Homogeneously traceable graphs and minimally hamiltonian-connected graphs

Xingzhi Zhan (詹兴致)

zhan@math.ecnu.edu.cn

East China Normal University

Part 1, Homogeneously traceable graphs

Joint work with Yanan Hu (胡亚楠)

A Hamilton path in a graph G is a path containing all the vertices of G.

A graph is called traceable if it contains a Hamilton path.

A graph is called homogeneously traceable if every vertex is an endpoint of a Hamilton path.

In 1979 Chartrand, Gould and Kapoor proved that for every integer $n \ge 9$, there exists a homogeneously traceable nonhamiltonian graph of order n.

The graphs they constructed are irregular. Thus it is natural to consider the existence problem of regular homogeneously traceable nonhamiltonian graphs.

Theorem 1 For every even integer $n \ge 10$, there exists a cubic homogeneously traceable nonhamiltonian graph of order n.

For every integer $p \ge 18$, there exists a 4-regular homogeneously traceable graph of order p and circumference p - 4.

Main ideas in the proof

Definition. Let v be a vertex of degree d in a graph. Blowing up v into the complete graph K_d is the operation of replacing v by K_d and adding d edges joining the vertices of K_d to the vertices in N(v) such that the new edges form a matching.

The operation of blowing up a vertex of degree 4 into K_4 is depicted in Figure 1.

Definition. A graph G is called doubly homogeneously traceable if for any vertex v of G, there are two Hamilton v-paths P and Q such that the two edges incident to v on P and Q are distinct.

Fig. 2. Local changes

Fig. 3. The Petersen graph

Fig. 4. The 4-regular base graph of order 18

Fig. 5. The 4-regular base graph of order 19

Fig. 6. The 4-regular base graph of order 20

Problem 2 Determine those integer pairs (k, n) such that there exists a k-regular homogeneously traceable nonhamiltonian graph of order n.

Conjecture 3 The minimum circumference of a homogeneously traceable graph of order $n \ge 9$ is $\lfloor 2n/3 \rfloor + 2$.

The circumference $\lceil 2n/3\rceil+2$ in Conjecture 3 is attained by the following graph

Fig. 7. A homogeneously traceable graph of a small circumference

where $p = \lfloor (n-6)/3 \rfloor$ and when $p \ge 2$ the vertices u and v are distinct, x and y are distinct and w and z are distinct.

Part 2, The max and min degrees of minimally hamiltonian-connected graphs

A graph is called hamiltonian-connected if between any two distinct vertices there is a Hamilton path.

A hamiltonian-connected graph G is said to be minimally hamiltonian-connected if for every edge e of G, the graph G - eis not hamiltonian-connected.

In 2016, Modalleliyan and Omoomi posed the

Problem. What are the possible maximum degrees of a minimally hamiltonian-connected graph of order n?

Theorem 4. Let $n \ge 4$ be an integer. There exists a minimally hamiltonian-connected graph of order n with maximum degree Δ if and only if $3 \le \Delta \le n-1$ and $\Delta \ne n-2$, where $\Delta = 3$ occurs only if n is even.

Two unsolved problems

Problem 1. What are the possible values of the minimum degree of a minimally hamiltonian-connected graph of order n?

A computer search shows that every minimally hamiltonian-connected graph of order n with $n \leq 10$ has minimum degree 3.

Problem 2. Does there exist a minimally hamiltonian-connected graph with minimum degree at least 4?

References

1, G. Chartrand, R.J. Gould and S.F. Kapoor, On homogeneously traceable nonhamiltonian graphs, 2nd International Conference on Combinatorial Mathematics, Ann. N.Y. Acad. Sci., 319(1979), 130-135.

2, Y. Hu and X. Zhan, Regular homogeneously traceable nonhamiltonian graphs, Discrete Appl. Math., 310 (2022), 60– 64.

3, X. Zhan, The maximum degree of a minimally hamiltonian-connected graph, Discrete Math., 345 (2022), no. 12, Paper No. 113159.

THANK YOU