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A sufficient condition for pancyclic graphs
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Abstract

A graph G is called an [s, t]-graph if any induced subgraph of G of order s has
size at least t. We prove that every 2-connected [4,2]-graph of order at least 7 is
pancyclic. This strengthens existing results. There are 2-connected [4,2]-graphs
which do not satisfy the Chvatal-Erdés condition. We also determine the triangle-

free graphs among [p + 2, p|]-graphs for a general p.
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1 Introduction

We consider finite simple graphs and use standard terminology and notation from [3] and
[8]. The order of a graph is its number of vertices, and the size its number of edges. A
k-cycle is a cycle of length k. In 1971 Bondy [1] introduced the concept of a pancyclic
graph. A graph G of order n is called pancyclic if for every integer k with 3 < k <n, G

contains a k-cycle.

Definition 1. Let s and ¢ be given integers. A graph G is called an [s, t]-graph if any

induced subgraph of GG of order s has size at least t.

Denote by «(G) the independence number of a graph G. We have two facts. (1) Every
[s,t]-graph is an [s + 1,¢ + 1]-graph; (2) a(G) < k if and only if G is a [k + 1, 1]-graph.

Thus the concept of an [s, t]-graph is an extension of the independence number.

*E-mail address: zhan@math.ecnu.edu.cn


http://arxiv.org/abs/2409.11716v1

In 2005 Liu and Wang [6] proved the following result.
Theorem 1. Every 2-connected [4,2]-graph of order at least 6 is hamiltonian.
In 2007 Liu, Wang and Gao [7] improved Theorem 1 as follows.

Theorem 2. Let G be a 2-connected [4,2]-graph of order n with n > 7. If G contains
a k-cycle with k < n, then G contains a (k + 1)-cycle.

In this paper we further strengthen Theorem 2 by proving that every 2-connected
[4,2]-graph of order at least 7 is pancyclic (Theorem 6). To do so, we will determine
the triangle-free graphs among [p + 2, p|-graphs. This preliminary result (Lemma 5) is of

independent interest.

2 Main results

We denote by V(G) and E(G) the vertex set and edge set of a graph G, respectively,
and denote by |G| and e(G) the order and size of G, respectively. Thus |G| = |V(G)|
and e(G) = |E(G)|. For a vertex subset S C V(G), we use G[S] to denote the subgraph
of G induced by S. The neighborhood of a vertex z is denoted by N(z) and the closed
neighborhood of z is N[x] £ N(x) U {z}. The degree of z is denoted by deg(x). For
S CV(G), Ns(z) & N(x) N S and the degree of z in S is degg(r) £ |Ng(x)|. Given two
vertex subsets S and 7" of G, we denote by [S,T] the set of edges having one endpoint
in S and the other in 7. The degree of S is deg(S) £ |[S, S]|, where S = V(G)\ S. We
denote by C,, and K, the cycle of order n and the complete graph of order n, respectively.
G denotes the complement of a graph G.

We will need the following two lemmas on integral quadratic forms.

Lemma 3. Given positive integers n > k > 2, let x1,xs,..., 2 be positive integers
such that S x; = n. Then

k—1 .
n/2|-n/2] if k=2,3
no1<Y i < [n/2] - [n/2] 0
i=1 ab+k—5 if k>4

where a = |(n—k+4)/2] andb = [(n—k+4)/2]. For any n and k, the lower and upper

bounds in (1) can be attained.

Proof. Define a quadratic polynomial f(x1,xs,...,x;) = Zfz_ll x;x;1. We first prove



the left-hand side inequality in (1). Let z; = min{xz; |1 <14 < k}. We have

fr1, 20, ., Tp) > 212 + - + 20T + TjTjp1 + TjTipe + -+ T

=zj(t+- - xja+Tia++a)
= z;(n — ;)
>n—1.

This proves the first inequality in (1). The lower bound n—1 is attained at 7 = n—k+1,

To =+ =xp = 1.

Now we prove the second inequality in (1). The case k& = 2 is an elementary fact:
f(z1,22) = 129 < |n/2] - [n/2] where equality holds when x; = |[n/2] and x5 = [n/2].

The case k = 3 reduces to the case k = 2 as follows:
f(@1, @, 03) = @a(21 + 23) < [1/2] - [n/2]
where equality holds when z = [n/2] and z; + x3 = [n/2]. Next suppose k > 4. Denote
by fmax the maximum value of f. If x; > 1, with 2} =1, 2, = 9, 2§ = 25+ 2; — 1 and
x}, = x; for i > 4 we have
f(Iaaxéa .. 7$;9) - f(Ilax2>' . '>$k) = (xl - 1)!13'4 > 0.

Similarly analyzing the variable xj, we deduce that f,.x can only be attained at some
Z1,...,T, with 1 =z, = 1, which we assume now. With 2}, = 1, 2 = z3, o)) = 24+22—1,

and z; = x; for i =5,..., k — 1 we have
fL e 2l x 1) — f(L, @, 23, ..y xp1, 1) = (22 — 1) (25 — 1) > 0.
Hence fnax can be attained at a certain (1,1, z3,...,x5_1,1). Successively applying this
argument we deduce that fn.x can be attained at (1,1,...,1, 259, 251, 1). Now (252 +
1)+ (z4—1 + 1) =n — k+ 4. We have
f(la ]-7 K 17£k—2>£k—17 1) = (xk—2 + 1)(‘7:]6—1 + 1) +k—5
<|lln—k+4)/2 - [(n—k+4)/2] + k —5.

This proves the second inequality in (1). The upper bound is attained at x; = xo = -+ - =

Tpg=xp =1, 2, 90=[(n—k+2)/2] and z4_1 = [(n — k +2)/2]. O

Lemma 4. [9, Theorem 1] Given positive integers n > k > 2, let xq,xs,..., 1 be

positive integers such that Zle x; =n. Then

k

i=1
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where xj, = x1. For any n and k, the lower bound in (2) can be attained.

The sharp upper bound on the quadratic form in (2) is also determined in [9], but we

do not need it here.

Definition 2. Given a graph H and a positive integer k, the k-blow-up of H, denoted
by H® is the graph obtained by replacing every vertex of H with k different vertices
where a copy of u is adjacent to a copy of v in the blow-up graph if and only if u is

adjacent to v in H.

For example, CéQ) is depicted in Figure 1.

Figure 1: The 2-blow-up of Cj

Now we are ready to determine the triangle-free graphs among [p + 2, p]-graphs. 6(G)
and A(G) denote the minimum and maximum degrees of a graph G, respectively. We
regard isomorphic graphs as the same graph. Thus for two graphs G and H, the notation
G = H means that G and H are isomorphic.

Lemma 5. Let G be a [p + 2, p|-graph of order n with §(G) > p > 2 and n > 2p + 3.
Then G is triangle-free if and only if p is even, p > 6 and G = Cép/2).

Proof. We will repeatedly use the condition that G is a [p + 2, p]-graph without
mentioning it possibly. Denote A = A(G) and choose a vertex x € V(G) such that
deg(z) = A. Let S = N(z) and T'=V(G) \ S. Then |S| = A.

Next suppose that G is triangle-free. Then S is an independent set. Since G is a
[p+2, p]-graph, A < p+1. We assert that A = p and hence G is p-regular, since §(G) > p
by the assumption. Otherwise A = p + 1. Since n > 2p + 3, [T| > p + 2. Thus G[T
contains an edge uv. |[{u} U S| = p + 2 implies that degg(u) > p. Similarly degg(v) > p.
Since p+p =2p > p+ 1 = |S]|, we have Ng(u) N Ng(v) # 0. Let w € Ng(u) N Ng(v).

Then wuvw is a triangle, a contradiction. This shows that G is p-regular.

Let y € S and denote C' = N(y). Then C is an independent set and |C| = p. Denote
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D =T\ C. See the illustration in Figure 2.
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Figure 2: The structure of G

Since n > 2p+3, we have |D| = n—2p > 3. Thus D is not a clique, since G is triangle-
free. Let z and f be any two distinct nonadjacent vertices in D. Since |{z, f}US| = p+2,
{z, ftUC| =p+2, and S and C are independent sets, we have

degg(z) +degs(f) = |[{z f},S]| = p and dego(2) +dego(f) = [[{z, f},C]l = p.

Note that SN C = (), deg(z) = deg(f) = p. We must have

|[{Zaf}75]|:p and |[{Z,f},C]|:p (3)

We assert that D is an independent set. Otherwise D contains two adjacent vertices u;
and wuy. Let ug € D \ {uy,us}. Since G is triangle-free, uz is nonadjacent to at least
one vertex in {uy,us}, say, u;. Setting z = w; and f = us in (3) we deduce that
|[{u1,us}, S UC] = 2p. On the other hand, since both w; and wus have degree p, and
uy already has a neighbor us ¢ SUC, we have |[{u1,us}, SUC]| < 2p—1, a contradiction.

Observe that now (3) holds for any two distinct vertices z and f in D. (3) has the

equivalent form

degg(2) +degg(f) =p and degq(z) + dego(f) = p. (4)

Then (4) and |D| > 3 imply that for any vertex z € D,

degg(z) = dege(2) = p/2. (5)



To see this, to the contrary, first suppose degg(z) > p/2. Then by the first equality in (4),

for any two other vertices f,r € D we have degg(f) < p/2 and degg(r) < p/2, yielding
degg(f) +degg(r) < p, which contradicts (4). If degg(z) < p/2, the same argument gives
a contradiction. A similar analysis with C' in place of S shows deg(z) = p/2. Thus we
have proved (5). In particular, ¢ £ p/2 is a positive integer; i.e., p is even. Now choose
an arbitrary but fixed vertex t € D and denote B = Ng(t), Co = N¢(t), A= S\ B and
Cy = C'\ Cs. See the illustration in Figure 2. We have

Al = [B] = |C1] = |Co] = ¢

Since G is p-regular of order n > 2p + 3, it is impossible that p = 2. Otherwise G would
be a 2-regular graph of order > 7, which is not a [4, 2]-graph. Thus p > 4 and ¢ > 2.

Choose any two distinct vertices vy,vy € Cy. [{v1,v2} US| = p + 2 implies that
|[{v1,v2}, S]| > p. Since G is triangle-free, N(v;)NB = 0, i = 1, 2. Hence Ng(v;) = Na(v;),
i =1,2. However, |A| = q. We have Ng(v;) = A and deg,(v;) = ¢, i = 1,2, implying that

every vertex in (s is adjacent to every vertex in A.

Choose any two distinct vertices vs, vy € C1. Then [{vs,v4} UCy U B| = p + 2. Since
{vs,v4} U Cy is an independent set and [Cy, B] = (), we have |[{vs,v4}, B]| > p. However,
|B| = ¢q. Hence Np(v;) = B, j = 3,4. This shows that every vertex in C; is adjacent to

every vertex in B. Consequently, every vertex in B has exactly ¢ neighbors in D.

Choose any vertex vs € B. Denote M = Np(v;). We have |M| = ¢. Since G is
triangle-free and every vertex in B is adjacent to every vertex in C}, the neighborhood of
any vertex in M is disjoint from Cy. Thus the ¢ neighbors of any vertex of M in C are
exactly the vertices of Cy, implying that every vertex in M is adjacent to every vertex in
C5. The neighborhood of any vertex in C5 is A U M. For the same reason, for any vertex
ve € B with vg # v5, we must have Np(vg) = M. Hence the neighborhood of any vertex
in M is BU Cs.

We assert that M = D. Otherwise let v; € D\ M. Take a vertex vg € C;. Note
that B U C5 is an independent set of cardinality p and [v7, B U Cy] = ). Denote R =
{v7, v} UBUCS,. Then |R| = p+2 and hence G[R] has size at least p. However, the size of
G[R] is at most |[vs, B]|+1 = ¢+1 < p, a contradiction. Finally, since G is p-regular, every
vertex in A must be adjacent to every vertex in C;. Denote V) = A, V, = C, V3 = B,
Vi =D, Vs = C5 and set Vg5 = V;. Then each V; is an independent set of cardinality
q = p/2 and every vertex in V; is adjacent to every vertex in V;,; for i = 1,2,...,5. This

proves that G = Céq). Note that we have shown above that ¢ = |D| > 3, implying that
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p=2q = 6.

Conversely let H = C’éq) where ¢ = p/2 and p > 6 is even. We will prove that H is a
triangle-free [p+ 2, p]-graph. Write H = H,V HyV H3V HyV HsV Hy where each H; = K,
and V is the join operation on two vertex-disjoint graphs. If H contains a triangle, it
must lie in H[V (H;) UV (H;,,)] for some i (Hs = H,;). However, this is a bipartite graph,

containing no triangle.

Let U C V(H) with |U| = p+ 2. We need to show e(H[U]) > p. Denote I = {i|UN
V(H;) # 0, 1 <i <5} Since |H;| =¢q,1 <i<5and |U|l =p-+2, we have |I| > 3.
Denote z; = [UNV(H;)| for 1 <i <5. Then 0 < x; < ¢q. We distinguish three cases.

Case 1. |I] = 3.

There are at least two consecutive integers in I (1 and 5 are regarded as consecutive
here). Without loss of generality, suppose 1,2 € I. Then 1 < zy, 5 < q and x1 + o >
p+2—q=q+2. Hence e(H[U]) > x129 > 2q = p.

Case 2. |I]| = 4.

Without loss of generality, suppose I = {1,2,3,4}. Then e(H[U]) = z129+ 225+ X314
where each x; is a positive integer and x1 + x5 + x3 + x4 = p + 2. Applying Lemma 3 we
have e(H[U]) > (p+2)—1=p+1>p.

Case 3. |I| =5.

Now e(H[U]) = x1w9+ 2923+ w324+ 2475+ 521 Where each x; is a positive integer and

r1+rotx3+rs+25 = p+2. Applying Lemma 4 we have e(H[U]) > 2(p+2)—5 = 2p—1 > p.
In every case H is a [p + 2, p]-graph. This completes the proof. O
Theorem 6. Every 2-connected [4,2]-graph of order at least 7 is pancyclic.

Proof. Let G be a 2-connected [4, 2]-graph of order at least 7. Since G is 2-connected,
d(G) > 2. By the case p = 2 of Lemma 5, G contains a triangle C5. Then successively
applying Theorem 2 we deduce that G is pancyclic. O

Remark. The Chvétal-Erdés theorem on hamiltonian graphs ([4], [1] and [8]) states
that for a graph G, if K(G) > «a(G) then G is hamiltonian, where £ and « denote the
connectivity and independence number, respectively. Bondy [2] proved that if a graph
satisfies Ore’s condition, then it satisfies the Chvatal-Erdos condition. A computer search
for graphs of lower orders shows that there are many graphs which satisfy the condition

in Theorem 6, but do not satisfy the Chvatal-Erdés condition. There are exactly 398 such



graphs of order 9. For every integer n > 7 we give an example. Let G; = K _; be the
graph obtained from K, _3 by deleting one edge xy and let Gy = uvw be a triangle that
is vertex-disjoint from G. Construct a graph 7, form G; and G4 by adding two edges xu

and yv. The graph Zj is depicted in Figure 3.

N

- \\\

~ 7 /' -
\\;\ //

Figure 3: The graph Zy

Clearly Z, is a 2-connected [4, 2]-graph of order n, but 2 = k(Z,) < a(Z,) = 3.

Acknowledgement. This research was supported by the NSFC grant 12271170 and
Science and Technology Commission of Shanghai Municipality grant 22D72229014.

References

[1] J.A. Bondy, Pancyclic graphs. I, J. Combinatorial Theory Ser. B, 11(1971), 80-84.

[2] J.A. Bondy, A remark on two sufficient conditions for Hamilton cycles, Discrete
Math., 22(1978), no.2, 191-193.

[3] J.A. Bondy and U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.

[4] V. Chvatal and P. Erdés, A note on Hamiltonian circuits, Discrete Math., 2(1972),
111-113.

[5] J.C. George, A. Khodkar and W.D. Wallis, Pancyclic and Bipancyclic Graphs,
Springer, 2016.

6] C. Liu and J. Wang, [s,t]-graphs and their hamiltonicity, (Chinese), J. Shandong
Normal Univ. Nat. Sci., 20(2005), no.1, 6-7.

[7] X. Liu, J. Wang and G. Gao, Cycles in 2-connected [4, 2]-graphs, (Chinese), J. Shan-
dong Univ. Nat. Sci., 42(2007), no.4, 32-35.

8



[8] D.B. West, Introduction to Graph Theory, Prentice Hall, Inc., 1996.

[9] X. Zhan, Extremal numbers of positive entries of imprimitive nonnegative matrices,
Linear Algebra Appl. 424(2007), no.1, 132-138.



	Introduction
	Main results

