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Abstract

A graph G is called an [s, t]-graph if any induced subgraph of G of order s has size at least . We prove
that every 2-connected [4, 2]-graph of order at least 7 is pancyclic. This strengthens existing results. There
are 2-connected [4, 2]-graphs which do not satisfy the Chvatal-ErdGs condition on Hamiltonicity. We also
determine the triangle-free graphs among [p + 2, p]-graphs for a general p.
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1. Introduction

We consider finite simple graphs, and use standard terminology and notation from
[3, 8]. The order of a graph is its number of vertices and the size is its number of
edges. A k-cycle is a cycle of length k. In 1971, Bondy [1] introduced the concept of
a pancyclic graph. A graph G of order 7 is called pancyclic if for every integer k with
3 < k < n, G contains a k-cycle. For an account of these graphs, see [5].

DEFINITION 1.1. Let s and ¢ be given integers. A graph G is called an [s, t]-graph if
any induced subgraph of G of order s has size at least ¢.

Denote by a(G) the independence number of a graph G. We note two facts:

(1) every [s,t]-graphis an [s + 1,7 + 1]-graph;
(2) a(G) <kifandonlyif Gisa [k + 1, 1]-graph.

Thus, the concept of an [s, ¢]-graph is an extension of the independence number. We are
interested in two results about [4, 2] graphs.

THEOREM 1.2 (Liu and Wang, [6]). Every 2-connected [4,2]-graph of order at least
6 is Hamiltonian.
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THEOREM 1.3 (Liu, Wang and Gao, [7]). Let G be a 2-connected [4,2]-graph of order
nwithn > 7. If G contains a k-cycle with k < n, then G contains a (k + 1)-cycle.

We strengthen Theorem 1.3 by proving that every 2-connected [4,2]-graph of
order at least 7 is pancyclic (Theorem 2.5). To do so, we will determine the
triangle-free graphs among [p + 2, p]-graphs. This preliminary result (Lemma 2.4)
is of independent interest.

2. Main results

We denote by V(G) and E(G) the vertex set and edge set of a graph G, respectively,
and denote by |G| and e(G) the order and size of G, respectively. Thus, |G| = |[V(G)|
and e(G) = |E(G)|. For a vertex subset S € V(G), we use G[S] to denote the subgraph
of G induced by S. The neighbourhood of a vertex x is denoted by N(x) and the closed
neighbourhood of x is N[x] £ N(x) U {x}. The degree of x is denoted by deg(x). For
S € V(G), Ns(x) = N(x) N S and the degree of x in S is degg(x) = |[Ng(x)|. Given two
vertex subsets S and T of G, we denote by [S, T] the set of edges having one endpoint
in S and the other in 7. The degree of S is deg(S) = |[S, S]l, where S = V(G)\ S.
We denote by C, and K, the cycle of order n and the complete graph of order n,
respectively. Finally, G denotes the complement of a graph G.

We will need the following two lemmas on integral quadratic forms.

LEMMA 2.1. Given positive integers n > k > 2, let x1,xa,...,x; be positive integers
such that Zle x; = n. Then,
k-1 .
2|-n/2 k=23,
n=1< Yy Xt < n/2]-[n/2Y - if @.1)
P ab+k-5 if k=>4,

where a =|(n—k+4)/2] and b =[(n—k +4)/2]. For any n and k, the lower and
upper bounds in (2.1) can be attained.

PROOF. Define a quadratic polynomial f(xy,xs,...,x;) = Zf.‘z_ll XiX;i+1. We first prove
the left-hand inequality in (2.1). Let x; = min{x; | 1 <i < k}. We have
SO, X0, 00, X0) 2 XX + - F XX+ XX+ XX e X

:xj(x1 toeet X F X +xk)

= xj(n = x;)

>n-— 1L
This proves the first inequality in (2.1). The lower bound n —1 is attained for
xi=n—-k+1Lxp=---=x,=1.

Now we prove the second inequality in (2.1). The case k = 2 is an elementary fact:

f(x1,x0) = x1x < |n/2] - [n/2], where equality holds when x| = |n/2] and x, = [n/2].
The case k = 3 reduces to the case k = 2 as follows:

SO, x2,x3) = Xo(x1 +x3) < |n/2] - [n/2],
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FIGURE 1. The 2-blow-up of Cs.

where equality holds when x; = [n/2] and x; + x3 = [n/2]. Next, suppose k > 4.

Denote by finax the maximum value of f. If x; > I, with x] = 1, X}, =xp, X, =x3 +x; — 1
and x; = x; for i > 4, then

FO X)) = fa1 220200 = (11 = Dy > 0.
Similarly analysing the variable x;, we deduce that f,,x can only be attained at
some Xi,...,Xx when x; =x; =1, which we now assume. With X} = l,xg = X3,
Xy =x4+xy—landx] =x;fori=5,...,k-1,
FALLXG X, x D) = f(Lxo,x3, ..o -1, 1) = (o = D(xs — 1) > 0.
Hence, fi.x can be attained at a certain (1, 1,x3,...,x5_1, 1). Successively applying
this argument, we deduce that f,,x can be attained at (1,1,..., 1, x40, x;-1, 1). Now

X2+ D)+ (31 +1)=n—-k+4andso

f(l, 1, N l,xk_z,xk_l, 1) = (xk_2 + 1)(xk_1 + 1) +k-5
<ln—-k+4)/2] - [n—k+4)/21+k-5.

This proves the second inequality in (2.1). The upper bound is attained at x| = x; =
=X 3 =X = Lxgp = I_(I’l —k+ 2)/2J andxk,l = |'(n —k+ 2)/21 O

LEMMA 2.2 [9, Theorem 1]. Given positive integers n > k > 2, let x1,x;,...,x; be
positive integers such that Zle x; = n. Then,

k
n—k< Z XiXir1s 2.2)
i=1

where x;1 = x1. For any n and k, the lower bound in (2.2) can be attained.

A sharp upper bound on the quadratic form in (2.2) is also determined in [9], but
we do not need it here.

DEFINITION 2.3. Given a graph H and a positive integer k, the k-blow-up of H,
denoted by H™®, is the graph obtained by replacing every vertex of H with k different
vertices where a copy of u is adjacent to a copy of v in the blow-up graph if and only
if u is adjacent to v in H.

For example, ng) is depicted in Figure 1.
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FIGURE 2. The structure of G.

Now we are ready to determine the triangle-free graphs among [p + 2, p]-graphs.
For a graph G, we denote by 6(G) and A(G) its minimum and maximum degrees,
respectively. We regard isomorphic graphs as the same graph. Thus, for two graphs G
and H, the notation G = H means that G and H are isomorphic.

LEMMA 2.4. Let Gbe alp + 2, pl-graph of order n with 6(G) > p > 2 andn > 2p + 3.
Then, G is triangle-free if and only if p is even, p > 6 and G = C(S” 2,

PROOF. We will repeatedly use the condition that G is a [p + 2, p]-graph without
necessarily mentioning it. Denote A = A(G) and choose a vertex x € V(G) such that
deg(x) = A.Let S = N(x)and T = V(G) \ S. Then, |S] = A.

Suppose that G is triangle-free. Then, S is an independent set. Since G is a
[p + 2, pl-graph, A < p+ 1. We assert that A = p and hence G is p-regular, since
6(G) = p by the assumption. Otherwise, A = p+ 1. Since n>2p+3, [T| > p+2.
Thus, G[T] contains an edge uv and [{u} US| = p+2 implies that degy(u) > p.
Similarly, degg(v) > p. Since p+p =2p > p+1 =S|, we have Ng(u) N Ns(v) # 0.
Let w € Ng(u) N Ng(v). Then, wuvw is a triangle, which is a contradiction. This shows
that G is p-regular.

Let y € S and denote C = N(y). Then, C is an independent set and |C| = p. Denote
D =T\ C. The structure of G is illustrated in Figure 2.

Since n>2p + 3, we have |D| =n—2p > 3. Thus, D is not a clique, since G
is triangle-free. Let z and f be any two distinct nonadjacent vertices in D. Since
{z, flUSI=p+2,l{z, ffUC|=p+2,and S and C are independent sets,

degg(z) + degg(f) = I[{z. 1. SII = p and degc(z) +degc(f) = |l{z. /1, Cll = p.
Note that S N C = 0 and deg(z) = deg(f) = p. We must have
Iz, /1,81 =p and |[{z, f}.CIl = p. (2.3)

We assert that D is an independent set. Otherwise, D contains two adjacent vertices
uy and u,. Let us € D\ {uy,up}. Since G is triangle-free, us is nonadjacent to at
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least one vertex in {uj, uy}, say, u;. Setting z =u; and f = u3 in (2.3), we deduce
that |[{u;,u3},S U C]| = 2p. However, since both u; and us have degree p, and u
already has a neighbour u, ¢ SU C, we have [[{u,us},SU C]| < 2p — 1, which is a
contradiction.

Observe that now (2.3) holds for any two distinct vertices z and f in D. Equation
(2.3) has the equivalent form

degg(z) +degs(f) = p and degq(z) +degc(f) = p. (2.4)

Then, (2.4) and |D| > 3 imply that for any vertex z € D,

degg(z) = dege(2) = p/2. (2.5)

To see this, in contrast, first suppose degs(z) > p/2. Then, by the first equality in (2.4),
for any two other vertices f, r € D, we have deg((f) < p/2 and degq(r) < p/2, yielding
degy(f) + degg(r) < p, which contradicts (2.4). If degg(z) < p/2, the same argument
gives a contradiction. A similar analysis with C in place of S shows deg.(z) = p/2.
Thus, we have proved (2.5). In particular, ¢ = p/2 is a positive integer, that is, p is
even. Now choose an arbitrary but fixed vertex ¢ € D and denote B = Ng(t), C, = N¢(1),
A =S\Band C, = C\ (; (see the illustration in Figure 2). We have

Al = 1B] = |C1| = |C2] = q.

Since G is p-regular of order n > 2p + 3, it is impossible that p = 2. Otherwise, G
would be a 2-regular graph of order > 7, which is not a [4, 2]-graph. Thus, p > 4 and
q=>2.

Choose any two distinct vertices vy,v, € C,. Then, [{vi,v,} US| = p + 2 implies
that |[{vy,v2},S]| = p. Since G is triangle-free, N(v;y N B =@ for i = 1,2. Hence,
Ns(vi) = Na(v;) for i = 1,2. However, |A| = g. We have Ng(v;) = A and deg,(v;) = ¢
for i = 1,2, implying that every vertex in C, is adjacent to every vertex in A.

Choose any two distinct vertices vs,vq € Cy. Then, |{vs,v4}UCo UB|=p+2.
Since {v3,v4} U C; is an independent set and [Cy, B] = 0, we have |[{vs, v4}, B]| = p.
However, |B| = g. Hence, Np(v;) = B for j = 3,4. This shows that every vertex in Cj is
adjacent to every vertex in B. Consequently, every vertex in B has exactly g neighbours
in D.

Choose any vertex vs € B. Denote M = Np(vs). We have |[M|=gq. Since G is
triangle-free and every vertex in B is adjacent to every vertex in Cj, the neighbourhood
of any vertex in M is disjoint from C;. Thus, the ¢ neighbours of any vertex of M in
C are exactly the vertices of C,, implying that every vertex in M is adjacent to every
vertex in C;. The neighbourhood of any vertex in C; is A U M. For the same reason, for
any vertex vg € B with vg # vs, we must have Np(vg) = M. Hence, the neighbourhood
of any vertex in M is BU C,.

We assert that M = D. Otherwise, let v; € D\ M. Take a vertex vg € C;. Note
that BU C, is an independent set of cardinality p and [v;,B U C;] = 0. Denote
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R = {v7,vg} UB U C,. Then, |R| = p + 2 and hence G[R] has size at least p. However,
the size of G[R] is at most |[vg, B]|+ 1 = g + 1 < p, which is a contradiction. Finally,
since G is p-regular, every vertex in A must be adjacent to every vertex in Cj.
Denote V| =A,V, =C;,V3 =B,V4 =D, Vs = C, and set Vg = V;. Then, each V; is
an independent set of cardinality ¢ = p/2 and every vertex in V; is adjacent to every
vertex in Vi, for i = 1,2,...,5. This proves that G = C(Sq). Note that we have shown
above that ¢ = |D| > 3, implying that p = 2¢g > 6.

Conversely, let H = ng) , where ¢ = p/2 and p > 6 is even. We will prove that H
is a triangle-free [p + 2, p]-graph. Write H = H; V H, V H3 V H4 vV Hs V H|, where
each H; = Fq and V is the join operation on two vertex-disjoint graphs. If H contains
a triangle, it must lie in H[V(H;) U V(H,;1)] for some i (Hg £ H,). However, this is a
bipartite graph, containing no triangle.

Let UCV(H) with |[U =p+2. We need to show e(H[U])> p. Denote
I={i|UnNVH;)#0,1<i<5}. Since |H|=¢q for 1 <i<5 and |U|l=p+2, we
have |I| > 3. Denote x; = |U N V(H;)| for 1 <i < 5. Then, 0 < x; < g. We distinguish
three cases.

Case 1: |I| = 3. There are at least two consecutive integers in / (1 and 5 are regarded
as consecutive here). Without loss of generality, suppose 1,2 € I. Then, | < xj, x, < ¢
andx; +x, =2 p+2—q =q+ 2. Hence, e(H[U]) > x1x, > 2qg = p.

Case 2: |I| = 4. Without loss of generality, suppose I = {1,2,3,4}. Then, e(H[U]) =
X1X3 + XoX3 + x3X4, Where each x; is a positive integer and x; + x; + X3 + x4 = p + 2.
Applying Lemma 2.1, we have e(H[U]) > (p+2)—-1=p+1> p.

Case 3: |I| =5. Now, e(H[U]) = x1x3 + XoX3 + X3X4 + X4X5 + X5X1, Where each x; is
a positive integer and x; + x + x3 + x4 + x5 = p + 2. Applying Lemma 2.2, we have
eHUD=22(p+2)-5=2p—1>p.

In every case, H is a [p + 2, p]-graph. This completes the proof. ]

THEOREM 2.5. Every 2-connected [4,2]-graph of order at least 7 is pancyclic.

PROOF. Let G be a 2-connected [4, 2]-graph of order at least 7. Since G is 2-connected,
0(G) = 2. By the case p =2 of Lemma 2.4, G contains a triangle C3. Then, succes-
sively applying Theorem 1.3, we deduce that G is pancyclic. ]

REMARK 2.6. The Chvatal-Erd6s theorem on Hamiltonian graphs [1, 4, 8] states
that for a graph G, if «(G) > a(G), then G is Hamiltonian, where « and « denote the
connectivity and independence number, respectively. Bondy [2] proved that if a graph
satisfies Ore’s condition, then it satisfies the Chvatal-Erdés condition. A computer
search for graphs of lower orders shows that there are many graphs which satisfy the
condition in Theorem 2.5, but do not satisfy the Chvatal-Erdds condition. There are
exactly 398 such graphs of order 9. For every integer n > 7, we give an example. Let
G = K_, be the graph obtained from K, 3 by deleting one edge xy and let G, = uvw
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FIGURE 3. The graph Zy.

be a triangle that is vertex-disjoint from G;. Construct a graph Z, from G, and G, by
adding two edges xu and yv. The graph Zs is depicted in Figure 3.
Clearly, Z, is a 2-connected [4, 2]-graph of order n, but 2 = k(Z,) < a(Z,) = 3.
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