

Unsolved problems in graph theory

Xingzhi Zhan (詹兴致)

zhan@math.ecnu.edu.cn

East China Normal University

1, Bound vertices in longest paths

We consider finite simple graphs.

Let H be a subgraph of a graph G . A vertex v of H is said to be **H -bound** if all the neighbors of v in G lie in H ; i.e.,

$$N_G(v) \subseteq V(H).$$

Conjecture 1 (Z., 2024). Let G be a k -connected graph with $k \geq 2$ and let x, y be two distinct vertices of G . If P is a longest (x, y) -path in G , then P contains $k - 1$ internal P -bound vertices.

The case $k = 2$ of Conjecture 1 implies the following famous

Conjecture 2 (Thomassen, 1976). Every longest cycle in a 3-connected graph has a chord.

Conjecture 1 has been proved to be true in the following two cases:

- (1) 2-connected cubic graphs (Li-Liu, 2024);
- (2) induced-fork free graphs; in particular, claw-free graphs (Li-Liu, 2025).

2, The minimum number of detours

A longest path in a graph G is called a **detour** of G .

$f(G)$ denotes the number of detours in a graph G .

Problem 3 (Z., 2024). Let k and n be integers with $3 \leq k \leq n - 2$. Denote by $\Gamma(k, n)$ the set of connected graphs with minimum degree k and order n . Define

$$a(k, n) = \min\{f(G) \mid G \in \Gamma(k, n)\}.$$

Determine $a(k, n)$.

Problem 4 (Z., 2024). Let k, n and $\Gamma(k, n)$ be as in Problem 3. Define

$$b(k, n) = \min\{f(G) \mid G \in \Gamma(k, n) \text{ and } f(G) \text{ is odd}\}.$$

Determine $b(k, n)$.

Perhaps for sufficiently large orders n , $a(k, n)$ and $b(k, n)$ are independent of n . We may also ask the two corresponding problems by replacing “with minimum degree k ” in Problems 3 and 4 above by “with connectivity k ”.

It has been proved that $a(2, n) = 4$ for $n \geq 4$, $b(2, n) = 9$ for $n \geq 9$ and $a(3, n) = 36$ for $n \geq 18$.

3, Minimally hamiltonian-connected graphs

A graph is called **hamiltonian-connected** if between any two distinct vertices there is a Hamilton path.

A hamiltonian-connected graph G is said to be **minimally hamiltonian-connected** if for every edge e of G , the graph $G - e$ is not hamiltonian-connected.

Problem 5 (Z., 2022). What are the possible values of the minimum degree of a minimally hamiltonian-connected graph of order n ?

A computer search shows that every minimally hamiltonian-connected graph of order n with $4 \leq n \leq 10$ has minimum degree 3.

Problem 6 (Z., 2022). Does there exist a minimally hamiltonian-connected graph with minimum degree at least 4?

4, Homogeneously traceable graphs

A graph G is said to be **homogeneously traceable** if every vertex of G is an endpoint of a Hamilton path.

Hamiltonian graphs and hypohamiltonian graphs are homogeneously traceable.

In 1979, Chartrand, Gould and Kapoor proved that for every integer n with $n \geq 9$, there exists a homogeneously traceable nonhamiltonian graph of order n .

Conjecture 7 (Hu-Z., 2022). The minimum circumference of a homogeneously traceable graph of order n is $\lceil 2n/3 \rceil + 2$.

5, Edge-pancyclic graphs

A graph G of order n is called *edge-pancyclic* if for every integer k with $3 \leq k \leq n$, every edge of G lies in a k -cycle.

Problem 8 (Li-Liu-Z., 2025). Determine the minimum size of an edge-pancyclic graph of order n .

A computer search shows that the minimum size is $2n - 2$ for $4 \leq n \leq 12$, but we have the following

Theorem (Li-Liu-Z., 2025). Given any integer $k \geq 3$, let $n = 6k^2 - 5k$. Then there exists an edge-pancyclic graph of order n and size $2n - k$.

6, The Turán number

Given a graph H and a positive integer n , the **Turán number of H for the order n** , denoted $\text{ex}(n, H)$, is the maximum size of a simple graph of order n not containing H as a subgraph.

In 1955, Rademacher proved that every graph of order n and size $\text{ex}(n, K_3) + 1$ contains at least $\lfloor n/2 \rfloor$ triangles. A similar result for a general K_p was proved by Moon in 1965

In 1990, Erdős posed the following

Problem. For which graphs H is it true that every graph on n vertices and $\text{ex}(n, H) + 1$ edges contains at least two H s?

Perhaps this is always true.

This problem was solved negatively in 2022.

Problem 9 (Qiao-Z., 2022). Determine all the pairs (H, n) , where H is a graph and n is a positive integer, such that there exists a graph of order n and size $\text{ex}(n, H) + 1$ which contains exactly one copy of H .

7, The periphery of a graph

In 2021, Hu and Z. determined which cardinalities are possible for the center of a graph with given order and radius. For example, there exists a graph of order 14 and radius 6 whose center has cardinality s if and only if

$$s \in \{1, 2, 3, 4, 9, 10, 11, 12, 14\}.$$

Problem 10 (Z., 2019) Determine which cardinalities are possible for the periphery of a graph with given order and diameter.

8, Cubic hamiltonian graphs

Problem 11 (Z., 2023) Is it true that every cubic hamiltonian graph of order n contains an $(n - 2)$ -cycle?

A computer search shows that the answer is “yes” for $n \leq 26$.

I conjecture the answer is “no” for sufficiently large orders n .

9, Maximally nonhamiltonian graphs

A nonhamiltonian graph is called **maximally nonhamiltonian** if adding any new edge results in a hamiltonian graph.

Problem 12 (Horak-Siran, 1986). Is it true that for every positive integer k , there exists a maximally nonhamiltonian graph of girth $> k$?

The Coxeter graph is a maximally nonhamiltonian graph of girth 7. No maximally nonhamiltonian graph of girth greater than 7 is known.

References

- 1, P. Horak and J. Siran, On a construction of Thomassen, *Graphs Combin.*, 2(1986), no.4, 347–350.
- 2, Y. Hu and X.Zhan, Regular homogeneously traceable nonhamiltonian graphs, *Discrete Appl. Math.*, 310(2022), 60–64.
- 3, Y. Hu and X. Zhan, Possible cardinalities of the center of a graph, *Bull. Malays. Math. Sci. Soc.*, 44(2021), no.6, 3629–3636.
- 4, C. Li and F. Liu, Bound vertices on longest paths between two vertices in fork-free graphs, submitted.
- 5, C. Li and F. Liu, Bound vertices of longest paths between two vertices in cubic graphs, arXiv: 2406.07942, 12 June 2024.

6, C. Li, F. Liu and X. Zhan, The minimum size and maximum diameter of an edge-pancyclic graph of a given order, *Discrete Math.*, 348 (2025), no.11, Paper No. 114576.

7, P. Qiao and X. Zhan, On a problem of Erdős about graphs whose size is the Turán number plus one, *Bull. Aust. Math. Soc.*, 105(2022), no.2, 177–187.

8, X. Zhan, A conjecture generalizing Thomassen’s chord conjecture in graph theory, *Bull. Iranian Math. Soc.*, 50(2024), no.5, Paper No. 69.

9, X. Zhan, The minimum number of detours in graphs, *Australas. J. Combin.*, 90(2024), 85–93.

10, X. Zhan, The maximum degree of a minimally hamiltonian-connected graph, *Discrete Math.*, 345 (2022), no.12, Paper No. 113159.

THANK YOU