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A sufficient condition for pancyclic graphs
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Abstract

A graph G is called an [s, t]-graph if any induced subgraph of G of order s has

size at least t. We prove that every 2-connected [4, 2]-graph of order at least 7 is

pancyclic. This strengthens existing results. There are 2-connected [4, 2]-graphs

which do not satisfy the Chvátal-Erdős condition. We also determine the triangle-

free graphs among [p+ 2, p]-graphs for a general p.
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1 Introduction

We consider finite simple graphs and use standard terminology and notation from [3] and

[8]. The order of a graph is its number of vertices, and the size its number of edges. A

k-cycle is a cycle of length k. In 1971 Bondy [1] introduced the concept of a pancyclic

graph. A graph G of order n is called pancyclic if for every integer k with 3 ≤ k ≤ n, G

contains a k-cycle.

Definition 1. Let s and t be given integers. A graph G is called an [s, t]-graph if any

induced subgraph of G of order s has size at least t.

Denote by α(G) the independence number of a graph G. We have two facts. (1) Every

[s, t]-graph is an [s + 1, t + 1]-graph; (2) α(G) ≤ k if and only if G is a [k + 1, 1]-graph.

Thus the concept of an [s, t]-graph is an extension of the independence number.
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In 2005 Liu and Wang [6] proved the following result.

Theorem 1. Every 2-connected [4, 2]-graph of order at least 6 is hamiltonian.

In 2007 Liu, Wang and Gao [7] improved Theorem 1 as follows.

Theorem 2. Let G be a 2-connected [4, 2]-graph of order n with n ≥ 7. If G contains

a k-cycle with k < n, then G contains a (k + 1)-cycle.

In this paper we further strengthen Theorem 2 by proving that every 2-connected

[4, 2]-graph of order at least 7 is pancyclic (Theorem 6). To do so, we will determine

the triangle-free graphs among [p+ 2, p]-graphs. This preliminary result (Lemma 5) is of

independent interest.

2 Main results

We denote by V (G) and E(G) the vertex set and edge set of a graph G, respectively,

and denote by |G| and e(G) the order and size of G, respectively. Thus |G| = |V (G)|

and e(G) = |E(G)|. For a vertex subset S ⊆ V (G), we use G[S] to denote the subgraph

of G induced by S. The neighborhood of a vertex x is denoted by N(x) and the closed

neighborhood of x is N [x] , N(x) ∪ {x}. The degree of x is denoted by deg(x). For

S ⊆ V (G), NS(x) , N(x) ∩ S and the degree of x in S is degS(x) , |NS(x)|. Given two

vertex subsets S and T of G, we denote by [S, T ] the set of edges having one endpoint

in S and the other in T. The degree of S is deg(S) , |[S, S]|, where S = V (G) \ S. We

denote by Cn and Kn the cycle of order n and the complete graph of order n, respectively.

G denotes the complement of a graph G.

We will need the following two lemmas on integral quadratic forms.

Lemma 3. Given positive integers n ≥ k ≥ 2, let x1, x2, . . . , xk be positive integers

such that
∑k

i=1 xi = n. Then

n− 1 ≤
k−1
∑

i=1

xixi+1 ≤







⌊n/2⌋ · ⌈n/2⌉ if k = 2, 3

ab+ k − 5 if k ≥ 4
(1)

where a = ⌊(n−k+4)/2⌋ and b = ⌈(n−k+4)/2⌉. For any n and k, the lower and upper

bounds in (1) can be attained.

Proof. Define a quadratic polynomial f(x1, x2, . . . , xk) =
∑k−1

i=1 xixi+1. We first prove
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the left-hand side inequality in (1). Let xj = min{xi | 1 ≤ i ≤ k}. We have

f(x1, x2, . . . , xk) ≥ x1xj + · · ·+ xj−1xj + xjxj+1 + xjxj+2 + · · ·+ xjxk

= xj(x1 + · · ·+ xj−1 + xj+1 + · · ·+ xk)

= xj(n− xj)

≥ n− 1.

This proves the first inequality in (1). The lower bound n−1 is attained at x1 = n−k+1,

x2 = · · · = xk = 1.

Now we prove the second inequality in (1). The case k = 2 is an elementary fact:

f(x1, x2) = x1x2 ≤ ⌊n/2⌋ · ⌈n/2⌉ where equality holds when x1 = ⌊n/2⌋ and x2 = ⌈n/2⌉.

The case k = 3 reduces to the case k = 2 as follows:

f(x1, x2, x3) = x2(x1 + x3) ≤ ⌊n/2⌋ · ⌈n/2⌉

where equality holds when x2 = ⌊n/2⌋ and x1 + x3 = ⌈n/2⌉. Next suppose k ≥ 4. Denote

by fmax the maximum value of f. If x1 > 1, with x′

1 = 1, x′

2 = x2, x
′

3 = x3 + x1 − 1 and

x′

i = xi for i ≥ 4 we have

f(x′

1, x
′

2, . . . , x
′

k)− f(x1, x2, . . . , xk) = (x1 − 1)x4 > 0.

Similarly analyzing the variable xk, we deduce that fmax can only be attained at some

x1, . . . , xk with x1 = xk = 1, which we assume now. With x′

2 = 1, x′

3 = x3, x
′

4 = x4+x2−1,

and x′

i = xi for i = 5, . . . , k − 1 we have

f(1, 1, x′

3, x
′

4, . . . , x
′

k−1, 1)− f(1, x2, x3, . . . , xk−1, 1) = (x2 − 1)(x5 − 1) ≥ 0.

Hence fmax can be attained at a certain (1, 1, x3, . . . , xk−1, 1). Successively applying this

argument we deduce that fmax can be attained at (1, 1, . . . , 1, xk−2, xk−1, 1). Now (xk−2 +

1) + (xk−1 + 1) = n− k + 4. We have

f(1, 1, . . . , 1, xk−2, xk−1, 1) = (xk−2 + 1)(xk−1 + 1) + k − 5

≤ ⌊(n− k + 4)/2⌋ · ⌈(n− k + 4)/2⌉+ k − 5.

This proves the second inequality in (1). The upper bound is attained at x1 = x2 = · · · =

xk−3 = xk = 1, xk−2 = ⌊(n− k + 2)/2⌋ and xk−1 = ⌈(n− k + 2)/2⌉. ✷

Lemma 4. [9, Theorem 1] Given positive integers n ≥ k ≥ 2, let x1, x2, . . . , xk be

positive integers such that
∑k

i=1 xi = n. Then

2n− k ≤
k

∑

i=1

xixi+1 (2)
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where xk+1 , x1. For any n and k, the lower bound in (2) can be attained.

The sharp upper bound on the quadratic form in (2) is also determined in [9], but we

do not need it here.

Definition 2. Given a graph H and a positive integer k, the k-blow-up of H, denoted

by H(k), is the graph obtained by replacing every vertex of H with k different vertices

where a copy of u is adjacent to a copy of v in the blow-up graph if and only if u is

adjacent to v in H.

For example, C
(2)
5 is depicted in Figure 1.

Figure 1: The 2-blow-up of C5

Now we are ready to determine the triangle-free graphs among [p+2, p]-graphs. δ(G)

and ∆(G) denote the minimum and maximum degrees of a graph G, respectively. We

regard isomorphic graphs as the same graph. Thus for two graphs G and H, the notation

G = H means that G and H are isomorphic.

Lemma 5. Let G be a [p+ 2, p]-graph of order n with δ(G) ≥ p ≥ 2 and n ≥ 2p+ 3.

Then G is triangle-free if and only if p is even, p ≥ 6 and G = C
(p/2)
5 .

Proof. We will repeatedly use the condition that G is a [p + 2, p]-graph without

mentioning it possibly. Denote ∆ = ∆(G) and choose a vertex x ∈ V (G) such that

deg(x) = ∆. Let S = N(x) and T = V (G) \ S. Then |S| = ∆.

Next suppose that G is triangle-free. Then S is an independent set. Since G is a

[p+2, p]-graph, ∆ ≤ p+1. We assert that ∆ = p and hence G is p-regular, since δ(G) ≥ p

by the assumption. Otherwise ∆ = p + 1. Since n ≥ 2p + 3, |T | ≥ p + 2. Thus G[T ]

contains an edge uv. |{u} ∪ S| = p + 2 implies that degS(u) ≥ p. Similarly degS(v) ≥ p.

Since p + p = 2p > p + 1 = |S|, we have NS(u) ∩ NS(v) 6= ∅. Let w ∈ NS(u) ∩ NS(v).

Then wuvw is a triangle, a contradiction. This shows that G is p-regular.

Let y ∈ S and denote C = N(y). Then C is an independent set and |C| = p. Denote
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D = T \ C. See the illustration in Figure 2.

Figure 2: The structure of G

Since n ≥ 2p+3, we have |D| = n−2p ≥ 3. Thus D is not a clique, since G is triangle-

free. Let z and f be any two distinct nonadjacent vertices in D. Since |{z, f}∪S| = p+2,

|{z, f} ∪ C| = p+ 2, and S and C are independent sets, we have

degS(z) + degS(f) = |[{z, f}, S]| ≥ p and degC(z) + degC(f) = |[{z, f}, C]| ≥ p.

Note that S ∩ C = ∅, deg(z) = deg(f) = p. We must have

|[{z, f}, S]| = p and |[{z, f}, C]| = p. (3)

We assert that D is an independent set. Otherwise D contains two adjacent vertices u1

and u2. Let u3 ∈ D \ {u1, u2}. Since G is triangle-free, u3 is nonadjacent to at least

one vertex in {u1, u2}, say, u1. Setting z = u1 and f = u3 in (3) we deduce that

|[{u1, u3}, S ∪ C]| = 2p. On the other hand, since both u1 and u3 have degree p, and

u1 already has a neighbor u2 6∈ S∪C, we have |[{u1, u3}, S∪C]| ≤ 2p−1, a contradiction.

Observe that now (3) holds for any two distinct vertices z and f in D. (3) has the

equivalent form

degS(z) + degS(f) = p and degC(z) + degC(f) = p. (4)

Then (4) and |D| ≥ 3 imply that for any vertex z ∈ D,

degS(z) = degC(z) = p/2. (5)
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To see this, to the contrary, first suppose degS(z) > p/2. Then by the first equality in (4),

for any two other vertices f, r ∈ D we have degS(f) < p/2 and degS(r) < p/2, yielding

degS(f) + degS(r) < p, which contradicts (4). If degS(z) < p/2, the same argument gives

a contradiction. A similar analysis with C in place of S shows degC(z) = p/2. Thus we

have proved (5). In particular, q , p/2 is a positive integer; i.e., p is even. Now choose

an arbitrary but fixed vertex t ∈ D and denote B = NS(t), C2 = NC(t), A = S \ B and

C1 = C \ C2. See the illustration in Figure 2. We have

|A| = |B| = |C1| = |C2| = q.

Since G is p-regular of order n ≥ 2p + 3, it is impossible that p = 2. Otherwise G would

be a 2-regular graph of order ≥ 7, which is not a [4, 2]-graph. Thus p ≥ 4 and q ≥ 2.

Choose any two distinct vertices v1, v2 ∈ C2. |{v1, v2} ∪ S| = p + 2 implies that

|[{v1, v2}, S]| ≥ p. Since G is triangle-free, N(vi)∩B = ∅, i = 1, 2. Hence NS(vi) = NA(vi),

i = 1, 2. However, |A| = q. We have NS(vi) = A and degA(vi) = q, i = 1, 2, implying that

every vertex in C2 is adjacent to every vertex in A.

Choose any two distinct vertices v3, v4 ∈ C1. Then |{v3, v4} ∪ C2 ∪ B| = p + 2. Since

{v3, v4} ∪ C2 is an independent set and [C2, B] = ∅, we have |[{v3, v4}, B]| ≥ p. However,

|B| = q. Hence NB(vj) = B, j = 3, 4. This shows that every vertex in C1 is adjacent to

every vertex in B. Consequently, every vertex in B has exactly q neighbors in D.

Choose any vertex v5 ∈ B. Denote M = ND(v5). We have |M | = q. Since G is

triangle-free and every vertex in B is adjacent to every vertex in C1, the neighborhood of

any vertex in M is disjoint from C1. Thus the q neighbors of any vertex of M in C are

exactly the vertices of C2, implying that every vertex in M is adjacent to every vertex in

C2. The neighborhood of any vertex in C2 is A ∪M. For the same reason, for any vertex

v6 ∈ B with v6 6= v5, we must have ND(v6) = M. Hence the neighborhood of any vertex

in M is B ∪ C2.

We assert that M = D. Otherwise let v7 ∈ D \ M. Take a vertex v8 ∈ C1. Note

that B ∪ C2 is an independent set of cardinality p and [v7, B ∪ C2] = ∅. Denote R =

{v7, v8}∪B∪C2. Then |R| = p+2 and hence G[R] has size at least p. However, the size of

G[R] is at most |[v8, B]|+1 = q+1 < p, a contradiction. Finally, since G is p-regular, every

vertex in A must be adjacent to every vertex in C1. Denote V1 = A, V2 = C1, V3 = B,

V4 = D, V5 = C2 and set V6 = V1. Then each Vi is an independent set of cardinality

q = p/2 and every vertex in Vi is adjacent to every vertex in Vi+1 for i = 1, 2, . . . , 5. This

proves that G = C
(q)
5 . Note that we have shown above that q = |D| ≥ 3, implying that
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p = 2q ≥ 6.

Conversely let H = C
(q)
5 where q = p/2 and p ≥ 6 is even. We will prove that H is a

triangle-free [p+2, p]-graph. Write H = H1∨H2∨H3∨H4∨H5∨H1 where each Hi = Kq

and ∨ is the join operation on two vertex-disjoint graphs. If H contains a triangle, it

must lie in H [V (Hi)∪V (Hi+1)] for some i (H6 , H1). However, this is a bipartite graph,

containing no triangle.

Let U ⊆ V (H) with |U | = p + 2. We need to show e(H [U ]) ≥ p. Denote I = {i |U ∩

V (Hi) 6= ∅, 1 ≤ i ≤ 5}. Since |Hi| = q, 1 ≤ i ≤ 5 and |U | = p + 2, we have |I| ≥ 3.

Denote xi = |U ∩ V (Hi)| for 1 ≤ i ≤ 5. Then 0 ≤ xi ≤ q. We distinguish three cases.

Case 1. |I| = 3.

There are at least two consecutive integers in I (1 and 5 are regarded as consecutive

here). Without loss of generality, suppose 1, 2 ∈ I. Then 1 ≤ x1, x2 ≤ q and x1 + x2 ≥

p+ 2− q = q + 2. Hence e(H [U ]) ≥ x1x2 ≥ 2q = p.

Case 2. |I| = 4.

Without loss of generality, suppose I = {1, 2, 3, 4}. Then e(H [U ]) = x1x2+x2x3+x3x4

where each xi is a positive integer and x1 + x2 + x3 + x4 = p+ 2. Applying Lemma 3 we

have e(H [U ]) ≥ (p+ 2)− 1 = p+ 1 > p.

Case 3. |I| = 5.

Now e(H [U ]) = x1x2+x2x3+x3x4+x4x5+x5x1 where each xi is a positive integer and

x1+x2+x3+x4+x5 = p+2. Applying Lemma 4 we have e(H [U ]) ≥ 2(p+2)−5 = 2p−1 > p.

In every case H is a [p+ 2, p]-graph. This completes the proof. ✷

Theorem 6. Every 2-connected [4, 2]-graph of order at least 7 is pancyclic.

Proof. Let G be a 2-connected [4, 2]-graph of order at least 7. Since G is 2-connected,

δ(G) ≥ 2. By the case p = 2 of Lemma 5, G contains a triangle C3. Then successively

applying Theorem 2 we deduce that G is pancyclic. ✷

Remark. The Chvátal-Erdős theorem on hamiltonian graphs ([4], [1] and [8]) states

that for a graph G, if κ(G) ≥ α(G) then G is hamiltonian, where κ and α denote the

connectivity and independence number, respectively. Bondy [2] proved that if a graph

satisfies Ore’s condition, then it satisfies the Chvátal-Erdős condition. A computer search

for graphs of lower orders shows that there are many graphs which satisfy the condition

in Theorem 6, but do not satisfy the Chvátal-Erdős condition. There are exactly 398 such
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graphs of order 9. For every integer n ≥ 7 we give an example. Let G1 = K−

n−3 be the

graph obtained from Kn−3 by deleting one edge xy and let G2 = uvw be a triangle that

is vertex-disjoint from G1. Construct a graph Zn form G1 and G2 by adding two edges xu

and yv. The graph Z9 is depicted in Figure 3.

Figure 3: The graph Z9

Clearly Zn is a 2-connected [4, 2]-graph of order n, but 2 = κ(Zn) < α(Zn) = 3.
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