A sufficient condition for pancyclic graphs

 $\mathtt{zhanQmath.ecnu.edu.cn}$

East China Normal University

Background and the Main Result

The order of a graph is its number of vertices, and the size is its number of edges. A k-cycle is a cycle of length k.

In 1971 Bondy introduced the concept of a pancyclic graph.

A graph G of order n is called pancyclic if for every integer k with $3 \le k \le n$, G contains a k-cycle.

Let s and t be given integers. A graph G is called an [s, t]-graph if any induced subgraph of G of order s has size at least t.

Theorem 1. (Liu-Wang, 刘春房-王江鲁, 2005) Every 2-connected [4,2]-graph of order at least 6 is hamiltonian.

Theorem 2. (Liu-Wang-Gao, 刘晓妍-王江鲁-高国成, 2007) Let *G* be a 2-connected [4,2]-graph of order at least 7. If *G* contains a *k*-cycle with k < n, then *G* contains a (k + 1)-cycle.

Theorem 3. Every 2-connected [4, 2]-graph of order at least 7 is pancyclic.

Lemmas

Lemma 4. Given positive integers $n \ge k \ge 2$, let x_1, x_2, \ldots, x_k be positive integers such that $\sum_{i=1}^k x_i = n$. Then

$$n-1 \le \sum_{i=1}^{k-1} x_i x_{i+1} \le \begin{cases} \lfloor n/2 \rfloor \cdot \lceil n/2 \rceil & \text{if } k = 2, 3\\ ab+k-5 & \text{if } k \ge 4 \end{cases}$$

where $a = \lfloor (n - k + 4)/2 \rfloor$ and $b = \lceil (n - k + 4)/2 \rceil$. For any n and k, the lower and upper bounds can be attained.

Lemma 5. (Z., 2007) Given positive integers $n \ge k \ge 2$, let x_1, x_2, \ldots, x_k be positive integers such that $\sum_{i=1}^k x_i = n$. Then

$$2n-k \le \sum_{i=1}^{k} x_i x_{i+1} \le \begin{cases} \lfloor n^2/k \rfloor & \text{if } k \le 4\\ 2n-k+\lfloor (n-k)^2/4 \rfloor & \text{if } k \ge 5. \end{cases}$$

where $x_{k+1} \triangleq x_1$. For any *n* and *k*, the lower and upper bounds can be attained.

Definition. Given a graph H and a positive integer k, the k-blow-up of H, denoted by $H^{(k)}$, is the graph obtained by replacing every vertex of H with k different vertices where a copy of u is adjacent to a copy of v in the blow-up graph if and only if u is adjacent to v in H.

For example, $C_5^{(2)}$ is as follows.

 \mathbb{E} : The 2-blow-up of C_5

Lemma 6. Let G be a [p+2, p]-graph of order n with $\delta(G) \ge p \ge 2$ and $n \ge 2p+3$. Then G is triangle-free if and only if p is even, $p \ge 6$ and $G = C_5^{(p/2)}$.

Proof.

 \mathbb{E} : The structure of G

Comparison

Theorem 7. (Chvátal-Erdős, 1972) $\kappa(G) \ge \alpha(G) \Rightarrow G$ is hamiltonian.

 \mathbb{E} : The graph Z_9

 Z_n is a 2-connected [4, 2]-graph of order n, but $2 = \kappa(Z_n) < \alpha(Z_n) = 3.$

A conjecture

Conjecture. Let $p \in \{3, 4, 5\}$. Then every 2-connected [p+2, p]-graph of order at least 2p + 3 and minimum degree at least p is pancyclic.

References

1, C. Liu and J. Wang, [s, t]-graphs and their hamiltonicity, (Chinese), J. Shandong Normal Univ. Nat. Sci., 20(2005), no.1, 6-7.

2, X. Liu, J. Wang and G. Gao, Cycles in 2-connected [4,2]-graphs, (Chinese), J. Shandong Univ. Nat. Sci., 42(2007), no.4, 32-35.

3, X. Zhan, Extremal numbers of positive entries of imprimitive nonnegative matrices, Linear Algebra Appl. 424(2007), no.1, 132 – 138.

4, X. Zhan, A sufficient condition for pancyclic graphs, arXiv:2409.11716, September 2024, to appear in Bull. Aust. Math. Soc..

THANK YOU