# = —z and the flow ¢, of £ = —g(x)z on (0, 00), and find the explicit expression
for the reparametrization function p such that 1 (x) = ¢,)(x) (see [46]).

Exercise 1.18. Suppose that the solution ~ of the differential equation & =
f(z) is reparametrized by arc length; that is, in the new parametrization the
velocity vector at each point of the solution curve has unit length. Find an implicit
formula for the reparametrization p, and prove that if ¢ > 0, then

[v(p()] < |7 (0)] + .

Exercise 1.19. Suppose that # = f(z) is a differential equation defined on
an open subset U of R". Show that the differential equation has a complete
reparametrization.

1.5 Stability and Linearization

Rest points and periodic orbits correspond to very special solutions of au-
tonomous differential equations. However, in the applications these are of-
ten the most important orbits. In particular, common engineering practice
is to run a process in “steady state.” If the process does not stay near the
steady state after a small disturbance, then the control engineer will have
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U

—

FIGURE 1.8. The open sets required in the definition of Lyapunov stability. The
trajectory starting at x can leave the ball of radius § but it must stay in the ball
of radius e.

to face a difficult problem. We will not solve the control problem here, but
we will introduce the mathematical definition of stability and the classic
methods that can be used to determine the stability of rest points and
periodic orbits.

The concept of Lyapunov stability is meant to capture the intuitive notion
of stability—an orbit is stable if solutions that start nearby stay nearby.
To give the formal definition, let us consider the autonomous differential
equation

&= f(x) (1.13)
defined on an open set U C R™ and its flow ¢;.

Definition 1.20. A rest point xq of the differential equation (1.13) is stable
(in the sense of Lyapunov) if for each ¢ > 0, there is a number ¢ > 0 such
that |¢(x) — 2| < € for all ¢ > 0 whenever |x — x¢| < 0 (see Figure 1.8).

There is no reason to restrict the definition of stability to rest points. It
can also refer to arbitrary solutions of the autonomous differential equation.

Definition 1.21. Suppose that zg is in the domain of definition of the
differential equation (1.13). The solution ¢ — ¢;(xg) of this differential
equation is stable (in the sense of Lyapunov) if for each € > 0, there is a
0 > 0 such that |¢:(z) — ¢¢(zo)| < € for all t > 0 whenever |z — x| < 0.

Figure 1.7 shows a typical phase portrait of an autonomous system in
the plane near a type of stable rest point called a sink. The special type
of rest point called a center in the phase portrait depicted in Figure 1.4 is
also stable.
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FIGURE 1.9. Phase portrait of an unstable rest point.

A solution that is not stable is called unstable. A typical phase portrait
for an unstable rest point, a source, is depicted in Figure 1.9 (see also the
saddle point in Figure 1.1).

Definition 1.22. A solution ¢ — ¢:(z) of the differential equation (1.13)
is asymptotically stable if it is stable and there is a constant a > 0 such
that limy_, o |@¢(2) — @1 (x0)| = 0 whenever |z — 9| < a.

We have just defined the notion of stability for solutions in case a definite
initial point is specified. The concept of stability for orbits is slightly more
complicated. For example, we have the following definition of stability for
periodic orbits (see also Section 2.4.4).

Definition 1.23. A periodic orbit of the differential equation (1.13) is
stable if for each open set V' C R™ that contains I, there is an open set
W C V such that every solution, starting at a point in W at ¢t = 0, stays
in V for all ¢ > 0. The periodic orbit is called asymptotically stable if, in
addition, there is a subset X C W such that every solution starting in X
is asymptotic to I' as t — oo.

The definitions just given capture the essence of the stability concept.
However, they do not give any indication of how to determine if a given
solution or orbit is stable. We will study two general methods, called the
indirect and the direct methods by Lyapunov, that can be used to determine
the stability of rest points and periodic orbits. In more modern language,
the indirect method is called the method of linearization and the direct
method is called the method of Lyapunov. However, before we discuss these
methods in detail, let us note that for the case of the stability of special
types of orbits, for example rest points and periodic orbits, there are two
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main problems: (i) Locating the special solutions. (i) Determining their
stability.

For the remainder of this section and the next, the discussion will be re-
stricted to the analysis for rest points. Our introduction to the methods for
locating and determining the stability of periodic orbits must be postponed
until some additional concepts have been introduced.

Let us note that the problem of the location of rest points for the dif-
ferential equation & = f(x) is exactly the problem of finding the roots of
the equation f(z) = 0. Of course, finding roots may be a formidable task,
especially if the function f depends on parameters and we wish to find
its bifurcation diagram. In fact, in the search for rest points, sophisticated
techniques of algebra, analysis, and numerical analysis are often required.
This is not surprising when we stop to think that solving equations is one
of the fundamental themes in mathematics. For example, it is probably not
too strong to say that the most basic problem in linear algebra, abstract
algebra, and algebraic geometry is the solution of systems of polynomial
equations. The results of all of these subjects are sometimes needed to solve
problems in differential equations.

Let us suppose that we have identified some point xy € R™ such that
f(xo) = 0. What can we say about the stability of the corresponding rest
point? One of the great ideas in the subject of differential equations—not to
mention other areas of mathematics—is linearization. This idea, in perhaps
its purest form, is used to obtain the premier method for the determina-
tion of the stability of rest points. The linearization method is based on
two facts: (i) Stability analysis for linear systems is “easy.” (i7) Nonlinear
systems can be approximated by linear systems. These facts are just reflec-
tions of the fundamental idea of differential calculus: Replace a nonlinear
function by its derivative!

To describe the linearization method for rest points, let us consider (ho-
mogeneous) linear systems of differential equations; that is, systems of the
form & = Ax where z € R™ and A is a linear transformation of R™. If the
matrix A does not depend on t—so that the linear system is autonomous—
then there is an effective method that can be used to determine the stability
of its rest point at x = 0. In fact, we will show in Chapter 2 that if all of
the eigenvalues of A have negative real parts, then x = 0 is an asymptot-
ically stable rest point for the linear system. (The eigenvalues of a linear
transformation are defined on page 135.)

If xy is a rest point for the nonlinear system & = f(z), then there is a
natural way to produce a linear system that approximates the nonlinear
system near xg: Simply replace the function f in the differential equation
with the linear function x — D f(zg)(z — x¢) given by the first nonzero
term of the Taylor series of f at xg. The linear differential equation

& =D f(zo)(x — o) (1.14)

is called the linearized system associated with © = f(x) at xo.
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The “principle of linearized stability” states that if the linearization of
a differential equation at a steady state has a corresponding stable steady
state, then the original steady state is stable. This principle is not a theo-
rem, but it is the motivation for much of the theory of stability.

Exercise 1.24. Prove that the rest point at the origin for the differential equa-
tion & = azx, a < 0, z € R is asymptotically stable. Also, determine the stability
of this rest point in case a = 0 and in case a > 0.

Let us note that by the change of variables u = x — xq, the system (1.14)
is transformed to the equivalent linear differential equation @ = f(u + xo)
where the rest point corresponding to xg is at the origin. If we define
g(u) := f(u+ o), then we have & = g(u) and g(0) = 0. Thus, it should be
clear that there is no loss of generality if we assume that our rest point is at
the origin. This fact is often a useful simplification. Indeed, if f is smooth
at z =0 and f(0) =0, then

f(@) = f(0) + Df(0)z + R(z) = Df(0)z + R(x)

where D f(0) : R™ — R™ is the linear transformation given by the derivative
of f at x = 0 and, for the remainder R, there is a constant £ > 0 and an
open neighborhood U of the origin such that

|R(2)| < Kla|?

whenever x € U. Because of this estimate for the size of the remainder
and the fact that the stability of a rest point is a local property (that
is, a property that is determined by the values of the restriction of the
function f to an arbitrary open subset of the rest point), it is reasonable to
expect that the stability of the rest point at the origin of the linear system
& = Df(0)z will be the same as the stability of the original rest point.
This expectation is not always realized. However, we do have the following
fundamental stability theorem.

Theorem 1.25. If xg is a rest point for the differential equation & = f(x)
and if all eigenvalues of the linear transformation D f(xo) have negative
real parts, then xg is asymptotically stable.

Proof. See Theorem 2.43. O

It turns out that if z¢ is a rest point and D f(z() has at least one eigen-
value with positive real part, then x( is not stable. If some eigenvalues of
Df(xo) lie on the imaginary axis, then the stability of the rest point may
be very difficult to determine. Also, we can expect qualitative changes to
occur in the phase portrait of a system near such a rest point as the pa-
rameters of the system are varied. These bifurcations are the subject of
Chapter 8.
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Exercise 1.26. Prove: If £ = 0, z € R, then z = 0 is Lyapunov stable. Consider
the differential equations & = x> and © = —z>. Prove that whereas the origin
is not a Lyapunov stable rest point for the differential equation & = z3, it is
Lyapunov stable for the differential equation & = —z®. Note that the linearized
differential equation at z = 0 in both cases is the same; namely, & = 0.

If o is a rest point for the differential equation (1.13) and if the linear
transformation D f(x() has all its eigenvalues off the imaginary axis, then
we say that zg is a hyperbolic rest point. Otherwise xg is called nonhy-
perbolic. In addition, if x( is hyperbolic and all eigenvalues have negative
real parts, then the rest point is called a hyperbolic sink. If all eigenvalues
have positive real parts, then the rest point is called a hyperbolic source. A
hyperbolic rest point that is neither a source nor a sink is called a hyper-
bolic saddle. If the rest point is nonhyperbolic with all its eigenvalues on
the punctured imaginary axis (that is, the imaginary axis with the origin
removed), then the rest point is called a linear center. If zero is not an
eigenvalue, then the corresponding rest point is called nondegenerate.

If every eigenvalue of a linear transformation A has nonzero real part,
then A is called infinitesimally hyperbolic. If none of the eigenvalues of
A have modulus one, then A is called hyperbolic. This terminology can be
confusing: For example, if A is infinitesimally hyperbolic, then the rest point
at the origin of the linear system & = Az is hyperbolic. The reason for the
terminology is made clear by consideration of the scalar linear differential
equation & = ax with flow given by ¢;(z) = e*x. If a # 0, then the linear
transformation x — ax is infinitesimally hyperbolic and the rest point at
the origin is hyperbolic. In addition, if @ # 0 and ¢ # 0, then the linear
transformation = — e®x is hyperbolic. Moreover, the linear transformation
x — ax is obtained by differentiation with respect to ¢ at ¢ = 0 of the
family of linear transformations = +— e!*z. Thus, in effect, differentiation—
an infinitesimal operation on the family of hyperbolic transformations—
produces an infinitesimally hyperbolic transformation.

The relationship between the dynamics of a nonlinear system and its
linearization at a rest point is deeper than the relationship between the
stability types of the corresponding rest points. The next theorem, called
the Hartman—Grobman theorem, is an important result that describes this
relationship in case the rest point is hyperbolic.

Theorem 1.27. If xq is a hyperbolic rest point for the autonomous dif-
ferential equation (1.13), then there is an open set U containing xo and
a homeomorphism H with domain U such that the orbits of the differen-
tial equation (1.13) are mapped by H to orbits of the linearized system
&= Df(xo)(x — ) in the set U.

Proof. See Section 4.3. O
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FIGURE 1.10. Level sets of a Lyapunov function.

In other words, the linearized system has the same phase portrait as the
original system in a sufficiently small neighborhood of the hyperbolic rest
point. Moreover, the homeomorphism H in the theorem can be chosen to
preserve not just the orbits as point sets, but their time parameterizations
as well.

Exercise 1.28. In the definition of asymptotic stability for rest points, the first
requirement is that the rest point be stable and the second requirement is that
all solutions starting in some open set containing the rest point be asymptotic to
the rest point. Does the first requirement follow from the second? Explain.

Exercise 1.29. Consider the mathematical pendulum given by the second or-
der differential equation i+ sinu = 0. Find the corresponding first order system.
Find all rest points of your first order system, and characterize these rest points
according to their stability type. Also, draw the phase portrait of the system in
a neighborhood at each rest point. Solve the same problems for the second order
differential equation given by

i+ (2" — i +w’e — A’ =0.

1.6 Stability and the Direct Method of Lyapunov

Let us consider a rest point x( for the autonomous differential equation
= f(x), x e R™ (1.15)

A continuous function V : U — R, where U C R™ is an open set with
xg € U, is called a Lyapunov function for the differential equation (1.15)
at xg provided that
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(i) V(x) >0 forxz e U—{x0},

(4ii) the function z + grad V() is continuous for x € U — {zo}, and, on
this set, V(z) := grad V(z) - f(z) < 0.

If, in addition,
(iv) V(z) <0 forzelU— {x},
then V is called a strict Lyapunov function.

Theorem 1.30 (Lyapunov’s Stability Theorem). If zg is a rest point
for the differential equation (1.15) and V is a Lyapunov function for the
system at xqg, then xg is stable. If, in addition, V is a strict Lyapunov
function, then xg is asymptotically stable.

The idea of Lyapunov’s method is very simple. In many cases the level
sets of V' are “spheres” surrounding the rest point xy as in Figure 1.10.
Suppose this is the case and let ¢, denote the flow of the differential equa-
tion (1.15). If y is in the level set S, = {x € R™ : V(x) = ¢} of the function
V', then, by the chain rule, we have that

d

%V(aﬁt(y)) L, —grad V(y) - f(y) <0. (1.16)

The vector grad V' is an outer normal for S, at y. (Do you see why it must
be the outer normal?) Thus, V is not increasing on the curve t — ¢;(y) at
t = 0, and, as a result, the image of this curve either lies in the level set
Se, or the set {¢+(y) : t > 0} is a subset of the set in the plane with outer
boundary S.. The same result is true for every point on S.. Therefore, a
solution starting on S, is trapped; it either stays in S, or it stays in the set
{z € R" : V(x) < c}. The stability of the rest point follows easily from this
result. If V' is a strict Lyapunov function, then the solution curve definitely
crosses the level set S. and remains inside the set {x € R" : V(x) < ¢} for
all t > 0. Because the same property holds at all level sets “inside” S, the
rest point xg is asymptotically stable.

If the level sets of our Lyapunov function are as depicted in Figure 1.10,
then the argument just given proves the stability of the rest point. How-
ever, it is not clear that the level sets of a Lyapunov function must have
this simple configuration. For example, some of the level sets may not be
bounded.

The proof of Lyapunov’s stability theorem requires a more delicate anal-
ysis. Let us use the following notation. For o > 0 and { € R", define

Sa(Q):={z eR": |z — (| = a},
Ba(Q) ={z e R": |z — (| < a},
By(Q):={x eR": |z — (| < a}.
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Proof. Suppose that € > 0 is given, and note that, in view of the definition
of Lyapunov stability, it suffices to assume that B.(zg) is contained in
the domain U of the Lyapunov function V. Using the fact that Sc(zo)
is a compact set not containing zq, there is a number m > 0 such that
V(z) > m for all z € Sc(zg). Also, there is some § > 0 with § < e such
that the maximum value M of V on the compact set Bj(xo) satisfies the
inequality M < m. If not, consider the closed balls given by B, /k _(xo) for
k > 2, and extract a sequence of points {x}32, such that xp € B/ (zo)
and V(x) > m. Clearly, this sequence converges to . Using the continuity
of the Lyapunov function V' at xg, we have limg_,, V(zr) = V(2g) =0, in
contradiction.
Let ¢, denote the flow of (1.15). If x € Bs(zo), then

DV (pu(a)) = mrad V() fo1(2) <0

Thus, the function ¢ — V(p:(z)) is not increasing. Since V(po(x)) < M <
m, we must have V(p:(x)) < m for all ¢ > 0 for which the solution ¢
¢i(z) is defined. But, for these values of ¢, we must also have ¢,(z) €
Be(x0). If not, there is some T' > 0 such that |pr(x) — xo| > €. Since
t — |pe(x) — 0| is a continuous function, there must then be some 7 with
0 < 7 < T such that |¢,(x) — zg| = €. For this 7, we have V(¢ (x)) > m,
in contradiction. Thus, ¢:(z) € Be(zg) for all t > 0 for which the solution
through z exists. By the extensibility theorem, if the solution does not exist
for all ¢ > 0, then |¢¢(z)| — 0o ast — o0, or ¢, (x) approaches the boundary
of the domain of definition of f. Since neither of these possibilities occur,
the solution exists for all positive time with its corresponding image in the
set B(xzg). Thus, ¢ is stable.

If, in addition, the Lyapunov function is strict, we will show that x is
asymptotically stable.

Let x € Bs(zo). By the compactness of B, (zg), either lim;_, ., ¢:(x) = o,
or there is a sequence {tk}zil of real numbers 0 < t; < to--- with ¢t — oo
such that the sequence {¢;, ()}, converges to some point x, € B.(g)
with z, # xq. If ¢ is not asymptotically stable, then such a sequence exists
for at least one point x € Bs(xg).

Using the continuity of V, it follows that limg_,oo V (i, (2)) = V(z4).
Also, V' decreases on orbits. Thus, for each natural number k, we have
that V(¢ (z)) > V(x,). But, in view of the fact that the function ¢ —
V(¢¢(x4)) is strictly decreasing, we have

T V(pryr, (2) = Jim Vigr (g, (@) = Vigr () < V(e

Thus, there is some natural number ¢ such that V(¢i1¢,(z)) < V(xy).
Clearly, there is also an integer n > ¢ such that ¢, > 14 ¢,. For this
integer, we have the inequalities V (¢, (z)) < V(¢14¢,(z)) < V(zy), in
contradiction. ]
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Example 1.31. The linearization of & = —23 at 2 = 0is ¢ = 0. It provides
no information about stability. Define V(z) = 2® and note that V(z) =
22(—a3) = —22%. Thus, V is a strict Lyapunov function, and the rest point
at x = 0 is asymptotically stable.
Example 1.32. Consider the harmonic oscillator i 4+ w?z = 0 with w > 0.
The equivalent first order system

T =1y, §=—w’x

has a rest point at (z,y) = (0,0). Define the total energy (kinetic energy
plus potential energy) of the harmonic oscillator to be

1 2 1
V= 59&2 + %xz = §(y2 + w?z?).

A computation shows that V' = 0. Thus, the rest point is stable. The energy
of a physical system is often a good choice for a Lyapunov function!

Exercise 1.33. As a continuation of example (1.32), consider the equivalent
first order system

T = wy, Y = —wz.
Study the stability of the rest point at the origin using Lyapunov’s direct method.
Exercise 1.34. Consider a Newtonian particle of mass m moving under the
influence of the potential U. If the position coordinate is denoted by

q=(q1,-- ,qn),
then the equation of motion (F = ma) is given by
mg = —grad U(q).

If qo is a strict local minimum of the potential, show that the equilibrium (¢, q) =
(0, go) is Lyapunov stable. Hint: Consider the total energy of the particle.

Exercise 1.35. Determine the stability of the rest points of the following sys-
tems. Formulate properties of the unspecified scalar function g so that the rest
point at the origin is stable or asymptotically stable.
1. & =y — a5,
y=-—z—-y
2. &=y + ax(2® +y?),
§= o +ay(e® +17)

3

3. & =2xy — 25,
g = g2 y5
y=—z—yg(z,y)
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5. & =y +xy® — 2 + 2224,
§=—x—y> 32’y + 3yz",
z= —%y223 — 22223 — %,27

Exercise 1.36. Determine the stability of all rest points for the following dif-
ferential equations. For the unspecified scalar function g determine conditions so
that the origin is a stable and/or asymptotically stable rest point.

1. g4+et+w?c=0,e>0,w>0
2. &4+sinex =0
3.i+z—2"=0

4. i4g(x)=0

5. £+et+g(x)=0,e>0

6. i+3°+x=0.

The total energy is a good choice for the strict Lyapunov function required to
study system 5. It almost works. Can you modify the total energy to obtain a
strict Lyapunov function? If not, see Exercise 2.45. Alternatively, consider apply-
ing the following refinement of Theorem 1.30: Suppose that ¢ is a rest point for
the differential equation z = f(z) with flow ¢¢ and V is a Lyapunov function at
xo. If, in addition, there is a neighborhood W of the rest point z¢ such that for
each point p € W\ {zo}, the function V is not constant on the set {¢:(p) : t > 0},
then zg is asymptotically stable (see Exercise 1.113).

Exercise 1.37. [Basins of Attraction] Consider system 5 in the previous exer-
cise, and note that if g(0) = 0 and g’(0) > 0, then there is a rest point at the origin
that is asymptotically stable. Moreover, this fact can be proved by the principle
of linearization. Thus, it might seem that finding a strict Lyapunov function in
this case is wasted effort. However, the existence of a strict Lyapunov function
determines more than just the stability of the rest point; the Lyapunov function
can also be used to estimate the basin of attraction of the rest point; that is (in
general), the set of all points in the space that are asymptotic to the rest point.
Consider the (usual) first order system corresponding to the differential equation

iteitz—2>=0

for € > 0, and describe the basin of attraction of the origin. Define a subset of
the basin of attraction, which you have described, and prove that it is contained
in the basin of attraction. Formulate and prove a general theorem about the
existence of Lyapunov functions and the extent of basins of attraction of rest
points.

In engineering practice, physical systems (for example a chemical plant or a
power electronic system) are operated in steady state. When a disturbance occurs
in the system, the control engineer wants to know if the system will return to
the steady state. If not, she will have to take drastic action! Do you see why
theorems of the type requested in this exercise (a possible project for the rest of
your mathematical life) would be of practical value?

Exercise 1.38. Prove the following instability result: Suppose that V is a
smooth function defined on an open neighborhood U of the rest point zo of
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the autonomous system @ = f(z) such that V(zo) = 0 and V() > 0 on U\ {xo}.
If for each neighborhood of xg there is a point where V' has a positive value, then
o is not stable.

1.7 Introduction to Invariant Manifolds

In this section we will define the concept of a manifold as a generalization
of a linear subspace of R", and we will begin our discussion of the central
role that manifolds play in the theory of differential equations.

Let us note that the fundamental definitions of the calculus are local in
nature. For example, the derivative of a function at a point is determined
once we know the values of the function in some neighborhood of the point.
This fact is the basis for the manifold concept: Informally, a manifold is a
subset of R™ such that, for some fixed integer £ > 0, each point in the subset
has a neighborhood that is essentially the same as the Euclidean space
R*. To make this definition precise we will have to define what is meant
by a neighborhood in the subset, and we will also have to understand the
meaning of the phrase “essentially the same as R*.” However, these notions
should be intuitively clear: In effect, a neighborhood in the manifold is an
open subset that is diffeomorphic to R*.

Points, lines, planes, arcs, spheres, and tori are examples of manifolds.
Some of these manifolds have already been mentioned. Let us recall that a
curve is a smooth function from an open interval of real numbers into R™.
An arc is the image of a curve. Every solution of a differential equation is a
curve; the corresponding orbit is an arc. Thus, every orbit of a differential
equation is a manifold. As a special case, let us note that a periodic orbit
is a one-dimensional torus.

Consider the differential equation

&= f(x), r eR", (1.17)

with flow ¢¢, and let S be a subset of R™ that is a union of orbits of this
flow. If a solution has its initial condition in S, then the corresponding orbit
stays in S for all time, past and future. The concept of a set that is the
union of orbits of a differential equation is formalized in the next definition.

Definition 1.39. A set S C R" is called an invariant set for the differen-
tial equation (1.17) if, for each x € S, the solution t — ¢;(x), defined on its
maximal interval of existence, has its image in S. Alternatively, the orbit
passing through each x € S lies in S. If, in addition, S is a manifold, then
S is called an invariant manifold.

We will illustrate the notion of invariant manifolds for autonomous dif-
ferential equations by describing two important examples: the stable, un-
stable, and center manifolds of a rest point; and the energy surfaces of
Hamiltonian systems.
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Unstable Manifold Stable Manifold

Y

FIGURE 1.11. Stable and unstable manifolds for the linear saddle at the origin
for the system © = —z, §y = y.

Center Manifold

Stable Manifold

FIGURE 1.12. Phase portrait for a linear system with a one-dimensional stable
and a two-dimensional center manifold.
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The stable manifold concept is perhaps best introduced by discussing a
concrete example. Thus, let us consider the planar first order system

"szl’, y:ya

and note that the x-axis and the y-axis are invariant one-dimensional man-
ifolds. The invariance of these sets follows immediately by inspection of
the solution of the uncoupled linear system. Note that a solution with ini-
tial value on the z-axis approaches the rest point (x,y) = (0,0) as time
increases to +o0o. On the other hand, a solution with initial value on the
y-axis approaches the rest point as time decreases to —oo. Solutions on
the z-axis move toward the rest point; solutions on the y-axis move away
from the rest point. For this example, the x-axis is called the stable man-
ifold of the rest point, and the y-axis is called the unstable manifold (see
Figure 1.11).

Similar invariant linear subspaces exist for all linear systems & = Az,
x € R”. In fact, the space R" can always be decomposed as a direct sum of
linear subspaces: the stable eigenspace (stable manifold) defined to be the
A-invariant subspace of R™ such that the eigenvalues of the restriction of
A to this space are exactly the eigenvalues of A with negative real parts,
the unstable eigenspace (unstable manifold) corresponding similarly to the
eigenvalues of A with positive real parts, and the center eigenspace (center
manifold) corresponding to the eigenvalues with zero real parts. It turns out
that these linear subspaces are also invariant sets for the linear differential
equation & = Azx. Thus, they determine its phase portrait. For example,
Figure 1.12 shows the phase portrait of a linear system on R? with a one-
dimensional stable manifold and a two-dimensional center manifold. Of
course, some of these invariant sets might be empty. In particular, if A
is infinitesimally hyperbolic (equivalently, if the rest point at the origin is
hyperbolic), then the linear system has an empty center manifold at the
origin.

Exercise 1.40. Discuss the existence of stable, unstable, and center manifolds
for the linear systems with the following system matrices:

-1 1 0 1 2 3 0 1 0
0o -1 01, 4 5 6], -1 0 0
0 0 2 7 89 0 0 -2

Two very important theorems in the subject of differential equations, the
stable manifold theorem and the center manifold theorem, will be proved
in Chapter 4.

The stable manifold theorem states the existence of unique invariant
stable and unstable manifolds that pass through a hyperbolic rest point
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tangent to the corresponding stable and unstable eigenspaces of the corre-
sponding linearized system. Let us note that the Hartman—Grobman theo-
rem implies that a hyperbolic rest point has stable and unstable invariant
sets that are homeomorphic images of the corresponding invariant man-
ifolds for the corresponding linearized system, but it gives no indication
that these invariant sets are smooth manifolds.

The existence of stable and unstable invariant manifolds is important.
However, at this point in our study only a glimpse into their essential role in
the analysis of differential equations is possible. For example, their existence
provides a theoretical basis for determining the analytic properties of the
flow of a differential equation in the neighborhood of a hyperbolic rest
point. They also serve to bound other invariant regions in the phase space.
Thus, the network of all stable and unstable manifolds forms the “skeleton”
for the phase portrait. Finally, the existence of the stable and unstable
manifolds in the phase space, especially their intersection properties, lies
at the heart of an explanation of the complex motions associated with many
nonlinear ordinary differential equations. In particular, this phenomenon is
fundamental in the study of deterministic chaos (see Chapter 6).

For rest points of a differential equation that are not hyperbolic, the cen-
ter manifold theorem states the existence of an invariant manifold tangent
to the corresponding center eigenspace. This center manifold is not nec-
essarily unique, but the differential equation has the same phase portrait
when restricted to any one of the center manifolds at the same rest point.
Analysis using center manifolds is often required to understand many of
the most delicate problems that arise in the theory and applications of
differential equations. For example, the existence and smoothness proper-
ties of center manifolds are foundational results in bifurcation theory (see
Chapter 8).

Invariant manifolds, called energy surfaces, are useful in the study of
Hamiltonian systems of differential equations. To define this important
class of differential equations, let H : R™ x R™ — R be a smooth func-
tion given by

(q17'~' ydnsP1y - - - ,pn) — H(qla s dn,P1y - - - apn)a

and define the associated Hamiltonian system on R?" with Hamiltonian H
by

o_oH . oH .
q’L 8pz7 pZ 6ql7 AR .

Let us note that the dimension of the phase space of a Hamiltonian system
is required to be even. The reason for this restriction will soon be made
clear.

As a prototypical example of a Hamiltonian system, let H : R? — R be
given by H(z,y) := 1(y*> + w?z?). The associated Hamiltonian system is
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the harmonic oscillator

T =y, § = —w?x.
More generally, suppose that U : R — R and let H : R®” x R" — R be
given by

p2

H(q,p)=—+U

(@:p) = 5~ +Ulq)

where p? := p? + -+ + p2. A Hamiltonian in this form is called a classical
Hamiltonian. The corresponding Hamiltonian system

) 1 .
¢g=—p, p=—gradU(q)
m

is equivalent to Newton’s equation of motion for a particle influenced by
a conservative force (see Exercise 1.34). The vector quantity p := mgq is
called the (generalized) momentum, the function U is called the potential
energy, and the function p — ﬁpQ = %QQ is called the kinetic energy.

The configuration space for the classical mechanical system is the space
consisting of all possible positions of the system. If the configuration space is
locally specified by n coordinates (g1, . .. , ¢n), then the Hamiltonian system
is said to have n degrees of freedom. For example, for the pendulum, the
configuration space can be taken to be R with the coordinate ¢; specifying
the angular position of the bob relative to the downward vertical. It is a
system with one degree of freedom. Of course, for this example, the physical
positions are specified by the angular coordinate g; modulo 27. Thus, the
configuration space can also be viewed as a nonlinear manifold—namely,
the unit circle in the plane. This is yet another way in which manifolds
arise in the study of mechanical systems.

The phase space of a Hamiltonian system is the subset of R™ x R™ of all
positions and momenta specified by the coordinates (q1,. .. ,Gn,P1,--- ,qn)-
The dimension of the phase space is therefore even; it is the space in which
the Hamiltonian system evolves. The state space is also a subset of R™ x
R™, but it is the space of positions and velocities with the coordinates
(q15--- san,q1,--- ,qn) (see Chapter 3).

For ¢ € R and the Hamiltonian H : R® x R®™ — R, the corresponding
energy surface with energy c is defined to be the set

Se ={(q,p) € R" xR" : H(q,p) = c}.

If grad H(p,q) # 0 for each (p,q) € S., then the set S, is called a regular
energy surface.
Note that the vector field given by

OH OH

gradH = (aiq, 6717)
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is orthogonal to the Hamiltonian vector field given by

OH OH

(G 5)
at each point in the phase space. Thus, the Hamiltonian vector field is
everywhere tangent to each regular energy surface. As a consequence of
this fact—a proof will be given later in this section—every energy surface
S is an invariant set for the flow of the corresponding Hamiltonian system.
Moreover, every regular energy surface is an invariant manifold.

The structure of energy surfaces and their invariance is important. In-
deed, the phase space of a Hamiltonian system is the union of its energy
surfaces. Or, as we say, the space is foliated by its energy surfaces. More-
over, each regular energy surface of a Hamiltonian system with n degrees
of freedom has “dimension” 2n — 1. Thus, we can reduce the dimension of
the phase space by studying the flow of the original Hamiltonian system
restricted to each of these invariant subspaces. For example, the analysis
of a Hamiltonian system with one degree of freedom can be reduced to
the consideration of just one space dimension where the solution of the
Hamiltonian differential equation can be reduced to a quadrature. To see
what this means, consider the classical Hamiltonian H(q,p) = %pz +U(q)
and a regular energy surface of H with energy h. Notice that, if we use the
Hamiltonian differential equations and the energy relation, then we can
derive the following scalar differential equations

dg _

= =1 - Ulg)

q=p
for solutions whose initial conditions are on this energy surface. By separa-
tion of variables and a specification of the initial condition, the ambiguous
sign is determined and the solution of the corresponding scalar differential
equation is given implicitly by the integral (=quadrature)

/q(t)(Q(h —Ul(q)))”/?dg = +t.
q(0)

This result “solves” the original system of Hamiltonian differential equa-
tions. The same idea works for systems with several degrees of freedom,
only the equations are more complicated.

Let us also note that the total energy of a Hamiltonian system might not
be the only conserved quantity. In fact, if F' is a function on the phase space
with the property that the dot product of grad F'(g, p) is orthogonal to the
Hamiltonian vector field at every (g, p) in an open subset of the phase space,
then the level sets of F' are also invariant sets. In this case F' is called an
integral, or first integral, of the Hamiltonian system. Thus, the intersection
of an energy surface and a level set of F' must also be invariant, and, as
a consequence, the space is foliated with (2n — 2)-dimensional invariant
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FIGURE 1.13. A rigid body and its three axes of symmetry

sets. If there are enough first integrals, then the solution of the original
system can be expressed in quadratures. In fact, for an n-degree-of-freedom
Hamiltonian system, it suffices to determine n “independent” first integrals
(see [10, §49]). We will not prove this fact. However, it should be clear
that energy surfaces, or more generally, level sets of first integrals, are
important objects that are worthy of study. They are prime examples of
smooth manifolds.

While the notion of an energy surface is naturally associated with Hamil-
tonian systems, the underlying idea for proving the invariance of energy
surfaces easily extends to general autonomous systems. In fact, if £ = f(z)
is an autonomous system with = € R™ and the function G : R — R is
such that the vector grad G(z) is orthogonal to f(z) for all 2 in some open
subset of R™, then every level set of G that is contained in this open set
is invariant. Thus, just as for Hamiltonian systems, some of the dynamical
properties of the differential equation & = f(x) can be studied by restrict-
ing attention to a level set of GG, a set that has codimension one in the
phase space (see Exercise 1.44).

Exercise 1.41. Find the Hamiltonian for a first order system equivalent to the
model equation for the pendulum given by 6+ k sin € = 0 where k is a parameter.
Describe the energy surfaces.

Exercise 1.42. Reduce the solution of the harmonic oscillator H(g,p) = %(p2+
w?¢?) where w > 0 to a quadrature on each of its regular energy surfaces and carry
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out the integration explicitly. (This is not the simplest way to solve the equations
of motion, but you will learn a valuable method that is used, for example, in the
construction of the solution of the equations of motion for the Hamiltonian system
mentioned in the previous exercise.)

Exercise 1.43. [Gradient Systems] If H is a Hamiltonian, then the vector field
grad H is everywhere orthogonal to the corresponding Hamiltonian vector field.
However, the vector field grad H defines a differential equation in its own right
that has many interesting and useful properties. More generally, for a smooth
function G : R® — R (maybe n is odd), let us define the associated gradient
system

z = grad G(z).

Because a conservative force is the negative gradient of a potential, many authors
define the gradient system with potential G to be

z = — grad G(z).

While our definition is the usual one for mathematical studies, the definition
with the negative sign is perhaps more natural for physical applications. Prove
the following facts: A gradient system has no periodic orbits. If a gradient system
has a rest point, then all of the eigenvalues of the linearization at the rest point are
real. If n = 2, then the orbits of the gradient system are orthogonal trajectories
for the orbits of the Hamiltonian system with Hamiltonian G. If x € R" is an
isolated maximum of the function G : R™ — R, then x is an asymptotically stable
rest point of the corresponding gradient system.

Exercise 1.44. [Rigid Body Motion] A system that is not Hamiltonian, but
closely related to this class, is given by Euler’s equations for rigid body motion.
The angular momentum M = (M7, Ms, M3) of a rigid body, relative to a coordi-
nate frame rotating with the body with axes along the principal axes of the body
and with origin at its center of mass, is related to the angular velocity vector €2
by M = AQ, where A is a symmetric matrix called the inertia matriz. Euler’s
equation is M = M x €. Equivalently, the equation for the angular velocity is
AQ = (AQ) x Q. If A is diagonal with diagonal components (moments of iner-
tia) (I, I2, I3), show that Euler’s equations for the components of the angular
momentum are given by

Ml == 7(72 - TS)MQM37
. 1 1

My = (71 —E)MIM&
. 1 1

M3 — —(Tl - E)M1M2

Assume that 0 < I1 < Iy < I3. Find some invariant manifolds for this system. Can
you use your results to find a qualitative description of the motion? As a physical
example, take this book and hold its covers together with a rubber band. Then,
toss the book vertically three times, imparting a rotation in turn about each of
its axes of symmetry (see Figure 1.13). Are all three rotary motions Lyapunov
stable? Do you observe any other interesting phenomena associated with the
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motion? For example, pay attention to the direction of the front cover of the
book after each toss. Hint: Look for invariant quadric surfaces; that is, manifolds
defined as level sets of quadratic polynomials (first integrals) in the variables
(M1, M2, M3). For example, show that the kinetic energy given by %(AQ,Q)
is constant along orbits. The total angular momentum (length of the angular
momentum) is also conserved. For a complete mathematical description of rigid
body motion, see [10]. For a mathematical description of the observed “twist”
in the rotation of the tossed book, see [16]. One aspect of this problem worth
mentioning is the fact that Euler’s equations do not describe the motion of the
book in space. To do so would require a functional relationship between the
coordinate system rotating with the body and the position coordinates relative
to a fixed coordinate frame in space.

1.7.1  Smooth Manifolds

Because the modern definition of a smooth manifold can appear quite
formidable at first sight, we will formulate a simpler equivalent definition
for the class of manifolds called the submanifolds of R™. Fortunately, this
class is rich enough to contain the manifolds that are met most often in the
study of differential equations. In fact, every manifold can be “embedded”
as a submanifold of some Euclidean space. Thus, the class that we will
study can be considered to contain all manifolds.

Recall that a manifold is supposed to be a set that is locally the same as
RF. Thus, whatever is meant by “locally the same,” every open subset of
RF must be a manifold.

If W C R¥ is an open set and g : W — R"~* is a smooth function, then
the graph of g is the subset of R™ defined by

graph(g) := {(w,g(w)) e R" : w € W}.

The set graph(g) is the same as W C RF up to a nonlinear change of
coordinates. By this we mean that there is a smooth map G with domain
W and image graph(g) such that G has a smooth inverse. In fact, such a
map G : W — graph(g) is given by G(w) = (w, g(w)). Clearly, G is smooth.
Its inverse is the linear projection on the first k& coordinates of the point
(w, g(w)) € graph(g); that is, G~!(w, g(w)) = w. Thus, G~! is smooth as
well.

Open subsets and graphs of smooth functions are the prototypical exam-
ples of what we will call submanifolds. However, these classes are too re-
strictive; they include objects that are in fact globally the same as some Eu-
clidean space. The unit circle T in the plane, also called the one-dimensional
torus, is an example of a submanifold that is not of this type. Indeed,
T := {(z,y) : 22 + y* = 1} is not the graph of a scalar function defined on
an open subset of R. However, every point of T is contained in a neighbor-
hood in T that is the graph of such a function. In fact, each point in T is
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FIGURE 1.14. A chart for a two-dimensional submanifold in R3.

in one of the four sets

Syi={(z,y) ER? 1y = +/1—22, |z| <1},
ST = {(x,y) eRZ:x=4/1—92, [yl <1}

Submanifolds of R™ are subsets with the same basic property: Every point
in the subset is in a neighborhood that is the graph of a smooth function.

To formalize the submanifold concept for subsets of R™, we must deal
with the problem that, in the usual coordinates of R™, not all graphs are
given by sets of the form

{(xla"' 7xk7gk+1(x1;~-' 7‘7;]6)7"’ >g’n(x17-~~ 7$k)) :
(1. .. ,xk)EWQ]Rk}.

Rather, we must allow, as in the example provided by T, for graphs of func-
tions that are not functions of the first k£ coordinates of R™. To overcome
this technical difficulty we will build permutations of the variables into our
definition.

Definition 1.45. If S C R™ and z € S, then the pair (W, G) where W is
an open subset of R for some k < n and G : W — R" is a smooth function
is called a k-dimensional submanifold chart for S at x (see Figure 1.14) if
there is an open set U C R™ with € U N S such that U NS = G(W) and
one of the following two properties is satisfied:

1) The integer k is equal to n and G is the identity map.

2) The integer k is less than n and G has the form

Glw) = A(ggv)>

where g : W — R™ ¥ is a smooth function and A is a nonsingular n x n
matrix.
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Definition 1.46. The set S C R” is called a k-dimensional smooth sub-
manifold of R™ if there is a k-dimensional submanifold chart for S at every
point x in S.

If (W, G) is a submanifold coordinate chart, then the map G is called a
submanifold coordinate map. If S is a submanifold of R™, then, even though
we have not defined the concept, let us also call S a smooth manifold.

As an example, let us show that T is a one-dimensional manifold. Con-
sider a point in the subset ST = {(z,y) : z = /1 — 92, |y| < 1} of T. Define
the set W := {t € R : |t| < 1}, the function g : W — R by ¢(t) = v1 — t2,
the set U := {(z,9) € R?: (z — 1)? + y? < V/2}, and the matrix

01
(1),
Then we have

mu={(3) ew: (2)= (2 8) () e}

Similarly, T is locally the graph of a smooth function at points in the subsets
S~ and Si, as required.

A simple but important result about submanifold coordinate charts is
the following proposition.

Proposition 1.47. If (W,G) is a submanifold coordinate chart for a k-
dimensional submanifold of R™, then the function G : W — S is invertible.

Moreover, the inverse of G is the restriction of a smooth function that is
defined on all of R™.

Proof. The result is obvious if & = n. If k < n, then define IT : R™ — R* to

be the linear projection on the first k-coordinates; that is, II(z1,... ,z,) =
(1,...,2), and define

F:GW)—=W
by

F(s) =TIA s,

Clearly, F' is smooth as a function defined on all of R™. Also, if w € W,
then

FoG(w) = F(A(g(qz)))) - HA—lA(g(‘Z))) = w.

If s € G(W), then s = A(géfv)) for some w € W. Hence, we also have

This proves that F' is the inverse of G. a
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If S is a submanifold, then we can use the submanifold coordinate charts
to define the open subsets of S.

Definition 1.48. If S is a submanifold, then the open subsets of S are all
possible unions of all sets of the form G(W) where (W, G) is a submanifold
chart for S.

The next proposition is an immediate consequence of the definitions.

Proposition 1.49. If S is a submanifold of R™ and if V is an open subset
of S, then there is an open set U of R™ such that V = S NU; that is, the
topology defined on S using the submanifold charts agrees with the subspace
topology on S.

As mentioned above, one of the main reasons for defining the manifold
concept is to distinguish those subsets of R™ on which we can use the
calculus. To do so, let us first make precise the notion of a smooth function.

Definition 1.50. Suppose that S; is a submanifold of R, S5 is a subman-
ifold of R™, and F'is a function F': S; — So. We say that F is differentiable
at x; € S if there are submanifold coordinate charts (W7, G;) at 21 and
(Wa,G2) at F(x1) such that the map G;l o F oGy : Wy — Wy is differ-
entiable at G7'(z1) € Wy. If F is differentiable at each point of an open
subset V' of S, then we say that F is differentiable on V.

Definition 1.51. Suppose that S; and S are manifolds. A smooth func-
tion F' : S7 — S5 is called a diffeomorphism if there is a smooth function
H : Sy — Sy such that H(F(s)) = s for every s € S; and F(H(s)) = s for
every s € So. The function H is called the inverse of F' and is denoted by
F-L

With respect to the notation in Definition 1.50, we have defined the
concept of differentiability for the function F' : S7 — Sa, but we have not
yet defined what we mean by its derivative! However, we have determined
the derivative relative to the submanifold coordinate charts used in the
definition. Indeed, the local representative of the function F' is given by
Gy 1o Fo@Gy, a function defined on an open subset of a Euclidean space with
range in another Euclidean space. By definition, the local representative of
the derivative of F' relative to the given submanifold charts is the usual
derivative in Euclidean space of this local representative of F. In the next
subsection, we will interpret the derivative of F' without regard to the choice
of a submanifold coordinate chart; that is, we will give a coordinate-free
definition of the derivative of F' (see also Exercise 1.52).

Exercise 1.52. Prove: The differentiability of a function defined on a manifold
does not depend on the choice of submanifold coordinate chart.
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We have used the phrase “smooth function” to refer to a function that is
continuously differentiable. In view of Definition 1.50, the smoothness of a
function defined on a manifold is determined by the smoothness of its local
representatives—functions that are defined on open subsets of Euclidean
spaces. It is clear that smoothness of all desired orders can be defined in
the same manner by imposing the requirement on local representatives.
More precisely, if F' is a function defined on a manifold S, then we will
say that F is an element of C"(S), for r a nonnegative integer, r = oo,
or 7 = w, provided that at each point of S there is a local representative
of F' all of whose partial derivatives up to and including those of order r
are continuous. If r = oo, then all partial derivatives are required to be
continuous. If r = w, then all local representatives are all required to have
convergent power series representations valid in a neighborhood of each
point of their domains. A function in C* is called real analytic.

In the subject of differential equations, specifying the minimum number
of derivatives of a function required to obtain a result often obscures the
main ideas that are being illustrated. Thus, as a convenient informality,
we will often use the phrase “smooth function” to mean that the function
in question has as many continuous derivatives as needed. However, there
are instances where the exact requirement for the number of derivatives
is essential. In these cases, we will refer to the appropriate class of C”
functions.

The next definition formalizes the concept of a coordinate system.

Definition 1.53. Suppose that S is a k-dimensional submanifold. If V'
is an open subset of S, W is an open subset of R*, and ¥ : V — W
is a diffeomorphism, then the pair (V, ) is called a coordinate system or
coordinate chart on S.

Exercise 1.54. Prove: If (W, G) is a submanifold coordinate chart for a man-
ifold S, then (G(W),G™!) is a coordinate chart on S.

The abstract definition of a manifold is based on the concept of coordi-
nate charts. Informally, a set S together with a collection of subsets S is
defined to be a k-dimensional manifold if every point of S is contained in at
least one set in S and if, for each member V' of S, there is a corresponding
open subset W of R* and a function ¥ : V' — W that is bijective. If two
such subsets V7 and V5 overlap, then the domain of the map

T oWy (VN VL) — W)

is an open subset of R* whose range is contained in an open subset of
RF. The set S is called a manifold provided that all such “overlap maps”
are smooth (see [92] for the formal definition). This abstract notion of a
manifold has the advantage that it does not require a manifold to be a
subset of a Euclidean space.
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Exercise 1.55. Prove: If F: R™ — R" is smooth and F'(S1) C S> for subman-
ifolds S; and Sz, then the restriction of F' to S; is differentiable.

Exercise 1.56. Prove: If a € R, then the map T — T given by
(z,y) — (xcosa — ysina, z sin a + y cos «)

is a diffeomorphism.

Now that we know the definition of a manifold, we are ready to prove
that linear subspaces of R™ and regular level sets of smooth functions are
manifolds.

Proposition 1.57. A linear subspace of R™ is a submanifold.

Proof. Let us suppose that S is the span of the & linearly independent vec-

tors vy, ... ,v; in R™. We will show that S is a k-dimensional submanifold
of R™.
Let eq,... ,e, denote the standard basis of R™. By a basic result from

linear algebra, there is a set consisting of n — k standard basis vectors
fk+1, -+, fn such that the vectors

U1y .- avkafk-‘rla"' afn

are a basis for R”. (Why?) Let us denote the remaining set of standard
basis vectors by fi,..., fy. For each j =1,...  k, there are scalars A and
] such that

ZA v; + Z ,ul.fz

1=k+1
Hence, if (t1,...,t) € R*, then the vector
k 4 k koo
30 3o0( 35 ) = 3ou (30
j=1 i=k-+1 j=1 =1

is in S. Hence, relative to the basis f1,--- , f,, the vector

k
tl,... )b Zt]uk+1,... 7—th/~031)
j=1

isin S.
Define g : R¥ — R"* by

k
gt1, ...t :( th,ukJrl,...,—th,u%)
j=1
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and let A denote the permutation matrix that maps the vectors f1,..., fn
to their standard order ey, ... ,e,; that is, Af; = e; fori =1,... ,n. It
follows that the pair (R¥, @), where G : R¥ — R" is defined by

G (w) :A(gé’u)),

is a k-dimensional submanifold chart such that G(R¥) = R* N S. In fact,
by the construction, it is clear that the image of G is a linear subspace of
S. Moreover, because the image of G has dimension k as a vector space,
the subspace G(RF) is equal to S. a

As mentioned previously, linear subspaces often arise as invariant mani-
folds of differential equations. For example, consider the differential equa-
tion given by & = Ax where z € R™ and A is an n X n matrix. If S is
an invariant subspace for the matrix A, for example, one of its generalized
eigenspaces, then, by Proposition 1.57, S is a submanifold of R™. Also, S is
an invariant set for the linear system of differential equations. A complete
proof of this proposition requires some results from linear systems theory
that will be presented in Chapter 2. However, the essential features of the
proof can be simply illustrated in the special case where the linear trans-
formation A restricted to S has a complete set of eigenvectors. In other
words, S is a k-dimensional subspace of R" spanned by k linearly indepen-
dent eigenvectors vy, ... ,v; of A. Under this assumption, if Av; = vy,
then t — e ity; is a solution of & = Ax. Also, note that e*:fv; is an eigen-
vector of A for each ¢t € R. Therefore, if zg € S, then there are scalars
(a1,...,ax) such that xg = Zle a;v; and

k
t— E 6/\”&7;111
i=1

is the solution of the ordinary differential equation with initial condition
x(0) = zp. Clearly, the corresponding orbit stays in S for all ¢ € R.

Linear subspaces can be invariant sets for nonlinear differential equations.
For example, consider the Volterra—Lotka system

= z(a — by), y =y(cx — d).

In case a, b, ¢, and d are all positive, this system models the interaction
of the population y of a predator and the population = of its prey. For
this system, the z-axis and the y-axis are each invariant sets. Indeed, sup-
pose that (0,yp) is a point on the y-axis corresponding to a population of
predators with no prey, then ¢ +— (0,e~%y,) is the solution of the system
starting at this point that models this population for all future time. This
solution stays on the y-axis for all time, and, as there are is no spontaneous
generation of prey, the predator population dies out in positive time.
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Let us now discuss level sets of functions. Recall that if H : R™ — R is a
smooth function, then the level set of H with energy c is the set

Sc:={z eR": H(x) =c}.

Moreover, if grad H(z) # 0 for each x € S, then S, is called a regular level
set.

Proposition 1.58. If H : R™ — R is a smooth function, then each of its
regular level sets is an (n — 1)-dimensional submanifold of R™.

It is instructive to outline a proof of this result because it provides our
first application of a nontrivial and very important theorem from advanced
calculus, namely, the implicit function theorem.

Suppose that S. is a regular level set of H, choose a € S., and define
F:R" = R by

F(z)=H(z) —c

Let us note that F'(a) = 0. Also, because grad H (a) # 0, there is at least one
integer 1 < ¢ < n such that the corresponding partial derivative OF/0x;
does not vanish when evaluated at a. For notational convenience let us
suppose that i = 1. All other cases can be proved in a similar manner.
We are in a typical situation: We have a function F : R x R*~! — R

given by (z1,x2,... ,2n) — F(x1,... ,2,) such that
F
F(ay,...,a,) =0, %(alaGQa"'van)#O'

This calls for an application of the implicit function theorem. A preliminary
version of the theorem is stated here; a more general version will be proved
later (see Theorem 1.182).

If f:Rf x R™ — R" is given by (p,q) — f(p,q), then, for fixed b € R™,
consider the function RY — R™ defined by p ~ f(p,b). Its derivative at
a € R will be denoted by f,(a,b). Of course, with respect to the usual
bases of R? and R™, this derivative is represented by an n x ¢ matrix of
partial derivatives.

Theorem 1.59 (Implicit Function Theorem). Suppose that F' : R™ x
R*¥ — R™ is a smooth function given by (p,q) +— F(p,q). If (a,b) is in
R™ x R¥ such that F(a,b) =0 and F,(a,b) # 0, then there exist two open
metric balls U C R™ and V. C R* with (a,b) € U x V together with a
smooth function g : V. — U such that g(b) = a and F(g(v),v) =0 for each
v € V. Moreover, if (u,v) € U x V and F(u,v) =0, then u = g(v).

Continuing with our outline of the proof of Proposition 1.58, let us ob-
serve that, by an application of the implicit function theorem to F', there
is an open set Z C R with a; € Z, an open set W C R"~! contain-
ing the point (ag,...,a,), and a smooth function g : W — Z such that
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g(ag, ... ,a,) = a1 and
H(g(za,... ,xp),22,... ,2,) —c=0.
The set
U:={(z1,...,2) ER" 121 € Z and (z2,... ,2,) EW}=ZxW

is open. Moreover, if ¢ = (z1,... ,2,) € S. N U, then 1 = g(z2,... ,2n).
Thus, we have that

S.NU ={(g(z2,... ,xn),T2,... ,&n) : (T2,... ,2,) € W}

={ueR":u= A(g(uiju)) for some w € W}

where A is the permutation of R™ given by

(yla--' ayn) = (ynay17"' 7yn—1)-

In particular, it follows that S, is an (n — 1)-dimensional manifold.

Exercise 1.60. Show that S™ := {(z1,... ,zn) € R" : 124t = 1} is
an (n — 1)-dimensional manifold.

Exercise 1.61. Show that the surface of revolution S obtained by rotating
the circle given by (z — 2)? + %> = 1 around the y-axis is a two-dimensional
manifold. This manifold is homeomorphic to a (two-dimensional) torus T? :=
T x T. Construct a homeomorphism. This exercise points out the weakness of our
definition of a manifold. The set T? is not defined as a subset of some R™. This
leads to the question “Is T? a manifold?” The answer is that T? can be given the
structure of a smooth two-dimensional manifold that is diffeomorphic to .S, but
this requires the abstract definition of a manifold.

Exercise 1.62. Suppose that J is an interval in R and v : J — R"™ is a smooth
function. The image C of « is, by definition, a curve in R". Is C a one-dimensional
manifold? Formulate and prove a theorem that gives sufficient conditions for C to
be a manifold. Hint: Consider the function ¢ — (¢2,¢%) for t € R and the function
t (1 —t%,t —t®) for two different domains: ¢t € R and t € (—oo, 1).

Exercise 1.63. Show that the closed unit disk in R? is not a manifold. Actually,
it is a manifold with boundary. How should this concept be formalized?

1.7.2  Tangent Spaces

We have used, informally, the following proposition: If S is a manifold in
R”™, and (z, f(x)) is tangent to S for each x € S, then S is an invariant
manifold for the differential equation & = f(z). To make this proposition
precise, we will give a definition of the concept of a tangent vector on a
manifold. This definition is the main topic of this section.
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Let us begin by considering some examples where the proposition on
tangents and invariant manifolds can be applied.

The vector field on R? associated with the system of differential equations
given by

&=y + 2),

= —y?+ zcosz,

2=2x+z—siny (1.18)
is “tangent” to the linear two-dimensional submanifold S := {(z,y,z2) :

x = 0} in the following sense: If (a,b,c) € S, then the value of the vector
function

(z,y,2) = (z(y + 2),y> + xcos z, 2z + z — siny)

at (a,b,c) is a vector in the linear space S. Note that the vector assigned
by the vector field depends on the point in .S. For this reason, we will view
the vector field as the function

((E,y,Z) = (x,y,z,x(y + Z)v _y2 + xcosz,Qm +z— Siny)

where the first three component functions specify the base point, and the
last three components, called the principal part, specify the vector that is
assigned at the base point.

Is S an invariant set? To answer this question, choose (0,b,¢) € S, con-
sider the initial value problem

y:_y ) ZZZ—SiIly, y(o):b7 Z(O):Ca

and note that if its solution is given by t — (y(¢), 2(t)), then the function
t — (0,y(t),2(t)) is the solution of system (1.18) starting at the point
(0,b, ¢). In particular, the orbit corresponding to this solution is contained
in S. However, our definition of an invariant set requires that every solution
that starts in S has its image in S for all t € R. This requirement is not
satisfied for S. (Why?) Thus, the proposition on invariance is not valid. In
fact, an additional hypothesis is needed to preclude the possibility of blow
up in finite time. For example, the following proposition is valid: If S is
a compact manifold in R™ and (z, f(x)) is tangent to S for each x € S,
then S is an invariant manifold for the differential equation & = f(x) (see
Proposition 1.70). Indeed, if S is compact, then it is bounded. Thus, a
solution with initial point on S cannot blow up in finite time.
The following system of differential equations,

i=a?— (3 +° + 23,

g=y" = (@ +y° + 2y,
s=22— (2P + P+ %)z (1.19)
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has a nonlinear invariant submanifold; namely, the unit sphere
S? = {(z,y,2) € R¥: 2® + > + 22 = 1}.

This fact follows from our proposition, provided that the vector field asso-
ciated with the differential equation is everywhere tangent to the sphere.
To prove this requirement, recall from Euclidean geometry that a vector
in space is defined to be tangent to the sphere if it is orthogonal to the
normal line passing through the base point of the vector. Moreover, the
normal lines to the sphere are generated by the outer unit normal field
given by the restriction of the vector field

’r}(x7 y? Z) = (1:7 y’ Z? x’ y) z)

to S2. By a simple computation, it is easy to check that the vector field
associated with the differential equation is everywhere orthogonal to 1 on
S?; that is, at each base point on S? the corresponding principal parts of
the two vector fields are orthogonal, as required.

We will give a definition for tangent vectors on a manifold that generalizes
the definition given in Euclidean geometry for linear subspaces and spheres.
Let us suppose that S is a k-dimensional submanifold of R"™ and (G, W)
is a submanifold coordinate chart at p € S. Our objective is to define the
tangent space to S at p.

Definition 1.64. If w € R*, then the tangent space to R* with base point
at w is the set

TR := {w} x R*.

We have the following obvious proposition: If w € R¥, then the tangent
space T,,R¥, with addition defined by

(w,8) + (w, ¢) == (w, £+ C)

and scalar multiplication defined by

a(w, &) := (w, af),

is a vector space that is isomorphic to the vector space R¥.

To define the tangent space of the submanifold S at p € S, denoted
T,S, we simply move the space T,,R¥, for an appropriate choice of w, to S
with a submanifold coordinate map. More precisely, suppose that (W, G) is
a submanifold coordinate chart at p. By Proposition 1.47, the coordinate
map G is invertible. If ¢ = G~1(p), then define

1,5 :={p} x {veR":v=DG(q), £ € R*}. (1.20)
Note that the set
S:={veR":v=DG(q), £ € R*}
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is a k-dimensional subspace of R™. If k = n, then DG(q) is the identity
map. If £ < n, then DG(q) = AB where A is a nonsingular matrix and the

n x k block matrix
Iy,
B =
<Dg(q))

is partitioned by rows with I the k X k identity matrix and g a map from
W to R™*. Thus, we see that S is just the image of a linear map from R*
to R™ whose rank is k.

Proposition 1.65. If S is a manifold and p € S, then the vector space
T,S is well-defined.

Proof. If K is a second submanifold coordinate map at p, say K : Z — S
with K (r) = p, then we must show that the tangent space defined using
K agrees with the tangent space defined using G. To prove this fact, let us
suppose that (p,v) € T,,S is given by

v = DG(q)¢.
Using the chain rule, it follows that
d
=—G t .
v=Glatie)

In other words, v is the directional derivative of G at ¢ in the direction &.
To compute this derivative, we simply choose a curve, here t — g+ t£, that
passes through g with tangent vector £ at time ¢ = 0, move this curve to
the manifold by composing it with the function G, and then compute the
tangent to the image curve at time ¢t = 0.

The curve t — K~ 1G(q+t€) is in Z (at least this is true for |¢| sufficiently
small). Thus, we have a vector a € R¥ given by

4
= dtK G(q +t§) o

We claim that DK (r)a = v. In fact, we have
K™'G(q) =K 'p=r,

and

DE(ra= L K(K1G(g + t€))

T dt

t=0

d
= 2Gla+t9)

= .

t=0

In particular, 75,5, as originally defined, is a subset of the “tangent space
at p defined by K.” But this means that this subset, which is itself a k-
dimensional affine subspace (the translate of a subspace) of R™, must be
equal to 7,5, as required. m]
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Exercise 1.66. Prove: If p € S?, then the tangent space T,S?, as in Defini-
tion 1.20, is equal to

{p} x {v €R®: (p,v) =0}

Definition 1.67. The tangent bundle T'S of a manifold S is the union of
its tangent spaces; that is, T'S = Upes T,S. Also, for each p € S, the
vector space 1,5 is called the fiber of the tangent bundle over the base
point p.

Definition 1.68. Suppose that S; and S, are manifolds, and F : S1 — S5
is a smooth function. The derivative, also called the tangent map, of F is
the function F, : T'S; — T'S> defined as follows: For each (p,v) € 1,51, let
(W1, G1) be a submanifold chart at p in Sy, (W2, G2) a submanifold chart at
F(p) in Sy, (G1*(p), €) the vector in T=1(y W1 such that DG (GTH(p))€ =

v, and (G5 (F(p)), ) the vector in T 1(p(py)We such that

¢ =D(Gy' o FoGy)(Gy'(p))é.

The tangent vector Fi(p,v) in Tr,)S2 is defined by

F.(p,v) = (F(p), DG2(G3 " (F(p))C).

Definition 1.68 certainly seems to be rather complex. However, it is also
very natural. We simply use the local representatives of the function F' and
the definition of the tangent bundle to define the derivative F, as the map
with two component functions. The first component is F' (to ensure that
base points map to base points) and the second component is defined by
the derivative of a local representative of F' at each base point.

The following proposition is obvious from the definitions.

Proposition 1.69. The tangent map is well-defined and it is linear on
each fiber of the tangent bundle.

The derivative, or tangent map, of a function defined on a manifold has
a geometric interpretation that is the key to understanding its applications
in the study of differential equations. We have already discussed this inter-
pretation several times for various special cases. However, because it is so
important, let us consider the geometric interpretation of the derivative in
the context of the notation introduced in Definition 1.68. If ¢ — ~(t) is a
curve—a smooth function defined on an open set of R—with image in the
submanifold S; € R™ such that (0) = p, and if
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then ¢ — F(y(t)) is a curve in the submanifold Sy C R™ such that
F(7(0)) = F(p) and

d
Fulp.v) = (F), 2 FG®)| ).
We simply find a curve that is tangent to the vector v at p and move the
curve to the image of the function F' to obtain a curve in the range. The
tangent vector to the new curve at F'(p) is the image of the tangent map.

t=0

Proposition 1.70. A compact submanifold S of R™ is an invariant man-
ifold for the ordinary differential equation & = f(x), x € R™ if and only
if

(z, f(x)) € TS
for each x € S. In particular, each orbit on S is defined for all t € R.

Proof. Suppose that S is k-dimensional, p € S, and (W,G) is a sub-
manifold coordinate chart for S at p. The idea of the proof is to change
coordinates to obtain an ordinary differential equation on W.

Recall that the submanifold coordinate map G is invertible and G~ is
the restriction of a linear map defined on R™. In particular, we have that
w = G (G(w)) for w € W. If we differentiate both sides of this equation
and use the chain rule, then we obtain the relation

I = DG (G(w))DG(w) (1.21)

where I denotes the identity transformation of R™. In particular, for each
w € W, we have that DG~!(G(w)) is the inverse of the linear transforma-
tion DG (w).

Under the hypothesis, we have that (z, f(z)) € TS for each x € S.
Hence, the vector f(G(w)) is in the image of DG(w) for each w € W.
Thus, it follows that

(w, DG (G(w)) f(G(w))) € TR,
and, as a result, the map
w = (w, DGTH(G(w)) f(G(w)))

defines a vector field on W C R™. The associated differential equation on
W is given by

w = DG (G(w)) f(G(w)). (1.22)

Suppose that G(q) = p, and consider the initial value problem on W
given by the differential equation (1.22) together with the initial condition
w(0) = g. By the existence theorem, this initial value problem has a unique
solution ¢ — w(t) that is defined on an open interval containing t = 0.
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Define ¢(t) = G(w(t)). We have that ¢(0) = p and, using equation (1.21),
that

L) = DG(w(t) (1)
— DG(w(t) - DG (G(w () F(G(w(1))
= 1(6(1)).

Thus, ¢t — ¢(t) is the solution of & = f(z) starting at p. Moreover, this
solution is in S because ¢(t) = G(w(t)). The solution remains in S as long
as it is defined in the submanifold coordinate chart. But S was assumed
to be compact. By the extensibility theorem, if a solution on S does not
exist for all time, for example, if it exists for 0 < ¢t < 8 < oo, then it
approaches the boundary of the submanifold coordinate chart or its norm
increases without bound as ¢ — (. The second possibility is excluded by
the compactness of S and the continuity of ¢. If the solution approaches
a point r on the boundary of the submanifold coordinate chart as t — 3,
then there is a new submanifold coordinate chart at r where the argument
can be repeated. Thus, it follows that all solutions on S exist for all time.

If S is invariant, p € S and t — ~(¢) is the solution of & = f(z) with
7(0) = p, then the curve t — G~1(y(¢)) in R* has a tangent vector ¢ at
t = 0 given by

d
= — t .
e= o)
As before, it is easy to see that DG(q)¢ = f(p). Thus, (p, f(p)) € T,,S, as
required. O

Exercise 1.71. State and prove a proposition that is analogous to Proposi-
tion 1.70 for the case where the submanifold S is not compact.

Exercise 1.72. We have mentioned several times the interpretation of the
derivative of a function whereby a curve tangent to a given vector at a point
is moved by the function to obtain a new curve whose tangent vector is the direc-
tional derivative of the function applied to the original vector. This interpretation
can also be used to define the tangent space at a point on a manifold. In fact, let
us say that two curves ¢ — ~(t) and t — v(t), with image in the same manifold
S, are equivalent if v(0) = v(0) and 4(0) = ©(0). Prove that this is an equiv-
alence relation. A tangent vector at p € S is defined to an equivalence class of
curves all with value p at ¢ = 0. As a convenient notation, let us write [] for the
equivalence class containing the curve +. The tangent space at p in S is defined
to be the set of all equivalence classes of curves that have value p at ¢ = 0. Prove
that the tangent space at p defined in this manner can be given the structure of
a vector space and this vector space has the same dimension as the manifold S.
Also prove that this definition gives the same tangent space as defined in equa-
tion 1.20. Finally, for manifolds S1 and S2 and a function F' : S; — Sa, prove
that the tangent map Fj is given by Fi[y] = [F o7].
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FIGURE 1.15. The left panel depicts a heteroclinic saddle connection and a
locally supported perturbation. The right panel depicts the phase portrait of the
perturbed vector field.

Exercise 1.73. [Structural Stability] Let H(z,y, z) be a homogeneous polyno-
mial of degree n and 7 the outer unit normal on the unit sphere S* C R3. Show
that the vector field Xy = grad H — nHn is tangent to S2.

Call a rest point isolated if it is the unique rest point in some open set. Prove
that if n is fixed, then the number of isolated rest points of Xy is uniformly
bounded over all homogeneous polynomials H of degree n. Suppose that n = 3,
the uniform bound for this case is B, and m is an integer such that 0 < m < B.
What is B? Is there some H such that Xy has exactly m rest points? If not,
then for which m is there such an H? What if n > 37

Note that the homogeneous polynomials of degree n form a finite dimensional
vector space H,. What is its dimension? Is it true that for an open and dense
subset of H, the corresponding vector fields on S? have only hyperbolic rest
points?

In general, if X is a vector field in some class of vector fields H, then X is
called structurally stable with respect to H if X is contained in some open subset
U C H such that the phase portrait of every vector field in U is the same; that is,
if Y is a vector field in U, then there is a homeomorphism of the phase space that
maps orbits of X to orbits of Y. Let us define X, to be the set of all vector fields
on S? of the form Xp for some H € H,,. It is an interesting unsolved problem to
determine the structurally stable vector fields in &), with respect to X,,.

One of the key issues that must be resolved to determine the structural stability
of a vector field on a two-dimensional manifold is the existence of heteroclinic
orbits. A heteroclinic orbit is an orbit that is contained in the stable manifold
of a saddle point ¢ and in the unstable manifold of a different saddle point p. If
p = q, such an orbit is called homoclinic. A basic fact from the theory of structural
stability is that if two saddle points are connected by a heteroclinic orbit, then
the local phase portrait near this orbit can be changed by an arbitrarily small
smooth perturbation. In effect, a perturbation can be chosen such that, in the
phase portrait of the perturbed vector field, the saddle connection is broken (see
Figure 1.15). Thus, in particular, a vector field with two saddle points connected
by a heteroclinic orbit is not structurally stable with respect to the class of all
smooth vector fields. Prove that a vector field X g in &), cannot have a homoclinic
orbit. Also, prove that X g cannot have a periodic orbit. Construct a homogeneous
polynomial H € Hs such that Xy has hyperbolic saddle points p and ¢ connected
by a heteroclinic orbit.

Is every heteroclinic orbit of a vector field Xy € X5 an arc of a great circle? The
answer to this question is not known. However, if it is true that all heteroclinic
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FIGURE 1.16. The “push forward” of a vector field f by a diffeomorphism
g:S— M.

orbits are arcs of great circles, then the structurally stable vector fields, with
respect to the class X, are exactly those vector fields with all their rest points
hyperbolic and with no heteroclinic orbits. Moreover, this set is open and dense
in X,. A proof of these facts requires some work. However, the main point is
that if Xy has a heteroclinic orbit that is an arc of a great circle, then there is
a homogeneous polynomial K of degree n = 3 such that the perturbed vector
field X p 4k has no heteroclinic orbits for |e| sufficiently small. In fact, K can be
chosen to be of the form

K(z,y,2) = (az + by + cz)(a” + y* + 2%)

for suitable constants a, b, and ¢. (Why?) Of course, the conjecture that hetero-
clinic orbits of vector fields in H3 lie on great circles is just one approach to the
structural stability question for X3. Can you find another approach?

There is an extensive and far-reaching literature on the subject of structural
stability (see, for example, [150] and [160]).

Exercise 1.74. Prove: The diagonal
{(z,y) eR" xR" :x =y}
in R™ x R™ is an invariant set for the system

&= f(x)+ h(y — z), y=f(y) +g(x—y)

where f,g,h: R" — R".

1.7.8  Change of Coordinates

The proof of Proposition 1.70 contains an important computation that is
useful in many other contexts; namely, the formula for changing coordinates
in an autonomous differential equation. To reiterate this result, suppose
that we have a differential equation & = f(z) where x € R, and S C R" is
an invariant k-dimensional submanifold. If g is a diffeomorphism from S to
some k-dimensional submanifold M C R™, then the ordinary differential
equation (or, more precisely, the vector field associated with the differential
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FIGURE 1.17. The flow of a differential equation is rectified by a change of
coordinates g : U — V.

equation) can be “pushed forward” to M. In fact, if g : S — M is the
diffeomorphism, then

g=Dglg W) (g~ () (1.23)

is a differential equation on M. Since g is a diffeomorphism, the new differ-
ential equation is the same as the original one up to a change of coordinates
as schematically depicted in Figure 1.16.

Example 1.75. Consider & = 2z — 2%, z € R. Let S = {z € R : z > 0},
M =S, and let g : S — M denote the diffeomorphism defined by g(x) =
1/x. Here, g~ !(y) = 1/y and

g =Dg(g " (W) flg™ ()
n-2,1 1
G
=—y+1.

The diffeomorphism g is just the change of coordinates, y = 1/x used
to solve Bernoulli’s equation; it is encountered in elementary courses on
differential equations.

Coordinate transformations are very useful in the study of differential
equations. New coordinates can reveal unexpected features. As a dramatic
example of this phenomenon, we will show that all autonomous differential
equations are the same, up to a smooth change of coordinates, near each
of their regular points. Here, a regular point of & = f(z) is a point p € R™,
such that f(p) # 0. The following precise statement of this fact, which is
depicted in Figure 1.17, is called the rectification lemma, the straightening
out theorem, or the flow box theorem.

Lemma 1.76 (Rectification Lemma). Suppose that & = f(z), € R™.
If p € R™ and f(p) # 0, then there are open sets U, V in R™ with p € U,
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and a diffeomorphism g : U — V' such that the differential equation in the
new coordinates, that is, the differential equation

§="Dglg™ ) (g~ (),
is given by (Y1,... ,9n) = (1,0,0,...,0).

Proof. The idea of the proof is to “rectify” at one point, and then to
extend the rectification to a neighborhood of this point.

Let ey, ... , e, denote the usual basis of R™. There is an invertible (affine)
map H; : R” — R” such that Hy(p) = 0 and DHy(p)f(p) = e1. (Why?)
Here, an affine map is just the sum of a linear map and a translation. Let us
also note that e; is the transpose of the vector (1,0,0,...,0) € R™. If the
formula (1.23) is used with g = Hy, then the differential equation & = f(x)
is transformed to the differential equation denoted by Z = fi(z) where
f1(0) = e;. Thus, we have “rectified” the original differential equation at
the single point p.

Let o denote the flow of 2 = f1(2), define Hy : R® — R"™ by

(57y27"' ayn) = (105(07?}27"' ayn)a

and note that H2(0) = 0. The action of the derivative of Hs at the origin
on the standard basis vectors is

d d
DH. = —Hy(t,0,... = -
2(0, ,0)61 dt 2( ,07 ,0) =0 dt(pt(ov ’ ) =0 €1,
and, for j =2,... ,n,
DH,(0,... ,0)e; = -1 (te-)’ = e, €
PR R o T dt Y Lo 7

In particular, DH(0) is the identity, an invertible linear transformation of
R™.
To complete the proof we will use the inverse function theorem.

Theorem 1.77 (Inverse Function Theorem). Suppose that F : R™ —
R™ is a smooth function. If F(p) = q and DF(p) is an invertible linear
transformation of R™, then there exist two open sets U and V in R™ with
(p,q) € U x V, together with a smooth function G : V. — U, such that
G(q) =p and G = F~1; that is, FoG :V =V and Go F : U — U are
identity functions.

Proof. Consider the function H : R™ x R” — R" given by H(z,y) =
F(z) —y. Note that H(p,q) = 0 and that H,(p,q) = DF(p) is invertible.
By the implicit function theorem, there are open balls U and V' contained in
R™, and a smooth function G : V' — U such that (p,q) € U x V, G(q) = p,
and F(G(y)) =y for all y € V. In particular, the function FoG:V — V
is the identity.
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In view of the fact that F is continuous, the set U := F~1(V)NU is an
open subset of U with p € U and F(U) C V. If z € U, then (z, F(z)) €
UxV and H(z, F(z)) = 0. Thus, by the uniqueness of the implicit solution,
as stated in the implicit function theorem, G(F(z)) = z for all x € U. In
other words G o F : U — U is the identity function. a

By the inverse function theorem, there are two neighborhoods U and V' of
the origin such that Hy : U — V is a diffeomorphism. The new coordinate,
denoted y, on U is related to the old coordinate, denoted z, on V' by the
relation y = Hy '(2). The differential equation in the new coordinates has
the form

y = (DH>(y)) ' fi(Ha(y)) == fo(y).

Equivalently, at each point y € U, we have f1(Hz(y)) = DHa(y) f2(y).
Suppose that y = (s,y2,... ,¥yn) and consider the tangent vector

(y,e1) € T,R™.

Also, note that (y,e;) is tangent to the curve () = (s + ¢, y2,... ,¥n) in
R™ at t =0 and

d

d
DH;(y)e, = %H2(’Y(t)) o asﬁt(%(o,yz’ s Yn)) o

= fl(HQ(Say% s 7yﬂ)) = fl(HQ(y))'

In view of the fact that DHs(y) is invertible, it follows that fo(y) = eq.
The map ¢ := H, 1o H, gives the required change of coordinates. ]

The idea that a change of coordinates may simplify a given problem is a
far-reaching idea in many areas of mathematics; it certainly plays a central
role in the study of differential equations.

Exercise 1.78. Show that the implicit function theorem is a corollary of the
inverse function theorem.

Exercise 1.79. [Flow Box with Section] Prove the following modification of the
rectification lemma. Suppose that © = f(x), x € R%. If p € R?, the vector f(p) is
not zero, and there is a curve ¥ in R? such that p € ¥ and f(p) is not tangent
to 3, then there are open sets U, V in R? with p € U and a diffeomorphism
g : U — V such that the differential equation in the new coordinates, that is, the
differential equation

y=Dg(g (W) flg~ ),

is giwen by (Y1,92) = (1,0). Moreover, the image of X N U under g is the line
segment {(y1,y2) € V : y1 = 0}. Generalize the result to differential equations on
R"™.
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Exercise 1.80. Prove that the function given by

(z y)HM
' (z2 +y+1)2

is constant on the trajectories of the differential equation
T = -y, y:a:+3my+a:3.

Show that the function

(@)~ (

T z? + Y )
22+y+1" 22+y+1
is birational—that is, the function and its inverse are both defined by rational

functions. Finally, show that the change of coordinates given by this birational
map linearizes the differential equation (see [155]).

1.7.4  Polar Coordinates

There are several special “coordinate systems” that are important in the
analysis of differential equations, especially, polar coordinates, cylindrical
coordinates, and spherical coordinates. In this section we will consider the
meaning of these coordinates in the language of differentiable manifolds,
and we will also explore a few applications, especially blowup of a rest point
and compactification at infinity. However, the main purpose of this section
is to provide a deeper understanding and appreciation for the manifold
concept in the context of the study of differential equations.

What are polar coordinates?

Perhaps the best way to understand the meaning of polar coordinates
is to recall the “angular wrapping function” definition of angular measure
from elementary trigonometry. We have proved that the unit circle T is a
one-dimensional manifold. The wrapping function P : R — T is given by

P(0) = (cos0,sinf).

Clearly, P is smooth and surjective. But P is not injective. In particular,
P is not a diffeomorphism (see Exercise 1.81).

The function P is a covering map; that is, each point of T is contained
in an open set on which a local inverse of P is defined. Each such open set,
together with its corresponding inverse function, is a coordinate system, as
defined in Definition 1.53, that we will call an angular coordinate system.
The image of a point of T under an angular coordinate map is called its
angular coordinate, or simply its angle, relative to the angular coordinate
system. For example, the pair (V, ¥) where

Vi={(z,y) €T:2z >0}

and ¥ : V — (=3, %) is given by ¥(x,y) = arctan(y/x) is an angular

coordinate system. The number 6 = ¥(x,y) is the angle assigned to (z,y)
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77777~

FIGURE 1.18. The polar wrapping function P : R? — R? and a polar coordinate
system W : V' — W on the upper half plane.

in this angular coordinate system. Of course, there are infinitely many dif-
ferent angular coordinate systems defined on the same open set V. For
example, the function given by (z,y) — 47 + arctan(y/z) on V also de-
termines an angular coordinate system on T for which the corresponding
angles belong to the interval (%’T, 9?”)

As we have just seen, each point of T is assigned infinitely many angles.
However, all angular coordinate systems are compatible in the sense that
they all determine local inverses of the wrapping function P. The totality

of these charts might be called the angular coordinates on T.

Exercise 1.81. Prove that T is not diffeomorphic to R.

Exercise 1.82. Find a collection of angular coordinate systems that cover the
unit circle.

Let us next consider coordinates on the plane compatible with the polar
wrapping function P : R? — R? given by

P(r,0) = (rcosf,rsin®).

The function P is a smooth surjective map that is not injective. Thus, P
is not a diffeomorphism. Also, this function is not a covering map. For
example, P has no local inverse at the origin of its range. However, P
does have a local inverse at every point of the punctured plane; that is,
the set R? with the origin removed. Thus, in analogy with the definition
of the angular coordinate on T we have the following definition of polar
coordinates.

Definition 1.83. A polar coordinate system on the punctured plane is
a coordinate system (V,¥) where V' C R?\ {0,0}, the range W of the
coordinate map V is contained in R?, and ¥ : V — W is the inverse of
the polar wrapping function P restricted to the set W. The collection of
all polar coordinate systems is called polar coordinates.
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If
Vi={(z,y) eR*:y >0}, W:={(r,0) cR?*:7>0,0<6<7}

and ¥ : V — W is given by
U(z,y) = (\/962 +y2, g — arctan (g)),

then (V, ) is a polar coordinate system on the punctured plane (see Fig-
ure 1.18). By convention, the two slot functions defined by ¥ are named as
follows

V(z,y) = (r(z,y),0(z,9)),

and the point (z,y) is said to have polar coordinates r = r(z,y) and 0 =
0(x,y).

The definition of cylindrical and spherical coordinates is similar to Defi-
nition 1.83 where the respective wrapping functions are given by

(r,0,2) — (rcosf,rsind, z),
(p,0,0) — (psin¢cos b, psin psin b, pcos ¢). (1.24)

To obtain covering maps, the z-axis must be removed in the target plane in
both cases. Moreover, for spherical coordinates, the second variable must
be restricted so that 0 < ¢ < 7.

Let us now consider a differential equation @ = f(u) defined on R? with
the usual Cartesian coordinates u := (z,y). If (V, ¥) is a polar coordinate
system on the punctured plane such that ¥ : V' — W then we can push
forward the vector field f to the open set W by the general change of
variables formula § = Dg(¢g™!))f(97 (y)) (see page 53). The new differ-
ential equation corresponding to the push forward of f is then said to be
expressed in polar coordinates.

Specifically, the (principal part of the) new vector field is given by

F(r,0) = DU(P(r,0))f(P(r,0)).

Of course, because the expressions for the components of the Jacobian
matrix corresponding to the derivative DV are usually more complex than
those for the matrix DP, the change to polar coordinates is usually easier
to compute if we use the chain rule to obtain the identity

1 /rcosf rsinf
— 71 = —
DW(P(r,6)) = [DP(r,0)] " = - <—sin9 cos 0 )

and recast the formula for F' in the form

F(r,0) = [DP(r,0)] ' f(P(r,0)).
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In components, if f(z,y) = (f1(z,y), f2(x,y)), then

cos @ f1(rcosf,rsinf) + sin b fo(r cos b, rsin @
F(r,&)z( 1l ) 2 )). (1.25)

——Sigefl(r cos 0, rsinf) + (3071789]02(70 cos,rsin6)

Note that the vector field F' obtained by the push forward of f in for-
mula (1.25) does not depend on the choice of the polar coordinate system;
that is, it does not depend on the choice of the local inverse W. Thus, the
vector field F' is globally defined except on the line in the coordinate plane
given by {(r,0) € R? : r = 0}. In general this is the best that we can do
because the second component of the vector field F' has a singularity at
r=0.

In practice, perhaps the simplest way to change to polar coordinates is
to first differentiate in the formulas 72 = 22 + 3? and § = arctan(y/z) to
obtain the components of F' in the form

rr = $$+yy - Ifl(z7y) +yf2($,y),
20 = xy —yi = xfa(x,y) —yfi(x,y),

and then substitute for x and y using the identities £ = rcosf and y =
rsinf.

Exercise 1.84. Change the differential equations to polar coordinates:
Li=—y+a(l-—a®-y"), g=z+y(l-a®—y?).
2. =1—y> gy=um.

The fact that changing to polar coordinates in a planar differential equa-
tion introduces a singularity on the line {(r,6) € R? : 7 = 0} is unavoidable.
However, the next proposition states that if the differential equation has a
rest point at the origin, then the singularity is removable (see [59]).

Proposition 1.85. If i = f(u) is a differential equation on the plane and
f(0) = 0, then the corresponding differential equation in polar coordinates
has a removable singularity. Also, if f is class C", then the desingularized
vector field in polar coordinates is in class CT 1.

Proof. Apply Taylor’s theorem to the Taylor expansions of the compo-
nents of the vector field f at the origin. O

Even if Proposition 1.85 applies, and we do obtain a smooth vector field
defined on the whole polar coordinate plane, the desingularized vector field
is not the push forward of the original vector field; that is, the desingular-
ized vector field is not obtained merely by a change of coordinates. Remem-
ber that there is no polar coordinate system at the origin of the Cartesian
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FIGURE 1.19. The polar wrapping function factored through the phase cylinder.

plane. In fact, the desingularized vector field in polar coordinates is an ex-
tension of the push forward of the original vector field to the singular line
{(r,0) € R? : 7 = 0}.

It is evident from formula (1.25) that the desingularized vector field is
27 periodic in 6; that is, for all (r,0) we have

F(r,0 +2m) = F(r,0).

In particular, the phase portrait of this vector field is periodic with period
2m. For this reason, let us change the point of view one last time and
consider the vector field to be defined on the phase cylinder; that is, on
T x R with 6 the angular coordinate on T and r the Cartesian coordinate
on R.

The phase cylinder can be realized as a two-dimensional submanifold in
R3; for example, as the set

C:={(z,y,2) ER®: 2% 44 = 1}.

For this realization, the map @ : R? — C defined by Q(r,6) = (cos#,siné,r)
is a covering map. Here, R? is viewed as the “polar coordinate plane.” Thus,
we can use the map ) to push forward the vector field F' to the phase
cylinder (see Exercise 1.88). There is also a natural covering map R, from
the phase cylinder minus the set {(z,y, 2) € C : z = 0} onto the punctured
Cartesian plane, defined by

R(z,y,2) = (z2,y2). (1.26)

If the original vector field f vanishes at the origin, then it can be pushed
forward by ¥ to F on the polar plane, and F' can be pushed forward by
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Q@ to a vector field h on the phase cylinder. If finally, h is pushed forward
by R to the punctured Cartesian plane, then we recover the original vector
field f. In fact, by Exercise 1.88, the composition R o ) o ¥, depicted in
Figure 1.19, is the identity map.

Even though the phase cylinder can be realized as a manifold in R?, most
often the best way to consider a vector field in polar coordinates is to view
the polar coordinates abstractly as coordinates on the cylinder; that is, to
view 6 as the angular variable on T and r as the Cartesian coordinate on
R.

Exercise 1.86. Prove the following statements. If F' is the push forward to the
polar coordinate plane of a smooth vector field on the Cartesian plane, then F
has the following symmetry:

F(—r,0+m)=—F(r,0).
If F' can be desingularized, then its desingularization retains the symmetry.

Exercise 1.87. Prove that the cylinder {(z,y,2) € R® : 2> 4 y*> = 1} is a
two-dimensional submanifold of R®.

Exercise 1.88. Suppose that F' is the push forward to the polar coordinate
plane of a smooth vector field on the Cartesian plane that vanishes at the origin.
Find the components of the push forward h of F' to the phase cylinder realized
as a submanifold in R3. Show that the push forward of h to the Cartesian plane
via the natural map (1.26) is the original vector field f.

Exercise 1.89. [Hamiltonians and Gradients on Manifolds| Let

G:R* =R
be a smooth map and consider its gradient. We have tacitly assumed that the
definition of the gradient in R? is

(1.27)

sl G = (8G G 8G)'

dx’ dy’ 9z

However, this expression for the gradient of a function is correct only on Eu-
clidean space, that is, R® together with the usual inner product. The definition
of the gradient for a scalar function defined on a manifold, to be given below, is
coordinate-free, but it does depend on the choice of the inner product.

Recall that if G : R™ — R, then its derivative can be viewed as a function from
the tangent bundle TR™ to TR. If TR is identified with R, then on each tangent
space of R™, the derivative of G is a linear functional. In fact, if we work locally
at p € R", then DG(p) is a map from the vector space R™ to R. Moreover, the
assignment of the linear functional corresponding to the derivative of G at each
point of the manifold varies smoothly with the base point. From this point of
view, the derivative of the scalar-valued function G is a differential 1-form on R™
that we will denote by dG. Finally, the derivative of G may be interpreted as the
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the differential of G. In this interpretation, if V is a tangent vector at p € R™
and + is a curve such that v(0) = p and 4(0) = V, then

AG(V) = S G0 .
S 5=0

If G is a scalar function defined on a manifold, then all of our interpretations for
the derivative of G are still viable.

The definition of the gradient requires a new concept: A Riemannian metric on
a manifold is a smooth assignment of an inner product in each tangent space of
the manifold. Of course, the usual inner product assigned in each tangent space of
R™ is a Riemannian metric for R™. Moreover, the manifold R" together with this
Riemannian metric is called Fuclidean space. Note that the Riemannian metric
can be used to define length. For example, the norm of a vector is the square root
of the inner product of the vector with itself. It follows that the shortest distance
between two points is a straight line. Thus, the geometry of Euclidean space is
Fuclidean geometry, as it should be. More generally, if v is a curve in Euclidean
space connecting two points p and g; that is, v(0) = p and (1) = g, then the
length of the curve

/0 VED @) dt,

where the angle brackets denote the usual inner product, is minimized over all
such curves defined on the unit interval by the curve v(t) = tq + (1 — t)p that
parametrizes the straight line joining the points. Similarly, suppose that g is a
Riemannian metric on a manifold M and p,q € M. Roughly speaking, a curve
defined on the unit interval that joins the points p and ¢ is called a geodesic if it

minimizes the integral
1
| Voot
0

where, in general, the symbolism g, (v, w) denotes the inner product of the two
vectors (r,v) and (r,w) in T, M. The “Riemannian geometry” on a manifold
where geodesics play the role of lines is determined by the choice of a Riemannian
metric.

The gradient of G : M — R with respect to the Riemannian metric g is the
vector field, denoted by grad G, such that

dG, (V) = g,(V, grad G) (1.28)

for each point p € M and every tangent vector V' € T, M. The associated gradient
system on the manifold is the differential equation p = grad G(p).

Prove: The gradient vector field is uniquely defined. Prove: If the Riemannian
metric g on R? is the usual inner product at each point of R3, then the invariant
definition (1.28) of gradient agrees with the Euclidean gradient.

Consider the upper half plane of R? with the Riemannian metric

Iy (VW) =y (V. W) (1.29)

where the angle brackets denote the usual inner product. The upper half plane
with the metric g is called the Poincaré or Lobachevsky plane; its geodesics are
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vertical lines and arcs of circles whose centers are on the x-axis. The geometry
is non-Euclidean; for example, if p is a point not on such a circle, then there
are infinitely many such circles passing through p that are parallel to (do not
intersect) the given circle.

Find the gradient of the function G(z,y) = 2 + y* with respect to the Rie-
mannian metric (1.29) and draw the phase portrait of the corresponding gradient
system on the upper half plane. Compare this phase portrait with the phase por-
trait of the gradient system with respect to the usual metric on the plane.

If S is a submanifold of R™, then S inherits a Riemannian metric from the
usual inner product on R"™. Suppose that F' : R® — R. What is the relationship
between the gradient of F' on R™ and the gradient of the function F restricted to
S with respect to the inherited Riemannian metric (see Exercise 1.73)?

Hamiltonian systems on manifolds are defined in essentially the same way as
gradient systems except that the Riemannian metric is replaced by a symplectic
form. In order to properly define and analyze symplectic forms, the calculus of
differential forms is required (see [10], [68], and [167]). However, for completeness,
a symplectic form on a manifold is a smooth assignment of a bilinear, skew-
symmetric, nondegenerate 2-form in each tangent space. A 2-form w on a vector
space X is nondegenerate provided that y = 0 is the only element of X such that
w(z,y) = 0 for all z € X. Prove: If a manifold has a symplectic form, then the
dimension of the manifold is even.

Suppose that M is a manifold and w is a symplectic form on M. The Hamilto-
nian vector field associated with a smooth scalar function H defined on M is the
unique vector field Xz such that, for every point p € M and all tangent vectors
V' at p, the following identity holds:

AH, (V) = wy(Xm, V). (1.30)

Suppose that M := R?", view R*™ as R™ x R™ so that each tangent vector V/
on M is decomposed as V = (Vi, V) with V4, Vo € R™, and define

avw= o (1 0) (i)

Show that w is a symplectic form on M and Hamilton’s equations are produced
by the invariant definition (1.30) of the Hamiltonian vector field.

Push forward the Euclidean gradient (1.27) of the function G : R* — R to the
image of a cylindrical coordinate map, define

G(r,0,z) = G(rcosf,rsinb, z),
and show that the push forward gives the result

0G 190G 0G
dg = (50, 55057, 1.31
grad g or’ r2 00’ 0z ( )
(In practice, the function G is usually again called G! These two functions are
local representations of the same function in two different coordinate systems.)
Recall the formula for the gradient in cylindrical coordinates from vector analysis;
namely,

gradG = —e, + ——e€9+ —e,. (1.32)
r r z
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Show that the gradient vector fields (1.31) and (1.32) coincide.

Express the usual inner product in cylindrical coordinates, and use the invari-
ant definition of the gradient to determine the gradient in cylindrical coordinates.
Repeat the exercise for spherical coordinates.

Exercise 1.90. [Electrostatic Dipole Potential] Suppose that two point charges
with opposite signs, each with charge ¢, placed a units apart and located symmet-
rically with respect to the origin on the z-axis in space, produce the electrostatic
potential

a _ a —
Go(w,y,2) = kq[(z® + y* + (= — 5)2) V2@ 4y (24 5)2) 2]

where k£ > 0 is a constant and ¢ > 0. If we are interested only in the field far
from the charges, the “far field,” then a is relatively small and therefore the first
nonzero term of the Taylor series of the electrostatic potential with respect to a
at a = 0 gives a useful approximation of Go. This approximation, an example of
a “far field approximation,” is called the dipole potential in Physics (see [66, Vol.
II, 6-1]). Show that the dipole potential is given by

G(z,y, 2) = kqaz(a® + y? + 22) %/

By definition, the electric field E produced by the dipole potential associated with
the two charges is F := —grad G. Draw the phase portrait of the differential
equation & = FE(u) whose orbits are the “dipole” lines of force. Discuss the
stability of all rest points. Hint: Choose a useful coordinate system that reduces
the problem to two dimensions.

Blow Up at a Rest Point

As an application of polar coordinates, let us determine the phase portrait
of the differential equation in the Cartesian plane given by

& =2 — 2uzy, y=y* — 2y, (1.33)

(see [59]). This system has a unique rest point at the origin that is not
hyperbolic. In fact, the system matrix for the linearization at the origin
vanishes. Thus, linearization provides no information about the phase por-
trait of the system near the origin.

Because the polar coordinate representation of a plane vector field is
always singular at the origin, we might expect that the polar coordinate
representation of a planar vector field is not particularly useful to determine
the phase portrait near the origin. However, this is not the case. Often
polar coordinates are the best way to analyze the vector field near the
origin. The reason is that the desingularized vector field in polar coordinates
is a smooth extension to the singular line represented as the equator of
the phase cylinder. All points on the equator are collapsed to the single
rest point at the origin in the Cartesian plane. Or, as we say, the equator
is the blowup of the rest point. This extension is valuable because the
phase portrait of the vector field near the original rest point corresponds
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FIGURE 1.20. Phase portrait for the differential equation (1.34) on the upper
half of the phase cylinder and its “blowdown” to the Cartesian plane.

to the phase portrait on the phase cylinder near the equatorial circle. Polar
coordinates and desingularization provide a mathematical microscope for
viewing the local behavior near the “Cartesian” rest point.

The desingularized polar coordinate representation of system (1.33) is

7 = 1%(cos® § — 2 cos® sin @ — 2 cos fsin? @ + sin® 6),
0 = 3r(cosfsin? § — cos® fsin 6). (1.34)

For this particular example, both components of the vector field have r
as a common factor. From our discussion of reparametrization, we know
that the system with this factor removed has the same phase portrait as
the original differential equation in the portion of the phase cylinder where
r > 0. Of course, when we “blow down” to the Cartesian plane, the push
forward of the reparametrized vector field has the same phase portrait as
the original vector field in the punctured plane; exactly the set where the
original phase portrait is to be constructed.

Let us note that after division by r, the differential equation (1.34) has
several isolated rest point on the equator of the phase cylinder. In fact,
because this differential equation restricted to the equator is given by

0 = 3 cos fsinf(sin § — cos h),

we see that it has six rest points with the following angular coordinates:
T T om 3

R a5 T, VIR a

4 2 4 2

The corresponding rest points for the reparametrized system are all hy-
perbolic. For example, the system matrix at the rest point (r,0) = (0, F)

0,
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1 /-1 0
7(05)
It has the negative eigenvalue —1/ V/2 in the positive direction of the Carte-
sian variable r on the cylinder and the positive eigenvalue 3/v/2 in the posi-
tive direction of the angular variable. This rest point is a hyperbolic saddle.
If each rest point on the equator is linearized in turn, the phase portrait
on the cylinder and the corresponding blowdown of the phase portrait on
the Cartesian plane are found to be as depicted in Figure 1.20. Hartman’s
theorem can be used to construct a proof of this fact.

The analysis of differential equation (1.33) is very instructive, but per-
haps somewhat misleading. Often, unlike this example, the blowup proce-
dure produces a vector field on the phase cylinder where some or all of the
rest points are not hyperbolic. Of course, in these cases, we can treat the
polar coordinates near one of the nonhyperbolic rest points as Cartesian
coordinates; we can translate the rest point to the origin; and we can blow
up again. If, after a finite number of such blowups, all rest points of the
resulting vector field are hyperbolic, then the local phase portrait of the
original vector field at the original nonhyperbolic rest point can be deter-
mined. For masterful treatments of this subject and much more, see [58],
[59], and [173].

The idea of blowup and desingularization are far-reaching ideas in math-
ematics. For example, these ideas seem to have originated in algebraic ge-
ometry, where they play a fundamental role in understanding the structure
of algebraic varieties [24].

is

Compactification at Infinity

The orbits of a differential equation on R™ may be unbounded. One way
to obtain some information about the behavior of such solutions is to (try
to) compactify the Cartesian space, so that the vector field is extended
to a new manifold that contains the “points at infinity.” This idea, due
to Henri Poincaré [143], has been most successful in the study of planar
systems given by polynomial vector fields, also called polynomial systems
(see [5, p. 219] and [76]). In this section we will give a brief description of
the compactification process for such planar systems. We will again use the
manifold concept and the idea of reparametrization.
Let us consider a plane vector field, which we will write in the form

= f(x,y), y=gxvy). (1.35)

To study its phase portrait “near” infinity, let us consider the unit sphere
S?; that is, the two-dimensional submanifold of R? defined by

S?i={(z,y,2) : 2® + 9> + 22 =1},
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and the tangent plane II at its north pole; that is, the point with coordi-
nates (0,0, 1). The push forward of system (1.35) to II by the natural map

(z,y) = (z,y,1) s
n'c:f(x,y), y:g(fc,y)7 z=0. (136)

The idea is to “project” differential equation (1.36) to the unit sphere by
central projection; then the behavior of the system near infinity is the same
as the behavior of the projected system near the equator of the sphere.

Central projection is defined as follows: A point p € II is mapped to
the sphere by assigning the unique point on the sphere that lies on the
line segment from the origin in R? to the point p. To avoid a vector field
specified by three components, we will study the projected vector field
restricted to a coordinate system on the sphere where the vector field is
again planar. Also, to obtain the desired compactification, we will choose
local coordinates defined in open sets that contain portions of the equator
of the sphere.

The central projection map @ : IT — S? is given by

Qa,y. 1) = (a(@® + > + )72 y(@® + 47 + )7V (@ + 7+ 1)72).

One possibility for an appropriate coordinate system on the Poincaré sphere
is a spherical coordinate system; that is, one of the coordinate charts that
is compatible with the map

(p,0,0) — (psin @ cos b, psin ¢sin b, p cos @) (1.37)

(see display (1.24)). For example, if we restrict to the portion of the sphere
where x > 0, then one such coordinate map is given by

U(z,y,z) := (arccos(z), arctan (%))

The transformed vector field on the sphere is the push forward of the vector
field X that defines the differential equation on II by the map ¥ o Q). In
view of equation (1.37) and the restriction to the sphere, the inverse of this
composition is the transformation P given by

P(¢,0) = (:;I;f; cosf, Z)I;(j; sin&).

Thus, the push forward of the vector field X is given by

DP(¢,0)"' X (P(6,0)).

Of course, we can also find the transformed vector field simply by differen-
tiating with respect to ¢ in the formulas

¢ = arccos((z% 4+ y? +1)7/?), 0 = arctan (g)
x
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If the vector field is polynomial with maximal degree k, then after we

evaluate the polynomials f and g in system (1.36) at P(¢,0) and take
into account multiplication by the Jacobian matrix, the denominator of
the resulting expressions will contain cos*~! ¢ as a factor. Note that ¢ = 3
corresponds to the equator of the sphere and cos(3) = 0. Thus, the vector
field in spherical coordinates is desingularized by a reparametrization of
time that corresponds to multiplication of the vector field defining the
system by cos*~! ¢. This desingularized system ([46])
B cosk 10}
~ sing
is smooth at the equator of the sphere, and it has the same phase portrait
as the original centrally projected system in the upper hemisphere. There-
fore, we can often determine the phase portrait of the original vector field
“at infinity” by determining the phase portrait of the desingularized vec-
tor field on the equator. Note that because the vector field corresponding
to system (1.38) is everywhere tangent to the equator, the equator is an
invariant set for the desingularized system.

Spherical coordinates are global in the sense that all the spherical coor-
dinate systems have coordinate maps that are local inverses for the fixed
spherical wrapping function (1.37). Thus, the push forward of the original
vector field will produce system (1.38) in every spherical coordinate system.
However, there are other coordinate systems on the sphere that have also
proved useful for the compactification of plane vector fields.

For example, the right hemisphere of S?; that is, the subset {(z,y, 2) :
y > 0} is mapped diffeomorphically to the plane by the coordinate function
defined by

¢ = (cos**1 ¢)(cosOf +sinfg), 6 (cosfg—sinff) (1.38)

T oz
\I/l(l',y,Z): (77 7)'
vy
Also, the map ¥y o ), giving the central projection in these coordinates, is

given by
z 1
(xay71) = (77 7)'
y'y
Thus, the local representation of the central projection in this chart is
obtained using the coordinate transformations

Moreover, a polynomial vector field of degree k in these coordinates can
again be desingularized at the equator by a reparametrization correspond-
ing to multiplication of the vector field by v*~1. In fact, the desingularized
vector field has the form

= (2 D —ug(L D)), o= =t tig(Y, 2,

v v v v v v
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FIGURE 1.21. Phase portrait on the Poincaré sphere for the differential equa-
tion (1.39).

The function ¥ restricted to y < 0 produces the representation of the
central projection in the left hemisphere. Similarly, the coordinate map

\PQ(IvyaZ) - (g7 E)
x oz
on the sphere can be used to cover the remaining points, near the equator
in the upper hemisphere, with Cartesian coordinates (z,y, z) where y = 0
but x # 0.

The two pairs of charts just discussed produce two different local vector
fields. Both of these are usually required to analyze the phase portrait near
infinity. Also, it is very important to realize that if the degree k is even, then
multiplication by v¥~! in the charts corresponding respectively to 2 < 0
and y < 0 reverses the original direction of time.

As an example of compactification, let us consider the phase portrait of
the quadratic planar system given by

i =24 2% + 492, y = 10zy. (1.39)

This system has no rest points in the finite plane.
In the chart corresponding to v > 0 with the chart map ¥y, the desin-
gularized system is given by

u =20 — 9u* + 4, v = —10uv (1.40)

where the symbol “’ ” denotes differentiation with respect to the new inde-
pendent variable after reparametrization. The first order system (1.40) has
rest points with coordinates (u,v) = (+2,0). These rest points lie on the
u-axis: the set in our chart that corresponds to the equator of the Poincaré
sphere. Both rest points are hyperbolic. In fact, (%, 0) is a hyperbolic sink
and (7%7 0) is a hyperbolic source.

In the chart with v < 0 and chart map ¥;, the reparametrized local
system is given by the differential equation (1.40). However, because k = 2,
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the direction of “time” has been reversed. Thus, the sink at (%,0) in this
chart corresponds to a source for the original vector field centrally projected
to the Poincaré sphere. The rest point (—%, 0) corresponds to a sink on the
Poincaré sphere.

We have now considered all points on the Poincaré sphere except those
on the great circle given by the equation y = 0. For these points, we must
use the charts corresponding to the map Ws. In fact, there is a hyperbolic
saddle point at the origin of each of these coordinate charts, and these
rest points correspond to points on the equator of the Poincaré sphere. Of
course, the other two points already discussed are also rest points in these
charts.

The phase portrait of the compactification of system (1.39) is shown in
Figure 1.21. The fact that the two saddles at infinity are connected by a
heteroclinic orbit is clear because the z-axis is an invariant manifold for
the original vector field.

Exercise 1.91. Prove that S? is a two-dimensional submanifold of R3.

Exercise 1.92. Use spherical coordinates to determine the compactification of
the differential equation (1.39) on the Poincaré sphere.

Exercise 1.93. Find the compactification of the differential equation
t=z+y—-y’, Gg=-z+y+a’

on the Poincaré sphere using spherical coordinates. Show that the equator is a
periodic orbit. See [46, p. 411] for a stability analysis of this periodic orbit, but
note that there is a typographical error in the formula given for the desingularized
projection of this vector field.

Exercise 1.94. Draw the phase portrait of the vector field
t=a 4y —1, g =5(zy —1).

This example is studied by Poincaré in his pioneering memoir on differential
equations ([143, Oeuvre, p. 66]; see also [107, p. 204]).

Exercise 1.95. [Singular Differential Equations| Consider the first order sys-
tem

/ / / 2
=y, Y =2 € =y —rz—1,

which is equivalent to the third order differential equation in Exercise 1.7, and
suppose that the independent variable is 7 € R. For the new independent variable
t = 7/€e show that the system is transformed to

. . . 2
T=e€y, Y=¢€z, z=9yY —xz—1.

Note that a change in ¢ of one unit is matched by a change in 7 of € units. For
this reason, if € is small, then the variable 7 is called slow and t is called fast.
Set € = 0 in the fast time system and prove that this system has an invariant
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manifold S, called the slow manifold, that consists entirely of rest points. Identify
this manifold as a quadric surface. Draw a picture. Also, determine the stability
types of the rest points on this invariant manifold. Of course, for ¢ = 0 the original
slow time system is “singular.” In fact, if we set ¢ = 0 in the slow time system,
then we obtain two differential equations coupled with an algebraic equation,
namely,

=y, v =z, yz—mz—lzo.

Prove that the set S := {(2,9,2) : ¥*> — xz — 1 = 0} is a manifold in R3. If
W= {(z,y) : 2 > 0} and G(z,y) := (z,y, (y* — 1)/x), then show that (W, G) is
a coordinate chart on S. Also, show that there is a vector field on the image of
G in S given as the push forward of the following vector field derived from the
singular system

2
y-—1
(z,y) — (ﬂc,y,% . )

Can this vector field be extended to all of S? Even though the slow time system
is singular at € = 0, if we were to understand the behavior of the associated
fast time system and the singular system for ¢ = 0, then perhaps we could
draw some conclusions about the original system when e is small. If so, then we
would have our first insight into singular perturbation theory. See Section 6.3 and
equation (6.71) for the origin of this exercise.

1.8 Periodic Solutions

We have seen that the stability of a rest point can often be determined
by linearization or by an application of Lyapunov’s direct method. In both
cases, the stability can be determined by analysis in an arbitrary open
set (no matter how “small”) containing the rest point. For this reason, we
say that the stability of a rest point is a local problem. However, it is not
possible to determine the stability of a periodic solution without considering
the ordinary differential equation in a neighborhood of the entire periodic
orbit. In other words, global methods must be employed. This fact makes
the analysis of periodic solutions much more difficult (and more interesting)
than the analysis of rest points. In this section we will introduce some of
the basic ideas that are used to study the existence and stability of periodic
solutions.

1.8.1 The Poincaré Map

A very powerful concept in the study of periodic orbits is the Poincaré map.
It is a corner stone of the “geometric theory” of Henri Poincaré [143], the
father of our subject. To define the Poincaré map, also called the return
map, let ¢; denote the flow of the differential equation & = f(z), and
suppose that S C R™ is an (n — 1)-dimensional submanifold. If p € S and
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FIGURE 1.22. A Poincaré section ¥ and the corresponding Poincaré return map.
The trajectory starting at x is asymptotic to a periodic orbit I". The trajectory
passes through the section 3 at the point p and first returns to the section at the
point P(p).

(p, f(p)) € T,,S, then we say that the vector (p, f(p)) is transverse to S at
p. If (p, f(p)) is transverse to S at each p € S, we say that S is a section
for ¢;. If p is in S, then the curve ¢t — ¢.(p) “passes through” S as t passes
through ¢ = 0. Perhaps there is some T'= T'(p) > 0 such that ¢r(p) € S.
In this case, we say that the point p returns to S at time T. If there is
an open subset ¥ C S such that each point of ¥ returns to S, then X is
called a Poincaré section. In this case, let us define P : ¥ — S as follows:
P(p) := ép(p)(p) where T'(p) > 0 is the time of the first return to S. The
map P is called the Poincaré map, or the return map on X and T : ¥ — R
is called the return time map (see Figure 1.22). Using the fact that the
solution of a differential equation is smoothly dependent on its initial value
and the implicit function theorem, it can be proved that both P and T are
smooth functions on ¥ (see Exercise 1.96).

Exercise 1.96. Prove that the return time map 7T is smooth. Hint: Find a
function F : R™ — R so that F'(u) = 0 if and only if u € 3 and define G(¢t,u) =
F(¢i(u)). If p € ¥ and T is the time of its first return, then apply the implicit
function theorem to G at (T, p) to solve for T" as a function of p.

The following is a fundamental idea of Poincaré: Fixed points of the
return map lie on periodic orbits. More generally, periodic points of the
Poincaré map correspond to periodic solutions of the differential equation.
Here, if P denotes the return map, then we will say that p is a fized point
of P provided that P(p) = p. A periodic point with period k is a fixed point
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of the kth iterate of P—it passes through the Poincaré section k — 1 times
before closing. In the subject of dynamical systems, P! := P is the first
iterate; more precisely, the first iterate map associated with P and the kth
iterate is defined inductively by P* := Po P¥~1. Using this notation, p € 3
is a periodic point with period k if P*(p) = p.

Often, instead of studying the fixed points of the kth iterate of the
Poincaré map, it is more convenient to study the zeros of the displacement
function § : ¥ — R™ defined by §(p) = P¥(p) — p. With this definition,
the periodic solutions of period k correspond to the roots of the equation
6(p) =0.

If p € ¥ is a periodic point of the Poincaré map of period k, then the
stability of the corresponding periodic orbit of the differential equation is
determined by computing the eigenvalues of the linear map DP*(p). In
fact, an important theorem, which we will prove in Section 2.4.4, states
that if P(p) = p and DP*(p) has all its eigenvalues inside the unit circle,
then the periodic orbit with initial point p is asymptotically stable.

Exercise 1.97. Suppose that A is an 2 x 2 matrix and consider the linear
transformation of R? given by & — Az as a dynamical system. Prove: If the
spectrum of A lies inside the unit circle in the complex plane, then A*z — 0 as
k — oo for every x € R?. Also, if at least one eigenvalue of A lies outside the
unit circle, then there is a point & € R? such that ||A*z|| = oo as k — co. Define
the notion of stability and asymptotic stability for dynamical systems, and show
that the origin is asymptotically stable for the linear dynamical system associated
with A if and only if the spectrum of A lies inside the unit circle. When is the
origin stable? If you have trouble, then see Section 2.4.4 for the n x n case.

In general, it is very difficult to find a suitable Poincaré section and to
analyze the associated Poincaré map. However, there are many situations
where these ideas can be used to great advantage. For example, suppose
that there is a Poincaré section > and a closed ball B C ¥ such that P :
B — B. Recall Brouwer’s fixed point theorem (see any book on algebraic
topology, for example, [116] or [122]). It states that every continuous map
of a closed (Euclidean) ball into itself has at least one fixed point. Thus, by
this theorem, the map P must have at least one fixed point. In other words,
the associated differential equation has a periodic orbit passing through the
set B. This idea is used in the following “toy” example.

Consider the nonautonomous differential equation

y=(acost+by—y>, a>0 b>0 (1.41)

and note that the associated vector field is time periodic with period 2.
To take advantage of this periodicity property, let us recast this differential
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27 47 ~_

FIGURE 1.23. The phase cylinder for the differential equation (1.41).

equation—using the standard “trick”—as the first order system

y=(acosT+b)y— >,
F=1. (1.42)

Also, for each £ € R, let t — (7(¢,€),y(t,£)) denote the solution of sys-
tem (1.42) with the initial value

T(ng) =¢, y(oaf) =0

and note that 7(¢,€) = t. Here, the order of the variables is reversed to
conform with two conventions: The angular variable is written second in
a system of this type, but the phase portrait is depicted on a plane where
the angular coordinate axis is horizontal.

The vector field corresponding to the system (1.42) is the same in every
vertical strip of width 27 in the plane considered with coordinates (7,y).
Thus, from our geometric point of view, it is convenient to consider sys-
tem (1.42) as a differential equation defined on the cylinder T x R obtained
by identifying the line ¥ := {(7,y) : 7 = 0} with each line {(,y) : 7 = 27(}
where ¢ is an integer (see Figure 1.23). On this cylinder, ¥ is a section for
the flow. Moreover, if £ € R is the coordinate of a point on X, then the
associated Poincaré map is given by

P(&) = y(2r,§)

whenever the solution ¢ — 7(t,£),y(t,€)) is defined on the interval [0, 27].
By the definition of a Poincaré map, the fixed points of P correspond to
periodic orbits of the differential equation defined on the phase cylinder.
Let us prove that the fixed points of P correspond to periodic solutions of
the original differential equation (1.41). In fact, it suffices to show that if
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P(&)

=0 T =27

FIGURE 1.24. The Poincaré map for the system (1.42).

y(2m, &) = & for some & € R, then ¢ — y(t, &) is a 2m-periodic solution
of the differential equation (1.41).

By the extensibility theorem, there is some ¢, > 0 such that the function
t — z(t) given by z(t) := y(t+2m,&p) is defined on the interval [0, ¢,). Note
that z(0) = y(2m, &) = & and

£(t) = y(t +2m, &)
= (a(cos(t +2m)) + b)y(t + 2m, &) — y°(t + 27, &)
= (acost + b)y(t + 2, &) — > (t + 27, &)
= (acost + b)z(t) — 23(t).

Thus, t — 2(t) is a solution of the differential equation (1.41) with the
same initial value as the solution ¢ — y(t, &). By the uniqueness theorem,
it follows that z(t) = y(t,&) for 0 < ¢t < t,.. Hence, if t — y(t + 27, &)
blows up on the interval ¢, < ¢ < 2, then so does the function ¢ — y(t, &),
contrary to the hypothesis. Thus, t — y(t,&p) is defined on the interval
[0, 4] and y(t+2m, &) = y(¢, &) for 0 < ¢ < 2. By repeating the argument
inductively with z(t) = y(t+k2m, &) for the integers k = 2,3, ..., it follows
that t — y(t, &) is a 2m-periodic solution of the differential equation (1.41),
as required.

Using the fact that y(¢,0) = 0, it follows immediately that P(0) = 0;
that is, the point £ = 0 corresponds to a periodic orbit. To find a nontrivial
periodic solution, note that acost + b < a + b, and consider the line given
by y = a+ b+ 1 in the phase cylinder. The y-component of the vector field
on this line is

(a4+b41)(acosT +b— (a+b+1)2).
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Since
acosT+b—(a+b+1)2<(a+b+1)—(a+b+1)? <0,

the vector field corresponding to the first order system “points” into the
region that lies below the line. In particular, if 0 < £ < a + b+ 1, then
0 < P(¢) < a+ b+ 1; that is, P maps the closed interval [0, a + b+ 1] into
itself. Hence, the Brouwer fixed point theorem can be applied to prove the
existence of a periodic orbit (see also Exercise 1.98). But, because P(0) = 0,
this application of the Brouwer fixed point theorem gives no information
about the existence of nontrivial periodic solutions. The remedy, as we will
soon see, is to construct a P invariant closed interval that does not contain
&E=0.

Suppose that P’(0) > 1; that is, the trivial periodic solution is unstable.
Then, there is some ¢ > 0 such that 0 < ¢ < a+b+ 1 and P'(§) > 1 as
long as 0 < ¢ < c¢. By the mean value theorem, P(c) = P’(§)c for some
&, 0 < & < c. Thus, P(c) > c. Using this inequality and the fact that P
is a Poincaré map, it is easy to see that the interval ¢ < & < a+b+1is
mapped into itself by P and, as a result, there is at least one fixed point
in this interval. This fixed point corresponds to a periodic solution of the
differential equation (1.41).

To prove that P’'(0) > 1 we will use a variational equation. This method
is employed very often in the analysis of differential equations. The present
elementary example is a good place to learn the basic technique. The idea is
simple: The derivative of the solution of a differential equation with respect
to its initial value is itself the solution of a differential equation.

Recall that P(§) = y(2m,§). Since

%y(t,f) = (acost + b)y(t, &) — y>(t, &)

we have that

elt,6) = (acost + D)ue(t,€) — 37 (6, E)uel ©)

Because y(0,£) = &, we also have the initial condition y¢(0,£) = 1. More-
over, at the point & = 0 the function t — y(t, £) is identically zero. Thus, if
t — w(t) is the solution of the variational initial value problem

w = (acost + b)w, w(0) =1,

then P’'(0) = w(2w).
Note that the variational differential equation is linear. Its solution is
given by

w(t) — efot(acost—i-b) dt _ easint+bt.
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In particular, we have
P(0) = w(2r) = ™ > 1,

as required. Moreover, this computation shows that the periodic solution
given by y(t) = 0 is unstable. (Why?)

Exercise 1.98. Prove Brouwer’s fixed point theorem for a closed interval in R.
Hint: Use the intermediate value theorem.

Exercise 1.99. Find the initial point for the nontrivial periodic solution in the
interval 0 < £ < a+ b+ 1 for (1.41) as a function of @ and b. Are there exactly
two periodic solutions?

Exercise 1.100. Find conditions on a(t) and on f that ensure the existence of
at least one (nontrivial) periodic solution for a differential equation of the form

¥ =a(t)y + f(y).

Exercise 1.101. Consider the differential equation (1.41) on the cylinder, and
the transformation given by u = (y + 1)cos7, v = (y + 1)sin7 that maps the
portion of the cylinder defined by the inequality y > —1 into the plane. What
is the image of this transformation? Find the differential equation in the new
coordinates, and draw its phase portrait.

We have proved that there is at least one 2m-periodic solution of the
differential equation (1.41) with initial condition in the interval 0 < ¢ <
a + b+ 1. But even more is true: This periodic orbit is stable and unique.
To prove this fact, let us suppose that 0 < £y < a+ b+ 1 and P(&) = &,
so that the corresponding solution ¢ — y(¢,&p) is 2m-periodic.

To determine the stability type of the solution with initial value &g, it
suffices to compute P’(&y). As before, P'(&) = w(2w) where t — w(t) is
the solution of the variational initial value problem

W = [(acost +b) — 3y>(t, &) ]w, w(0) = 1.
It follows that

P/(f(]) = w(2m)
_ efo27r a cos t+b—3y> (t,€0) dt

_ p2mb=3 Jer yz(t,go)dt.

To compute fOQﬂ y? dt, note that because y(t,&) > 0 for all ¢, we have
the following equality

(
(

t7 50)
ta 50

<.

=acost +b—y*(t,&).

Ny
~
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Using this formula and the periodicity of the solution ¢ — y(t,&g), we have

that
27 27 -
t,&o)
24, dt:27rb—/ 9(t€0) 4 o,
/0 Y ( 50) 0 y(tag())

and, as a result,
Pl(ﬁo) _ 62771773(27717) _ 67471’6 < 1.

Hence, every periodic solution in the interval [0,a + b + 1] is stable. The
uniqueness of the periodic solution is a consequence of this result. In fact,
the map P is real analytic. Thus, if P has infinitely many fixed points
in a compact interval, then P is the identity. This is not true, so P has
only a finite number of fixed points. If £, and &; are the coordinates of
two consecutive fixed points, then the displacement function, that is, £ —
P(&) — &, has negative slope at two consecutive zeros, in contradiction.

Exercise 1.102. Find an explicit formula for the solution of the differential
equation (1.41) and use it to give a direct proof for the existence of a nontrivial
periodic solution.

Exercise 1.103. Is it possible for the Poincaré map for a scalar differential
equation not to be the identity map on a fixed compact interval and at the same
time have infinitely many fixed points in the interval?

Exercise 1.104. Show that the (stroboscopic) Poincaré map for the differential
equation (1.41) has exactly one fixed point on the interval (0, c0). How many fixed
points are there on (—o0,c0)?

Exercise 1.105. Consider the second order differential equation
4+ flx)t+g(x)=0

where f and g are 2w-periodic functions. Determine conditions on f and g that
ensure the existence of a periodic solution.

Exercise 1.106. Compute the time required for the solution of the system
t=z(l-y), g=yl@-1)

with initial condition (z,y) = (1,0) to arrive at the point (z,y) = (2,0). Note

that this system has a section map y — h(y) defined from a neighborhood of

(z,y) = (1,0) on the line given by = 1 to the line given by x = 2. Compute

K (0).

Exercise 1.107. Observe that the z-axis is invariant for the system
i=1+4zy, §=2xy"+y°,

and the trajectory starting at the point (1,0) crosses the line z = 3 at (3,0).
Thus, there is a section map h and a time-of-flight map 7" from the line x = 1 to
the line x = 3 with both functions defined on some open interval about the point
(1,0) on the line x = 1. Compute 7”(0) and h'(0).
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1.8.2  Limat Sets and Poincaré-Bendixson Theory

The general problem of finding periodic solutions for differential equations
is still an active area of mathematical research. Perhaps the most well
developed theory for periodic solutions is for differential equations defined
on the plane. But, even in this case, the theory is far from complete. For
example, consider the class of planar differential equations of the form

i=f(z,y), y=gxy)

where f and g are quadratic polynomials. There are examples of such
“quadratic systems” that have four isolated periodic orbits—“isolated”
means that each periodic orbit is contained in an open subset of the plane
that contains no other periodic orbits (see Exercise 1.132). However, no
one knows at present if there is a quadratic system with more than four
isolated periodic orbits. The general question of the number of isolated
periodic orbits for a polynomial system in the plane has been open since
1905; it is called Hilbert’s 16th problem (see [47], [97], [145], and [154]).

While there are certainly many difficult issues associated with periodic
orbits of planar systems, an extensive theory has been developed that has
been successfully applied to help determine the dynamics of many mathe-
matical models. Some of the basic results of this theory will be explained
later in this section after we discuss some important general properties of
flows of autonomous, not necessarily planar, systems.

The properties that we will discuss enable us to begin to answer the
question “What is the long term behavior of a dynamical system?” This
is often the most important question about a mathematical model. Ask
an engineer what he wants to know about a model ordinary differential
equation. Often his response will be the question “What happens if we
start the system running and then wait for a long time?” or, in engineering
jargon, “What is the steady state behavior of the system?” We already
know how to answer these questions in some special circumstances where
the steady state behavior corresponds to a rest point or periodic orbit.
However, we need the following definitions to precisely describe the limiting
behavior of an orbit.

Definition 1.108. Suppose that ¢, is a flow on R™ and p € R™. A point z
in R”™ is called an omega limit point (w-limit point) of the orbit through p if
there is a sequence of numbers t; < t5 < t3 < --- such that lim; ,., t; = 0o
and lim; oo ¢, (p) = 2. The collection of all such omega limit points is
denoted w(p) and is called the omega limit set (w-limit set) of p. Similarly,
the a-limit set «(p) is defined to be the set of all limits lim;_, « ¢¢, (p) where
tl Z tg Z t3 Z --- and llmlﬁoo ti = —0OQ.

Definition 1.109. The orbit of the point p with respect to the flow ¢, is
called forward complete if t — ¢4(p) is defined for all ¢ > 0. Also, in this
case, the set {¢+(p) : t > 0} is called the forward orbit of the point p. The
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orbit is called backward complete if t — ¢.(p) is defined for all t < 0 and
the backward orbit is {¢:(p) : t < 0}.

Proposition 1.110. If p € R™ and the orbit of the flow ¢, through the
point p is forward complete, then w(p) is a closed invariant set.

Proof. Suppose that € w(p) and consider ¢ (x) for some fixed T > 0.
There is a sequence t; < t3 < t3 < --- with t; = oo and ¢4, (p) — z as
i — oo. Note that t; + T <ty +T < t3+T < --- and that ¢¢,+7(p) =
o1 (o, (p)). By the continuity of the flow, we have that ¢ (¢, (p)) = or(z)
as ¢ — oco. Thus, ¢r(z) € w(p), and therefore w(p) is an invariant set.

To show w(p) is closed, it suffices to show that w(p) is the intersection of
closed sets. In fact, we have that

w(p) = m closure {¢:(p) : t > 7}. O
7>0

Proposition 1.111. Suppose that p € R™ and the orbit of the flow ¢,
through the point p is forward complete. If the forward orbit of p has com-
pact closure, then w(p) is nonempty, compact, and connected.

Proof. The sequence {¢,(p)}>2, is contained in the compact closure of
the orbit through p. Thus, it has at least one limit point z. In fact, there
is an infinite sequence of integers ny < ny < --- such that ¢,,(p) — = as
i — oco. Hence, € w(p), and therefore w(p) # 0.

Since w(p) is a closed subset of the compact closure of the orbit through
p, the set w(p) is compact.

To prove that w(p) is connected, suppose to the contrary that there
are two disjoint open sets U and V whose union contains w(p) such that
w(p)NU # B and w(p) NV #£ @. There is some ¢, > 0 such that ¢y, (p) € U
and some ¢3 > t; such that ¢, (p) € V. But the set K = {¢(p) : t; <t <
to} is the continuous image of an interval, hence a connected set. Thus K
cannot be contained in U U V. In particular, there is at least one 71 > 0
such that ¢., (p) is not in this union.

Similarly we can construct a sequence 71 < 75 < --- such that

lim 7; = 00

1—> 00
and for each 4 the point ¢, (p) is in the complement of U U V. By the
compactness, the sequence {¢,(p)}52; has a limit point z. Clearly, x is
also in w(p) and in the complement of U U V. This is a contradiction. O

Exercise 1.112. Construct examples to show that the compactness hypothesis
of Proposition 1.111 is necessary.

Exercise 1.113. Suppose that xo is a rest point for the differential equation
z = f(x) with flow ¢, and V is a Lyapunov function at zo. If, in addition, there
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FIGURE 1.25. A positively invariant annular region for a flow in the plane.

is a neighborhood W of the rest point zg such that, for each point p € W\ {zo},
the function V is not constant on the forward orbit of p, then ¢ is asymptotically
stable. Hint: The point xo is Lyapunov stable. If it is not asymptotically stable,
then there is a point p in the domain of V' whose omega limit set w(p) is also
in the domain of V such that w(p) # {zo}. Show that V is constant on this
omega limit set (the constant is the greatest lower bound of the range of V' on
the forward orbit through p).

The w-limit set of a point for a flow in R™ with n > 3 can be very
complicated; for example, it can be a fractal. However, the situation in R?
is much simpler. The reason is the deep fact about the geometry of the
plane stated in the next theorem.

Theorem 1.114 (Jordan Curve Theorem). A simple closed (continu-
ous) curve in the plane divides the plane into two connected components,
one bounded and one unbounded, each with the curve as boundary.

Proof. Modern proofs of this theorem use algebraic topology (see for ex-
ample [166]). O

This result will play a central role in what follows.

The fundamental result about limit sets for planar differential equations
is the Poincaré—Bendixson theorem. There are several versions of this the-
orem; we will state two of them.

Theorem 1.115 (Poincaré—Bendixson). If Q is a nonempty compact
w-limit set of a flow in R?, and if Q does not contain a rest point, then
s a periodic orbit.
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FIGURE 1.26. A limit cycle in the plane.

A set S that contains the forward orbit of each of its elements is called
positively invariant. An orbit whose a-limit set is a rest point p and whose
w-limit is a rest point ¢ is said to connect p and q.

Theorem 1.116. Suppose that ¢; is a flow on R? and S C R? is a pos-
itively invariant set with compact closure. If p € S and ¢; has at most a
finite number of rest points in S, then w(p) is either (i) a rest point, (i) a
periodic orbit, or (iii) a union of finitely many rest points and perhaps a
countably infinite set of connecting orbits.

Exercise 1.117. Illustrate possibility (ii¢) of the last theorem with an example
having an infinite set of connecting orbits.

Exercise 1.118. We have generally assumed that our flows are smooth. Is this
hypothesis required for the theorems in this section on w-limit sets?

Definition 1.119. A limit cycle is a periodic orbit that is either the w-
limit set or the a-limit set of some point in the phase space with the periodic
orbit removed.

A “conceptual” limit cycle is illustrated in Figure 1.26. In this figure,
the limit cycle is the w-limit set of points in its interior (the bounded
component of the plane with the limit cycle removed) and its exterior
(the corresponding unbounded component of the plane). A limit cycle that
is generated by numerically integrating a planar differential equation is
depicted in Figure 1.27 (see [28]).
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FIGURE 1.27. Two orbits are numerically computed for the system
& =05z —y+01*—y)(x—y),y =2+ 05y +0.1(z* — y*)(x + y): one
with initial value (z,y) = (0.5,0), the other with initial value (z,y) = (0,5).
Both orbits approach a stable limit cycle.

Sometimes the following alternative definition of a limit cycle is given. A
“limit cycle” is an isolated periodic orbit; that is, the unique periodic orbit
in some open subset of the phase space. This definition is not equivalent
to Definition 1.119 in general. However, the two definitions are equivalent
for real analytic systems (see Exercise 1.123).

An annular region is a subset of the plane that is homeomorphic to the
open annulus bounded by the unit circle at the origin and the concentric
circle whose radius is two units in length.

The following immediate corollary of the Poincaré-Bendixson theorem
is often applied to prove the existence of limit cycles for planar systems.

Theorem 1.120. If a flow in the plane has a positively invariant annular
region S that contains no rest points of the flow, then S contains at least
one periodic orbit. If in addition, some point in S is in the forward orbit
of a point on the boundary of S, then S contains at least one limit cycle.

We will discuss two applications of Theorem 1.120 where the main idea
is to find a rest-point free annular region as depicted in Figure 1.25.
The first example is provided by the differential equation

i=—y+a(l-2?—y?), yg=z+y(l—2>—y%). (1.43)

Note that the annulus S bounded by the circles with radii % and 2, respec-
tively, contains no rest points of the system. Let us show that S is posi-
tively invariant. To prove this fact, consider the normal vector N(z,y) =
(z,y,z,y) on 8S and compute the dot product of N and the vector field



84 1. Introduction to Ordinary Differential Equations

corresponding to the differential equation. In fact, the dot product
P1-2? =)+’ (1 —2" =) = (@ +*) (1 —2® —¢?)
is positive on the circle with radius % and negative on the circle with radius
2. Therefore, S is positively invariant and, by Theorem 1.120, there is at
least one limit cycle in S.
The differential equation (1.43) is so simple that we can find a formula
for its flow. In fact, by changing to polar coordinates (r, 8), the transformed
system

P=r(l—-r?), 6=1

decouples, and its flow is given by

r2e2t 1

Note that ¢:(1,0) = (1,0 + t) and, in particular, ¢o,(1,6) = (1,6 + 27).
Thus, the unit circle in the plane is a periodic orbit with period 27. Here,
of course, we must view 6 as being defined modulo 27, or, better yet, we
must view the polar coordinates as coordinates on the cylinder T x R (see
Section 1.7.4).

If the formula for the flow (1.44) is rewritten in rectangular coordinates,
then the periodicity of the unit circle is evident. In fact, the periodic solu-
tion starting at the point (cos#,sinf) € R? (in rectangular coordinates) at
t =0 is given by

t s (2(t), y(t)) = (cos(0 + t),sin(0 + ).

It is easy to see that if » # 0, then the w-limit set w((r,0)) is the entire
unit circle. Thus, the unit circle is a limit cycle.
If we consider the positive x-axis as a Poincaré section, then we have

2 4w

P(z) = (L)

1— .1'2 + .’L‘2€47T

Here P(1) = 1 and P'(1) = e=*" < 1. In other words, the intersection point
of the limit cycle with the Poincaré section is a hyperbolic fixed point of
the Poincaré map; that is, the linearized Poincaré map has no eigenvalue
on the unit circle of the complex plane. In fact, here the single eigenvalue
of the linear transformation of R given by x — P’(1)x is inside the unit
circle. It should be clear that in this case the limit cycle is an asymptotically
stable periodic orbit. We will also call such an orbit a hyperbolic stable limit
cycle. (The general problem of the stability of periodic orbits is discussed
in Chapter 2.)
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As a second example of the application of Theorem 1.120, let us consider
the very important differential equation,

0+ M\ +sinf = p

where A > 0 and p are constants, and 6 is an angular variable; that is, 0 is

defined modulo 27. This differential equation is a model for an unbalanced

rotor or pendulum with viscous damping A0 and external torque b
Consider the equivalent first order system

=v, ©=—sind+pu— v, (1.45)

and note that, since 6 is an angular variable, the natural phase space for
this system is the cylinder T x R. With this interpretation we will show
the following result: If |u| > 1, then system (1.45) has a globally attracting
limit cycle. The phrase “globally attracting limit cycle” means that there
is a limit cycle I" on the cylinder and I' is the w-limit set of every point on
the cylinder. In other words, the steady state behavior of the unbalanced
rotor, with viscous damping and sufficiently large torque, is stable periodic
motion. (See [109] for the existence of limit cycles for the case |u| > 1.)

The system (1.45) with |u| > 1 has no rest points. (Why?) Also the
quantity —sinf + p — Av is negative for sufficiently large positive values
of v, and it is positive for negative values of v that are sufficiently large
in absolute value. Therefore, there are numbers v_ < 0 and v4 > 0 such
that every forward orbit is contained in the compact subset of the cylinder
A :={(r,0) : v— < v < vy} In addition, A is diffeomorphic to a closed
annular region in the plane. It follows that the Poincaré-Bendixson theorem
is valid in A, and therefore the w-limit set of every point on the cylinder is
a limit cycle.

There are several ways to prove that the limit cycle is unique. However,
let us consider a proof based on the following propositions: () If the diver-
gence of a vector field is everywhere negative, then the flow of the vector
field contracts volume (see Exercise 1.131). (ii) Every periodic orbit in the
plane surrounds a rest point (see Exercise 1.127). (A replacement for the
first proposition is given in Exercise 1.137.)

To apply the propositions, note that the divergence of the vector field for
system (1.45) is the negative number —\. Also, if |u] > 1, then this system
has no rest points. By the second proposition, no periodic orbit of the
system is contractable on the cylinder (see panel (a) of Figure 1.28). Thus,
if there are two periodic orbits, they must bound an invariant annular
region on the cylinder as in panel (b) of Figure 1.28. But this contradicts
the fact that the area of the annular region is contracted by the flow. It
follows that there is a unique periodic orbit on the cylinder that is a globally
attracting limit cycle.
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(a) (b)

FIGURE 1.28. Panel (a) depicts a contractable periodic orbit on a cylinder. Note
that the region © in panel (a) is simply connected. Panel (b) depicts two periodic
orbits that are not contractable; they bound a multiply connected region 2 on
the cylinder.

Exercise 1.121. Give a direct proof that the point (1/v/2,1/v/2) on the unit
circle is an w-limit point of the point (3,8) for the flow of system (1.43).

Exercise 1.122. Discuss the phase portrait of system (1.45) for |u| < 1.

Exercise 1.123. Show that the set containing “limit cycles” defined as isolated
periodic orbits is a proper subset of the set of limit cycles. Also, if the differential
equation is real analytic, then the two concepts are the same. Hint: Imagine a
closed annular region consisting entirely of periodic orbits. The boundary of the
annulus consists of two periodic orbits that might be limit cycles, but neither
of them is isolated. To prove that an isolated periodic orbit I' is a limit cycle,
show that every section of the flow at a point p € I' has a subset that is a
Poincaré section at p. For an analytic system, again consider a Poincaré section
and the associated Poincaré map P. Zeros of the analytic displacement function
& — P(&) — & correspond to periodic orbits.

Exercise 1.124. Consider the differential equation

“1/2 4y

& =—aw(a® +y°) 7% g = —ay(@® +¢°)
where a and b are positive parameters. The model represents the flight of a
projectile, with speed a and heading toward the origin, that is moved off course
by a constant force with strength b. Determine conditions on the parameters that
ensure the solution starting at the point (z,y) = (p,0), for p > 0, reaches the
origin. Hint: Change to polar coordinates and study the phase portrait of the
differential equation on the cylinder. Explain your result geometrically. Discuss
the fact that the differential equation is not defined at the origin.

The next lemma is an easy corollary of the Jordan curve theorem.
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Lemma 1.125. If ¥ is a section for the flow ¢, and if p € X, then the
orbit through the point p intersects ¥ in a monotone sequence; that is, if

1, (D), D1,(D), Pts(p) all lie on 3 and if t1 < to < t3, then ¢, (p) lies
between ¢1, (p) and ¢1,(p) on X.

Proof. The proof is left as an exercise. Hint: Consider the curve formed
by the union of {¢:(p) : t1 <t < ta} and the subset of ¥ between ¢, (p)
and ¢y, (p). Draw a picture. a

Corollary 1.126. If X is a section for the flow ¢; and if p € X, then
w(p) NX contains at most one point.

Proof. The proof is by contradiction. Suppose that w(p) N 3 contains at
least two points, £ and x5. By rectification of the flow at x7 and at s, that
is, by the rectification lemma (Lemma 1.76), it is easy to see that there are
sequences {¢y, (p)}32, and {¢s, (p)}2, in ¥ such that lim;_, o ¢, (p) = 21
and lim;_,o @5, (p) = x2. The fact that such sequences can be found in ¥
follows from the rectification lemma in Exercise 1.79. Indeed, we can choose
the rectifying neighborhood so that the image of the Poincaré section is a
line segment transverse to the rectified flow. In this case, it is clear that
if an orbit has one of its points in the rectifying neighborhood, then this
orbit passes through the Poincaré section.

By choosing a local coordinate on X, let us assume that 3 is an open
interval. Working in this local chart, there are open subintervals J; at x;
and Jo at x9 such that J; NJy = 0. Moreover, by the definition of limit sets,
there is an integer m such that ¢, (p) € Ji; an integer n such that s, > t,,
and ¢s, (p) € Ja; and an integer £ such that t; > s, and ¢,(p) € J1. By
Lemma 1.125, the point ¢, (p) must be between the points ¢ (p) and
¢+,(p) on X. But this is impossible because the points ¢;_(p) and ¢, (p)
are in Jy, whereas ¢, (p) is in Jo. a

We are now ready to prove the Poincaré-Bendixson theorem (Theo-
rem 1.115): If Q is a nonempty compact w-limit set of a flow in R?, and
if Q does not contain a rest point, then  is a periodic orbit.

Proof. Suppose that w(p) is compact and contains no rest points. Choose
a point ¢ € w(p). We will show first that the orbit through ¢ is closed.

Consider w(q). Note that w(q) C w(p) and let = € w(qg). Since x is not
a rest point, there is a section ¥ at z and a sequence on ¥ consisting of
points on the orbit through ¢ that converges to x. These points are in w(p).
But, by the last corollary, this is impossible unless this sequence consists
of the singleton point x. Since ¢ is not a rest point, this implies that ¢ lies
on a closed orbit T, as required. In particular, the limit set w(p) contains
the closed orbit T'.

To complete the proof we must show w(p) C I'. If w(p) # T', then we will
use the connectedness of w(p) to find a sequence {p,}5>; C w(p) \ T that
converges to a point z on I'. To do this, consider the union A; of all open
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balls with unit radius centered at some point in I'. The set A; \ I' must
contain a point in w(p). If not, consider the union A, /5, (respectively A; /4)
of all open balls with radius % (respectively %) centered at some point in
I'. Then the set A; /4 together with the complement of the closure of A; /5
“disconnects” w(p), in contradiction. By repeating the argument with balls
whose radii tend to zero, we can construct a sequence of points in w(p) \ T’
whose distance from I tends to zero. Using the compactness of w(p), there
is a subsequence, again denoted by {p,}>2, in w(p) \ I that converges to
a point z € I

Let U denote an open set at z such that the flow is rectified in a diffeo-
morphic image of U. There is some integer n such that p, € U. But, by
using the rectification lemma, it is easy to see that the orbit through p,
has a point y of intersection with some Poincaré section ¥ at z. Because
pr, is not in T'; the points y and z are distinct elements of the set w(p) N X,
in contradiction to Corollary 1.126. a

Exercise 1.127. Suppose that «y is a periodic orbit of a smooth flow defined
on R?%. Prove that « surrounds a rest point of the flow. That is, the bounded
component of the plane with the periodic orbit removed contains a rest point.

Exercise 1.128. Use Exercise 1.127 to prove the Brouwer fixed point theorem
for the closed unit disk I in R?. Hint: First prove the result for a smooth func-
tion f : D — D by considering the vector field f(z) — x, and then use the fact
that a continuous transformation of D is the uniform limit of smooth transfor-
mations [95, p. 253].

Exercise 1.129. Construct an example of a differential equation defined on all
of R® that has a periodic orbit but no rest points.

Exercise 1.130. Prove: The w-limit set of an orbit of a gradient system con-
sists entirely of rest points.

Exercise 1.131. Prove: The flow of a vector field whose divergence is every-
where negative contracts volume. Hint: If a vector field F on R™ with the usual
Euclidean structure is given in components by F' = (Fi, F»,... , Fy), then

— OF,

div F = .

=35

Apply the change of variables formula for multiple integrals to an integral that
represents the volume of a region in R".

Exercise 1.132. Is a limit cycle isolated from all other periodic orbits? Hint:
Consider planar vector fields of class C' and those of class C'“—real analytic
vector fields. Study the Poincaré map on an associated transversal section.

Let us consider a result that can often be used to show that no periodic
orbits exist.



1.8 Periodic Solutions 89

Proposition 1.133 (Bendixson’s Criterion). Consider a smooth dif-
ferential equation on the plane

i=g(zy), §=nhzy)
and let f(z,y) := (9(z,y), h(x,y)). If the divergence of f given by

is not identically zero and of fixed sign in a simply connected region €2, then
the system has no periodic orbits in Q.

Proof. Suppose that I' is a closed orbit in 2 and let G denote the bounded
region of the plane bounded by I'. Note that the line integral of the one
form g dy — h dx over T vanishes. (Why?) However, by Green’s theorem, the
integral can be computed by integrating the two-form (div f)dxdy over G.
Since, by the hypothesis, the divergence of f does not vanish, the integral
of the two-form over G does not vanish, in contradiction. Thus, no such
periodic orbit can exist. O

Theorem 1.134. Consider a smooth differential equation on the plane
;'v:g(x,y), y:h(x,y)

that has the origin as a rest point. Let J denote the Jacobian matriz for
the transformation (z,y) — (g(x,y), h(x,y)), and let ¢, denote the flow of
the differential equation. If the following three conditions are satisfied, then
the origin is globally asymptotically stable.

Condition 1. For each (z,y) € R2, the trace of J given by g.(x,y) +
hy(z,y) is negative.

Condition 2. For each (x,y) € R?, the determinant of J given by
9z (x, y)hy(z,y) — gy(x, y)ha (2, y) is positive.

Condition 3. For each (z,y) € R?, the forward orbit {¢.(x,y) : 0 <
t < oo} is bounded.

Proof. From the hypotheses on the Jacobian matrix, if there is a rest point,
the eigenvalues of its associated linearization all have negative real parts.
Therefore, each rest point is a hyperbolic attractor; that is, the basin of
attraction of the rest point contains an open neighborhood of the rest point.
This fact follows from Hartman’s theorem (Theorem 1.27) or Theorem 2.34.
In particular, the origin is a hyperbolic attractor.

By the hypotheses, the trace of the Jacobian (the divergence of the vector
field) is negative over the entire plane. Thus, by Bendixson’s criterion, there
are no periodic solutions.

Let € denote the basin of attraction of the origin. Using the continuity
of the flow, it is easy to prove that € is open. In addition, it is easy to
prove that the boundary of €2 is closed and contains no rest points.
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We will show that the boundary of € is positively invariant. If not, then
there is a point p in the boundary and a time T' > 0 such that either ¢r(p)
is in © or such that ¢r(p) is in the complement of the closure of € in
the plane. In the first case, since ¢r(p) is in €, it is clear that p € Q, in
contradiction. In the second case, there is an open set V' in the complement
of the closure of {2 that contains ¢ (p). The inverse image of V' under the
continuous map ¢r is an open set U containing the boundary point p. By
the definition of boundary, U contains a point g € €. But then, ¢ is mapped
to a point in the complement of the closure of §2, in contradiction to the
fact that ¢ is in the basin of attraction of the origin.

If the boundary of € is not empty, consider one of its points. The
(bounded) forward orbit through the point is precompact and contained
in the (closed) boundary of . Thus, its w-limit set is contained in the
boundary of €. Since the boundary of €2 contains no rest points, an ap-
plication of the Poincaré-Bendixson theorem shows this w-limit set is a
periodic orbit, in contradiction. Thus, the boundary is empty and €2 is the
entire plane. O

Theorem 1.134 is a (simple) special case of the “Markus-Yamabe prob-
lem.” In fact, the conclusion of the theorem is true without assuming Con-
dition 3 (see [81]).

Exercise 1.135. Prove: If § > 0, then the origin is a global attractor for the
system

0= (u—uv)®—du, 0= (u—v)* - dv.
Also, the origin is a global attractor of orbits in the first quadrant for the system
o =wv(u—v)(u+1) - du, 0 =vu(v —u)(v+1) —dv.
(Both of these first order systems are mentioned in [181].)

Exercise 1.136. [Dulac’s Criterion] Recall the notation used in the state-
ment of Bendixson’s criterion (Proposition 1.133). Prove Dulac’s generalization
of Bendixson’s criterion: If there is a smooth function B(z,y) defined on Q such
that the quantity (Bg)z + (Bh)y is not identically zero and of fixed sign on €,
then there are no periodic orbits in 2. Use Dulac’s criterion to prove a result due
to Nikolai N. Bautin: The system

t=2xz(a+bx+cy), y=yla+pr+yy)

has no limit cycles. Hint: Look for a Dulac function of the form z"y°.

Exercise 1.137. [Uniqueness of Limit Cycles| Prove the following proposition:
If the divergence of a plane vector field is of fixed sign in an annular region 2 of
the plane, then the associated differential equation has at most one periodic orbit
in . Hint: Use Green’s theorem. Also, recall Dulac’s criterion from Exercise 1.136
and note that if the divergence of the plane vector field F' is not of fixed sign in
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Q, then it might be possible to find a nonnegative function B :  — R such that
the divergence of BF does have fixed sign in 2. As an example, consider the van
der Pol oscillator,

i=y, g=-z+A1-a)y

and the “Dulac function” B(xz,y) = (2 + y? — 1)"/2. Show that van der Pol’s
system has at most one limit cycle in the plane. (The remarkable Dulac function B
was discovered by L. A. Cherkas.) Can you prove that the van der Pol oscillator
has at least one limit cycle in the plane? Hint: Change coordinates using the
Liénard transformation

to obtain the Liénard system
. 13 .
u:v—l—/\(u—gu), U= —u.

In Chapter 5 we will prove that the van der Pol system has a limit cycle if A > 0
is sufficiently small. However, this system has a limit cycle for each A > 0. For
this result, and for more general results about limit cycles of the important class
of planar systems of the form

t=y-F(z), y=—g(=),
see [78, p. 154], [95, p. 215], [107, p. 267], and [141, p. 250].

Exercise 1.138. Prove that the system
t=z—y—a°, y=z+y—y°

has a unique globally attracting limit cycle on the punctured plane. Find all rest
points of the system

t=r—-y-2", gyg=z+ty-y",

where n is a positive odd integer and determine their stability. Prove that the
system has a unique stable limit cycle. What is the limiting shape of the limit
cycle as n — oo?

Exercise 1.139. [Rigid Body Motion] The Euler equations for rigid body mo-
tion are presented in Exercise 1.44. Recall that the momentum vector is given by
M = AQ where A is a symmetric matrix and €2 is the angular velocity vector,
and Euler’s equation is given by M = M x Q. For v a positive definite symmetric
matrix and F' a constant vector, consider the differential equation

M=MxQ+F —vM.

Here, the function M +— vM represents viscous friction and F' is the external
force (see [14]). Prove that all orbits of the differential equation are bounded,
and therefore every orbit has a compact w-limit set.
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Exercise 1.140. Prove that the origin is a center for the system %+ +z = 0.
Also, show that this system has unbounded orbits. Is there a separatrix between
the bounded and unbounded solutions?

Exercise 1.141. Draw the phase portrait for the system & = 22 — 2. Is the

solution with initial conditions 2(0) = % and @(0) = 0 periodic?

Exercise 1.142. Draw the phase portrait of the Hamiltonian system & + z —
2

z® = 0. Give an explicit formula for the Hamiltonian and use it to justify the
features of the phase portrait.
Exercise 1.143. Let ¢ — z(t) denote the solution of the initial value problem
i+i+z+2°=0  z(0)=1, &0)=0.
Determine tlg{.lo z(t).
Exercise 1.144. Show that the system
¢=xfyf(x2+%y2)x, y=x+y7(w2+%y2)y
has a unique limit cycle.

Exercise 1.145. Find the rest points in the phase plane of the differential
equation &+ (¢ + 22 — 1)& +2 = 0 and determine their stability. Also, show that
the system has a unique stable limit cycle.

Exercise 1.146. Determine the w-limit set of the solution of the system
g=1-z+y’, g=yl-z+y)
with initial condition z(0) = 10, y(0) = 0.
Exercise 1.147. Show that the system
& =—y+ay, y:w+%(w2*y2)
has periodic solutions, but no limit cycles.
Exercise 1.148. Consider the van der Pol equation
i+ @ —ei+z=0,

where € is a real parameter. How does the stability of the trivial solution change
with e. Show that the van der Pol equation has a unique stable limit cycle for
€ = 1. What would you expect to happen to this limit cycle as € shrinks to € = 0.
What happens for € < 07

Exercise 1.149. Find an explicit nonzero solution of the differential equation
t*2%% + 4 = 0.
Define new variables u = 2(3tz?) ™2, v = —4i&(32%)~/? and show that
dv _ 3vu(v— u?)
du  2u(v—wu)’
Draw the phase portrait of the corresponding first order system

0= 2u(v — u), 0 = 3v(v — u?).
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1.9 Review of Calculus

The basic definitions of the calculus extend easily to multidimensional
spaces. In fact, these definitions are essentially the same when extended
to infinite dimensional spaces. Thus, we will begin our review with the
definition of differentiation in a Banach space.

Definition 1.150. Let U be an open subset of a Banach space X, let YV
denote a Banach space, and let the symbol || || denote the norm in both
Banach spaces. A function f : U — Y is called (Fréchet) differentiable at
a € U if there is a bounded linear operator Df(a) : X — Y, called the
derivative of f, such that

h—> ||hHHf(CL—|—h) f( )_Df(a)hH _o

If f is differentiable at each point in U, then function f is called differen-
tiable.

Using the notation of Definition 1.150, let L(X,Y") denote the Banach
space of bounded linear transformations from X to Y, and note that the
derivative of f : U — Y is the function Df : U — L(X,Y) given by
x— Df(x).

The following proposition is a special case of the chain rule.
Proposition 1.151. Suppose that U is an open subset of a Banach space
and f:U =Y. If f is differentiable at a € U and v € U, then

%f(a—l—tv)’t:o = Df(a)v.

Proof. The proof is obvious for v = 0. Assume that v # 0 and consider
the scalar function given by

alt) = H1<f<a +tv) — f() = Df(a)v)]

=l Hf(a +tw) = fa) = Df(a)tv]

for t # 0. It suffices to show that lim; o a(t) = 0.
Choose € > 0. Since f is differentiable, there is some § > 0 such that

||h|| If(a+h) = f(a) = Df(a)h]| < e

whenever 0 < ||h]| < §. If [¢t| < §|lv]| =1, then |[tv]| < § and

|t|H ||Hf(a+tv) f((l)—Df((l)t’U” <e

In particular, we have that a(t) < ||v|le whenever [t| < §||v]|~!, as required.

O
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The following is a list of standard facts about the derivative; the proofs
are left as exercises. For the statements in the list, the symbols X, Y, X;,
and Y; denote Banach spaces.

(i)
(i)

(iid)

(v)

If f: X — Y is differentiable at a € X, then f is continuous at a.

Iff: X =Y and g:Y — Z are both differentiable, then h = go f
is differentiable, and its derivative is given by the chain rule

Dh(x) = Dg(f(x))Df(x).

Iff: X —>Y)x--xY,isgiven by f(x) = (fi(x),..., fn(z)), and if
fi is differentiable for each ¢, then so is f and, in fact,

Df(x) = (Dfi(x),...,Dfn(x)).

If the function f: X1 x Xo x---x X,, = Y is given by (21,... ,2,) —
f(z1,...,2y,), then the ith partial derivative of f at ay,...,a, €
Xy x---x X, is the derivative of the function ¢ : X; — Y defined by
g(zi;) = fla1,...,a;-1,%i,Qit1,... ,a,). This derivative is denoted
D, f(a). Of course, if f is differentiable, then its partial derivatives
all exist and, if we define h = (hy, ..., hy), we have

Df(z)h = D;f(x)h;.
i=1

Conversely, if all the partial derivatives of f exist and are continuous
in an open set

UcCXy xXgx---xX,,
then f is continuously differentiable in U.

If f: X =Y is a bounded linear map, then Df(z) = f for all z € X.

The C"-norm of an r-times continuously differentiable function f : U —
Y, defined on an open subset U of X, is defined by

[fllr = 1fllo + 1D fllo + - 1D" fllo

where || ||o denotes the usual supremum norm, as well as the operator
norms over U; for example,

and

[1fllo = sup [ f(u)]
uclU

IDfllo = sup ( sup [[Df(u)z|).

uelU |z||=1
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Also, let us use C"(U,Y’) to denote the set of all functions f : U — Y such
that || f]|» < co. Of course, the set C"(U,Y) is a Banach space of functions
with respect to the C"-norm.

Although the basic definitions of differential calculus extend unchanged
to the Banach space setting, this does not mean that there are no new
phenomena in infinite dimensional spaces. The following examples and ex-
ercises illustrate some of the richness of the theory. The basic idea is that
functions can be defined on function spaces in ways that are not available
in the finite dimensional context. If such a function is defined, then its dif-
ferentiability class often depends on the topology of the Banach space in a
subtle manner.

Example 1.152. Let X = C([0,1]) and define F : X — X by

F(g)(t) = sing(t)

(see [49]). We have the following proposition: The function F' is continu-
ously differentiable and

(DE(g)h)(t) = (cos g(t))h(t)-

To prove it, let us first compute

[F(g + h)(t) — F(g)(t) — DF(g)h(t)|
= |sin(g(t) + h(t)) — sing(t) — (cos g(t))h(t)]
= |sin g(t) cos h(t) + cos g(t) sin h(t) — sin g(t) — (cos g(t))h(t)]
= |(—=1+4 cosh(t))sing(t) + (—h(t) + sin h(t)) cos g(t)]

[F(9)[l] = 1+ cos h(t)| + || cos og]|| — h(t) + sin h(t)]

1
5 @ IR]* + [l cos ogl| [AII*)-

IN

IN

This proves that F' is differentiable.
The function DF : X — L(X, X) given by g — DF(g) is clearly contin-
uous, in fact,

|DF(g1) — DF(g2)| = ”21”11:)1 | DF(g1)h — DF(g2)h||

= Sup sup |(cos g1(t))h(t) — (cos ga(t))h(t)]

< sup sup |h(t)|[g1(t) — ga(t)]
Inll=1 ¢

= [lg1 — ga|-
Thus F' is continuously differentiable, as required.

Example 1.153. Let X := L?([0,1]) and define F : X — X by

F(g)(t) = sing(2).
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The function F' is Lipschitz, but not differentiable.
To prove that F' is Lipschitz, simply recall that |sinz — siny| < |z — y|
and estimate as follows:

1
IF(g1) — Flga)|? = / |sin g (£) — sin g (1) dt

1

< [ 1ou® - galo)?
0

< g1 — g2l*-

We will show that F' is not differentiable at the origin. To this end, let
us suppose that F is differentiable at the origin with derivative DF(0). We
have that F'(0) = 0, and, by Proposition (1.151), all directional derivatives
of I’ at the origin exist. Therefore, it follows that

iy F(89) = F(0) _ . F(sg)

s—0 S s—0 S

= DF(0)g

for all g € L2([0,1]).

To reach a contradiction, we will first prove that DF(0) is the identity
map on L?([0,1]). To do this, it suffices to show that DF(0)g = g for every
continuous function g € L?(]0,1]). Indeed, this reduction follows because
the (equivalence classes of) continuous functions are dense in L%([0, 1]).

Let us assume that g is continuous and square integrable. We will show
that the directional derivative of F' at the origin in the direction g exists
and is equal to g. In other words, we will show that

lim 7F(sg) =g;
s—0 S
that is,
1 .
t 2
i [ [SR90) g(t)| ds =o0. (1.46)
s—0 0 S
Indeed, let us define
sin(sg(t 2
vl = |2 g >0

and note that

o)) 400"

S

vt < (

Because |sinz| < |z| for all z € R, we have the estimates

0t < (M8 4 1g0))” < dlgto),
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Moreover, the function t + 4|g(t)|? is integrable, and therefore the function
t — 14(t) is dominated by an integrable function.
If t is fixed, then

lim ¢4(¢) = 0.
s—0

To prove this fact, let us observe that |g(t)| < co. If g(t) = 0, then 14(t) = 0
for all s and the result is clear. If g(¢) # 0, then

0u(t) = [ato) (i - 1)

sl 1555 -l

and again ¥s(t) — 0 as s — 0.
We have proved that the integrand of the integral in display (1.46) is
dominated by an integrable function and converges to zero. Hence, the
required limit follows from the dominated convergence theorem and, more-
over, DF(0)g = g for all g € L?([0,1]).
Because DF(0) is the identity map, it follows that
Eh) = bl _

lim

P T 0-

But let us consider the sequence of functions {h, }°, C L?([0,1]) defined
by
7/2, 0<t<1/n,

h”(t)::{ 0, t>1/n.

Since

ol = ( [ atorar)” = (A7) = 1

it follows that h,, — 0 as n — oo. Also, let us note that
L 5 )\ 1/2
18 Gn) = ol = ([ sinhn(t) = ha(t)Pat)
0

(=30
n 2

and therefore

1 T
- NFMh) —hall . w3 13
lim &=~/ "0 _ lim "1 = 2

n—00 H hy, || n—00 =

This contradiction proves that F' is not differentiable at the origin. Is F
differentiable at any other point?
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Exercise 1.154. Consider the evaluation map
eval : C"(U,Y)x U =Y

defined by (f,u) — f(u). Prove that eval is a C" map. Also, compute its deriva-
tive.

Exercise 1.155. Suppose that f : R — R is a C? function such that the
quantity sup,cp | f”(z)] is bounded. Prove that F : X — X as in Example 1.153
is C'. The assumption that f is C? can be replaced by the weaker hypothesis
that f is C'. This is a special case of the omega lemma (see [2, p. 101]). If
M is a compact topological space, U is an open subset of a Banach space X,
and g is i C"(U,Y) where Y is a Banach space and r > 1, then the map
Q, : COM,U) = C°(M,Y) given by Q,(f) = go f is C" and its derivative
is given by

(DS24(f)h)(m) = Dg(f(m))h(m).

1.9.1 The Mean Value Theorem

The mean value theorem for functions of several variables is very important.
However, the proof is somewhat more delicate than the usual proof for the
case of a scalar function of one variable. Let us begin with a special case.

Theorem 1.156. Suppose that [a,b] is a closed interval, Y is a Banach
space, and f : [a,b] = Y is a continuous function. If [ is differentiable
on the open interval (a,b) and there is some number M > 0 such that
1 @O <M for allt € (a,b), then

1£(0) = f(a)]| < M(b—a).

Proof. Let € > 0 be given and define ¢ : [a,b] — R by

o(t) = [I£(t) = f(@)]| = (M + €)(t — a).

Clearly, ¢ is a continuous function such that ¢(a) = 0. We will show that
p(b) < e

Define S := {t € [a,b] : ¢(t) < €}. Since ¢(a) = 0, we have that a € S.
In particular S # (). By the continuity of ¢, there is some number ¢ such
that @ < ¢ < b and [a,c) C S. Moreover, since ¢ is continuous ¢(t) — ¢(c)
as t — ¢. Thus, since ¢(t) < € for a <t < ¢, we must have ¢(c) < € and, in
fact, [a,c] C S.

Consider the supremum c* of the set of all ¢ such that ¢ < ¢ < b and
[a,c] € S. Let us show that ¢* = b. If ¢* < b, then consider the derivative
of f at ¢* and note that because

i W€ R) = F(e) = f/(e)h] _ 0.
[l =0 [|A]]
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there is some h such that ¢* < ¢* +h < b and

(" +h) = f(c") = f' ()] < el|h].
Set d = ¢* + h and note that
() = Fe)N < f(e”+h) = f(e*) = f' ()Rl + If' (Al
< el[hll + M]|n||
<(e+ M)(d—c").
Moreover, since
1f(d) = fa)ll < [If(d) = f(e) I+ [1f(c) = f(a)]
<(e+M)(d—c)+(M+e)(c"—a)+e
<(e+ M)(d—a)+e
we have that
1f(d) = f(a) = (e+ M)(d—a) <,
and, as a result, d € S, in contradiction to the fact that ¢* is the supremum.
Thus, ¢* = b, as required.
Use the equality ¢* = b to conclude that
1f(6) = f(a)l| < (e+ M)(b—a)+e
<Mb—a)+el+(b—a))
for all € > 0. By passing to the limit as ¢ — 0, we obtain the inequality

1£(b) = fa)|l < M(b - a),

as required. O

Theorem 1.157 (Mean Value Theorem). Suppose that f : X =Y is
differentiable on an open set U C X with a,b € U and a+t(b—a) € U for
0<t<1. If there is some M > 0 such that

sup ||Df(a+t(b—a))| < M,

0<t<1
then
1£(b) = fa)ll < M]b—al.
Proof. Define g(¢) := f(a + t(b — a)). Clearly, ¢ is differentiable on [0, 1]
and, by the chain rule, ¢’(t) = Df(a+t(b — a))(b — a). In particular,
lg'@®N < IDf(a+t(b—a)lllb—all < M][b—al.

Here, g : [0,1] = Y and [|¢'(¢)|| < M||b—a]| for 0 <t < 1. By the previous
theorem,

lg(1) = g0)[| < M|[b — al,
that is,

1£(b) = fla)]| < M|[b— al|. o



100 1. Introduction to Ordinary Differential Equations

1.9.2  Integration in Banach Spaces

This section is a brief introduction to integration on Banach spaces follow-
ing the presentation in [106]. As an application, we will give an alternative
proof of the mean value theorem and a proof of a version of Taylor’s theo-
rem.

Let I denote a closed interval of real numbers and X a Banach space with
norm || ||. A simple function f : I — X is a function with the following
property: There is a finite cover of I consisting of disjoint subintervals such
that f restricted to each subinterval is constant. Here, each subinterval can
be open, closed, or half open.

A sequence {f,,}22; of not necessarily simple functions, each mapping I
to X, converges uniformly to a function f : I — X if for each € > 0 there
is an integer N > 0 such that || f,(¢t) — fim(t)|| < € whenever n,m > N and
tel.

Definition 1.158. A regulated function is a uniform limit of simple func-
tions.

Lemma 1.159. FEvery continuous function f: I — X is regulated.

Proof. The function f is uniformly continuous. To see this, consider F :
I x 1 — X defined by F(z,y) = f(y) — f(z) and note that F is continuous.
Since the diagonal D = {(z,y) € I x I : x = y} is a compact subset of
I x I (Why?), its image F'(D) is compact in X. Hence, for each ¢ > 0,
a finite number of e-balls in X cover the image of D. Taking the inverse
images of the elements of some such covering, we see that there is an open
cover Vi,...,V, of the diagonal in I x I such that if (z,y) € V;, then
|E(z,y)|| < e. For each point (x,x) € D, there is a ball centered at (x, x)
and contained in I x I that is contained in some V;. By compactness, a
finite number of such balls cover D. Let § denote the minimum radius of
the balls in this finite subcover. If | — y| < §, then (x,y) € Bs(z,z) and
in fact ||(z,y) — (z,z)|| = |y — x| < §. Thus, (x,y) € V; for some i in
the set {1,...,n}, and, as a result, we have that ||F(x,y)| < €; that is,
1£@) — )] = | F(z,m)]| < e as required.

Let us suppose that I = {x € R : a < z < b}. For each natural number
n, there is some § > 0 such that if |z — y| < §, then || f(z) — f(y)|| < L.
Let us define a corresponding simple function f,, by fn(z) = f(a) for a <
z<a+i, fola)=fla+$) fora+$ <z <a+d, fo(r) = fla+6) for
at+d<zx<a+ %, and so on until a + kg > b. This process terminates
after a finite number of steps because I has finite length. Also, we have the
inequality || fn(2z) — f(z)|| < L for all « € I. Thus, the sequence of simple
functions {f,}22; converges uniformly to f. O
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Definition 1.160. The integral of a simple function f : I — X over the
interval T = [a, b] is defined to be

b n
JRECLE AT
a =1
where Iy,... I, is a partition of I, f[7,(t) = v;, and u(l;) denotes the
length of the interval I;.

Proposition 1.161. If f is a simple function on I, then the integral of f
over I is independent of the choice of the partition of I.

Proof. The proof is left as an exercise. o

Proposition 1.162. If f is a regulated function defined on the interval
I = [a,b], and if {fn}S%, is a sequence of simple functions converging
uniformly to f, then the sequence defined by n > fab fn(t)dt converges
in X. Moreover, if in addition {g,}°2, is a sequence of simple functions
converging uniformly to f, then

b b
lim [ fo(t)dt= lim [ g,(t)dt.

n—oo a n— oo a

Proof. We will show that the sequence n — f; fn(t) dt is Cauchy. For this,

consider the quantity
b b
1 gyt [ gte)an
a a

Using x, to denote the characteristic function on the interval L, we have
that, for some partitions of I and vectors {v;} and {w;},

l

k
fn(x) = ZXIi (Z)Uh f’m(x) = ZXJZ (x)wz

i=1
The partitions Iy, ... , Iy and Ji,... ,J; have a common refinement; that
is, there is a partition of the interval I such that each subinterval in the
new partition is contained in one of the subintervals Iy,... I, J1,..., J.
Let this refinement be denoted by K,... , K, and note that
p p
fn(x) = ZXKi(x)aiv fm(x) = ZXKi(x)ﬁz
=1 i=1

Also, we have the inequality

b b p P
[ gty = [ gte)atl = 1Y (0 = > )il
a a i=1
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There are points t; € K; so that

XI(H% M—Zﬁ )l fn(ti) = fn ()]

=1

and, because Y 7_, u(K;) = b — a,

< (b~ a) max | fn(@) = fin(2)]].

By combining the previous inequalities and using the fact that the sequence
{fn}52, converges uniformly, it follows that the sequence n — f; fn(t)dt
is a Cauchy sequence and thus converges to an element of X.

Suppose that {g,}52, is a sequence of simple functions that converges
uniformly to f, and let us suppose that

b b
/ fult)dt = F, / an(t)dt > G,

We have the estimates

b b b b
IF— G| <||F / Fult)yde] + | / fodt / gudt] + / gndt — G

and

b b
1] gt [ ot < (0= @) max (@) = (2]
< (b~ a)max(|[fa(z) = f(2)]| + |1 (z) = gn(@)]])-
The desired result, the equality F' = G, follows by passing to the limit on
both sides of the previous inequality. O
In view of the last proposition, we have the following basic definition:

Definition 1.163. Let f be a regulated function on the interval [a, b] and
{fn}52, a sequence of simple functions converging uniformly to f in X.

The integral of f denoted ff f(t) dt is defined to be the limit of the sequence
ns [0 fudtin X

Proposition 1.164. The functional f +— f; f(t)dt, defined on the space
of requlated functions, is linear.

Proof. If f and g are regulated on the interval [a,b], with sequences of
simple functions f, — f and g, — g, then cf, + dg, — cf + dg and

/(cf—l—dg)(t)dt:/ (cfu -+ dgn)(t) dt.
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But, for these simple functions, after a common refinement,

b
/cfn+dgndt Zu (cv; + dw;) —cz,u vl—i—dZu O

i=1

Proposition 1.165. If A : X — R is a continuous linear functional and
if f: 1 — X is requlated, then the composition A\f .= Ao f : I — R is

regulated, and , \
/\/ f(t)dt:/ OF)(8) dt

Proof. If {f,}22 is a sequence of simple functions converging uniformly

to f and
1) = xu (@),

then

= > @A

and, in particular, Af, is a simple function for each n. Moreover, A o f is
regulated by Af,.

A continuous linear functional, by definition, has a bounded operator
norm. Therefore, we have that

(Afn(2) = Af (@) = [Mfu(2) = f(2))]
< M () = £ (@)l

and

b b

’)\/a f(t)dt—/a )\f(t)dt‘
< ’)\/bf(t)dt—)\/bfn(t)dt‘—i- )\/bfn(t)dt—/b)\f(t)dt‘
<l [ s [ nwans| [nwa- [ M

The result follows by passing to the limit as n — oco.

Proposition 1.166. If f : [a,b] — X is regulated, then

b
H/ f@)dt]| < (b—a) sup [[f(B)]]. (1.47)

Proof. Note that the estimate (1.47) is true for simple functions; in fact,

we have
1S el < 3 () sup(es) < (0 — a) ]|
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Because f is regulated, there is a sequence {f,}%2; of simple functions
converging to f and, using this sequence, we have the following estimates:

b b b b
H/f@ﬁhw/f@ﬁ*/h®MHW/h®M

b b
<[ rwie= [ @i+ @-wswlf)

<n/f ﬁ_/h ) d|

(b—a)sup [ fu(2) — f(2)]l + (b — a) sup || f(2)]]

The desired result is obtained by passing to the limit as n — oo. a

Let us now apply integration theory to prove the mean value theorem. We
will use the following proposition.

Proposition 1.167. Suppose that U is an open subset of X. If f : U =Y
is a smooth function, and x +ty € U for 0 <t <1, then

fla+y) — fx) :/0 Df(z + ty)ydt. (1.48)

Proof. Let A : Y — R be a continuous linear functional and consider the
function F : [0,1] — R given by

Ft)=Mf(z+ty) = Af(z+ty).
The functional \ is ! because it is linear. Also, the composition of smooth

maps is smooth. Thus, F is C.
By the fundamental theorem of calculus, we have that

F(1) - F(0) = /O Ft)dt,
or, equivalently,
Mf(@+y) = fl) =Af(z+y) = Af(z)
= /0 ADf(z +ty)y) dt

1
= /\/0 Df(x + ty)ydt.

Here, f(z +y) — f(z) and fol Df(z + ty)y dt are elements of Y, and A has
the same value on these two points. Moreover, by our construction, this
is true for all continuous linear functionals. Thus, it suffices to prove the
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following claim: If u,v are in X and A(u) = A(v) for all continuous linear
functionals, then u = v. To prove the claim, set w = u — v and note that
Z = {tw : t € R} is a closed subspace of Y. Moreover, A\g : Z — R
defined by Ag(tw) = t|jw|| is a linear functional on Z such that || (tw)|| =
[t|[|w]| = ||tw||. Thus, ||Xo|| = 1, and Ag is continuous. By the Hahn-Banach
theorem, A\ extends to a continuous linear functional A on all of Y. But for
this extension we have, A(w) = A(1 - w) = |Jw|| = 0. Thus, we have w = 0,
and u = v. ]

With the same hypotheses as in Proposition 1.167, the mean value the-
orem (Theorem 1.157) states that if x +¢(z —z) € U for 0 < ¢ <1, then

1f(z) = f@)l <z — =] Sup IDf(z +t(z = z))||. (1.49)

Proof. By Proposition 1.167 we have that

1
I£:) = F@l =1l [ DS+ tz =) =)t
Also, the function t — Df(x + t(z — z))(z — ) is continuous. Thus, the

desired result is an immediate consequence of Lemma 1.159 and Proposi-
tion 1.166. O

The next theorem is a special case of Taylor’s theorem (see [2, p. 93] and
Exercise 1.169).

Theorem 1.168 (Taylor’s Theorem). Suppose that U is an open subset
of X. If f:U =Y isC' and x +th € U for 0 <t <1, then
1
flx+h)=f(x)+ Df(x)h + / (Df(z+th)h — Df(x)h) dt.
0
Proof. By Proposition 1.167 we have
1
flx+h)= f(x) +/ Df(x +th)hdt
0
1
= f(z)+ /0 ((Df(x +th)h — Df(x)h) + Df(x)h)dt
1
= f(z)+ Df(z)h + / (Df(x+th)h — Df(x)h)dt,
0

as required. O

Exercise 1.169. Prove the following generalization of Theorem 1.168. Suppose
that U is an open subset of X. If f: U - Y isC"and x+the U for 0 <t <1,
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then
f(z+h) = f(z) + Df(x)h + D> f(x)h® + --- D" f(x)h"

+ / %@’”ﬂx +th)h" — D" f(z)h") dt.

1.9.3 The Contraction Principle

In this section, let us suppose that (X, d) is a metric space. A point 2o € X
is a fized point of a function T : X — X if T'(z¢) = . The fixed point xg
is called globally attracting if lim, o, T"(x) = zq for each x € X.

Definition 1.170. Suppose that T': X — X, and X is a real number such
that 0 < A < 1. The function T is called a contraction (with contraction
constant \) if

d(T(x), T(y)) < Md(z,y)
whenever z,y € X.

The next theorem is fundamental; it states that a contraction, viewed as
a dynamical system, has a globally attracting fixed point.

Theorem 1.171 (Contraction Mapping Theorem). If the function T
is a contraction on the complete metric space (X,d) with contraction con-
stant A\, then T has a unique fized point xo € X. Moreover, if x € X, then
the sequence {T"(x)}22, converges to xy as n — oo and

n

o A
d(T™(x),z9) < T

Proof. Let us prove first that fixed points of T are unique. Indeed, if
T(xz) = xo and T(x1) = x1, then, by virtue of the fact that T is a contrac-
tion, d(T(xo),T(x1)) < Ad(xo,x1), and, by virtue of the fact that xg and
x7 are fixed points, d(T'(xg), T(z1)) = d(zo, z1). Thus, we have that

d(l‘o,xl) S )\d(xo,xl).

If g # 21, then d(xg,x1) # 0 and therefore A > 1, in contradiction.

To prove the existence of a fixed point, let x € X and consider the
corresponding sequence of iterates {T"(x)}52 ;. By repeated applications
of the contraction property, it follows that

AT (2), T™(x)) < A(T™(z), T H(x)) < - < X\"d(T(x), z).

d(LC,(E()).

Also, by using the triangle inequality together with this result, we obtain
the inequalities

AT (), T (2)) < AT (@), T (@) 4 (T (@), T7(2))
AP AT (), )
SN+ A+ + W Hd(T(2), 2)
< M dT@), ). (1.50)

1-A
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Since 0 < A < 1, the sequence {A\"}52; converges to zero, and therefore
{T™(x)}52, is a Cauchy sequence. Thus, this sequence converges to some
point xy € X.

We will prove that zg is a fixed point of the map T'. Let us first note
that, because the sequences {77 (x)}5°, and {T™(x)}5%, are identical,
lim,, 0o 7" (2) = 2. Also, by the contraction property, it follows that 7'
is continuous and

d(T"H(2), T (0)) = d(T(T"(x)), T(x0)) < Ad(T" (), 20)-
Therefore, using the continuity of 7', we have the required limit

lim 7" (2) = lim T(T™(z)) = T(x0).

n—oo n— 00

To prove the estimate in the theorem, pass to the limit as p — oo in the
inequality (1.50) to obtain

)\n

d(xo, T"(x)) < X

d(T(z), z). 0

Exercise 1.172. Suppose that X is a set and n is a positive integer. Prove: If
T is a function, T : X — X, and if 7" has a unique fixed point, then T has a
unique fixed point.

For a contraction mapping depending on parameters, there is a uniform
version of the contraction principle.

Definition 1.173. Suppose that Aisaset,T: X x A — X, and A € R is
such that 0 < A < 1. The function T is a uniform contraction if

d(T(,a), T(y,a)) < Ad(z,y)

whenever z,y € X and a € A.

For uniform contractions in a Banach space where the metric is defined
in terms of the Banach space norm by d(z,y) = ||z — y||, we have the
following result (see [49]).

Theorem 1.174 (Uniform Contraction Theorem). Suppose that X
and Y are Banach spaces, U C X and V CY are open subsets, U denotes
the closure of U, the function T : U xV — U is a uniform contraction with
contraction constant A, and, for each y € V, let g(y) denote the unique
fized point of the contraction x v T(z,y) in U. If k is a non-negative in-
teger and T € C*(U x V, X), then g : V — X is in C*¥(V, X). Also, if T is
real analytic, then so is g.
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Proof. We will prove the theorem for k = 0, 1.
By the definition of g given in the statement of the theorem, the identity
T(9(y),y) = g(y) holds for all y € Y. If k = 0, then

lg(y +h) — gl = IT(g(y + h),y +h) = T(g(y). v
<|T(g(y +h),y+h)—T(g(y),y + b
+ 1 T(9(y), y + h) = T(g(v), v)ll
< Mgy +h) =gl + 1T(g(y),y + k) — T(9(y) ¥,

and therefore

lg(y +h) —g(y)ll < ﬁIIT(g(y), y+h)—T(g9(y),y).

But T is continuous at the point (g(y),y). Thus, if € > 0 is given, there is
some 9§ > 0 such that

1T(g9(y),y +h) —T(g9(y),y)|l <e whenever |[h] <o.

In other words, g is continuous, as required.

Suppose that & = 1 and consider the function g : V — U given by
g(y) =T(9(y),y). We will prove that g is C'.

The first observation is simple. If g is C!, then, by the chain rule,

Dg(y) = T:(9(y), y)Dg(y) + T, (9(v), v)-

In other words, if Dg(y) exists, we expect it to be a solution of the equation

z=Tu(9(y),y)z + Ty(9(y), y)- (1.51)

We will prove that, for each y € V', the mapping

20 Te(9(y), )z + Ty(9(y),y),

on the Banach space of bounded linear transformations from Y to X, is a
contraction. In fact, if z; and zo are bounded linear transformations from
Y to X, then

1T:(9(y), y)21 + Ty (9(v), y) — (Te(9(y), ¥) 22 + Ty (9(y), v)) |l
< Te(g(y), vz — 22

Thus, the map is a contraction whenever || T, (g(y),y)|| < 1. In fact, as we
will soon see, || T;(g(y),y)|| < A. Once this inequality is proved, it follows
from the contraction principle that for each y € V' the equation (1.51) has
a unique solution z(y). The differentiability of the the function y — ¢(y) is
then proved by verifying the limit

i 9@ +h) —9(y) = 2@)hll _
Inll—0 [[7]

0. (1.52)
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To obtain the required inequality ||T,.(g(y),y)|| < A, let us use the fact
that T is C!. In particular, the partial derivative T}, is a continuous function
and

i W7 hy) = Ty) = T, )] _

0.
(= [|A]]

Let £ € X be such that ||¢]] = 1 and note that for each € > 0, if we set
h = €€, then we have

IT: (2, 9)€l = 1T )0
< (TG + hoy) = T(w9) = To(e,)h]

+T( + h,y) = T(z,y)|)

_ T+ hy) = T,y) - To(z,y)hl MR
2] 2]

Passing to the limit as e — 0, we obtain || T, (x, y)¢|| < A, as required.
To prove (1.52), set v = y(h) := g(y + h) — g(y). Since, g(y) is a fixed
point of the contraction mapping 7', we have

y=T(g9(y) +v,y+h)—T(g(y),y)-

Set

A:=T(g(y) +v,y+h)—T(9(y),y) — Tu(9(y),y)y — Ty(9(y), y)h

and note that

v=T(g(y) +~v,y+h)—=T(g9(y),y) — Tu(g(y), y)¥
=Ty (9(v); v)h + Tu(9(y), y)y + Ty(9(y), y)h

=Tu(9(), )y + Ty(9(y), y)h + A.

—

Also, since T is C', we have for each ¢ > 0 a § > 0 such that [|A| <
e([[7[l + [|2[]) whenever [|v]| < ¢ and [[h[| <.

The function h +— ~(h) is continuous. This follows from the first part of
the proof since T' € C°. Thus, we can find d; > 0 so small that §; < 6 and
[l7(R)]| < § whenever ||h|| < 01, and therefore

[AGy(R), W]l < e(lly(R)I| + [IAl]) - whenever [|A]] < 41

For ||h|| < 1, we have

V(W = [1T:(9(v), ¥)v + Ty (9(y), y)h + A7, y)||
< A+ 1Ty (), IR+ e[y (M + [[R])
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and, as a result,

(L =A=alvr)l < (ITy(g(y), )l + ) l|A]l.
If we take e <1 — A, then

A < ——— (T, (gw), )] + bl = ],

—€
and it follows that
1Ay (R), DI < e(T+)All,  [Ip] < b1, 0<e<1—A
Finally, recall equation (1.51),
z2=Ta(9(y),y)z + Ty (9(y), ),
and note that

(I =Tu(9(y), ) (v(h) — z(y)h) = v(h) — Tu(9(y), y)v(h) — T, (g(y), y)h
= A(y(h), ).

Also, since | T (g9(y), y)|| < A < 1, we have
(I-To(g(y)y) =T+ TY
j=1

and
1 1

107 = Telo @) o)l < Ty < T3

This implies the inequality

Iy (h) = =)kl < (1 -+ 9)llAl,

and the limit (1.52) follows.

By our previous result about solutions of contractions being continuously
dependent on parameters, y — z(y) is continuous. This completes the proof
of the theorem for the case k = 1. |

Let us extend the contraction principle to bundles. The result of this
extension, called the fiber contraction theorem [93], is useful in proving the
smoothness of functions that are defined as fixed points of contractions.

Let X and Y denote metric spaces. A map I' : X x Y — X x Y of the
form

[z, y) = (A(z), ¥(z,9))
where A : X — X, and ¥ : X XY — Y is called a bundle map over
the base A with principal part ¥. Here, the triple (X x Y, X, m), where
m: X xY — X given by the projection w(x,y) = x, is called the t¢rivial
bundle over X with fiber Y.



1.9 Review of Calculus 111

Definition 1.175. Suppose that ¢ € R is such that 0 < p < 1. The
bundle map I' : X xY — X xY is called a fiber contraction if the function
y — I'(x,y) is a contraction with contraction constant p for every y € Y.

Theorem 1.176 (Fiber Contraction Theorem). Suppose that X and
Y denote metric spaces, and thatT' : X xY — X XY is a continuous fiber
contraction over A : X — X with principal part ¥ : X xY — Y. If A has
a globally attracting fized point T, and if Yoo is a fixed point of the map
Y= U(Zoo,Y), then (Too, Yoo) 15 a globally attracting fized point of T.

Remark: The proof does not require the metric spaces X or Y to be
complete.

Proof. Let dx denote the metric for X, let dy denote the metric for Y,
and let the metric on X x Y be defined by d := dx + dy. We must show
that for each (z,y) € X x Y we have lim,, oo I'"(2,y) = (oo, Yoo) Where
the limit is taken with respect to the metric d.

For notational convenience, let us denote the map y — ¥(z,y) by U,.
Then, for example, we have

Pn(xa y) = (An(x)a \IIA"(I) © \I]Anfl(x) ©---0 \Ilzc(y))7

and, using the triangle inequality, the estimate

AT (2, ), (Too, Yoo)) < d(T"(2,9), T (2, Yoo)) + d(T™ (2, Yoo ), (Too, Yoo ))-
(1.53)

Note that

d(I"™(z,y), "™ (2,Yoo)) = dy (Pan(z) © Wpan-1(g) 0 0 Wu(y),
\I/An+1(x) o] \I/An(z) o---0 \Ilm(yoo))

Moreover, if p is the contraction constant for the fiber contraction I', then
we have

AT (2, y), I"™ (2, ¥s0)) < p1"dy (Y, Yoo)-

Thus, d(T™(z,y),T™(2,yeo)) — 0 as n — oo.
For the second summand of (1.53), we have

d(l—‘n(x, yoo); (‘Toovyoo)) < dX(An(x)7 mOO) + dy(\I]A”(a:) ©---0 lI/a:(yoo)a yoo)

By the hypothesis that x., is a global attractor, the first summand on the
right hand side of the last inequality converges to zero as n — oo. Thus, to
complete the proof, it suffices to verify the limit

lim dy(\I’An(z) o \IJAn—l(ﬂ) ©---0 \I’m(yoo)ayoo) =0. (154)

n— oo
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Let us observe that

dy (Upan(z) 0 0 Ve (Yoo)s Yoo) < dy (Wan(z) 0+ 0 Vo (Yoo ), Yan (2) (Yoo))
+dy (\I/A"(x) (Yoo )s Yoo)
< ,UJdY(‘I/Anfl(z) 00 Wy (Yoo), Yoo)
+dY(\IIAn(x) (Yoo ) Yoo )

and by induction that

n

dy(\IfAn(w) o \I/Anfl(m) 0--+0 \Ijr(yoo)ayoo) < ‘LLnijdy(\IfAj(z)(yoo),yoo).
=0

For each nonnegative integer m, define a,, := dy (¥ am (3) (Yoo ), Yoo ). Each
a,, is nonnegative and

A = dY(\I’(Am(x)vyOO)v \I/(xoo,yoo)).

Using the continuity of ¥ and the hypothesis that z, is a globally attract-
ing fixed point, it follows that the sequence {a,,}5_, converges to zero
and is therefore bounded. If A is an upper bound for the elements of this
sequence, then for each m =0,1,... ,00 we have 0 < a,, < A.

Let € > 0 be given. There is some K > 0 so large that

1
O§§Gk<(1—,u)€

whenever k > K. Hence, if n > K, then

Jj=0 Jj=0 j=K
K-1 1 n
n—j _ _ n—j
<A w7+ 2(1 p)e Z U
j=0 j=K
n—K-—1 1
< A¥ + —€
1—p 2

Moreover, there is some N > K such that
n—K-—1 (1 B /’[’)6
< -
a 24
whenever n > N. In other words, lim,, o Z;‘L:O ua; =0. a

As mentioned above, the fiber contraction principle is often used to prove
that functions obtained as fixed points of contractions are smooth. We will
use this technique as one method to prove that the flow defined by a smooth
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differential equation is smooth, and we will use a similar argument again
when we discuss the smoothness of invariant manifolds. Thus, it seems
appropriate to codify the ideas that are used in these proofs to apply the
fiber contraction principle. We will discuss a general guide to the analysis
and a simple result to illustrate the procedure.

The setting for our analysis is given by a contraction A : C — C, where C
denotes a closed subset of a Banach space of continuous functions that map
a Banach space X to a Banach space Y. Let a,, € C denote the unique
fixed point of A, and recall that a, is globally attracting; that is, if & € C,
then A"(a) = o as n — 0.

Define the Banach space of all (supremum norm) bounded continuous
functions from X to the linear maps from X to Y and denote this space
by C(X,L(X,Y)). Elements of C(X,L(X,Y)) are the candidates for the
derivatives of functions in C. Also, let C* denote the subset of C consisting
of all continuously differentiable functions with bounded derivatives.

The first step of the method is to show that if & € C!, then the derivative
of A has the form

((DA)(@)(€) = (a, Da)(€)
where ¢ € X and where W is a map
U:CxCOX,L(X,Y)) - C(X,L(X,Y)).
Next, define the bundle map
A :CxC(X,L(X,Y)) - Cx C(X,L(X,Y))
by
(0, @) - (Ala), U(a, @)

and prove that A, is a fiber contraction.
Finally, pick a point ag € C' so that (ag, Dag) € C(X, L(X,Y)), let
(90, Do) = (ap, Darg), and define

(¢n+1a cI)n+1) = A* ((bna (I)n)

By the fiber contraction principle, the sequence given by (¢,,, ®,,) converges
10 (oo, Poo) Where @, € C(X,L(X,Y)). By the construction of ¥, if
n > 0, then D(¢,) = ®,. If the convergence is uniform (or at least uniform
on compact subsets of X'), then we obtain the desired result, D(aeo) = Poo,
as an application of the following theorem from advanced calculus (see
Exercise 1.181).

Theorem 1.177. If a sequence of differentiable functions is uniformly
convergent and if the corresponding sequence of their derivatives is uni-
formly convergent, then the limit function of the original sequence is dif-
ferentiable and its derivative is the limit of the corresponding sequence of
derivatives.
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Moreover, we have &, € C(X, L(X,Y)), and therefore @, is continuous.
In particular, the fixed point a. is continuously differentiable.

We will state a simple result to illustrate a typical application of the fiber
contraction principle. For this, let us consider specifically the linear space
CO(RM RY) consisting of all continuous functions f : RM — RN and let
CO(RM RM) denote the subspace consisting of all f € CY(R™ RY) such
that the supremum norm is finite; that is,

[£Il:= sup [f(£)] < oo
¢ERM

Of course, CO(RM R¥) is a Banach space with the supremum norm. Also,
let BY) (RM RY) denote the subset of C°(RM,R™) such that, for

f € ByRY,RY),
the Lipschitz constant of f is bounded by p; that is,

Llp(f) = sup |f(£1) — f(£2)| S
§17#&2 |£1 - §2|

It can be proved (see Exercise 1.180) that B)(RM R") is a closed subset, of
CO(RM,RN). Tt follows that B)(RM ,R") is a complete metric space with
respect to the supremum norm.

If f e CORM RYN) and f is continuously differentiable with derivative
Df, then recall that Df is an element of the space C°(RM, L(RM ,RY)),
the space of continuous functions from R™ to the bounded linear maps
from RM to RY. The subspace F of all such maps that are bounded with
respect to the norm

@] := sup ( sup [®(¢)v]),
EERN " Jul=1

is a Banach space. The subset F, of this space given by the closed metric
ball of radius p > 0 (that is, all ® such that |®| < p) is again a complete
metric space relative to the norm just defined.

Theorem 1.178. If0 < 6 < 1 and F : RN — RY is a continuously
differentiable function such that |F|| < co and |DF|| < 0, then for each
number p with 0 < p < 1, the functional equation f = F o f has a unique
solution o in Bg (RM RN). Moreover, a is continuously differentiable with
IDe|| < 6.

Proof. If f € BS(RM,RN), then the function F o f is continuous. Also,
we have that

[£ o fl < sup [F(f(§))] < sup [F(Q)] < oo,
EERM CERN
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and, by the mean value theorem,

[F(f(61)) = F(f(&)) < IDF[f (&) = f(&2)] < dLip(f)[€r — &5

that is, Lip(F o f) < 0 Lip(f) < dp < p. In other words, F'o f is an element
of the space BJ(RM,RY).
Let us define A : BY(RM,RY) — BY(RM,R") by

A(f)(E) = F(f(£)),
and note that if f; and f, are in B)(RM,RY), then

IA(f1)(8) = A(f2)(E)] < Ollfr = fall;

that is, A is a contraction on the complete metric space BY (R, RY). There-
fore, there is a unique function o € B)(RM,RY) such that o = F o c.
Moreover, if f € BY(RM,RY), then lim, o A™(f) = c.

It remains to prove that the function « is continuously differentiable. To
this end, let us note that if ¢ € B)(R™ ,RY) and ® € F,,, then

[DF($(£) 2] < dp < p.
Also, let us define a function ¥ : BY(RM,RY) x F, — F, by
U (e, @)(&) := DF(4(£))2(8)-
It follows that the function ® — ¥ (¢, ®) is a contraction on F,; in fact,
1T(6, 1)(€) — W(¢, P2)(&) ]| < 8[| P1 — D2.
In other words, the function
A, BYRY RY) x F, — BYRM RY) x 7,
given by
A(9,9) := (A(¢), ¥(¢, D))

is a fiber contraction.

Let ®., denote the unique fixed point of the contraction ® — ¥(a, )
over the fixed point a. Also, let us define a sequence in BS(RM, RN) x F,
as follows: (¢o, o) = (0,0) and, for each positive integer n,

(¢n+1u q>n+1) = A*((b'm (Pn)

Note that D¢y = &y and, proceeding by induction, if D¢,, = ®,,, then

D¢n+1 = DA((/bn) = DF(¢’I’L)D¢’I’L = \II<¢naD¢n) = \I/(d)naq)n) = (I)n+1§
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that is, D¢, = ®,, for all integers n > 0.
By the fiber contraction theorem, we have that
lim ¢, = a, lim D¢, = Pe.
n—oo n—r oo
The sequence {¢n}52, converges uniformly to o and the sequence of its
derivatives converges uniformly to a limit. By Theorem 1.177 we have that

a is differentiable with derivative ®o,. Thus, « is continuously differen-
tiable. O

Exercise 1.179. Let U denote an open ball in R™ or the entire space, and V'
an open ball in R™. Prove that the set of bounded continuous functions from U
to R™ is a Banach space, hence a complete metric space. Also, prove that the set
of continuous functions from U into V as well as the set of continuous functions
from V to R™ are Banach spaces.

Exercise 1.180. Prove that B)(R*,R") is a closed subset of the Banach space
CO (R]W, RN)

Exercise 1.181. Prove Theorem 1.177.

1.9.4 The Implicit Function Theorem

The implicit function theorem is one of the most useful theorems in analysis.
We will prove it as a corollary of the uniform contraction theorem.

Theorem 1.182 (Implicit Function Theorem). Suppose that X, Y,
and Z are Banach spaces, U C X,V CY are open sets, F : UXV — Z isa
C1 function, and (xo,y0) € UXV with F(x0,y0) = 0. If Fy(w0,90) : X — Z
has a bounded inverse, then there is a product neighborhood Uy xVy C U xV
with (x0,y0) € Upx Vg and a C* function 3 : Vo — Uy such that B(yo) = xo.
Moreover, if F(xz,y) =0 for (z,y) € Uy x Vg, then x = B(y).

Proof. Define L : Z — X by Lz = [F.(zg,y0)] 'z and G : U x V — X
by G(z,y) = * — LF(x,y). Note that G is C* on U x V and F(x,y) = 0
if and only if G(z,y) = x. Moreover, we have that G(zg,y0) = xo and
G(w0,90) = I — LF,(w0,y0) = 0.

Since G is C*, there is a product neighborhood Uy x V; whose factors
are two metric balls, Uy C U centered at xyp and V; C V centered at o,
such that

1
Gl < 5
whenever (z,y) € Uy x V1.

Let us suppose that the ball Uy has radius 6 > 0. Note that the function
given by y — F(z0,y) is continuous and vanishes at yo. Thus, there is a
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metric ball Vy C V; centered at yo such that

0
ILIIE (o, w)lI < 5

for every y € V. With this choice of Vp, if (z,y) € Uy x Vp, then, by the
mean value theorem,

1G(z,y) = woll = G2, y) = G(zo,y) + G(x0,y) — o
1G(z,y) = G(zo,y)|| + [ LF (0, y)

é
< sup |Gl )l — 20l + 5 < 6
uelU;

IA

A

In other words, G(z,y) € Up; that is, G : Uy x Vy — Up.
Again, by the mean value theorem, it is easy to see that G is a uniform
contraction; in fact,

1G(z1,y) — G(z2,y)| < sup 1Ga(u,y)[[lz1 — 2|
uely

<% ||
_25(51 Toll-

Thus, there is a unique smooth function y — ((y) defined on the open ball
Vo such that B(yo) = xo and G(8(y),y) = B(y). In particular,

B(y) = Bly) — LF(B(y), )

and therefore F(8(y),y) = 0, as required. m]

1.10 Existence, Uniqueness, and Extensibility

In this section we will prove the basic existence and uniqueness theorems for
differential equations. We will also prove a theorem on extensibility of so-
lutions. While the theorems on existence, uniqueness, and extensibility are
the foundation for theoretical study of ordinary differential equations, there
is another reason to study their proofs. In fact, the techniques used in this
section are very important in the modern development of our subject. In
particular, the implicit function theorem is used extensively in perturbation
theory, and the various extensions of the contraction principle are funda-
mental techniques used to prove the existence and smoothness of invariant
manifolds. We will demonstrate these tools by proving the fundamental
existence theorem for differential equations in two different ways.
Suppose that J C R,  C R™, and A C R™ are all open sets, and

f:IxQxA—>R"
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given by (t,x,\) — f(t,z, ) is a continuous function. Recall that if A € A,
then a solution of the ordinary differential equation

= f(t,z,\) (1.55)

is a differentiable function o : Jy — €2 defined on some open subinterval
Jo C J such that

W0 = 10,3

dt ( - ) 9
for all t € Jy. For tg € J, g € , and A\g € A, the initial value problem
associated with the differential equation (1.55) is given by the differential
equation together with an initial value for the solution as follows:

&= f(t,z, Xo),  x(to) = zo. (1.56)

If o is a solution of the differential equation as defined above such that in
addition o(tg) = xo, then we say that o is a solution of the initial value
problem (1.56).

Theorem 1.183. If the function f : J x Q x A — R" in the differential
equation (1.55) is continuously differentiable, to € J, xg € Q, and Ao €
A, then there are open sets Jy C J, Qo C Q, and Ag C A such that
(to, o, No) € Jo X Qo x Ao, and a unique C* function o : Jyx Qg x Ag — R?
given by (t,x,\) = o(t,z, \) such that t — o(t, zg, Ag) is a solution of the
initial value problem (1.56).

Proof. The proof we will give is due to Joel Robbin [148]. Suppose that
o is a solution of the initial value problem (1.56), § > 0, and o is defined
on the interval [tg — d, to + ¢]. In this case, if we define 7 := (t — )/ and
z(1) = o (6T + to) — @o, then z(0) =0 and for —1 <7 <1,

dz

dr

Conversely, if the differential equation (1.57) has a solution defined on

a subinterval of —1 < 7 < 1, then the differential equation (1.55) has

a solution. Thus, it suffices to show the following proposition: If § > 0 is

sufficiently small, then the differential equation (1.57) has a solution defined
on the interval —1 < 7 < 1.
Define the Banach spaces

(T) :50(§T+t0) :(5f(5T+t(),Z+.’E(),)\0). (157)

X :={pc CY[-1,1],R™) : ¢(0) =0}, Y :=C([-1,1],R")

where the norm on Y is the usual supremum norm, the norm on X is given
by

gl = lIgll + 1],
and ¢’ denotes the first derivative of ¢. Also, define the function

F:KxJxOQxAxX—=Y
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by
F(o,t,2,X,¢)(1) = ¢/(7) = 0f (07 +£,6(7) + z, A).
We will apply the implicit function theorem to F'.
We will show that the function F' is C*. Since the second summand in
the definition of F'is C?, it suffices to show that the map d given by ¢ +— ¢’
is a C! map from X to Y.

Note that ¢’ € Y for each ¢ € X and d is a linear transformation.
Because

lde|| < lldell + [lell = ll¢llx,

the linear transformation d is continuous. Since the map d : X — Y is
linear and bounded, it is its own derivative. In particular, d is continuously
differentiable.

If (to, zo, M) € J X Q x A, then F(0,tq, zg, Ao, 0)(7) = 0. Also, if we set
6§ = 0 before the partial derivative is computed, then it is easy to see that

F¢(0,t07$0, )\0,0) =d.

In order to show that Fi, (0, t9, zo, Ao, 0) has a bounded inverse, it suffices
to show that d has a bounded inverse. To this end, define L : Y — X by

(Ly)(r) = / " y(s)ds.

Clearly,
(doL)(y)=y and (Lod)(y)=1.
Thus, L is an inverse for d. Moreover, since
[ Lylly = | Lyl + [[(d o L)y
<yl + llyll < 2[lyll,

it follows that L is bounded.

By an application of the implicit function theorem to F', we have proved
the existence of a unique smooth function (4,¢,z,A) — 5(4, ¢, x, A), with
domain an open set Ky x Jy x €y X Ay containing the point (0, ¢y, g, Ao)
and range in X such that 5(0,tg, 2o, Ag) = 0 and

F(o,t,x, A\ B(0,t,2,\)) =0.
Thus, there is some § > 0 such that
T Z(T’ than )‘0) = 6(57 t07x07 AO)(T)

is the required solution of the differential equation (1.57). Of course, this
solution depends smoothly on 7 and all of its parameters. O
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We will now consider a proof of Theorem 1.183 that uses the contraction
principle and the fiber contraction theorem. For this, it is convenient to
make a minor change in notation and to introduce a few new concepts.

Instead of working directly with the initial value problem (1.56), we will
study the solutions of initial value problems of the form

&= F(t,x), x(to) = o (1.58)

where there is no dependence on parameters. In fact, there is no loss of gen-
erality in doing so. Note that the initial value problem (1.56) is “equivalent”
to the following system of differential equations:

Z;/ = f(tvya )‘)7 )‘ = Oa y(tO) = Yo- (159)

In particular, if we define © = (y, ) and F(¢, (y,A)) := (f(¢,y,A),0), then
solutions of the initial value problem (1.56) can be obtained from solutions
of the corresponding initial value problem (1.58) in the obvious manner.
Moreover, smoothness is preserved. Thus, it suffices to work with the initial
value problem (1.58).

The existence of a local solution for the initial value problem (1.58) can
be proved using only the continuity of the function F. However, is F is
merely continuous, then a solution of the initial value problem may not be
unique. A sufficient condition for uniqueness is the requirement that F' is
Lipschitz with respect to its second argument; that is, there is a constant
A > 0 such that for each ¢t € J and for all x1, x4 € €,

|f(t,l‘1) - f(t7l'2)| S )\|$1 - .Z'2|

where |z is the usual norm of z € R™. We will not prove the most general
possible result; rather we will prove the following version of Theorem 1.183.

Theorem 1.184. If the function F' : J x Q@ — R™ in the initial value
problem (1.58) is continuous and Lipschitz (with respect to its second ar-
gument), to € J, and xo € ), then there are open sets Jo C J and
Qo C Q such that (to,x0) € Jo X Qo and a unique continuous function
o Jox Qo — R™ given by (t,z) — o(t,x) such that t — o(t,zp) is a
solution of the initial value problem (1.58). If, in addition, F is Ct, then
so is the function o.

Proof. The function ¢ — x(¢) is a solution of the initial value problem if
and only if it is a solution of the integral equation

z(t) =x0+ [ F(s,x(s))ds.

to

In fact, if de/dt = F(t,x), then, by integration, we obtain the integral
equation. On the other hand, if ¢ — x(¢) satisfies the integral equation,
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then, by the fundamental theorem of calculus
i F(t,z(t)).
Fix (tg, xo) € Jx Q. Let b(to, ) and B(xg, v) denote metric balls centered
at tg and xg with positive radii, respectively é and v, such that
b(to,d) x B(zg,v) C J x Q.
Since F' is continuous on J X €2, there is some number M > 0 such that

sup |F(t,x)] < M.
(t,z)€b(to,0) X B(xo,v)

Since F' is Lipschitz on J x €2, there is some number A\ > 0 such that, for
each t € J and all z1,25 € Q,

|F(t,$1) — F(t,x2)| S )\|.%'1 — x2|.
If F € C' on J x Q, then there is some number K > 0 such that

sup IDF(t,z)| < K, (1.60)
(t,2)€b(t0,0)x B(zo,v)

where, recall, DF(t, z) is the derivative of the map = — F(¢,x) and

IDF(t,z)| := sup |DF(t, z)v|
{veR":|v|=1}

with |z| the usual norm of x € R™.
Choose § > 0 so that A < min(1, §) and 6M < Z, and define the Banach
space

X := CO(b(to, 6) x B(zo, %),B(xo,l/))
with norm given by

oIl = sup |(t, ).
(t,z)€b(to,0)x B(wo, %)
In case F is C!, let us agree to choose ¢ as above, but with the additional
restriction that 0 K < 1. Finally, define the operator A on X by

¢
M@ t) =2+ [ Flso(s,2) ds. (1.61)
to
Let us prove that A : X — X. Clearly, we have A(¢) € C(b(tg, ) x
B(xg, 5),R"). In view of the inequality
t
IA(@)(t, 2) — ol < |z — ol + [ [F(s,¢(s,2))|ds
to

<|z— x|+ M

<1 +1
v+ -v
2 277
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the range of the operator A is in B(xg,v), as required.
The operator A is a contraction. In fact, if ¢1, 2 € X, then

t

[A(D1)(t x) — A@2)(t,2)| < [ [F(s,01(s,2)) = F(s, ¢2(s, x))| ds

to

< OM|[p1 — o2,

and therefore

[A(p1) — Algo)|| < OM||p1 — @2,

as required. By the contraction principle, A has a unique fixed point. This
function is a solution of the initial value problem (1.58) and it is continu-
ously dependent on the initial condition.

If ¢, denotes the fixed point of A, then %qboo(t, x) = F(t, ¢poo(t, z)). In
view of the fact that the functions ¢, and F' are continuous, it follows
that, for each fixed # € B(zg,%), the function ¢ — ¢ (t,z) is C*. To
show that ¢ is C!, it suffices to show that for each fixed ¢ € b(tg,9)
the function z — ¢oo(t,x) is C1. We will prove this fact using the fiber
contraction principle. The idea for this part of the proof is due to Jorge
Sotomayor [165].

Let us define a Banach space consisting of the “candidates” for the deriva-
tives of functions in X with respect to their second arguments. To this end,
let L(R™,R™) denote the set of linear transformations of R™ and define the
Banach space

Y = C(b(to,8)  Bao, 3), LR, R"))

consisting of all indicated functions that are bounded with respect to the
norm on Y given by

@] == sup @, )],
(t,x)€b(t0,8)x B(z0,%)

where, as defined above,

(|t 2)] :== sup |D(t, x)v]|.
{veR™:|v|=1}

Let I denote the identity transformation on R™, DF(t, z) the derivative
of the map z +— F(t,z), and define ¥ : X xY — Y by

U(p, ®)(t,z) :=1+ | DF(s,¢(s,x))P(s,x)ds.

to

Also, defineI': X xY — X xY by

[(¢, @) := (A(9), U(o, ).
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To prove that I' is a bundle map, is suffices to check that I' is continuous.
The proof of this fact uses the compactness of the interval b(tg,d); the
details are left to the reader.

Let us prove that I' is a fiber contraction. Recall that we have chosen the
radius of the time interval, § > 0, so small that § K < 1, where the number
K is defined in equation (1.60). Using this fact, we have

[W(¢, @1)(t, ) — W(p, Pa)(t, )|
= DF(s,¢(s,2))(®s(s, ) — Pa(s, x)) ds]|

to

< 5K||(I)1 — @QH,

as required.

Let ¢o(t,z) = = and note that (¢g,I) € X x Y. By the fiber contraction
theorem (Theorem 1.176), the iterates of the point (¢g, I) under I' converge
to a globally attracting fixed point, namely, (¢o0, Poo), Where in this case
®oo is the solution of the initial value problem (the fixed point of A) and
®, is the unique fixed point of the contraction ® — VU (¢so, P) on Y.

We will prove that Do (t,-) = Poo(t,-). (The derivative denoted by
D is the partial derivative with respect to the second variable.) Let us
start with the equation D¢g(t,z) = I, and for each integer n > 1 define
(¢n, Pp) :=T"(po, I) so that

Dpi1(t, ) = U(dn, Pp)(t,z) =1+ /t DF (s, pn(s,2))Pn(s, ) ds,
bua(t) =+ [ Fls.6,(5.0)ds.

Let us show the identity D¢y (t,-) = @, (¢,-) for each integer n > 0. The
equation is true for n = 0. Proceeding by induction on n, let us assume
that the equation is true for some fixed integer n > 0. Then, using the fact
that we can “differentiate under the integral,” the derivative

Donin(ta) = o+ [ Fls,on(s,a))ds)

to

is clearly equal to
t
It [ DF(s,60(5,2)n(5,2) ds = @i (t.2),
to

as required. Thus, we have proved that the sequence {D¢,(t,-)}>2, con-
verges to P (¢, ). Finally, by Theorem 1.177 we have that Do (t, ) =
Do (t,-). a
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Exercise 1.185. It is very easy to show that a C? differential equation has a
C' flow. Why? We have proved above the stronger result that a C* differential
equation has a C' flow. Show that a C” differential equation has a C" flow for
r =2,3,...,00. Also, show that a real analytic differential equation has a real
analytic flow.

So far we have proved that initial value problems have unique solutions
that exist on some (perhaps small) interval containing the initial time. If we
wish to find a larger interval on which the solution is defined, the following
problem arises. Suppose that the initial value problem

i:f(tax)v fl?(to):l‘o

has a solution ¢t — ¢(t) defined on some interval J containing ty. Maybe
the solution is actually defined on some larger time interval J; O J. If we
have a second solution (¢) defined on Jy, then, by our local uniqueness
result, ¥(t) = ¢(t) on J. But, we may ask, does ¢(t) = ¢(¢t) on J;? The
answer is yes.

To prove this fact, consider all the open intervals containing J. The union
of all such intervals on which ¢(t) = v (t) is again an open interval J*; it
is the largest open interval on which ¢ and 1 agree. Let us prove that
J* D Jy. If not, then the interval J* has an end point ¢; € J; that is not
an endpoint of J;. Suppose that t; is the right hand endpoint of J*. By
continuity,

o(tr) = P(ta).

Thus, by our local existence theorem, there is a unique solution of the
initial value problem

&= f(tx),  a(t)=o(t)

defined in some neighborhood of ¢;. It follows that ¢(t) = ¥(¢) on some
larger interval. This contradiction implies that J* O Jj, as required. In
particular, if a solution extends, then it extends uniquely.

Our existence theorem for solutions of initial value problems gives no
information about the length of the maximal interval of existence. In fact,
the exact domain on which a given solution is defined is usually very difficult
to determine. We will formulate and prove an abstract theorem in this
direction that is often useful. However, before formulating this result, let
us recall that even if the vector field associated with a differential equation
has no singularities, solutions of the differential equation may not exist
for all t € R. The classic example (already mentioned) is the initial value
problem

i = a2 z(0) = 1.

The maximal interval of existence of the solution z(t) = (1 —t)~! is the
interval (—oo,1). Moreover, this solution blows up in finite time, that is,
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x(t) = oo as t — 17. Following the presentation in [95], the next theorem
shows that our example illustrates the typical behavior.

Theorem 1.186. Let U C R™ and J C R be open sets such that the open
interval (o, B) is contained in J. Also, let xo € U. If f : I xU = R" is a
C! function and the mazimal interval of existence of the solution t — ¢(t)
of the initial value problem & = f(t,x), x(tg) = xo is a < tog < [ with
B < oo, then for each compact set K C U there is some t € («, 3) such that
o(t) € K. In particular, either |¢(t)| becomes unbounded or ¢(t) approaches
the boundary of U ast — (3.

Proof. Suppose that the solution ¢ has maximal interval of existence («, 3)
with 8 < oo and K is a compact subset of U such that ¢(¢t) € K for all
t € (a,3). We will show that under these assumptions the interval (a, 3)
is not maximal.

The set [to, 3] x K is compact. Thus, there is some M > 0 such that
|f(t,z)] < M for each (t,z) € [to,B] x K. Moreover, the function ¢ :
[to, ) — K is continuous.

We will show that the function ¢ extends continuously to the interval
[to, B]. Note first that ¢ is uniformly continuous on [tg, 8). In fact, if s1, s €
[to, #) and s1 < Sa, then

o(s2) = os0)| = | [ F o) de <Mlsa— st (62)

A standard theorem from advanced calculus states that ¢ extends contin-
uously to [to, 3]. However, for completeness we will prove this fact for our
special case.

Construct a sequence {t,}>2; of numbers in the interval [ty, ) that
converges to 3, and recall that a convergent sequence is Cauchy. By in-
equality (1.62), the sequence {4(t,)}>2, is also Cauchy. Hence, there is
some w € R such that ¢(t,) = w as n — oc.

Let us extend the function ¢ to the closed interval [tg, 3] by defining
#(B) = w. We will prove that this extension is continuous. For this, it
suffices to show that if {s;}72; is a sequence in [ty, §) that converges to [,
then lim; o ¢(s;) = w. (Why?)

We have that

0(s5) —wl < |o(s5) — o(t5)] + [o(t;) — wl.
Let € > 0 be given. If § = €¢/(2M), then |¢(s) — &(t)| < €/2 whenever
s,t € [to, B) and |s — t| < . Also, because
lsj —t;1 <ls; = Bl +1t; = Bl,

there is some integer N such that |s; — t;| < 6 whenever j > N, and
therefore

[6(s;) =l < 5 +6(t;) — ]
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whenever j > N. Moreover, since ¢(t;) — w as j — oo, there is some
N1 > N such that |¢(t;) — w| < €/2 whenever j > Nj. In particular, for
J > Ni, we have [¢(s;) — w| < €, and it follows that ¢(s;) — w. In other
words, ¢ extends continuously to §.

For ty <t < (3, the function ¢ is a solution of the differential equation. In
particular, ¢ is continuously differentiable on [tg, 5) and, on this interval,

o(t) = Blto) + / F(5,0(5)) ds.

Moreover, since f is continuous and ¢ has a continuous extension, the map
s+ f(s,¢(s)) is continuous on [t, 5]. Thus, if follows that

¢(B) = o(to) + lim [ f(s,(s)) ds

=87 Jt,
B
= @lto) + | f(s,9(s)) ds. (1.63)

By the existence theorem for differential equations, there is a number
6 > 0 such that the initial value problem

iZf(t,(E), x(ﬁ) :(b(ﬁ)

has a solution ¢ — ¢ (t) defined on the interval (5 —§,5 + d) C J. Let us
use this fact to define the continuous function v : [tg, 8 + 0) — R™ by

() = {W), ifB<t<B+o.

For tg <t < 3, we have that

(1) = Blto) + / F(5,7(s)) ds. (1.64)

Also, in view of equation (1.63), if 8 <t < 8+ ¢, then
t
1) =63+ [ 200 s
t

=o(to) + [ [f(s,7(s))ds.
to
In other words, the equality (1.64) is valid on the interval [to, 3 + §). Tt
follows that v is a solution of the differential equation that extends the
solution ¢. This violates the maximality of §—there is some ¢ such that
¢(t) is not in K. a



2
Linear Systems and Stability

In this chapter we will study the differential equation
= A@t)x + f(z,t), xeR"

where A is a smooth n X n matrix-valued function and f is a smooth
function such that f(0,t) = f.(0,¢) = 0. Note that if f has this form, then
the associated homogeneous linear system @ = A(t)x is the linearization of
the differential equation along the zero solution t — ¢(t) = 0.

One of the main objectives of the chapter is the proof of the basic results
related to the principle of linearized stability. For example, we will prove
that if the matrix A is constant and all of its eigenvalues have negative real
parts, then the zero solution (also called the trivial solution) is asymptoti-
cally stable. However, much of the chapter is devoted to the general theory
of homogeneous linear systems; that is, systems of the form & = A(t)z. In
particular, we will study the important special cases where A is a constant
or periodic function.

In case t — A(t) is a constant function, we will show how to reduce
the solution of the system & = Ax to a problem in linear algebra. Also, by
defining the matrix exponential, we will discuss the flow of this autonomous
system as a one-parameter group with generator A.

The nonautonomous system & = A(t)z is not completely understood.
However, the solution of the system for the special case where t — A(t) is
a periodic matrix-valued function is reducible to the constant matrix case.
We will develop a useful theory of periodic matrix systems, called Floquet
theory, and use it to prove this basic result. The Floquet theory will ap-
pear again later when we discuss the stability of periodic nonhomogeneous
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systems. In particular, we will use Floquet theory in a stability analysis of
the inverted pendulum (see Section 3.5).

Because linear systems theory is so well developed, it is used extensively
in many areas of applied science. For example, linear systems theory is an
essential tool for electromagnetics, circuit theory, and the theory of vibra-
tion. In addition, the results of this chapter are a fundamental component
of control theory.

2.1 Homogeneous Linear Differential Equations

This section is devoted to a general discussion of the homogeneous linear
System

&= A(t)x, x € R"

where ¢t — A(t) is a smooth function from some open interval J C R to the
space of n X n matrices. Here, the continuity properties of matrix-valued
functions are determined by viewing the space of n X n matrices as R"Z;
that is, every matrix is viewed as an element in the Cartesian space by
simply listing the rows of the matrix consecutively to form a row vector of
length n?. We will prove an important general inequality and then use it
to show that solutions of linear systems cannot blow up in finite time. We
will discuss the basic result that the set of solutions of a linear system is a
vector space, and we will exploit this fact by showing how to construct the
general solution of a linear homogeneous system with constant coefficients.

2.1.1 Gronwall’s Inequality

The important theorem proved in this section does not belong to the theory
of linear differential equations per se, but it is presented here because it will
be used to prove the global existence of solutions of homogeneous linear
systems.

Theorem 2.1 (Gronwall’s Inequality). Suppose that a < b and let «,
¢, and ¢ be nonnegative continuous functions defined on the interval [a,b].
Moreover, suppose that either a is a constant function, or « is differentiable
on [a,b] with positive derivative &, If, for all t € [a,b],

o(t) < alt) + / ¥(5)6(s) ds, (21)
then
$(t) < aft)els V)t (2:2)

for allt € [a,b].
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Proof. In case « is a constant function, let us assume for the moment that
a > 0. If « is not constant, then, because & > 0 and « is nonnegative, we
have that « is positive on the interval (a,b]. However, let us also assume
for the moment that a(a) > 0.

The function on the interval [a, b] defined by t — «a(t) + f; Y(s)p(s)ds
is positive and exceeds ¢. Thus, we have that

(t)
a(t) + [, ¥ (s)é(s) ds
Multiply both sides of this inequality by ¥(t), add and subtract &(t) in the

numerator of the resulting fraction, rearrange the inequality, and use the
obvious estimate to obtain the inequality

a(t) + (D) _ at)
alt) + [1v(s)g(s)ds — alt)

<1.

which, when integrated over the interval [a, ], yields the inequality

In (a(t) + / (5)(s) ds) ~ n(a(a)) < / " 0(s) ds + In(a(t)) — In(a(a)).

After we exponentiate both sides of this last inequality and use hypothe-
sis (2.1), we find that, for each ¢ in the interval [a, b],

6(t) < a(t)ela PO < a(t)eluv @, (2.3)

Finally, if & = 0 or a(a) = 0, then for each € > 0 we have the inequality

o) < (0lt) +0) + [ 0(s)o(s) s
and, as a result of what we have just proved, we have the estimate
6(t) < (alt) + e)ele V1),
The desired inequality follows by passing to the limit (for each fixed ¢t €
[a,b]) as € — 0. a
Exercise 2.2. What can you say about a continuous function f : R — [0, c0)
if

f@slﬁ@m
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Exercise 2.3. Prove the “specific Gronwall lemma” [157]: If, for ¢ € [a, b],

60 < 0a(t — ) 461 [ 6(5)ds + 8,

where ¢ is a nonnegative continuous function on [a,b], and §; > 0, d2 > 0, and
d3 > 0 are constants, then

1 - o
o) < (2 4o 2

2.1.2  Homogeneous Linear Systems: General Theory

Consider the homogeneous linear system
&= A(t)z, x € R™. (2.4)
By our general existence theory, the initial value problem
= A(t)x, x(to) = xo (2.5)

has a unique solution that exists on some open interval containing ty. How-
ever, for this linear system a stronger statement is true.

Theorem 2.4. If t — A(t) is continuous on the interval o < t < 3 and
if « <tg < pf (maybe a = —c0 or § = o0), then the solution of the initial
value problem (2.5) is defined on the open interval (e, 3).

Proof. If o = 0, then ¢(t) = 0 is a solution of the initial value problem
that is defined on the interval («a, 3).

Suppose that g # 0. Because the continuous function ¢ +— A(t) is
bounded on each compact subinterval of («, ), it is easy to see that the
function (t,z) — A(t)z is locally Lipschitz with respect to its second ar-
gument. Consider the solution ¢ — ¢(t) of the initial value problem (2.5)
given by the general existence theorem (Theorem 1.184) and let Jy denote
its maximal interval of existence. Suppose that Jy does not contain (v, (3).
For example, suppose that the right hand end point b of Jy is less than 3.
We will show that this assumption leads to a contradiction. The proof for
the left hand end point is similar.

If t € Jy, then we have

t

o(t) — o(to) = | A(s)p(s)ds.

to

By the continuity of A and the compactness of [tg, b], there is some M > 0
such that ||A(t)|| < M for all ¢ € [tg,b]. (The notation || || is used for the
matrix norm corresponding to some norm || || on R™.) Thus, for ¢t € Jy, we
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have the following inequality:

() < [loll +/t [A(s)[[llo(s)]] ds

t
<ol + | Mlo(s)lds
0
In addition, by Gronwall’s inequality, with () := M, we have

M [t d —
()] < lzolle™ o = arp M =100,

Thus, ||¢(t)] is uniformly bounded on [tg, b).

By the extensibility theorem and the fact that the boundary of R"™ is
empty, we must have ||¢(¢)|| — oo as t — b~, in contradiction to the
existence of the uniform bound. |

Exercise 2.5. Use Gronwall’s inequality to prove the following important in-
equality: If t — B(t) and t — ~y(t) are solutions of the smooth differential equation
z = f(x) and both are defined on the time interval [0, T], then there is a constant
L > 0 such that

B(t) — a(t)] < B(0) — a(0) ™"

Thus, two solutions diverge from each other at most exponentially fast. Also,
if the solutions have the same initial condition, then they coincide. Therefore,
the result of this exercise provides an alternative proof of the general uniqueness
theorem for differential equations.

2.1.3 Principle of Superposition

The foundational result about linear homogeneous systems is the principle
of superposition: The sum of two solutions is again a solution. A precise
statement of this principle is the content of the next proposition.

Proposition 2.6. If the homogeneous system (2.4) has two solutions ¢ (t)
and ¢2(t), each defined on some interval (a,b), and if Ay and A2 are num-
bers, then t — A1¢1(t) + Aap2(t) is also a solution defined on the same
interval.

Proof. To prove the proposition, we use the linearity of the differential
equation. In fact, we have

L NB1(0) + Aab2(8)) = M (1) + Dagal?)
= AN A(t)d1(t) + A2A(t)2(t)
= A(t)(M101(1) + A292(1)).
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As a natural extension of the principle of superposition, we will prove
that the set of solutions of the homogeneous linear system (2.4) is a finite
dimensional vector space of dimension n.

Definition 2.7. A set of n solutions of the homogeneous linear differen-
tial equation (2.4), all defined on the same open interval J, is called a
fundamental set of solutions on J if the solutions are linearly independent
functions on J.

Proposition 2.8. Ift — A(t) is defined on the interval (a,b), then the
system (2.4) has a fundamental set of solutions defined on (a,b).

Proof. If ¢ € (a,b) and ey,...,e, denote the usual basis vectors in R™,
then there is a unique solution ¢ — ¢;(t) such that ¢;(c) = e; for i =
1,...,n. Moreover, by Theorem 2.4, each function ¢; is defined on the
interval (a,b). Let us assume that the set of functions {¢; : i =1,... ,n} is
hnearly dependent and derive a contradiction. In fact, if there are scalars Q;,
i=1,...,n, not all zero, such that > ", a;¢;(t) =0, then >_"" , ov;e; = 0.
In view of the linear independence of the usual basis, this is the desired
contradiction. a

Proposition 2.9. If F is a fundamental set of solutions of the linear sys-
tem (2.4) on the interval (a,b), then every solution defined on (a,b) can be
expressed as a linear combination of the elements of F.

Proof. Suppose that F = {¢1,... ,¢,}. Pick ¢ € (a,b). If t — () is
a solution defined on (a,b), then ¢(c) and ¢;(c), for i = 1,... ,n, are all
vectors in R™. We will show that the set B := {¢;(c) : i = 1,... ,n}
is a basis for R™. If not, then there are scalars oy, ¢ = 1,...,n, not all
zero, such that > | a;¢;(c) = 0. Thus, y(t) := >, a;$;(¢) is a solution
with initial condition y(c) = 0. But the zero solution has the same initial
condition. Thus, y(t) = 0, and therefore Y- ; o;¢;(t) = 0. This contradicts
the hypothesis that F is a linearly independent set, as required.

Using the basis B, there are scalars (1,...,0, € R such that ¢(c) =
Soi, Bidi(c). It follows that both ¢ and Y. | B;¢; are solutions with the
same initial condition, and, by uniqueness, ¢ = >, B;¢;. O

Definition 2.10. An n X n matrix function ¢ — ¥(t), defined on an open
interval J, is called a matriz solution of the homogeneous linear system (2.4)
if each of its columns is a (vector) solution. A matrix solution is called
a fundamental matriz solution if its columns form a fundamental set of
solutions. In addition, a fundamental matrix solution ¢ — U(t) is called
the principal fundamental matriz at tg € J if ¥(ty) = I.

If ¢ — W(t) is a matrix solution of the system (2.4) on the interval J,
then W(t) = A(t)¥(t) on J. By Proposition 2.8, there is a fundamental
matrix solution. Moreover, if ¢y € J and ¢ — ®(¢) is a fundamental matrix
solution on J, then (by the linear independence of its columns) the matrix
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®(tg) is invertible. It is easy to see that the matrix solution defined by
W(t) := ®(t)®(ty) is the principal fundamental matrix solution at tg.
Thus, system (2.4) has a principal fundamental matrix solution at each
point in J.

Definition 2.11. The state transition matriz for the homogeneous linear
system (2.4) on the open interval J is the family of fundamental matrix
solutions ¢t — U(t, 7) parametrized by 7 € J such that U(r,7) = I, where
I denotes the n x n identity matrix.

Proposition 2.12. If t — ®(t) is a fundamental matriz solution for the
system (2.4) on J, then U(t,7) := ®(t)®~1(7) is the state transition ma-
trix. Also, the state transition matriz satisfies the Chapman—Kolmogorov
identities

U(r,7r)=1, Y(t,s)V(s,7)=V(t,T)
and the identities
U(t,s)t = U(s,t), —(t,8) = —U(t, s)A(s).

Proof. See Exercise 2.13. O

A two-parameter family of operator-valued functions that satisfies the
Chapman-Kolmogorov identities is called an evolution family.

In the case of constant coefficients, that is, in case t — A(t) is a constant
function, the corresponding homogeneous linear system is autonomous,
and therefore its solutions define a flow. This result also follows from the
Chapman—-Kolmogorov identities.

To prove the flow properties, let us show first that if ¢ — A(t) is a
constant function, then the state transition matrix W(¢,t9) depends only
on the difference t —tg. In fact, since t — U(t, o) and t — U (t+s,to+s) are
both solutions satisfying the same initial condition at ¢y, they are identical.
In particular, with s = —t(, we see that U(t,tg) = (¢t — ¢, 0). If we define
¢y := U(t,0), then using the last identity together with the Chapman-—
Kolmogorov identities we find that

U(t+5,0) = U(t, —s) = U(t,0)T(0, —s) = (£, 0)U(s,0).

Thus, we recover the group property ¢;1s = ¢ips. Since, in addition, ¢ =
U(0,0) = I, the family of operators ¢; defines a flow. In this context, ¢, is
also called an evolution group.

If t — ®(t) is a fundamental matrix solution for the linear system (2.4)
and v € R™, then ¢t — ®(¢t)v is a (vector) solution. Moreover, every solution
is obtained in this way. In fact, if ¢ — ¢(t) is a solution, then there is
some v such that ®(tg)v = ¢(to). (Why?) By uniqueness, we must have
D (t)v = ¢(t). Also, note that W (¢, tg)v has the property that (g, tg)v = v.
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In other words, U “transfers” the initial state v to the final state W(¢,¢o)v.
Hence, the name “state transition matrix.”

Exercise 2.13. Prove Proposition 2.12.

Exercise 2.14. Suppose & = f(u) is a differential equation on R™ with flow
¢¢. Show that the family of principal fundamental matrix solutions ®(¢,u) of the
family of variational equations w = D f(¢¢(u))w is a linear cocycle over the flow
¢; that is, a family of functions, each mapping from R x R™ to the set of linear
transformations of R" such that ®(0,u) = I and ®(t+s,u) = ®(¢, ds(u))P(s, u).
(To learn why cocycles are important, see [39].)

The linear independence of a set of solutions of a homogeneous linear
differential equation can be determined by checking the independence of a
set of vectors obtained by evaluating the solutions at just one point. This
useful fact is perhaps most clearly expressed by Liouville’s formula.

Proposition 2.15 (Liouville’s formula). Suppose that t — ®(t) is a
matriz solution of the homogeneous linear system (2.4) on the open interval
J. Ifty € J, then

det (I)(t) = det (I)(to)eftto tr A(s) ds

where det denotes determinant and tr denotes trace. In particular, ®(t) is a
fundamental matriz solution if and only if the columns of ®(ty) are linearly
independent.

Proof. The matrix solution ¢ — ®(¢) is a differentiable function. Thus, we
have that

1
lim 2 [®(t + h) — (I +hA()B()] = 0.

In other words, using the “little oh” notation,

O(t+ h) = (I + hA(t))D(t) + o(h). (2.6)
(Formally, the little oh has the following meaning: f(z) = g(z) + o(h(x)) if
@) —g(@)|
R T I

Thus, we should write o(£h) in equation (2.6), but this technicality is not
important in this proof.)

Using the definition of the determinant of an n X n matrix, that is, if
B = (bij)a then

det B= sgn(o) ﬁ bio (i),
o i=1
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and by the fact that the determinant of a product of matrices is the product
of their determinants, we have

det ®(t + h) = det(T + hA(t)) det B(t) + o(h)
= (1+ htr A(t)) det ®(t) + o(h),

and therefore

d
= det @(t) = tr A(t) det @(1).

Integration of this last differential equation gives the desired result. O

Exercise 2.16. Find a fundamental matrix solution of the system
. 1 =1/t
m—(1+t _1)30, t > 0.

Hint: z(t) = (1) is a solution.

2.1.4 Linear Equations with Constant Coefficients

In this section we will consider the homogeneous linear system
i = Az, x e R"™ (2.7)

where A is a real n x n (constant) matrix. We will show how to reduce
the problem of constructing a fundamental set of solutions of system (2.7)
to a problem in linear algebra. In addition, we will see that the principal
fundamental matrix solution at ¢ = 0 is given by the exponential of the
matrix tA just as the fundamental scalar solution at t = 0 of the scalar
differential equation & = ax is given by t — e%.

Let us begin with the essential observation of the subject: The solutions of
system (2.7) are intimately connected with the eigenvalues and eigenvectors
of the matrix A. To make this statement precise, let us recall that a complex
number A is an eigenvalue of A if there is a complex nonzero vector v such
that Av = Av. In general, the vector v is called an eigenvector associated
with the eigenvalue A if Av = Av. Moreover, the set of all eigenvectors
associated with an eigenvalue forms a vector space. Because a real matrix
can have complex eigenvalues, it is convenient to allow for complex solutions
of the differential equation (2.7). Indeed, if ¢ — wu(t) and ¢ — v(t) are real
functions, and if ¢ — @(¢t) is defined by @(t) := u(t) +iv(t), then ¢ is called
a complex solution of system (2.7) provided that @ + iv = Au + iAv. Of
course, if ¢ is a complex solution, then we must have &« = Au and v = Av.
Thus, it is clear that ¢ is a complex solution if and only if its real and
imaginary parts are real solutions. This observation is used in the next
proposition.
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Proposition 2.17. Let A be a real n X n matrixz and consider the ordinary
differential equation (2.7).

(1) The function given byt — e v is a real solution if and only if A € R,
v €R™, and Av = \v.

(2) If v # 0 is an eigenvector for A with eigenvalue X\ = a + i such
that B # 0, then the imaginary part of v is not zero. In this case, if
v=u-+iw € C", then there are two real solutions

t — e*[(cos Bt)u — (sin Bt)w],

t — e*[(sin Bt)u + (cos Bt)w).
Moreover, these solutions are linearly independent.
Proof. If Av = Av, then

d
%(e”v) = \eMv = eMAv = AP,

In particular, the function t — e*v is a solution.
If A\ =a+if and 3 # 0, then, because A is real, v must be of the form

v = u ~+ iw for some u,w € R™ with w # 0. The real and imaginary parts
of the corresponding solution

My = e(““mt(u +iw)
= e (cos ft + isin Bt)(u + iw)
= e*[(cos Bt)u — (sin Bt)w + i((sin Bt)u + (cos Bt)w)]

are real solutions of the system (2.7). To show that these real solutions
are linearly independent, suppose that some linear combination of them
with coefficients ¢; and ¢y is identically zero. Evaluation at ¢ = 0 and at
t = 7/(20) yields the equations

c1u + cow =0, cou—crw = 0.

By elimination of u we find that (c¢? + ¢3)w = 0. Since w # 0, both coeffi-
cients must vanish. This proves (2).

Finally, we will complete the proof of (1). Suppose that A = a + i and
v = u+iv. If e’y is real, then 8 = 0 and w = 0. Thus, in fact, A and v are
real. On the other hand, if A and v are real, then e*uv is a real solution. In
this case,

AeMo = AeMo,

and we have that Av = Av. O
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A fundamental matrix solution of system (2.7) can be constructed explic-
itly if the eigenvalues of A and their multiplicities are known. To illustrate
the basic idea, let us suppose that C™ has a basis B := {v1,... ,v,} con-
sisting of eigenvectors of A, and let {A1,...,A,} denote the corresponding
eigenvalues. For example, if A has n distinct eigenvalues, then the set con-
sisting of one eigenvector corresponding to each eigenvalue is a basis of C™.
At any rate, if B is a basis of eigenvectors, then there are n corresponding
solutions given by

and the matrix
O(t) = [eMlvy, ... e My,

which is partitioned by columns, is a matrix solution. Because det ®(0) #
0, this solution is a fundamental matrix solution, and moreover W(t) :=
®(t)®1(0) is the principal fundamental matrix solution of (2.7) at t
0. Let us note that a principal fundamental matrix for a real system is
necessarily real. In fact, if A(t) denotes the imaginary part of a principal
fundamental matrix solution, then A(0) = 0. But then, by the uniqueness
of solutions of initial value problems, A(t) = 0. Thus, even if some of the
eigenvalues of A are complex, the fundamental matrix solution ¢ — ®(t)
defined above is real.

Continuing under the assumption that A has a basis B of eigenvectors,
let us show that there is a change of coordinates that transforms the system
T = Az, x € R", to a decoupled system of n scalar differential equations.
To prove this result, let us first define the matrix B := [v1,... ,v,] whose
columns are the eigenvectors in B. The matrix B is invertible. Indeed,
consider the action of B on the usual basis vectors and recall that the vector
obtained by multiplication of a vector by a matrix is a linear combination of
the columns of the matrix; that is, if w = (w1, ... ,wy) is (the transpose of)
a vector in C™, then the product Bw is equal to 2?21 w;v;. In particular,
we have Be; = v;, i = 1,... ,n. This proves that B is invertible. In fact,
B! is the unique linear map such that B~lv; = e;.

Using the same idea, let us compute

B 'AB =B 'Afv,... ,v,)
= B_I[Alvlv v 7)‘nvn]

= [/\1e1, e ,)\nen]
A1 0
0 An
In other words, D := B~'AB is a diagonal matrix with the eigenvalues

of A as its diagonal elements. The diffeomorphism of C™ given by the
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linear transformation & = By transforms the system (2.7) to y = Dy, as
required. Or, using our language for general coordinate transformations,
the push forward of the vector field with principal part = — Ax by the
diffeomorphism B~! is the vector field with principal part y — Dy. In
particular, the system § = Dy is given in components by

91 = )\1y1, 7yn = )\nyn

Note that if we consider the original system in the new coordinates, then
it is obvious that the functions

yi(t) := eMitey, i=1,...,n

are a fundamental set of solutions for the differential equation §y = Dy.
Moreover, by transforming back to the original coordinates, it is clear that
the solutions

x;(t) == et Be; = eMituy, i=1,...,n

form a fundamental set of solutions for the original system (2.7). Thus,
we have an alternative method to construct a fundamental matrix solu-
tion: Change coordinates to obtain a new differential equation, construct
a fundamental set of solutions for the new differential equation, and then
transform these new solutions back to the original coordinates. Even if A
is not diagonalizable, a fundamental matrix solution of the associated dif-
ferential equation can still be constructed using this procedure. Indeed, we
can use a basic fact from linear algebra: If A is a real matrix, then there is
a nonsingular matrix B such that D := B~'AB is in (real) Jordan canoni-
cal form [51], [95]. Then, as before, the system (2.7) is transformed by the
change of coordinates © = By into the linear system y = Dy.

We will eventually give a detailed description of the Jordan form and also
show that the corresponding canonical system of differential equations can
be solved explicitly. This solution can be transformed back to the original
coordinates to construct a fundamental matrix solution of & = Ax.

Instead of writing out the explicit, perhaps complicated, formulas for the
components of the fundamental matrix solution of an n x n linear system
of differential equations, it is often more useful, at least for theoretical
considerations, to treat the situation from a more abstract point of view. In
fact, we will show that there is a natural generalization of the exponential
function to a function defined on the set of square matrices. Using this
matrix exponential function, the solution of a linear homogeneous system
with constant coefficients is given in a form that is analogous to the solution
t = etz of the scalar differential equation & = ax.

Recall that the set of linear transformations £(R™) (respectively £(C™))
on R" (respectively C") is an n2-dimensional Banach space with respect
to the operator norm

1A = sup [ Av].

lloll=1
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Most of the theory we will develop is equally valid for either of the vector
spaces R™ or C™. When the space is not at issue, we will denote the Banach
space of linear transformations by £(F) where F may be taken as either
R™ or C™. The theory is also valid for the set of (operator norm) bounded
linear transformations of an arbitrary Banach space.

Exercise 2.18. Prove: £(F) is a finite dimensional Banach space with respect
to the operator norm.

Exercise 2.19. The space of n x n matrices is a topological space with respect
to the operator topology. Prove that the set of matrices with n distinct eigenvalues
is open and dense. A property that is defined on the countable intersection of
open dense sets is called generic.

Proposition 2.20. If A € L(E), then the series I+ o | LA™ is abso-
lutely convergent.

Proof. It suffices to show that the sequence of partial sums {Sn}3_; for
the series 1+ > 77 | L||A"|| is a Cauchy sequence. Let us define

n=1 n!
1 2 1 N
S = 14 A+ 1420+ 4 147

Note that the partial sums of the convergent series
o0
S IAI™ _ jay
=e
n!
n=0

form a Cauchy sequence. Using this fact, the estimate ||A™| < || A||", and
the triangle inequality, it follows that Sy is a Cauchy sequence in £(E). O

Define the ezponential map exp : L(E) — L(E) by
=1
exp(4) =1+ Z ;A”.
n=1"

Also, let us use the notation e := exp(A).
The main properties of the exponential map are summarized in the fol-
lowing proposition.

Proposition 2.21. Suppose that A, B € L(E).
(0) If A € L(R™), then e? € L(R™).
(1) If B is nonsingular, then B~'eAB = B~ 'AB,

(2) If AB = BA, then eAtB = e4eB.
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(3) e=4 = (eM)™L. In particular, the image of exp is in the general linear
group GL(E) consisting of the invertible elements of L(E).

(4) %(em) = Aet? = e A. In particular, t — e is the fundamental

matriz solution of the system (2.7) at t = 0.
(5) llet] < el Al

Proof. The proof of (0) is obvious.
To prove (1), define

,_ Lo L N
Sy = T+ A+ g A,
and note that if B is nonsingular, then B~1A"B = (B~'AB)". Thus, we
have that
1

B 'SyB=I1+B'AB+ %(B*AB)2 + 4 M(B”AB)N,

and, by the definition of the exponential map,

. _ —1
lim B™'SyB =¢8P 4B,
N — o0

Using the continuity of the linear map on £(E) defined by C + B~!CB,
it follows that
lim B~'SyB =B 'e“B,
N —oc0
as required.

As the first step in the proof of (4), consider the following proposition: If
s,t € R, then e(st9)4 = es4¢t4 To prove it, let us denote the partial sums
for the series representation of e*4 by

1

1
Sn(t):=T+tA+ ﬁ(tA)z +o m(tA)N

_ 12 2 1 N AN
= [+ tA+ 12 A7 4ot VAN

We claim that

2N
Sn(s)Sn(t) = Sn(s+1)+ Y. Pu(s,t)A" (2.8)
n=N+1

where P,(s,t) is a homogeneous polynomial of degree n such that

(1] + I#)"

Past)] < 2
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To obtain this identity, note that the nth order term of the product, at
least for 0 < n < N, is given by
n n
1 i 1 n! o 1
————s"TI)A" = (— ——— "I A" = — )T A",
(2 ot A= 2 ot A= e
7=0 7=0
Also, for N+1 < n < 2N, the nth order term is essentially the same, only
some of the summands are missing. In fact, these terms all have the form

= (n— L

where §(j) has value zero or one. Each such term is the product of A™
and a homogeneous polynomial in two variables of degree n. Moreover, the
required estimate for the polynomial follows from the fact that [6(j)] < 1.
This proves the claim.

Using equation (2.8), we have the following inequality

2N
ISn(s)Sn (1) = Sn(s + )l < Y [Pals )] 14"
n=N+1
2N
(sl +1ED™ | 4y
< > B
n=N+1 :
Also, using the fact that the series
YGRS
— n!

is convergent, it follows that its partial sums, denoted @y, form a Cauchy
sequence. In particular, if € > 0 is given, then for sufficiently large N we
have

|Q2n — Qn| < e

Moreover, since

2N
t n
Quv—Qn = 3 Uy
W n!
it follows that
Jim[[Sx () SN (t) — Sn (s + 1) = 0.
Using this fact and passing to the limit as N — oo on both sides of the
inequality
HesAetA o €(S+t)A|| < HeSAetA — SN(S)SN(t)”
+ [|Sn(s)Sn(t) — Sn(s+t)|

+ [ISn (s +t) — T4,
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we see that

e AetA = g(s+)A (2.9)

as required.
In view of the identity (2.9), the derivative of the function t + e*4 is
given by

where

|n2

[A["

Lm bl s
IR(s) ;gn—mnmx

n=2

Moreover, if |s| < 1, then |R(s)|| < |s|el4l. In particular, R(s) — 0 as

s — 0 and as a result,
d

aem = Aeth.
Since ASn(t) = Sn(t)A, it follows that Aet4 = e'4A. This proves the
first statement of part (4). In particular ¢ — e*4 is a matrix solution of
the system (2.7). Clearly, e* = I. Thus, the columns of €° are linearly
independent. It follows that ¢ — e*4 is the fundamental matrix solution at
t = 0, as required.

To prove (2), suppose that AB = BA and consider the function ¢ —
et(A+B) By (4), this function is a matrix solution of the initial value prob-
lem

&= (A+ B)z, x(0) =1I.
The function t — e*4et® is a solution of the same initial value problem. To
see this, use the product rule to compute the derivative

ietAetB — AetAetB 4 oA BetB,

dt
and use the identity AB = BA to show that ¢!AB = Be'A. The desired
result is obtained by inserting this last identity into the formula for the
derivative. By the uniqueness of the solution of the initial value problem,
the two solutions are identical.
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To prove (3), we use (2) to obtain I = eA~4 = e4e~4 or, in other words,

(eA)—l — e—A.

The result (5) follows from the inequality
Lo LN L2 1 N
1+ A+ AT AT < I+ A+ S AN+ 5 1AL D

We have defined the exponential of a matrix as an infinite series and
used this definition to prove that the homogeneous linear system & = Ax
has a fundamental matrix solution, namely, ¢t — e*4. This is a strong result
because it does not use the existence theorem for differential equations.
Granted, the uniqueness theorem is used. But it is an easy corollary of
Gronwall’s inequality (see Exercise 2.5). An alternative approach to the
exponential map is to use the existence theorem and define the function
t + e to be the principal fundamental matrix solution at ¢ = 0. The
properties of the exponential function given in Proposition 2.21 can then
be proved by using the fact that it is a solution of a homogeneous differential
equation.

To obtain a matrix representation for e*4, let us recall that there is a real
matrix B that transforms A to real Jordan canonical form. Of course, to
construct the matrix B, we must at least be able to find the eigenvalues of A.
However, this requires finding the roots of a polynomial of degree n. Thus,
for n > 5, it is generally impossible to construct the matrix B explicitly.
However, if B is known, then by using part (1) of Proposition 2.21, we have

that
B—letAB — etBilAB

Thus, the problem of constructing a principal fundamental matrix is solved
as soon as we find a matrix representation for et8~ 4B,

The Jordan canonical matrix B~!AB is block diagonal, where each block
corresponding to a real eigenvalue has the form “diagonal + nilpotent,”
and, each block corresponding to a complex eigenvalue with nonzero imag-
inary part has the form “block diagonal + block nilpotent.” In view of this
block structure, it suffices to determine the matrix representation for e’
where J denotes a single Jordan block.

Consider a block of the form

J=M+N

where N is the nilpotent matrix with zero components except on the super
diagonal, where each component is unity and note that N* = 0. We have
that
42 th—1
etJ — et()J-‘rN) _ et)\IetN _ et)\(I+tN+ 5]\]’2 4+ (k 1)'Nk—1)

where k is the dimension of the block.



144 2. Linear Systems and Stability

If J is a Jordan block with diagonal 2 x 2 subblocks given by

R= (g aﬂ) (2.10)

with 3 # 0, then e!”/ is block diagonal with each block given by e'*. To
obtain an explicit matrix representation for e*®, define

(0 =p __ [cospBt —sinpt
b= (/5 0 ) ’ Q) = (Sinﬁt cosfBt )’
and note that t — e’ and t — Q(t) are both solutions of the initial value

problem
xz(g 0)3:, z(0) = 1.

Thus, we have that e’ = Q(t) and
6tR _ 6onfetP — eatQ(t).

Finally, if the Jordan block J has the 2 x 2 block matrix R along its
block diagonal and the 2 x 2 identity along its super block diagonal, then

el = e S(t)etN (2.11)

where S(t) is block diagonal with each block given by Q(t), and N is the
nilpotent matrix with 2 x 2 identity blocks on its super block diagonal. To
prove this fact, note that J can be written as a sum J = ol + K where K
has diagonal blocks given by P and super diagonal blocks given by the 2 x 2
identity matrix. Since the n X n matrix ol commutes with every matrix,
we have that

otd — pat gtk
The proof is completed by observing that the matrix K can also be written
as a sum of commuting matrices; namely, the block diagonal matrix with
each diagonal block equal to P and the nilpotent matrix N.

We have outlined a procedure to find a matrix representation for e*4. In
addition, we have proved the following result.

Proposition 2.22. If A is an n x n matriz, then e is a matriz whose

components are sums of terms of the form p(t)e®t sin 8t and p(t)e** cos Bt
where o and B are real numbers such that o + i3 is an eigenvalue of A,
and p(t) is a polynomial of degree at most n — 1.

Exercise 2.23. Find the real Jordan canonical forms for all 2 x 2 real matri-
ces and construct the corresponding fundamental matrix solutions for all 2 x 2
real homogeneous linear systems of differential equations. Also, draw the phase
portraits for each canonical system. Repeat the exercise for 3 x 3 real matrices.
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In this section we have defined the exponential map on bounded linear
operators in order to construct the matrix solution ¢ — e* of the homoge-
neous system & = Az in analogy with the solution of the scalar differential
equation £ = az. Let us note that the scalar nonautonomous homogeneous
linear differential equation & = a(t)x has the solution

t— xoefot a(s)ds

This fact suggests a construction for the solution of matrix nonautonomous
homogeneous systems. However, you must resist the temptation to construct
the fundamental matriz solution of the differential equation & = A(t)x by
exponentiating an integral of the function t — A(t) (see Exercise 2.27).

As a final application of the methods developed in this section we will for-
mulate and prove a special case of the Lie-Trotter product formula for the
exponential of a sum of two matrices when the matrices do not necessarily
commute (see [175] for the general case).

Theorem 2.24. If A and B are matrices, then

. ta4 tg\"
etAtB) — lim (enAenB) .
n— 00

Proof. We will work with k& x k matrix-valued functions defined on the
real line. Of course all such functions can be interpreted as functions from
R to R¥.

Define

fut) = (G%AS%B) ,
and note that the first derivative of f, is given by
fo(t) = fa(t)gn(t) (2.12)
where
gn(t) = e 7B(A+ B)en?.
Let us show that
lim g, =A+B (2.13)
n—oo
uniformly on compact subsets of R—the right hand side of the limit is to
be interpreted as the constant function with value A + B.
If the independent variable t is restricted to a compact subset of R, then

there is some number T' > 0 such that |t| < T. Also, to obtain the uniform
convergence, it suffices to consider only n > T. With these assumptions in
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force, consider the estimate
le=%P(A + B)en? — (A + B)||
< ewIPI|(A+ B)ex® — (A+ B)+ (A+B) — evB(A+ B)|

|| t t
<en IBI(JA+ Bllen® — 1|+ [T - exP ||| A+ B|))

and note that

T
lexB —I|| < =€l Bl
n

The uniform convergence follows immediately because T'/n can be made
arbitrarily small by taking n sufficiently large.

We will use the limit (2.13) to show that the sequence of functions
{fn}52, converges uniformly on compact sets.

Let us show first that the required convergence is uniform on the interval
[0,T]. To prove this fact, integrate both sides of equation (2.12) to obtain
the equality

fult) =T+ / Fu(8)9n(5) ds,

and, in turn, the estimate

1 t) — Ful0)]] = / 1 (5)9m(5) — Fon(5)gn(5)
()90 (5) — Fu($)gn(s)] ds
< / 1 mn(S)llgm (5) — g (3)]] s

+ / 1n(3) = Ful)lllgn(s)llds.  (2.14)

Because the sequence of functions {g, }32 ; converges uniformly on [0, T, it
is uniformly bounded. Also, by using the definition of f,, and the properties
of the norm, we have the uniform bound

I fa(®)]| < TNAITIBIL

Hence, there is a constant M > 0 such that, for the uniform (supremum)
norm on the interval [0, T}, we have the inequalities || f,, || < M and |/g,| <
M for each positive integer n. Moreover, since the sequence of functions
{gn}22; converges uniformly on [0,7], there is some integer N > 0 such
that

Hgm - gn” <e€
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whenever n > N and m > M.
Let € > 0 be given. Using the inequality (2.14) and the uniform estimates
given in the last paragraph, it follows that

[ fm(8) = @)l §M€t+M/O [fm(s) = fu(s)] ds,

and, by Gronwall’s inequality,
[ fm = fol < eMTeMT.

Thus, we have proved that {f,}22, is a Cauchy sequence in the uniform
norm on the interval [0, T.

For the required uniform convergence on the interval [T, 0], apply the
result just obtained to the sequence of functions {h,}5°; defined by

ho(t) i= fo(—t) = (e%eA)e%(—B))

n

Because {f,,}522, is a Cauchy sequence in the uniform norm, there is a
continuous function f, defined on the interval [T, T], such that

lim f, = f.

n— oo

Also, the sequence {g,,}22; converges to the constant function with value
A + B. Using these facts together with the identity f)(t) = fn(t)gn(t),
let us note that the sequence {f/}°2 ; converges uniformly to the function
defined by t — f(t)(A + B). Thus, the function f is differentiable, f’(t) =
f(®)(A+ B) (see the proof of Theorem 1.176), and f(0) = I. The solution
of this initial value problem is

F(t) = A5,
that is, the limit function f is as required in the statement of the theorem.

O

Exercise 2.25. Compute the fundamental matrix solution at ¢ = 0 for the

system & = Ax where
1 2 3
A=(101 4|.
0 0 1
Exercise 2.26. Determine the phase portrait for the system

()= ) 0)

Make sure you distinguish the cases £ < =2, £k > 2, k=10, 0 < k < 2, and
—2<k<0.
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Exercise 2.27. Find a matrix function ¢ — A(t) such that

t — exp (/Ot A(s) ds)

is not a matrix solution of the system z = A(¢)z. However, show that the given
exponential formula is a solution in the scalar case. When is it a solution for the
matrix case?

Exercise 2.28. [Lie Groups and Lax Pairs] Is the map
exp: L(E) - GL(E)

injective? Is this map surjective? Do the answers to these questions depend on
the choice of F as R™ or C"? Prove that the general linear group is a submanifold
of RY with N =n? in case E = R", and N = 2n? in case E = C". Show that the
general linear group is a Lie group; that is, the group operation (matrix product),
is a differentiable map from GL(F) x GL(E) — GL(F). Consider the tangent
space at the identity element of GL(E). Note that, for each A € L(E), the map
t — exp(tA) is a curve in GL(E) passing through the origin at time ¢t = 0. Use
this fact to prove that the tangent space can be identified with £(FE). It turns out
that £(F) is a Lie algebra. More generally, a vector space is called a Lie algebra
if for each pair of vectors A and B, a product, denoted by [A, B], is defined on
the vector space such that the product is bilinear and also satisfies the following
algebraic identities: (skew-symmetry) [A, B] = —[B, A], and (the Jacobi identity)

[[A,B],C|+[[B,C], Al + [[C, A], B] = 0.

Show that L£(E) is a Lie algebra with respect to the product [A, B] := AB — BA.
For an elementary introduction to the properties of these structures, see [91].

The delicate interplay between Lie groups and Lie algebras leads to a far-
reaching theory. To give a flavor of the relationship between these structures,
consider the map Ad : GL(E) — L(L(E)) defined by Ad(A)(B) = ABA™'. This
map defines the adjoint representation of the Lie group into the automorphisms
of the Lie algebra. Prove this. Also, Ad is a homomorphism of groups: Ad(AB) =
Ad(A) Ad(B). Note that we may as well denote the automorphism group of L(E)
by GL(L(E)). Also, define ad : L(E) — L(L(E)) by ad(A)(B) = [A, B]. The map
ad is a homomorphism of Lie algebras. Now, ¢, := Ad(e') defines a flow in £(E).
The associated differential equation is obtained by differentiation. Show that ¢
is the flow of the differential equation

= Az —zA =ad(4)x. (2.15)

This differential equation is linear; thus, it has the solution ¢ — e’ ad(4), By the
usual argument it now follows that e**4(4) = Ad(e!#). In particular, we have the
commutative diagram

ad

L(E) — L(L(E))
exp lexp

GL(E) 2% GL(L(E)).
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The adjoint representation of GL(E) is useful in the study of the subgroups of
GL(F), and it is also used to identify the Lie group that is associated with a given
Lie algebra. But consider instead the following application to spectral theory. A
curve t — L(t) in L(E) is called isospectral if the spectrum of L(t) is the same as
the spectrum of L(0) for all ¢ € R. We have the following proposition: Suppose
that A € L(F). If t — L(t) is a solution of the differential equation (2.15), then
the solution is isospectral. The proof is just a restatement of the content of the
commutative diagram. In fact, L(¢) is similar to L(0) because

L(t) = Ad(e"*)L(0) = e L(0)e .
A pair of curves ¢ — L(t) and ¢t — M (¢) is called a Laz pair if
L=LM - ML.
The sign convention aside, the above proposition shows that if (L, M) is a Lax
pair and if M is constant, then L is isospectral. Prove the more general result: If

(L, M) is a Lax pair, then L is isospectral.
Finally, prove that

d 1A B —tA_—tB
a(e e’ e e ) o =0
and
%(e\/{AeﬁBef\/{AefﬁB) = AB — BA. (2.16)
t=0

As mentioned above, [A, B] is in the tangent space at the identity of GL(E).
Thus, there is a curve v(t) in GL(E) such that v(0) = I and 4(0) = [A, B]. One
such curve is ¢t — /Pl However, since the Lie bracket [A, B] is an algebraic
object computed from the tangent vectors A and B, it is satisfying that there is
another such curve formed from the curves ¢ — e and t — e'® whose respective
tangent vectors at t = 0 are A and B.

Exercise 2.29. Prove that if o is a real number and A is an n x n real matrix
such that (Av,v) < al[v]|? for all v € R", then ||| < e** for all t > 0. Hint:
Consider the differential equation £ = Ax and the inner product (&, z). Prove the
following more general result suggested by Weishi Liu. Suppose that ¢ — A(t)
and t — B(t) are smooth n X n matrix valued functions defined on R such that
(A(t)v,v) < a(t)||v]|? and (B(t)v,v) <0 for all t > 0 and all v € R™. If > x(t)
is a solution of the differential equation # = A(t)x + B(t)z, then

|z (t)|| < efo ()

|lz(0)]]
for all ¢t > 0.

Exercise 2.30. Let v € R?, assume v # 0, and consider the differential equa-
tion

t=vxz, x0)=ux
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where x denotes the cross product in R%. Show that the solution of the differential
equation is a rigid rotation of the initial vector o about the direction v. If the
differential equation is written as a matrix system

T =Sz

where S is a 3 X 3 matrix, show that S is skew symmetric and that the flow
() = etz of the system is a group of orthogonal transformations. Show that
every solution of the system is periodic and relate the period to the length of v.

Exercise 2.31. [An infinite dimensional ODE] Let E denote the Banach space
C([0,1]) given by the set of all continuous functions f : [0,1] — R with the
supremum norm

£l = sup |f(s)]
s€[0,1]

and consider the operator U : E — FE given by (U f)(s) = f(as) where 0 < a < 1.
Also, let g € E denote the function given by s — bs where b is a fixed real
number. Find the solution of the initial value problem

&t =Uz, z(0) = g.

This is a simple example of an ordinary differential equation on an infinite di-
mensional Banach space (see Section 3.6).

Exercise 2.32. Prove the following generalization of the Lie-Trotter product
formula. If v : R — L(F) is a smooth function and A := %(0), then

e = lim (y(t/n))".

n— oo
The Lie-Trotter formula is recovered by inserting ~(t) = e'e*®. For exam-
ple, e8] can be approximated using the generalized product formula and for-

mula (2.16).

Exercise 2.33. Write a report on the application of the Lie-Trotter formula
to obtain numerical approximations of the solution of the initial value problem
z = (A+ B)zx, (0) = v with expressions of the form

T(t,n)v = (eM/™AeE/mM By,

For example, approximate z(1) for such systems where

=(38) ()

Compare the results of numerical experiments using your implementation(s) of
the “Lie-Trotter method” and your favorite choice of alternative method(s) to
compute z(1). Note that et and e’ can be input explicitly for the suggested
example. Can you estimate the error ||T(1,n)v — e**Pv||? Generalizations of
this scheme are sometimes used to approximate differential equations where the
“vector field” can be split into two easily solved summands. Try the same idea
to solve nonlinear ODE of the form & = f(z) 4+ g(z) where '/ is replaced by the
flow of & = f(z) and e'P is replaced by the flow of & = g(z).
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2.2 Stability of Linear Systems

A linear homogeneous differential equation has a rest point at the origin. We
will use our results about the solutions of constant coefficient homogeneous
linear differential equations to study the stability of this rest point. The
next result is fundamental.

Theorem 2.34. Suppose that A is an n x n (real) matriz. The following
statements are equivalent:

(1) There is a norm | |, on R™ and a real number A > 0 such that for
allv eR™ and all t > 0,

\etAv\a < ef)‘t|v|a.

(2) If | |, denotes a norm on R™, there is a constant C > 1 and a real
number X\ > 0 such that for all v € R™ and all t > 0,

|etAv|g < C’e_’\t|v\g.

(8) Every eigenvalue of A has negative real part.

Moreover, if —\ exceeds the largest of all the real parts of the eigenvalues of
A, then X\ can be taken to be the decay constant in (1) or (2). Also, if every
etgenvalue of A has negative real part, then the zero solution of © = Ax is
asymptotically stable.

Proof. We will show that (1) = (2) = (3) = (1).

To show (1) = (2), let | |, be the norm in statement (1) and | |,
the norm in statement (2). Because these norms are defined on the finite
dimensional vector space R", they are equivalent. In particular, there are
constants K1 > 0 and K5 > 0 such that for all x € R™ we have

Kilzly < [zfa < Koy

(Prove this!)
If t > 0 and x € R™, then
1 1 K
e al, < E|etA33|a < e Mz, < ffef”lx\g’
as required.

To show (2) = (3), suppose that statement (2) holds but statement (3)
does not. In particular, A has an eigenvalue p € C, say p = o + i3 with
«a > 0. Moreover, there is at least one eigenvector v # 0 corresponding to
this eigenvalue. As we have seen, this implies that & = Az has a solution
t — (t) of the form ¢t — e“*((cos Bt)u — (sin ft)w) where v = u + iw,
uw € R" and w € R". As a > 0 and at least one of the vectors v and v is
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not zero, it is clear that lim;_, o, y(t) # 0. But if statement (2) holds, then
lim; o ¥(t) = 0, in contradiction.

To finish the proof we will show (3) = (1). Let us assume that state-
ment (3) holds. Since A has a finite set of eigenvalues and each of its
eigenvalues has negative real part, there is a number A > 0 such that the
real part of each eigenvalue of A is less than —A\.

By Proposition 2.22, the components of e?* are sums of terms of the form
p(t)e“ sin Bt or p(t)e® cos ft where « is the real part of an eigenvalue of
A and p(t) is a polynomial of degree at most n — 1. In particular, if the

matrix e4, partitioned by columns, is given by [c1(t), ... , ¢, (t)], then each
component of each vector ¢;(t) is a sum of such terms.
Ifv=(v1,...,vy) is a vector in R"™, then with respect to the usual norm

of R™ we have

n
ol <D les(t)] il
=1

Because
n

ol < (3" i) = o,

i=1
it follows that

n
"ol < Jo Y lei®)]-
i=1

If B1,..., B¢ are the nonzero imaginary parts of the eigenvalues of A and
if a denotes the largest real part of an eigenvalue of A, then using the
structure of the components of the vector ¢;(t) it follows that

2n—2

e < e Y Jdwi(t)]1t*

k=0
where each coefficient dy;(t) is a quadratic form in
sin B1t, ... ,sin Gpt, cos Bit, . .. , cos Byt.

There is a constant M > 0 that does not depend on ¢ or k such that the
supremum of |dy;(¢)| for t € R does not exceed M?. In particular, for each
i=1,...,n, we have

2n—2
‘Ci(t)|2 < 20t pr2 Z ‘t|k,
k=0
and as a result

2n—2

et ol < o] S fei()] < endlo] (S 1F).
i=1 k=0
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Because av < —\ < 0, there is some 7 > 0 such that for ¢ > 7, we have
the inequality

2n—2
e(AJra)tnM( Z |t|k)1/2 <1,
k=0
or equivalently
2n—2 1/2
eatnM( Z |t|k) / <e M
k=0

In particular, if ¢ > 7, then for each v € R™ we have
et | < e M. (2.17)

To finish the proof, we will construct a new norm for which the same
inequality is valid for all ¢ > 0. In fact, we will prove that

-
[v]a ::/ e*¥|esA| ds
0

is the required norm.

The easy proof required to show that | |, is a norm on R™ is left to
the reader. To obtain the norm estimate, note that for each ¢ > 0 there
is a nonnegative integer m and a number T such that 0 < T < 7 and
t = m7 + T. Using this decomposition of ¢, we find that

-
|€tA’U|a :/ e)\s|esAetAv| ds
0
=T T
:/ 6As|6(s+t)A,U| ds +\/ 6)\S|6(S+t)A‘ ds
0 =T
=T
:/ 6)\s|6m'rAe(erT)A,U| ds
0

+/ e)\s|€(m+1)'rAe(T7'r+s)A,U| ds.
=T
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Let u = T + s in the first integral and «w =T — 7 + s in the second integral
and use the inequality (2.17), to obtain

T T
|6tAU|a _ / eA(ufT)|6(mfr+u)AU| du +/ e)\(u+7'7T)|e((m+1)7'+u)A,U| du
T 0

< / 6)\(ufT)efk(m'r)|euA,U| du
T

T
+/ e)\(u-l-T—T)e—/\(m-i—l)‘r‘euA,Ul du
0
-
< / e)\uefz\(mT+T)|euA,U| du
0

-
= efAt/ e)‘u|e“‘4v|du
0
< 6_/\t|v|aa
as required. O

Recall that a matrix is infinitesimally hyperbolic if all of its eigenvalues
have nonzero real parts. The following corollary of Theorem 2.34 is the
basic result about the dynamics of hyperbolic linear systems.

Corollary 2.35. If A is an n X n (real) infinitesimally hyperbolic matriz,
then there are two A-invariant subspaces E° and E* of R™ such that R™ =
E® @ E*. Moreover, if | |, is a norm on R™, then there are constants
A>0,u>0,C >0, and K > 0 such that for allv € E® and allt >0

|€tAU|g < Ce_)\tmg’
and for allv € E* and allt <0
let |, < Ket|v],.

Also, there exists a norm on R™ such that the above inequalities hold for

C=K=1and \=pu.

Proof. The details of the proof are left as an exercise. However, let us note
that if A is infinitesimally hyperbolic, then we can arrange for the Jordan
form J of A to be a block matrix

A, 0
7= (5 1)

where the eigenvalues of Ay all have negative real parts and the eigenval-
ues of A, have positive real parts. Thus, there is an obvious J-invariant
splitting of the vector space R™ into a stable space and an unstable space.
By changing back to the original coordinates, it follows that there is a
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corresponding A-invariant splitting. The hyperbolic estimate on the stable
space follows from Theorem 2.34 applied to the restriction of A to its stable
subspace; the estimate on the unstable space follows from Theorem 2.34
applied to the restriction of —A to the unstable subspace of A. Finally, an
adapted norm on the entire space is obtained as follows:

|(vs, va) 2 = Jvs2 + valg- =

The basic result of this section—if all eigenvalues of the matrix A are
in the left half plane, then the zero solution of the corresponding homoge-
neous system is asymptotically stable—is a special case of the principle of
linearized stability. In effect, we have a method to determine the stability
of the zero solution that does not require knowledge of the solutions of the
system. As we will see, this idea works in a more general context. However,
for most generalizations, additional hypotheses are required.

Exercise 2.36. Find E°, E*, C, K, ) as in Corollary 2.35 (relative to the usual
norm) for the matrix

2.3 Stability of Nonlinear Systems

Theorem 2.34 states that the zero solution of a constant coefficient ho-
mogeneous linear system is asymptotically stable if the spectrum of the
coefficient matrix lies in the left half of the complex plane. The principle
of linearized stability states that the same result is true for steady state
solutions of nonlinear equations provided that the system matrix of the
linearized system along the steady state solution has its spectrum in the
left half plane. As stated, this principle is not a theorem. However, in this
section we will formulate and prove a theorem on linearized stability which
is strong enough for most applications. In particular, we will prove that
a rest point of an autonomous differential equation & = f(z) in R™ is
asymptotically stable if all eigenvalues of the Jacobian matrix at the rest
point have negative real parts. Our stability result is also valid for some
nonhomogeneous nonautonomous differential equations of the form

= At)x + g(x,t), x € R"” (2.18)

where g : R" x R — R"™ is a smooth function.
A fundamental tool used in our stability analysis is the formula, called
the variation of constants formula, given in the next proposition.
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Proposition 2.37 (Variation of Constants Formula). Consider the
initial value problem

= At)x + g(z,t), x(tg) = g (2.19)

and let t — ®(t) be a fundamental matriz solution for the homogeneous
system & = A(t)x that is defined on some interval Jy containing to. If t —
@(t) is the solution of the initial value problem defined on some subinterval

of Jy, then

t
¢(t) = (1)~ (to)zo + ‘I’(t)/ 71 (s)g(4(s), 5) ds. (2.20)
to
Proof. Define a new variable z by z = ®(t)z. (The name “variation of
constants” derives from this change of variables. If z were a constant vector,
then ¢ — ®(t)z would be a solution of the homogeneous system. A solution
of the initial value problem is sought by “variation” of this constant vector.)
We have
&= A)D(t)z + ()2
Thus,
At)z + g(z,t) = A(t)z + D(t)2
and
=0 Y (t)g(x, ).
Also note that z(tg) = ®~1(tg)zo.
By integration,

or, in other words,

t
2() = BB (to)70 + <I>(t)/ &1 (5)g(d(s), s) ds. o
to
Let us note that in the special case where the function g in the differential
equation (2.19) is a constant with respect to its first variable, the variation
of constants formula solves the initial value problem once a fundamental
matrix solution of the associated homogeneous system is determined.

Exercise 2.38. Consider the linear system
W=—8ut+v+ow, ©=-u—dv+ow, w=—w

where § is a parameter. Find the general solution of this system using matrix
algebra and also by using the substitution z = u+ iv. Describe the phase portrait
for the system for each value of §. Find an invariant line and determine the rate
of change with respect to ¢ of the angle this line makes with the positive w-axis.
Also, find the angular velocity of the “twist” around the invariant line.
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Exercise 2.39. The product ®(t)®'(s) appears in the variation of constants
formula where ®(t) is the principal fundamental matrix for the system @ = A(t)z.
Show that if A is a constant matrix or A is 1 x 1, then ®(t)®~'(s) = ®(t — s).
Prove that this formula does not hold in general for homogeneous linear systems.

FIGURE 2.1. Local stability as in Proposition 2.41. For every open set U con-
taining the orbit segment O(&), there is an open set V' containing & such that
orbits starting in V' stay in U on the time interval 0 <t < T.

The next proposition states an important continuity result for the so-
lutions of nonautonomous systems with respect to initial conditions. To
prove it, we will use the following lemma.

Lemma 2.40. Consider a smooth function f : R™ x R — R". If K C R"
and A C R are compact sets, then there is a number L > 0 such that

1f (2, t) = £y, DIl < Ll -yl
for all (z,t), (y,t) € K x A.

Proof. The proof of the lemma uses compactness, continuity, and the mean
value theorem. The details are left as an exercise. m|

Recall that a function f as in the lemma is called Lipschitz with respect to
its first argument on K x A with Lipschitz constant L.

Proposition 2.41. Consider, for each £ € R™, the solution t — z(t,£) of
the differential equation & = f(x,t) such that x(0,£) = £. If § € R™ is
such that the solution t — x(t,&y) is defined for 0 <t < T, and if U CR"
is an open set containing the orbit segment O(&y) = {x(t,&) : 0 <t < T},
then there is an open set V. C U, as in Figure 2.1, such that &, € V and
{z(t,€) : £ €V, 0 <t < T} CU; that is, the solution starting at each
& € V exists on the interval [0,T), and its values on this interval are in U.

Proof. Let £ € R", and consider the two solutions of the differential equa-
tion given by ¢ — x(t,&) and t — x(t,£). For ¢ in the intersection of the
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intervals of existence of these solutions, we have that

2(0,) — a(t, &) = € — 9 + / F(2(,6),5) — F(x(s.£0), 5) ds

and

[l (t, &) — (¢, So) | < 1€ = Lol +/O [f((s,€),5) = f(x(s,80), )| ds.

We can assume without loss of generality that U is bounded, hence its
closure is compact. It follows from the lemma that the smooth function f
is Lipschitz on U x [0, T] with a Lipschitz constant L > 0. Thus, as long as
(x(t,€),t) € U x [0,T], we have

t
Joft,€) = ot o)l < I = &0l + | Llla(5,) = a(s. &) ds
0
and by Gronwall’s inequality

2(t,€) — 2(t, &) < ||€ = &olle™.

Let 6 > 0 be such that §el7 is less than the distance from O(&p) to the
boundary of U. Since, on the intersection J of the domain of definition of
the solution ¢ — (¢, &) with [0, T] we have

lz(t,€) — z(t, &)l < 1€ — &lle"™,

the vector z(¢,€) is in the bounded set U as long as t € J and ||£ —&|| < 4.
By the extensibility theorem, the solution t — x(¢,£) is defined at least on
the interval [0, T]. Thus, the desired set V is {{ € U : || — &l < d}. O

We are now ready to formulate a theoretical foundation for Lyapunov’s
indirect method, that is, the method of linearization. The idea should be
familiar: If the system has a rest point at the origin, the linearization of
the system has an asymptotically stable rest point at the origin, and the
nonlinear part is appropriately bounded, then the nonlinear system also
has an asymptotically stable rest point at the origin.

Theorem 2.42. Consider the initial value problem (2.19) for the case
where A := A(t) is a (real) matriz of constants. If all eigenvalues of A
have negative real parts and there are positive constants a > 0 and k > 0
such that ||g(z,t)|| < k||z||> whenever ||z|| < a, then there are positive con-
stants C, b, and « that are independent of the choice of the initial time tg
such that the solution t — x(t) of the initial value problem satisfies

[2(t)]] < Cllaolle™ ) (2.21)

for t > to whenever ||xg|| < b. In particular, the function t — x(t) is
defined for all t > to, and the zero solution (the solution with initial value
x(tg) = 0), is asymptotically stable.
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Proof. By Theorem 2.34 and the hypothesis on the eigenvalues of A, there
are constants C' > 1 and A > 0 such that

le)) < Cem™ (2.22)

for t > 0. Fix § > 0 such that 6 < a and Ckd — A < 0, define a := A — Ck§
and b:=6/C, and note that « > 0 and 0 < b < § < a.

If ||zo|| < b, then there is some half open interval J = {t e R : t; <t < 7}
such that the solution ¢ — x(t) of the differential equation with initial
condition x(tg) = xo exists and satisfies the inequality

l@)] <6 (2.23)

on the interval J.
For t € J, use the estimate

lg(a@), )] < kollz(B)]],
the estimate (2.22), and the variation of constants formula

t
x(t) = et Ay 4 e(t*tO)A/ 0= 4g(x(s), 5) ds
to

to obtain the inequality
lz()]] < Ce™ =)o | + /tt Ce M= kba(s)| ds.
0
Rearrange the inequality to the form
A z(t)]| < Cllzoll + Cks /t AT |2 (s)| ds
to

and apply Gronwall’s inequality to obtain the estimate
AT ()] < Cllo |10,
or equivalently
lz()l] < Cllaolle T =NE=) < Oflag et (2.24)

Thus, if ||zo]] < b and ||z(t)|| < ¢ for ¢ € J, then the required inequal-
ity (2.21) is satisfied for t € J.

If J is not the interval [tg, c0), then the set of all numbers 7 > t such
that the solution ¢ — z(t) with initial condition x(ty) = x¢ is defined for
to <t <7 and ||z(t)|| < ¢ has a finite supremum that we again denote by
7. In this case, because ||zg]| < §/C and in view of the inequality (2.24),
we have that

|z(t)]] < de~ =t (2.25)
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for tg < t < 7. In particular, the solution is bounded by § on the inter-
val [tg, 7). Therefore, by the extensibility theorem there is some number
€ > 0 such that the solution is defined on the interval K := [to,T + €).
Using the fact that the function ¢ — ||z(t)|| is continuous on K and the
inequality (2.25), it follows that

z(7)| < de~ (Tt < 4§,

By using this inequality and again using the continuity of the function
t — ||lz(t)|| on K, there is a number i > 0 such that ¢ — x(¢) is defined on
the interval [tg, T 4+ 1), and, on this interval, ||z(t)|| < §. This contradicts
the fact that 7 is maximal. O

Corollary 2.43. If f : R™ — R"™ is smooth, f(§) = 0, and and all eigen-
values of Df(§) have negative real parts, then the differential equation
& = f(x) has an asymptotically stable rest point at §. Moreover, if —a
is a number larger than every real part of an eigenvalue of D f(xq), and ¢¢
is the flow of the differential equation, then there is a neighborhood U of &
and a constant C' > 0 such that

[pe(z) — &Il < Clzlle™
whenever x € U and t > 0.

Proof. It suffices to prove the corollary for the case £ = 0. By Taylor’s
theorem (Theorem 1.168), we can rewrite the differential equation in the
form @ = Df(0)z + g(x) where

o) = / (Df(sz) — Df(0))xds.

The function £ — Df(§) is smooth. Thus, by the mean value theorem
(Theorem 1.49),
IDf(sz) = Df(0)|| < ||sz]] sup |D?f(rsz)]
7€|0,
< |lzl| sup [|D*f(rz)].
T€[0,1]

Again, by the smoothness of f, there is an open ball B centered at the
origin and a constant k > 0 such that

sup [|Df(rz)| < K
T€[0,1]

for all x € B. Moreover, by an application of Proposition 1.166 and the
above estimates we have that

lg(@)ll < sup ||z[[[|Df(sz) = Df(O)] < kll||?

s€[0,1]
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whenever x € B. The desired result now follows directly from Theorem 2.42.

O

Exercise 2.44. Generalize the previous result to the Poincaré-Lyapunov The-
orem: Let
= Az + B(t)x + g(x,t), xz(to) =x0, z€R"
be a smooth initial value problem. If
(1) A is a constant matrix with spectrum in the left half plane,

(2) B(t) is the n x n matrix, continuously dependent on ¢ such that ||B(t)|| — 0
as t — oo,

(3) g(z,t) is smooth and there are constants a > 0 and k > 0 such that
lg(z, )| < Kl
for all t > 0 and ||z|| < a,
then there are constants C' > 1, § > 0, A > 0 such that
2@ < Cllzolle 7, ¢ >t
whenever ||zo|| < §/C. In particular, the zero solution is asymptotically stable.

Exercise 2.45. This exercise gives an alternative proof of the principle of lin-
earized stability for autonomous systems using Lyapunov’s direct method. Con-
sider the system

&= Az + g(x), zeR"”

where A is a real n X n matrix and g : R" — R" is a smooth function. Suppose
that every eigenvalue of A has negative real part, and that for some a > 0, there
is a constant k£ > 0 such that, using the usual norm in R",

l9(@)| < klz|*

whenever |z| < a. Prove that the origin is an asymptotically stable rest point by
constructing a quadratic Lyapunov function. For this, let (-, -) denote the usual
inner product on R™, and let A denote the transpose of the real matrix A.
Suppose that there is a real symmetric positive definite n x n matrix that also
satisfies Lyapunov’s equation

A"B+BA = -1
and define V : R" — R by
V(z) = (z, Bz).

Show that the restriction of V' to a sufficiently small neighborhood of the origin is
a strict Lyapunov function. To do this, you will have to estimate a certain inner
product using the Schwarz inequality. Also, show that

e *
B ::/ et et dt
0
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is a symmetric positive definite n X n matrix that satisfies Lyapunov’s equation.
Use the fact that A* and A have the same eigenvalues together with the exponen-
tial estimates for a hyperbolic matrix to prove that the integral converges. Note
that Lyapunov’s equation gives a purely algebraic way to construct a Lyapunov
function from the system matrix A. Finally, prove that the origin is asymptoti-
cally stable for the system & = Az + g(z) where

-1 2 0 u? 4+ wv + v? 4+ wo?
A=|(-2 -1 0 ], g(u,v,w) := w? + wow
0 0 -3 w®

Exercise 2.46. Suppose that f : R" — R" is conservative; that is, there is
some function g : R® — R and f(x) = grad g(z). Also, suppose that M and A
are symmetric positive definite n x n matrices. Consider the differential equation

Mi+ Ai + f(z) =0, z€R"

and note that, in case M and A are diagonal, the differential equation can be
viewed as a model of n particles each moving according to Newton’s second
law in a conservative force field with viscous damping. Prove that the function
V :R"™ — R defined by

N =

Viz,y) = = (My,y) + / (f(tz), ) dt

decreases along orbits of the associated first order system
t=y,  My=-Ay- f(z);

in fact, V = —(Ay, y). Conclude that the system has no periodic orbits. Also,
prove that if f(0) = 0 and Df(0) is positive definite, then the system has an
asymptotically stable rest point at the origin. Prove this fact in two ways: using
the function V' and by the method of linearization.

2.4  Floquet Theory
In this section, we will begin the study of linear systems of the form
z = A(t)z, zeR" (2.26)

where t — A(t) is a T-periodic continuous matrix-valued function. The
main theorem in this section, Floquet’s theorem, gives a canonical form for
each fundamental matrix solution. This result will be used to show that
there is a periodic time-dependent change of coordinates that transforms
system (2.26) into a homogeneous linear system with constant coeflicients.

Floquet’s theorem is a corollary of the following result about the range
of the exponential map.
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Theorem 2.47. If C is a nonsingular n X n matriz, then there is ann xXn
matriz B, possibly complex, such that e® = C. If C is a nonsingular real
n X n matriz, then there is a real n x n matriz B such that e® = C?.

Proof. If S is a nonsingular n x n matrix such that S7!CS = J is in
Jordan canonical form, and if eX = J, then SefS~! = C. As a result,
eSKS™ = C and B = SKS~! is the desired matrix. Thus, it suffices to
consider the nonsingular matrix C' or C? to be a Jordan block.

For the first statement of the theorem, assume that C = AI + N where
N is nilpotent; that is, N = 0 for some integer m with 0 < m < n.
Because C' is nonsingular, A # 0 and we can write C = A\(I + (1/A\)N). A
computation using the series representation of the function ¢ +— In(1 + ¢)
at t = 0 shows that, formally (that is, without regard to the convergence
of the series), if B = (InA)I + M where

m—1 .
N D
M= § N

Jj=1

then e? = C. But because N is nilpotent, the series are finite. Thus, the
formal series identity is an identity. This proves the first statement of the
theorem.

If C is real, note that the real eigenvalues of C? are all positive. Consider
in turn four types of real Jordan blocks: rI where r > 0; I + N where
r > 0 and N is real nilpotent; block diagonal with 2 x 2 subblocks of the
form R as in equation (2.10) corresponding to eigenvalues with nonzero
imaginary parts; and “block diagonal plus block nilpotent.” Because the
real eigenvalues are positive, a real “logarithm” for the first two types of
blocks is obtained by the matrix formula given above. For the third block

type, write
cosf —sinf
R=r (sin@ cos 6 )
where 7 > 0, and note that a real logarithm is given by

0 —6
lan—i—(e O)'

Finally, for a “block diagonal plus block nilpotent” Jordan block, factor
the Jordan block as follows:

R+ N)

where R is block diagonal with R along the diagonal and N has 2 x 2
blocks on its super diagonal all given by R~!. Note that we have already
obtained logarithms for each of these factors. Moreover, it is not difficult
to check that the two logarithms commute. Thus, a real logarithm of the
Jordan block is obtained as the sum of real logarithms of the factors. O
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Theorem 2.48 (Floquet’s Theorem). If ®(t) is a fundamental matriz
solution of the T-periodic system (2.26), then, for allt € R,
O(t+T) =) (0)2(T).
In addition, for each possibly complex matriz B such that
B =71 0)9(T),

there is a possibly complex T-periodic matriz function t — P(t) such that
®(t) = P(t)e!? for all t € R. Also, there is a real matriz R and a real
2T-periodic matriz function t — Q(t) such that ®(t) = Q(t)e!’ for all
teR.

Proof. Since the function ¢ — A(t) is periodic, it is defined for all ¢t € R.
Thus, by Theorem 2.4, all solutions of the system are defined for ¢ € R.
If U(t) := ®(t+ 1), then ¥ is a matrix solution. Indeed, we have that

U(t) =t +T)= At +T)0(t+T) = A(t)¥(2),

as required.
Define

C:= o H0)®(T) = & (0)¥(0),

and note that C' is nonsingular. The matrix function ¢t — ®(¢)C is clearly
a matrix solution of the linear system with initial value ®(0)C' = ¥(0). By
the uniqueness of solutions, ¥(t) = ®(¢)C for all ¢ € R. In particular, we
have that

O(t+T)=0(t)C = (1)d(0)®(T),
Ot+2T)=((t+T)+T)=d(t+T)C = &(t)C?.

By Theorem 2.47, there is a matrix B, possibly complex, such that
B = (.
Also, there is a real matrix R such that
o2TR _ 2.

If P(t) := ®(t)e P and Q(t) := ®(t)e *F, then

Pt+T)=o(t+T)e TBe B = o(t)Ce TBe B = ®(t)e B = P(t),

Q(t+2T) = ®(t + 2T)e 2THe 1 = (t)e IR = Q(1).
Thus, we have P(t+T) = P(t), Q(t + 2T) = Q(t), and
o(t) = P(t)e' = Q()e'”,

as required. O
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t=r1 t=7+T
(T +7)0 (1)v

FIGURE 2.2. The figure depicts the geometry of the monodromy operator for
the system & = A(t)z in the extended phase space. The vector v in R™ at t = 7
is advanced to the vector ®(T + 1)@ '(r)vat t =7+ T.

The representation ®(t) = P(t)e'? in Floquet’s theorem is called a Flo-
quet normal form for the fundamental matrix ®(¢). We will use this normal
form to study the stability of the zero solution of periodic homogeneous lin-
ear systems.

Let us consider a fundamental matrix solution ® for the periodic sys-
tem (2.26) and a vector v € R™. The vector solution of the system starting
at time ¢ = 7 with initial condition x(7) = v is given by

ts &) (7).

If the initial vector is moved forward over one period of the system, then
we again obtain a vector in R" given by ®(7 + 7)®!(7)v. The operator

v ST+ 7)o (1)

is called a monodromy operator (see Figure 2.2). However, if we view the
periodic differential equation (2.26) as the autonomous system

P= AW, $=1

on the phase cylinder R x T where v is an angular variable modulo 7', then
each monodromy operator is a (stroboscopic) Poincaré map for our periodic
system. If, for example, 7 = 0, then the Poincaré section is the fiber R™
on the cylinder at » = 0. Of course, each fiber R™ at ¥ = mT where m
is an integer is identified with the fiber at ¢ = 0, and the corresponding
Poincaré map is given by

v ®(T)D ™ (0)w.
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The eigenvalues of a monodromy operator are called characteristic multi-
pliers of the corresponding time-periodic homogeneous system (2.26). The
next proposition states that characteristic multipliers are nonzero complex
numbers that are intrinsic to the periodic system—they do not depend on
the choice of the fundamental matrix or the initial time.

Proposition 2.49. The following statements are valid for the periodic lin-
ear homogeneous system (2.26).

(1) Every monodromy operator is invertible. In particular, every charac-
teristic multiplier is nonzero.

(2) If My and Ms are monodromy operators, then they have the same
eigenvalues. In particular, there are exactly n characteristic multipli-
ers, counting multiplicities.

Proof. The first statement of the proposition is obvious from the defini-
tions.

To prove statement (2), let us consider the principal fundamental matrix
®(t) at t = 0. If ¥(¢) is a fundamental matrix, then U(t) = ®(¢)¥(0). Also,
by Floquet’s theorem,

Ot +T) =) (0)(T).
Consider the monodromy operator M given by
v U(T+7)0 (1)

and note that

(T + 1)U 1) = S(T + 7)¥(0)TH0)d (1)
=®(T+7)2 (1)
= ()2~ (0)B(T)2 ' (7)
=®(r)®(T)2 (1)

In particular, the eigenvalues of the operator ®(7") are the same as the
eigenvalues of the monodromy operator M. Thus, all monodromy operators
have the same eigenvalues. O

Because
Ot +T) =) (0)2(T),

some authors define characteristic multipliers to be the eigenvalues of the
matrices defined by ®~1(0)®(T) where ®(t) is a fundamental matrix. How-
ever, both definitions gives the same characteristic multipliers. To prove this
fact, let us consider the Floquet normal form ®(t) = P(t)e'® and note that
®(0) = P(0) = P(T). Thus, we have that

O 1(0)®(T) = eTB.
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Also, by using the Floquet normal form,

®(T)®1(0) = P(T)eTBd71(0)
= 2(0)e"™P1(0)
= 0(0)(2~(0)2(7))2~1(0),

and therefore ®~1(0)®(T) has the same eigenvalues as the monodromy
operator given by

v ®(T)O 1 (0)w.

In particular, the traditional definition agrees with our geometrically mo-
tivated definition.

Returning to the Floquet normal form P(t)e!® for the fundamental ma-
trix ®(t) and the monodromy operator

v (T + 1) (1),
we have that
O(T + 7)1 (1) = P(1)eTBP7 (7).

Thus, the characteristic multipliers of the system are the eigenvalues of e” 5.
The complex number p is called a characteristic exponent (or a Floquet
exponent) of the system, if p is a characteristic multiplier and e*” = p.
Note that if e*T = p, then p + 2mik/T is also a Floquet exponent for
each integer k. Thus, although the characteristic multipliers are uniquely
defined, the Floquet exponents are not.

Exercise 2.50. Suppose that a : R — R is a T-periodic function. Find the
characteristic multiplier and a Floquet exponent of the T-periodic system & =
a(t)z. Also, find the Floquet normal form for the principal fundamental matrix
solution of this system at t = to.

Exercise 2.51. For the autonomous linear system & = Az a fundamental ma-
trix solution ¢ +— ®(t) satisfies the identity ®(T —t) = &(T)® ' (t). Show that,
in general, this identity does not hold for nonautonomous homogeneous linear
systems. Hint: Write down a Floquet normal form matrix ®(¢) = P(t)e'® that
does not satisfy the identity and then show that it is the solution of a (periodic)
nonautonomous homogeneous linear system.

Let us suppose that a fundamental matrix for the system (2.26) is repre-
sented in Floquet normal form by P(t)e*”. We have seen that the charac-
teristic multipliers of the system are the eigenvalues of e”2. However, the
definition of the Floquet exponents does not mention the eigenvalues of
B. Are the eigenvalues of B Floquet exponents? This question is answered
affirmatively by the following general theorem about the exponential map.
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Theorem 2.52. If A is an nxn matrix and if A1, ..., A\, are the eigenval-
ues of A repeated according to their algebraic multiplicity, then \¥ ...  \E
are the eigenvalues of AF and e ... e are the eigenvalues of e”.

Proof. We will prove the theorem by induction on the dimension n.

The theorem is clearly valid for 1 x 1 matrices. Suppose that it is true
for all (n — 1) x (n — 1) matrices. Define A := Ay, and let v # 0 denote a
corresponding eigenvector so that Av = Av. Also, let ey, ... , e, denote the
usual basis of C™. There is a nonsingular n x n matrix S such that Sv = e;.
(Why?) Thus,

SAS_lel = )\617

and it follows that the matrix SAS~! has the block form

A%
-1 _ ~
SAS _<O >

The matrix SAFS~1 has the same block form, only with the block di-
agonal elements \* and A*. Clearly the eigenvalues of this block matrix
aureN)\’c together with the eigenvalues of A*. By induction, the eigenvalues
of A* are the kth powers of the eigenvalues of A. This proves the second
statement of the theorem.

Using the power series definition of exp, we see that eSAS™" has block
form, with block diagonal elements e* and e?. Clearly, the eigenvalues of
this block matrix are e* together with the eigenvalues of e, Again using
induction, it follows that the eigenvalues of e? are e*2, ..., e*». Thus, the

. —1 _
eigenvalues of €349 = Se4S~1 are et ... e, O

Theorem 2.52 is an example of a spectral mapping theorem. If we let
o(A) denote the spectrum of the matrix A, that is, the set of all A € C such
that AI — A is not invertible, then, for our finite dimensional matrix, o(A)
coincides with the set of eigenvalues of A. Theorem 2.52 can be restated as
follows: e?(Y) = g(e?).

The next result uses Floquet theory to show that the differential equa-
tion (2.26) is equivalent to a homogeneous linear system with constant
coefli