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Abstract
Thomassen’s chord conjecture from 1976 states that every longest cycle in a 3-
connected graph has a chord. This is one of the most important unsolved problems
in graph theory. We pose a new conjecture which implies Thomassen’s conjecture. It
involves bound vertices in a longest path between two vertices in a k-connected graph.
We also give supporting evidence and analyze a special case. The purpose of making
this new conjecture is to explore the surroundings of Thomassen’s conjecture.
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We consider finite simple graphs and use standard terminology and notations as in the
book [9]. Thomassen’s famous chord conjecture from1976 is as follows ([1, Conjecure
8.1] and [6, Conjecture 6]).

Conjecture 1 (Thomassen, 1976) Every longest cycle in a 3-connected graph has a
chord.

Conjecture 1 has been proved to be true by Thomassen himself for cubic graphs [7,
8]. This beautiful and important conjecturewas selected asNo. 65 of the unsolved prob-
lems in the textbook [4], as Conjecture 5 in the survey article [2] collecting problems
posed by Thomassen, and in Section 13 of the survey article [3] entitled “Beautiful
conjectures in graph theory". It challenges our understanding of the structure of a
graph. Since a 3-connected graph has minimum degree at least 3, Conjecture 1 is
implied by the following conjecture [5, p.6].

Conjecture 2 (Harvey, 2017) Every longest cycle in a 2-connected graph with mini-
mum degree at least 3 has a chord.
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We denote by V (G) the vertex set of a graph G, by E(G) the edge set of G, and
by NG(v) the neighborhood in G of a vertex v.

Definition.Let H be a subgraph of a graphG.Avertex v of H is said to be H -bound
if all the neighbors of v in G lie in H ; i.e., NG(v) ⊆ V (H).

A vertex of a path P is called an internal vertex if it is not an endpoint of P. For
two distinct vertices x and y, an (x, y)-path is a path whose endpoints are x and y.We
pose the following conjecture which implies Conjecture 2, and hence Conjecture 1.

Conjecture 3 Let G be a k-connected graph with k ≥ 2 and let x, y be two distinct
vertices of G. If P is a longest (x, y)-path in G, then P contains k − 1 internal
P-bound vertices.

A computer search shows that Conjecture 3 holds for all graphs of order at most
10, for cubic graphs of order at most 18, for 4-regular graphs of order at most 14, for
triangle-free graphs of order at most 12 and for C4-free graphs of order at most 13.

The case k = 2 of Conjecture 3 without the word “internal" (weaker version) has
the following form:

Conjecture 4 Let G be a 2-connected graph and let x, y be two distinct vertices of
G. If P is a longest (x, y)-path in G, then P contains a P-bound vertex.

Proof that Conjecture 4 implies Conjecture 2 Let C be a longest cycle in a 2-connected
graph G with minimum degree at least 3. Choose two consecutive vertices x, y on
C . Clearly x and y partition C into two paths, the longer of which we denote by
P = C[x, y]. Then P is a longest (x, y)-path in G. By Conjecture 4, P contains a
P-bound vertex v. Since v has degree at least 3, and all neighbors of v lie in C, it
follows that C has a chord that is incident to v. ��

Note that in the above proof we do not require that the P-bound vertex is an internal
vertex.

The following result shows that the conclusion in Conjecture 3 holds for longest
paths in the whole graph. We can even relax the connectivity condition to minimum
degree. This observation is due toGuantaoChen (Private communication in July 2023).

Theorem 5 If Q is a longest path in a graph of minimum degree d with d ≥ 2, then
Q contains d − 1 internal Q-bound vertices.

Proof Let Q = u1, u2, . . . , uk . Since Q is a longest path, u1 is Q-bound. Since the
minimum degree of the graph is d, u1 has d distinct neighbors u2, w1, . . . , wd−1
where w j = ui j . Denote f j = ui j−1, the predecessor of w j on Q. Clearly the d − 1
vertices f1, f2, . . . , fd−1 are internal vertices of Q. For every j with 1 ≤ j ≤ d − 1,
consider the path Q j = Q[ f j , u1] ∪ u1w j ∪ Q[w j , uk]. Then Q j is an ( f j , uk)-path
with the same vertex set V (Q) as Q. Thus every Q j is a longest path in the graph.
Consequently f j is Q j -bound. Since V (Q j ) = V (Q), f j is Q-bound.We have shown
that f1, f2, . . . , fd−1 are d − 1 internal Q-bound vertices. ��

Remark.Since the endpoints of a longest path P in a graph are P-bound, Theorem5
has the following corollary: If P is a longest path in a graph of minimum degree d
with d ≥ 1, then P contains d + 1 P-bound vertices.
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An independent set in a graph is a set of vertices no two of which are adjacent.
For a set S of vertices in a graph G, the subgraph induced by S, denoted G[S], is
the subgraph of G whose vertex set is S and whose edge set consists of all those
edges of G which have both endpoints in S. The following conjecture is equivalent to
Conjecture 4.

Conjecture 6 (The ST conjecture) Suppose that the vertex set of a graph G consists
of two disjoint sets S and T such that (1) G[S] is an (x, y)-path P and T is an
independent set; (2) every vertex in S has at least one neighbor in T ; (3) every vertex
in T has at least two neighbors in S. Then P is not a longest (x, y)-path in G.

Proof that Conjecture 6 is equivalent to Conjecture 4 Suppose that Conjecture 4 holds.
Let a graph G and an (x, y)-path P satisfy the three conditions in Conjecture 6. Then
G is connected.

Case 1. G is 2-connected. Since P has no P-bound vertex, by Conjecture 4 we
deduce that P is not a longest (x, y)-path in G.

Case 2. G has connectivity 1. Clearly any cut-vertex of G is an internal vertex
of P. On P from x to y, let z be the first cut-vertex of G. Denote P1 = P[x, z],
the subpath of P with endpoints x and z, and let S1 = V (P1). Let T1 be the subset
of T consisting of the vertices in T that have a neighbor in S1 \ {z}. Observe the
following facts: (1) T1 is nonempty, since NG(x) ∩ T ⊆ T1; (2) any vertex in T1 has
no neighbor in S \ S1; (3) z has a neighbor in T1, since otherwise z would not be the
first cut-vertex. Now the subgraph G1 = G[S1 ∪ T1] is 2-connected and satisfies the
three conditions in Conjecture 6 with S and T replaced by S1 and T1, respectively.
Since the (x, z)-path P1 has no P1-bound vertex, it is not a longest (x, z)-path in G1
by Conjecture 4. Hence, there exists an (x, z)-path Q in G1 longer than P1. Thus the
(x, y)-path Q ∪ P[z, y] is longer than P, implying that P is not a longest (x, y)-path
in G. This proves Conjecture 6.

Conversely, suppose Conjecture 6 holds. To prove Conjecture 4, let G be a 2-
connected graph, let x, y be two distinct vertices of G, and let P be a longest (x, y)-
path in G. We assert that P contains a P-bound vertex. To the contrary, assume that
P contains no P-bound vertex. Denote S = V (P) and let T be the set of components
of the graph G − V (P). We define a new graph H for which V (H) = S ∪ T and
E(H) = E(P) ∪ A where

A = {uC | u ∈ S, C ∈ T and u has a neighbor in C}.

Then H [S] = P and T is an independent set of H . The assumption that P contains
no P-bound vertex implies that every vertex in S has a neighbor in T . Since G is
2-connected, every vertex in T has at least two neighbors in S. By Conjecture 6, P is
not a longest (x, y)-path in H . Let W be an (x, y)-path in H that is longer than P.
Necessarily W contains at least one vertex in T . Let V (W )∩ T = {C1, . . . ,Ck}, and
let the two neighbors of Ci on W be ri and fi , i = 1, . . . , k. Then ri , fi ∈ V (G),

since T is an independent set in H . Viewing Ci as a connected subgraph of G, we see
that there is an (ri , fi )-path Li in G whose internal vertices lie in Ci . OnW replacing
riCi fi by Li for every i = 1, . . . , k, we obtain an (x, y)-path W ′ in G that is not
shorter than W . Hence W ′ is longer than P, contradicting the condition that P is
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a longest (x, y)-path in G. This shows that P contains a P-bound vertex, and thus
Conjecture 4 is proved. ��
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