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Abstract

A graph G is called an [s, t]-graph if any induced subgraph of G of order s has size at least t. We prove
that every 2-connected [4, 2]-graph of order at least 7 is pancyclic. This strengthens existing results. There
are 2-connected [4, 2]-graphs which do not satisfy the Chvátal–Erdős condition on Hamiltonicity. We also
determine the triangle-free graphs among [p + 2, p]-graphs for a general p.
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1. Introduction

We consider finite simple graphs, and use standard terminology and notation from
[3, 8]. The order of a graph is its number of vertices and the size is its number of
edges. A k-cycle is a cycle of length k. In 1971, Bondy [1] introduced the concept of
a pancyclic graph. A graph G of order n is called pancyclic if for every integer k with
3 ≤ k ≤ n, G contains a k-cycle. For an account of these graphs, see [5].

DEFINITION 1.1. Let s and t be given integers. A graph G is called an [s, t]-graph if
any induced subgraph of G of order s has size at least t.

Denote by α(G) the independence number of a graph G. We note two facts:

(1) every [s, t]-graph is an [s + 1, t + 1]-graph;
(2) α(G) ≤ k if and only if G is a [k + 1, 1]-graph.

Thus, the concept of an [s, t]-graph is an extension of the independence number. We are
interested in two results about [4, 2] graphs.

THEOREM 1.2 (Liu and Wang, [6]). Every 2-connected [4, 2]-graph of order at least
6 is Hamiltonian.
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THEOREM 1.3 (Liu, Wang and Gao, [7]). Let G be a 2-connected [4, 2]-graph of order
n with n ≥ 7. If G contains a k-cycle with k < n, then G contains a (k + 1)-cycle.

We strengthen Theorem 1.3 by proving that every 2-connected [4, 2]-graph of
order at least 7 is pancyclic (Theorem 2.5). To do so, we will determine the
triangle-free graphs among [p + 2, p]-graphs. This preliminary result (Lemma 2.4)
is of independent interest.

2. Main results

We denote by V(G) and E(G) the vertex set and edge set of a graph G, respectively,
and denote by |G| and e(G) the order and size of G, respectively. Thus, |G| = |V(G)|
and e(G) = |E(G)|. For a vertex subset S ⊆ V(G), we use G[S] to denote the subgraph
of G induced by S. The neighbourhood of a vertex x is denoted by N(x) and the closed
neighbourhood of x is N[x] � N(x) ∪ {x}. The degree of x is denoted by deg(x). For
S ⊆ V(G), NS(x) � N(x) ∩ S and the degree of x in S is degS(x) � |NS(x)|. Given two
vertex subsets S and T of G, we denote by [S, T] the set of edges having one endpoint
in S and the other in T . The degree of S is deg(S) � |[S, S]|, where S = V(G) \ S.
We denote by Cn and Kn the cycle of order n and the complete graph of order n,
respectively. Finally, G denotes the complement of a graph G.

We will need the following two lemmas on integral quadratic forms.

LEMMA 2.1. Given positive integers n ≥ k ≥ 2, let x1, x2, . . . , xk be positive integers
such that

∑k
i=1 xi = n. Then,

n − 1 ≤
k−1∑

i=1

xixi+1 ≤
⎧⎪⎪⎨⎪⎪⎩
�n/2� · 	n/2
 if k = 2, 3,
ab + k − 5 if k ≥ 4,

(2.1)

where a = �(n − k + 4)/2� and b = 	(n − k + 4)/2
. For any n and k, the lower and
upper bounds in (2.1) can be attained.

PROOF. Define a quadratic polynomial f (x1, x2, . . . , xk) =
∑k−1

i=1 xixi+1. We first prove
the left-hand inequality in (2.1). Let xj = min{xi | 1 ≤ i ≤ k}. We have

f (x1, x2, . . . , xk) ≥ x1xj + · · · + xj−1xj + xjxj+1 + xjxj+2 + · · · + xjxk

= xj(x1 + · · · + xj−1 + xj+1 + · · · + xk)
= xj(n − xj)
≥ n − 1.

This proves the first inequality in (2.1). The lower bound n − 1 is attained for
x1 = n − k + 1, x2 = · · · = xk = 1.

Now we prove the second inequality in (2.1). The case k = 2 is an elementary fact:
f (x1, x2) = x1x2 ≤ �n/2� · 	n/2
, where equality holds when x1 = �n/2� and x2 = 	n/2
.
The case k = 3 reduces to the case k = 2 as follows:

f (x1, x2, x3) = x2(x1 + x3) ≤ �n/2� · 	n/2
,
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FIGURE 1. The 2-blow-up of C5.

where equality holds when x2 = �n/2� and x1 + x3 = 	n/2
. Next, suppose k ≥ 4.
Denote by fmax the maximum value of f . If x1 > 1, with x′1 = 1, x′2 = x2, x′3 = x3+x1−1
and x′i = xi for i ≥ 4, then

f (x′1, x′2, . . . , x′k) − f (x1, x2, . . . , xk) = (x1 − 1)x4 > 0.

Similarly analysing the variable xk, we deduce that fmax can only be attained at
some x1, . . . , xk when x1 = xk = 1, which we now assume. With x′2 = 1, x′3 = x3,
x′4 = x4 + x2 − 1 and x′i = xi for i = 5, . . . , k − 1,

f (1, 1, x′3, x′4, . . . , x′k−1, 1) − f (1, x2, x3, . . . , xk−1, 1) = (x2 − 1)(x5 − 1) ≥ 0.

Hence, fmax can be attained at a certain (1, 1, x3, . . . , xk−1, 1). Successively applying
this argument, we deduce that fmax can be attained at (1, 1, . . . , 1, xk−2, xk−1, 1). Now
(xk−2 + 1) + (xk−1 + 1) = n − k + 4 and so

f (1, 1, . . . , 1, xk−2, xk−1, 1) = (xk−2 + 1)(xk−1 + 1) + k − 5
≤ �(n − k + 4)/2� · 	(n − k + 4)/2
 + k − 5.

This proves the second inequality in (2.1). The upper bound is attained at x1 = x2 =

· · · = xk−3 = xk = 1, xk−2 = �(n − k + 2)/2� and xk−1 = 	(n − k + 2)/2
. �

LEMMA 2.2 [9, Theorem 1]. Given positive integers n ≥ k ≥ 2, let x1, x2, . . . , xk be
positive integers such that

∑k
i=1 xi = n. Then,

2n − k ≤
k∑

i=1

xixi+1, (2.2)

where xk+1 � x1. For any n and k, the lower bound in (2.2) can be attained.

A sharp upper bound on the quadratic form in (2.2) is also determined in [9], but
we do not need it here.

DEFINITION 2.3. Given a graph H and a positive integer k, the k-blow-up of H,
denoted by H(k), is the graph obtained by replacing every vertex of H with k different
vertices where a copy of u is adjacent to a copy of v in the blow-up graph if and only
if u is adjacent to v in H.

For example, C(2)
5 is depicted in Figure 1.
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FIGURE 2. The structure of G.

Now we are ready to determine the triangle-free graphs among [p + 2, p]-graphs.
For a graph G, we denote by δ(G) and Δ(G) its minimum and maximum degrees,
respectively. We regard isomorphic graphs as the same graph. Thus, for two graphs G
and H, the notation G = H means that G and H are isomorphic.

LEMMA 2.4. Let G be a [p + 2, p]-graph of order n with δ(G) ≥ p ≥ 2 and n ≥ 2p + 3.
Then, G is triangle-free if and only if p is even, p ≥ 6 and G = C(p/2)

5 .

PROOF. We will repeatedly use the condition that G is a [p + 2, p]-graph without
necessarily mentioning it. Denote Δ = Δ(G) and choose a vertex x ∈ V(G) such that
deg(x) = Δ. Let S = N(x) and T = V(G) \ S. Then, |S| = Δ.

Suppose that G is triangle-free. Then, S is an independent set. Since G is a
[p + 2, p]-graph, Δ ≤ p + 1. We assert that Δ = p and hence G is p-regular, since
δ(G) ≥ p by the assumption. Otherwise, Δ = p + 1. Since n ≥ 2p + 3, |T | ≥ p + 2.
Thus, G[T] contains an edge uv and |{u} ∪ S| = p + 2 implies that degS(u) ≥ p.
Similarly, degS(v) ≥ p. Since p + p = 2p > p + 1 = |S|, we have NS(u) ∩ NS(v) � ∅.
Let w ∈ NS(u) ∩ NS(v). Then, wuvw is a triangle, which is a contradiction. This shows
that G is p-regular.

Let y ∈ S and denote C = N(y). Then, C is an independent set and |C| = p. Denote
D = T \ C. The structure of G is illustrated in Figure 2.

Since n ≥ 2p + 3, we have |D| = n − 2p ≥ 3. Thus, D is not a clique, since G
is triangle-free. Let z and f be any two distinct nonadjacent vertices in D. Since
|{z, f } ∪ S| = p + 2, |{z, f } ∪ C| = p + 2, and S and C are independent sets,

degS(z) + degS( f ) = |[{z, f }, S]| ≥ p and degC(z) + degC( f ) = |[{z, f }, C]| ≥ p.

Note that S ∩ C = ∅ and deg(z) = deg( f ) = p. We must have

|[{z, f }, S]| = p and |[{z, f }, C]| = p. (2.3)

We assert that D is an independent set. Otherwise, D contains two adjacent vertices
u1 and u2. Let u3 ∈ D \ {u1, u2}. Since G is triangle-free, u3 is nonadjacent to at
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least one vertex in {u1, u2}, say, u1. Setting z = u1 and f = u3 in (2.3), we deduce
that |[{u1, u3}, S ∪ C]| = 2p. However, since both u1 and u3 have degree p, and u1
already has a neighbour u2 � S ∪ C, we have |[{u1, u3}, S ∪ C]| ≤ 2p − 1, which is a
contradiction.

Observe that now (2.3) holds for any two distinct vertices z and f in D. Equation
(2.3) has the equivalent form

degS(z) + degS( f ) = p and degC(z) + degC( f ) = p. (2.4)

Then, (2.4) and |D| ≥ 3 imply that for any vertex z ∈ D,

degS(z) = degC(z) = p/2. (2.5)

To see this, in contrast, first suppose degS(z) > p/2. Then, by the first equality in (2.4),
for any two other vertices f , r ∈ D, we have degS( f ) < p/2 and degS(r) < p/2, yielding
degS( f ) + degS(r) < p, which contradicts (2.4). If degS(z) < p/2, the same argument
gives a contradiction. A similar analysis with C in place of S shows degC(z) = p/2.
Thus, we have proved (2.5). In particular, q � p/2 is a positive integer, that is, p is
even. Now choose an arbitrary but fixed vertex t ∈ D and denote B = NS(t), C2 = NC(t),
A = S \ B and C1 = C \ C2 (see the illustration in Figure 2). We have

|A| = |B| = |C1| = |C2| = q.

Since G is p-regular of order n ≥ 2p + 3, it is impossible that p = 2. Otherwise, G
would be a 2-regular graph of order ≥ 7, which is not a [4, 2]-graph. Thus, p ≥ 4 and
q ≥ 2.

Choose any two distinct vertices v1, v2 ∈ C2. Then, |{v1, v2} ∪ S| = p + 2 implies
that |[{v1, v2}, S]| ≥ p. Since G is triangle-free, N(vi) ∩ B = ∅ for i = 1, 2. Hence,
NS(vi) = NA(vi) for i = 1, 2. However, |A| = q. We have NS(vi) = A and degA(vi) = q
for i = 1, 2, implying that every vertex in C2 is adjacent to every vertex in A.

Choose any two distinct vertices v3, v4 ∈ C1. Then, |{v3, v4} ∪ C2 ∪ B| = p + 2.
Since {v3, v4} ∪ C2 is an independent set and [C2, B] = ∅, we have |[{v3, v4}, B]| ≥ p.
However, |B| = q. Hence, NB(vj) = B for j = 3, 4. This shows that every vertex in C1 is
adjacent to every vertex in B. Consequently, every vertex in B has exactly q neighbours
in D.

Choose any vertex v5 ∈ B. Denote M = ND(v5). We have |M| = q. Since G is
triangle-free and every vertex in B is adjacent to every vertex in C1, the neighbourhood
of any vertex in M is disjoint from C1. Thus, the q neighbours of any vertex of M in
C are exactly the vertices of C2, implying that every vertex in M is adjacent to every
vertex in C2. The neighbourhood of any vertex in C2 is A ∪M. For the same reason, for
any vertex v6 ∈ B with v6 � v5, we must have ND(v6) = M. Hence, the neighbourhood
of any vertex in M is B ∪ C2.

We assert that M = D. Otherwise, let v7 ∈ D \M. Take a vertex v8 ∈ C1. Note
that B ∪ C2 is an independent set of cardinality p and [v7, B ∪ C2] = ∅. Denote
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R = {v7, v8} ∪ B ∪ C2. Then, |R| = p + 2 and hence G[R] has size at least p. However,
the size of G[R] is at most |[v8, B]| + 1 = q + 1 < p, which is a contradiction. Finally,
since G is p-regular, every vertex in A must be adjacent to every vertex in C1.
Denote V1 = A, V2 = C1, V3 = B, V4 = D, V5 = C2 and set V6 = V1. Then, each Vi is
an independent set of cardinality q = p/2 and every vertex in Vi is adjacent to every
vertex in Vi+1 for i = 1, 2, . . . , 5. This proves that G = C(q)

5 . Note that we have shown
above that q = |D| ≥ 3, implying that p = 2q ≥ 6.

Conversely, let H = C(q)
5 , where q = p/2 and p ≥ 6 is even. We will prove that H

is a triangle-free [p + 2, p]-graph. Write H = H1 ∨ H2 ∨ H3 ∨ H4 ∨ H5 ∨ H1, where
each Hi = Kq and ∨ is the join operation on two vertex-disjoint graphs. If H contains
a triangle, it must lie in H[V(Hi) ∪ V(Hi+1)] for some i (H6 � H1). However, this is a
bipartite graph, containing no triangle.

Let U ⊆ V(H) with |U| = p + 2. We need to show e(H[U]) ≥ p. Denote
I = {i | U ∩ V(Hi) � ∅, 1 ≤ i ≤ 5}. Since |Hi| = q for 1 ≤ i ≤ 5 and |U| = p + 2, we
have |I| ≥ 3. Denote xi = |U ∩ V(Hi)| for 1 ≤ i ≤ 5. Then, 0 ≤ xi ≤ q. We distinguish
three cases.

Case 1: |I| = 3. There are at least two consecutive integers in I (1 and 5 are regarded
as consecutive here). Without loss of generality, suppose 1, 2 ∈ I. Then, 1 ≤ x1, x2 ≤ q
and x1 + x2 ≥ p + 2 − q = q + 2. Hence, e(H[U]) ≥ x1x2 ≥ 2q = p.

Case 2: |I| = 4. Without loss of generality, suppose I = {1, 2, 3, 4}. Then, e(H[U]) =
x1x2 + x2x3 + x3x4, where each xi is a positive integer and x1 + x2 + x3 + x4 = p + 2.
Applying Lemma 2.1, we have e(H[U]) ≥ (p + 2) − 1 = p + 1 > p.

Case 3: |I| = 5. Now, e(H[U]) = x1x2 + x2x3 + x3x4 + x4x5 + x5x1, where each xi is
a positive integer and x1 + x2 + x3 + x4 + x5 = p + 2. Applying Lemma 2.2, we have
e(H[U]) ≥ 2(p + 2) − 5 = 2p − 1 > p.

In every case, H is a [p + 2, p]-graph. This completes the proof. �

THEOREM 2.5. Every 2-connected [4, 2]-graph of order at least 7 is pancyclic.

PROOF. Let G be a 2-connected [4, 2]-graph of order at least 7. Since G is 2-connected,
δ(G) ≥ 2. By the case p = 2 of Lemma 2.4, G contains a triangle C3. Then, succes-
sively applying Theorem 1.3, we deduce that G is pancyclic. �

REMARK 2.6. The Chvátal–Erdős theorem on Hamiltonian graphs [1, 4, 8] states
that for a graph G, if κ(G) ≥ α(G), then G is Hamiltonian, where κ and α denote the
connectivity and independence number, respectively. Bondy [2] proved that if a graph
satisfies Ore’s condition, then it satisfies the Chvátal–Erdős condition. A computer
search for graphs of lower orders shows that there are many graphs which satisfy the
condition in Theorem 2.5, but do not satisfy the Chvátal–Erdős condition. There are
exactly 398 such graphs of order 9. For every integer n ≥ 7, we give an example. Let
G1 = K−n−3 be the graph obtained from Kn−3 by deleting one edge xy and let G2 = uvw
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FIGURE 3. The graph Z9.

be a triangle that is vertex-disjoint from G1. Construct a graph Zn from G1 and G2 by
adding two edges xu and yv. The graph Z9 is depicted in Figure 3.

Clearly, Zn is a 2-connected [4, 2]-graph of order n, but 2 = κ(Zn) < α(Zn) = 3.
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