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Abstract

A graph is called radially maximal if it is not complete and the addition of any new edge decreases its
radius. Harary and Thomassen [‘Anticritical graphs’, Math. Proc. Cambridge Philos. Soc. 79(1) (1976),
11–18] proved that the radius r and diameter d of any radially maximal graph satisfy r ≤ d ≤ 2r − 2.
Dutton et al. [‘Changing and unchanging of the radius of a graph’, Linear Algebra Appl. 217 (1995),
67–82] rediscovered this result with a different proof and conjectured that the converse is true, that is, if r

and d are positive integers satisfying r ≤ d ≤ 2r − 2, then there exists a radially maximal graph with radius
r and diameter d. We prove this conjecture and a little more.
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1. Introduction

We consider finite simple graphs. Denote by V(G) and E(G) the vertex set and edge
set of a graph G, respectively. The complement of G is denoted by G. The radius and
diameter of G are denoted by rad(G) and diam(G), respectively.

DEFINITION 1.1. A graph G is said to be radially maximal if it is not complete and

rad(G + e) < rad(G) for any e ∈ E(G).

Thus, a radially maximal graph is a noncomplete graph in which the addition of
any new edge decreases its radius. Since adding edges in a graph cannot increase its
radius, every graph is a spanning subgraph of some radially maximal graph with the
same radius. It is well known that the radius r and diameter d of a general graph satisfy
r ≤ d ≤ 2r [4, page 78]. In 1976, Harary and Thomassen [3, page 15] proved that the
radius r and diameter d of any radially maximal graph satisfy

r ≤ d ≤ 2r − 2. (1.1)
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In 1995, Dutton et al. [1, page 75] rediscovered this result with a different proof and
posed the conjecture that the converse is true, that is, if r and d are positive integers
satisfying (1.1), then there exists a radially maximal graph with radius r and diameter
d [1, page 76]. We prove this conjecture and a little more.

We denote by dG(u, v) the distance between two vertices u and v in a graph G. The
eccentricity, denoted by eG(v), of a vertex v in G is the distance to a vertex farthest
from v. The subscript G might be omitted if the graph is clear from the context. Thus,
e(v) = max{d(v, u) | u ∈ V(G)}. If e(v) = d(v, x), then the vertex x is called an eccentric

vertex of v. By definition the radius of a graph G is the minimum eccentricity of all
the vertices in V(G), whereas the diameter of G is the maximum eccentricity. A vertex
v is a central vertex of G if e(v) = rad(G). A graph G is said to be self-centred if
rad(G) = diam(G). Thus, self-centred graphs are those graphs in which every vertex is
a central vertex. We denote by NG(v) the neighbourhood of a vertex v in G. The order

of a graph is the number of its vertices. The symbol Ck denotes a cycle of order k.

2. Main results

We will need the following operation on a graph. The extension of a graph G at
a vertex v, denoted by G{v}, is the graph with V(G{v}) = V(G) ∪ {v′} and E(G{v}) =
E(G) ∪ {vv′} ∪ {v′x | vx ∈ E(G)}, where v′ < V(G). Clearly, if G is a connected graph
of order at least two, then eG{v}(u) = eG(u) for every u ∈ V(G) and eG{v}(v′) = eG{v}(v) =
eG(v). In particular, rad(G{v}) = rad(G) and diam(G{v}) = diam(G).

Gliviak et al. proved the following result.

LEMMA 2.1 ([2, Lemma 5]). Let G be a radially maximal graph. If v ∈ V(G) is not

an eccentric vertex of any central vertex of G, then the extension of G at v is radially

maximal.

Now we are ready to state and prove the main result.

THEOREM 2.2. Let r, d and n be positive integers. If r ≥ 2 and n ≥ 2r, then there exists

a self-centred radially maximal graph of radius r and order n. If r < d ≤ 2r − 2 and

n ≥ 3r − 1, then there exists a radially maximal graph of radius r, diameter d and

order n.

PROOF. We first treat the easier case of self-centred graphs. Suppose that r ≥ 2 and
n ≥ 2r. The even cycle C2r is a self-centred radially maximal graph of radius r and
order 2r. Let v be an arbitrary but fixed vertex of C2r. For n > 2r, by successively
performing extensions at the vertex v starting from C2r, we obtain a graph G(r, n) of
order n. The graph G(4, 11) is depicted in Figure 1.

Denote G(r, 2r) = C2r. Since G(r, n) has the same diameter and radius as C2r, it is
self-centred with radius r. Let xy be an edge of the complement of G(r, n). Denote by
S the set consisting of v and the vertices outside C2r. Then S is a clique. If one end
of xy, say x, lies in S, then y < N[v], the closed neighbourhood of v in G(r, n), and so
e(x) < r. Otherwise x, y ∈ V(C2r) \ S and we have e(x) < r and e(y) < r. In both cases,
rad(G(r, n) + xy) < rad(G(r, n)). Hence, G(r, n) is radially maximal.
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FIGURE 1. The graph G(4, 11).

FIGURE 2. The graph H(r, d, 3r − 1).

Next suppose that r < d ≤ 2r − 2 and n ≥ 3r − 1. We define a graph H =

H(r, d, 3r − 1) of order 3r − 1 as follows: V(H) = {x1, x2, . . . , x2r−1} ∪ {y1, y2, . . . , yr}

and

E(H) = {xixi+1 | i = 1, 2, . . . , 2r − 1} ∪ {x2r−1y1} ∪ {x2r−2j+2yj | j = 1, 2, . . . , 2r − d}

∪ {xd−r+1y2r−d+1} ∪ {ytyt+1 | t = 2r − d + 1, . . . , r − 1 if d ≥ r + 2},

where x2r = x1. That is, H is obtained from the odd cycle C2r−1 by attaching edges
and one path. The graph H is depicted in Figure 2 and the graphs H(6, d, 17) with
d = 7, 8, 9, 10 are depicted in Figure 3.

Clearly, H has radius r, diameter d and order 3r − 1. To see this, note that xd−r+1 is
a central vertex and eH(yr) = d.
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FIGURE 3. The graphs H(6, d, 17) with d = 7, 8, 9, 10.

Now we show that H is radially maximal. Let C be the cycle of length 2r − 1,
that is, C = x1x2 · · · x2r−1x1. We specify two orientations of C. Call the orientation
x1, x2, . . . , x2r−1, x1 clockwise and call the orientation x2r−1, x2r−2, . . . , x1, x2r−1 counter-

clockwise. For two vertices a, b ∈ V(C), we denote by
−→
C(a, b) the clockwise (a, b)-path

on C and by
←−
C(a, b) the counterclockwise (a, b)-path on C.

For uv ∈ E(H), denote T = H + uv. To show that rad(T) < r, it suffices to find a
vertex z such that eT (z) < r. Denote

A = V(C) = {x1, x2, . . . , x2r−1} and B = V(H) \ V(C) = {y1, y2, . . . , yr}.

We distinguish three cases.

Case 1. u, v ∈ A. Let u = xi and v = xj with i > j.

Since d − r + 1 ≤ 2r − 3, the vertex y2 is a leaf whose only neighbour is x2r−2. Note
that in H, the three vertices xr, xr−1 and xr−2 are central vertices, y1 is the unique
eccentric vertex of xr and y2 is the unique eccentric vertex of xr−1 and xr−2. If j ≥ r or

i ≤ r, then eT (xr) < r. For, in the former case
−→
C(xr, v) ∪ vu ∪

−→
C(u, x2r−1) ∪ x2r−1y1 is an

(xr, y1)-path of length less than r and, in the latter case,
←−
C(xr, u) ∪ uv ∪

←−
C(v, x1) ∪ x1y1

is an (xr, y1)-path of length less than r.
Next suppose that i > r > j. If |(i − r) − (r − j)| ≥ 2, then in T there is an (xr, y1)-path

of length less than r, which implies that eT (xr) < r. It remains to consider the case
|(i − r) − (r − j)| ≤ 1. If (i − r) − (r − j) = 0 or 1, then in T there is an (xr−1, y2)-path of
length less than r and hence eT (xr−1) < r. If (r − j) − (i − r) = 1, then in H there is an
(xr−2, y2)-path of length r − 1 and hence eT (xr−2) < r.

Case 2. u, v ∈ B. Let u = yi and v = yj with 1 ≤ i < j ≤ r.

Subcase 2.1. i = 1 and j ≤ 2r − d. In what follows, the subscript arithmetic for xk is
taken modulo 2r − 1. Vertex xr−2j+2 is a central vertex of H whose unique eccentric
vertex is yj. To see this, note that if r − 2j + 2 ≤ d − r + 1, then

dH(xr−2j+2, yr) ≤ d − r + 1 − (r − 2j + 2) + r − (2r − d) = 2d − 3r + 2j − 1 ≤ r − 1

since j ≤ 2r − d and, if r − 2j + 2 > d − r + 1, then

dH(xr−2j+2, yr) ≤ r − 2j + 2 − (d − r + 1) + r − (2r − d) = r − 2j + 1 ≤ r − 3

since j ≥ 2.
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If r − 2j + 2 ≥ 1, in T there is the (xr−2j+2, yj)-path
←−
C(xr−2j+2, x1) ∪ x1y1 ∪ y1yj.

Hence, dT (xr−2j+2, yj) ≤ r − 2j + 2 − 1 + 2 = r − 2j + 3 ≤ r − 1 since j ≥ 2, implying

that eT (xr−2j+2) < r. If r − 2j + 2 ≤ 0, there is the path
−→
C(xr−2j+2, x2r−1) ∪ x2r−1y1 ∪ y1y2

in T . Hence, dT (xr−2j+2, yj) ≤ 0 − (r − 2j + 2) + 2 = 2j − r ≤ r − 2 since j ≤ 2r − d and
d ≥ r + 1, implying that eT (xr−2j+2) < r.

Subcase 2.2. i = 1 and 2r − d + 1 ≤ j ≤ r. First suppose that j = r. Observe
that x2d−3r+1 is a central vertex of H whose unique eccentric vertex is yr.
Also, the condition d ≤ 2r − 2 implies that 2d − 3r + 1 < d − r + 1. On the other
hand, if 2d − 3r + 1 ≥ 1, then dT (x2d−3r+1, yr) ≤ 2d − 3r + 1 − 1 + 2 ≤ r − 2. If
2d − 3r + 1 ≤ 0, then dT (x2d−3r+1, yr)≤ 0 − (2d − 3r + 1) + 2 ≤ r − 1, where we have
used the fact that d ≥ r + 1. Hence, eT (x2d−3r+1) < r.

Next suppose that 2r − d + 1 ≤ j ≤ r − 1. Observe that xr is a central vertex of H

whose unique eccentric vertex is y1. Note also that r > d − r + 1. Now in T there is the

(xr, y1)-path
←−
C(xr, xd−r+1) ∪ xd−r+1y2r−d+1 . . . yj ∪ yjy1. Hence,

dT (xr, y1) ≤ r − (d − r + 1) + j − (2r − d) + 1 = j ≤ r − 1,

implying that eT (xr) < r.

Subcase 2.3. i ≥ 2 and j ≤ 2r − d. First suppose 2(j − i) ≤ r − 1. Then 2r − 2j + 2 ≥
r − 2i + 3. Clearly, x2r−2j+2 is the unique neighbour of yj in H. By considering the
two possible cases r − 2i + 3 ≤ d − r + 1 and r − 2i + 3 > d − r + 1, it is easy to
verify that xr−2i+3 is a central vertex of H whose unique eccentric vertex is yi. In

T there is the (xr−2i+3, yi)-path
−→
C(xr−2i+3, x2r−2j+2) ∪ x2r−2j+2yj ∪ yjyi. It follows that

dT (xr−2i+3, yi) ≤ 2r − 2j + 2 − (r − 2i + 3) + 1 + 1 = r − 2(j − i) + 1 ≤ r − 1, implying
that eT (xr−2i+3) < r.

Next suppose that 2(j − i) ≥ r. Then r − 2i + 2 ≥ 2r − 2j + 2. Observe that xr−2i+2 is
a central vertex of H whose unique eccentric vertex is yi. Also, j − i ≤ 2r − d − 2. As
before,

dT (xr−2i+2, yi) ≤ r − 2i + 2 − (2r − 2j + 2) + 1 + 1

= 2 − r + 2(j − i) ≤ 2 − r + 2(2r − d − 2) ≤ r − 2,

implying that eT (xr−2i+2) < r.

Subcase 2.4. 2 ≤ i ≤ 2r − d and 2r − d + 1 ≤ j ≤ r. First suppose that 2r + 2 ≤ 2i + d.
Then d − r + 1 ≥ r − 2i + 3. Note that xr−2i+3 is a central vertex of H whose unique

eccentric vertex is yi. Thus,
−→
C(xr−2i+3, xd−r+1) ∪ xd−r+1y2r−d+1 . . . yj ∪ yjyi. is an

(xr−2i+3, yi)-path in T and

dT (xr−2i+3, yi) ≤ d − r + 1 − (r − 2i + 3) + j − (2r − d) + 1

≤ d − r + 1 − (r − 2i + 3) + r − (2r − d) + 1

= 2d − 3r + 2i − 1 ≤ r − 1,

implying that eT (xr−2i+3) < r.
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Next suppose that 2r + 2 ≥ 2i + d + 1. Then r − 2i + 2 ≥ d − r + 1. Observe that
xr−2i+2 is a central vertex of H whose unique eccentric vertex is yi. As before,

dT (xr−2i+2, yi) ≤ r − 2i + 2 − (d − r + 1) + j − (2r − d) + 1

≤ r − 2i + 2 − (d − r + 1) + r − (2r − d) + 1

= r − 2i + 2 ≤ r − 2,

implying that eT (xr−2i+2) < r.

Subcase 2.5. 2r − d + 1 ≤ i < j ≤ r. Observe that xr+1 is a central vertex of H whose
unique eccentric vertex is yr. Clearly, eT (xr+1) < r.

Case 3. u ∈ A and v ∈ B. Let u = xi and v = yj.

Observe that xr is a central vertex of H whose unique eccentric vertex is y1. If
j = 1, then eT (xr) < r. Now suppose that 2 ≤ j ≤ 2r − d. Then both xr−2j+2 and xr−2j+3

are central vertices of H whose unique eccentric vertex is yj. If u lies on the path
−→
C(x2r−2j+2, xr−2j+2), then eT (xr−2j+2) < r; if u lies on the path

←−
C(x2r−2j+2, xr−2j+3), then

eT (xr−2j+3) < r.
Finally, suppose that 2r − d + 1 ≤ j ≤ r. We have 2d − 3r + 1 < d − r + 1 < r + 1.

Observe that both xr+1 and x2d−3r+1 are central vertices of H whose unique eccentric
vertex is yr. If 2d − 3r + 1 ≤ i ≤ d − r + 1, then dT (x2d−3r+1, yr) ≤ r − 1 and hence
eT (x2d−3r+1) < r. Similarly, if d − r + 2 ≤ i ≤ r + 1, then eT (xr+1) < r.

It remains to consider the case when u = xi lies on the path
−→
C(xr+2, x2d−3r). We

assert that eT (u) < r. First note that if w ∈ {y2r−d+1, y2r−d+2, . . . , yr}, then dT (xi, w) ≤
d − r ≤ r − 2. Also, if w ∈ V(C), we have dT (xi, w) ≤ r − 1 since diam(C) = r − 1.
Next suppose that w = ys with 1 ≤ s ≤ 2r − d. Let xk and xk+1 be the two vertices on

C with dC(xi, xk) = dC(xi, xk+1) = r − 1. Since xi lies on the path
−→
C(xr+2, x2d−3r), we

have k ≥ 2 and k + 1 ≤ 2d − 2r < 2(d − r + 1). It follows that dH(xi, w) ≤ r − 1 since
NH(y1) = {x2r−1, x1} and NH(y2r−d) = {x2(d−r+1)}. This completes the proof that H is
radially maximal.

Note that by the two inequalities in (1.1), any non-self-centred radially maximal
graph has radius at least three. Obviously, the vertex x2r−2 is not an eccentric vertex of
any vertex in H. Hence, by Lemma 2.1, the extension of H at x2r−2, denoted H3r, is
radially maximal. Also, H3r has the same diameter and radius as H and has order 3r.
Again, the vertex x2r−2 is not an eccentric vertex of any vertex in H3r. For any
n > 3r − 1, performing extensions at the vertex x2r−2 successively, starting from H,
we can obtain a radially maximal graph of radius r, diameter d and order n. This
completes the proof. �

Combining restriction (1.1) on the diameter and radius of a radially maximal graph
and Theorem 2.2, we obtain the following corollary.

COROLLARY 2.3. There exists a radially maximal graph of radius r and diameter d if

and only if r ≤ d ≤ 2r − 2.
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3. Final remarks

Since any graph with radius r has order at least 2r, Theorem 2.2 covers all the
possible orders of self-centred radially maximal graphs.

Gliviak et al. [2, page 283] conjectured that the minimum order of a
non-self-centred radially maximal graph of radius r is 3r − 1. This conjecture is
known to be true for the first three values of r; that is, r = 3, 4, 5 [2, page 283], but it is
still open in general. If this conjecture is true, then Theorem 2.2 covers all the possible
orders of radially maximal graphs with a given radius.

References

[1] R. D. Dutton, S. R. Medidi and R. C. Brigham, ‘Changing and unchanging of the radius of a graph’,
Linear Algebra Appl. 217 (1995), 67–82.

[2] F. Gliviak, M. Knor and L. Šoltés, ‘On radially maximal graphs’, Australas. J. Combin. 9 (1994),
275–284.

[3] F. Harary and C. Thomassen, ‘Anticritical graphs’, Math. Proc. Cambridge Philos. Soc. 79(1) (1976),
11–18.

[4] D. B. West, Introduction to Graph Theory (Prentice Hall, Upper Saddle River, NJ, 1996).

PU QIAO, Department of Mathematics,
East China University of Science and Technology,
Shanghai 200237, China
e-mail: pq@ecust.edu.cn

XINGZHI ZHAN, Department of Mathematics,
East China Normal University, Shanghai 200241, China
e-mail: zhan@math.ecnu.edu.cn

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972720001471
Downloaded from https://www.cambridge.org/core. East China Normal University, on 17 Dec 2021 at 01:18:31, subject to the Cambridge Core terms of use, available at

mailto:pq@ecust.edu.cn
mailto:zhan@math.ecnu.edu.cn
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0004972720001471
https://www.cambridge.org/core

	1 Introduction
	2 Main results
	3 Final remarks

