THE DIAMETER AND RADIUS OF RADIALLY MAXIMAL GRAPHS

PU QIAO and XINGZHI ZHAN[®]

(Received 18 November 2020; accepted 22 November 2020; first published online 11 January 2021)

Abstract

A graph is called radially maximal if it is not complete and the addition of any new edge decreases its radius. Harary and Thomassen ['Anticritical graphs', *Math. Proc. Cambridge Philos. Soc.* **79**(1) (1976), 11–18] proved that the radius r and diameter d of any radially maximal graph satisfy $r \le d \le 2r - 2$. Dutton *et al.* ['Changing and unchanging of the radius of a graph', *Linear Algebra Appl.* **217** (1995), 67–82] rediscovered this result with a different proof and conjectured that the converse is true, that is, if r and d are positive integers satisfying $r \le d \le 2r - 2$, then there exists a radially maximal graph with radius r and diameter d. We prove this conjecture and a little more.

2020 Mathematics subject classification: primary 05C12; secondary 05C35.

Keywords and phrases: diameter, eccentricity, radially maximal graph, radius.

1. Introduction

We consider finite simple graphs. Denote by V(G) and E(G) the vertex set and edge set of a graph G, respectively. The complement of G is denoted by \overline{G} . The radius and diameter of G are denoted by $\operatorname{rad}(G)$ and $\operatorname{diam}(G)$, respectively.

DEFINITION 1.1. A graph G is said to be *radially maximal* if it is not complete and

$$rad(G + e) < rad(G)$$
 for any $e \in E(\overline{G})$.

Thus, a radially maximal graph is a noncomplete graph in which the addition of any new edge decreases its radius. Since adding edges in a graph cannot increase its radius, every graph is a spanning subgraph of some radially maximal graph with the same radius. It is well known that the radius r and diameter d of a general graph satisfy $r \le d \le 2r$ [4, page 78]. In 1976, Harary and Thomassen [3, page 15] proved that the radius r and diameter d of any radially maximal graph satisfy

$$r \le d \le 2r - 2. \tag{1.1}$$

This research was supported by the NSFC grants 11671148 and 11771148 and the Science and Technology Commission of Shanghai Municipality (STCSM) grant 18dz2271000.

^{© 2021} Australian Mathematical Publishing Association Inc.

In 1995, Dutton *et al.* [1, page 75] rediscovered this result with a different proof and posed the conjecture that the converse is true, that is, if r and d are positive integers satisfying (1.1), then there exists a radially maximal graph with radius r and diameter d [1, page 76]. We prove this conjecture and a little more.

We denote by $d_G(u, v)$ the distance between two vertices u and v in a graph G. The eccentricity, denoted by $e_G(v)$, of a vertex v in G is the distance to a vertex farthest from v. The subscript G might be omitted if the graph is clear from the context. Thus, $e(v) = \max\{d(v, u) \mid u \in V(G)\}$. If e(v) = d(v, x), then the vertex x is called an eccentric vertex of v. By definition the radius of a graph G is the minimum eccentricity of all the vertices in V(G), whereas the diameter of G is the maximum eccentricity. A vertex v is a central vertex of G if $e(v) = \operatorname{rad}(G)$. A graph G is said to be self-centred if $\operatorname{rad}(G) = \operatorname{diam}(G)$. Thus, self-centred graphs are those graphs in which every vertex is a central vertex. We denote by $N_G(v)$ the neighbourhood of a vertex v in G. The order of a graph is the number of its vertices. The symbol C_k denotes a cycle of order k.

2. Main results

We will need the following operation on a graph. The *extension* of a graph G at a vertex v, denoted by $G\{v\}$, is the graph with $V(G\{v\}) = V(G) \cup \{v'\}$ and $E(G\{v\}) = E(G) \cup \{vv'\} \cup \{v'x \mid vx \in E(G)\}$, where $v' \notin V(G)$. Clearly, if G is a connected graph of order at least two, then $e_{G\{v\}}(u) = e_G(u)$ for every $u \in V(G)$ and $e_{G\{v\}}(v') = e_{G\{v\}}(v) = e_{G(V)}(v)$. In particular, $\operatorname{rad}(G\{v\}) = \operatorname{rad}(G)$ and $\operatorname{diam}(G\{v\}) = \operatorname{diam}(G)$.

Gliviak et al. proved the following result.

LEMMA 2.1 ([2, Lemma 5]). Let G be a radially maximal graph. If $v \in V(G)$ is not an eccentric vertex of any central vertex of G, then the extension of G at v is radially maximal.

Now we are ready to state and prove the main result.

THEOREM 2.2. Let r, d and n be positive integers. If $r \ge 2$ and $n \ge 2r$, then there exists a self-centred radially maximal graph of radius r and order n. If $r < d \le 2r - 2$ and $n \ge 3r - 1$, then there exists a radially maximal graph of radius r, diameter d and order n.

PROOF. We first treat the easier case of self-centred graphs. Suppose that $r \ge 2$ and $n \ge 2r$. The even cycle C_{2r} is a self-centred radially maximal graph of radius r and order 2r. Let v be an arbitrary but fixed vertex of C_{2r} . For n > 2r, by successively performing extensions at the vertex v starting from C_{2r} , we obtain a graph G(r,n) of order n. The graph G(4, 11) is depicted in Figure 1.

Denote $G(r, 2r) = C_{2r}$. Since G(r, n) has the same diameter and radius as C_{2r} , it is self-centred with radius r. Let xy be an edge of the complement of G(r, n). Denote by S the set consisting of v and the vertices outside C_{2r} . Then S is a clique. If one end of xy, say x, lies in S, then $y \notin N[v]$, the closed neighbourhood of v in G(r, n), and so e(x) < r. Otherwise $x, y \in V(C_{2r}) \setminus S$ and we have e(x) < r and e(y) < r. In both cases, rad(G(r, n) + xy) < rad(G(r, n)). Hence, G(r, n) is radially maximal.

FIGURE 1. The graph G(4, 11).

FIGURE 2. The graph H(r, d, 3r - 1).

Next suppose that $r < d \le 2r - 2$ and $n \ge 3r - 1$. We define a graph H = H(r, d, 3r - 1) of order 3r - 1 as follows: $V(H) = \{x_1, x_2, ..., x_{2r-1}\} \cup \{y_1, y_2, ..., y_r\}$ and

$$E(H) = \{x_i x_{i+1} \mid i = 1, 2, \dots, 2r - 1\} \cup \{x_{2r-1} y_1\} \cup \{x_{2r-2j+2} y_j \mid j = 1, 2, \dots, 2r - d\}$$
$$\cup \{x_{d-r+1} y_{2r-d+1}\} \cup \{y_t y_{t+1} \mid t = 2r - d + 1, \dots, r - 1 \text{ if } d \ge r + 2\},$$

where $x_{2r} = x_1$. That is, H is obtained from the odd cycle C_{2r-1} by attaching edges and one path. The graph H is depicted in Figure 2 and the graphs H(6, d, 17) with d = 7, 8, 9, 10 are depicted in Figure 3.

Clearly, H has radius r, diameter d and order 3r - 1. To see this, note that x_{d-r+1} is a central vertex and $e_H(y_r) = d$.

199

FIGURE 3. The graphs H(6, d, 17) with d = 7, 8, 9, 10.

Now we show that H is radially maximal. Let C be the cycle of length 2r-1, that is, $C = x_1x_2 \cdots x_{2r-1}x_1$. We specify two orientations of C. Call the orientation $x_1, x_2, \ldots, x_{2r-1}, x_1$ clockwise and call the orientation $x_{2r-1}, x_{2r-2}, \ldots, x_1, x_{2r-1}$ counterclockwise. For two vertices $a, b \in V(C)$, we denote by C(a, b) the clockwise (a, b)-path on C and by C(a, b) the counterclockwise (a, b)-path on C.

For $uv \in E(\overline{H})$, denote T = H + uv. To show that rad(T) < r, it suffices to find a vertex z such that $e_T(z) < r$. Denote

$$A = V(C) = \{x_1, x_2, \dots, x_{2r-1}\}$$
 and $B = V(H) \setminus V(C) = \{y_1, y_2, \dots, y_r\}.$

We distinguish three cases.

[4]

Case 1. $u, v \in A$. Let $u = x_i$ and $v = x_i$ with i > j.

Since $d-r+1 \le 2r-3$, the vertex y_2 is a leaf whose only neighbour is x_{2r-2} . Note that in H, the three vertices x_r , x_{r-1} and x_{r-2} are central vertices, y_1 is the unique eccentric vertex of x_r and y_2 is the unique eccentric vertex of x_{r-1} and x_{r-2} . If $j \ge r$ or $i \le r$, then $e_T(x_r) < r$. For, in the former case $\overrightarrow{C}(x_r, v) \cup vu \cup \overrightarrow{C}(u, x_{2r-1}) \cup x_{2r-1}y_1$ is an (x_r, y_1) -path of length less than r and, in the latter case, $\overleftarrow{C}(x_r, u) \cup uv \cup \overleftarrow{C}(v, x_1) \cup x_1y_1$ is an (x_r, y_1) -path of length less than r.

Next suppose that i > r > j. If $|(i-r) - (r-j)| \ge 2$, then in T there is an (x_r, y_1) -path of length less than r, which implies that $e_T(x_r) < r$. It remains to consider the case $|(i-r) - (r-j)| \le 1$. If (i-r) - (r-j) = 0 or 1, then in T there is an (x_{r-1}, y_2) -path of length less than r and hence $e_T(x_{r-1}) < r$. If (r-j) - (i-r) = 1, then in H there is an (x_{r-2}, y_2) -path of length r-1 and hence $e_T(x_{r-2}) < r$.

Case 2. $u, v \in B$. Let $u = y_i$ and $v = y_i$ with $1 \le i < j \le r$.

Subcase 2.1. i = 1 and $j \le 2r - d$. In what follows, the subscript arithmetic for x_k is taken modulo 2r - 1. Vertex x_{r-2j+2} is a central vertex of H whose unique eccentric vertex is y_i . To see this, note that if $r - 2j + 2 \le d - r + 1$, then

$$d_H(x_{r-2j+2}, y_r) \le d - r + 1 - (r - 2j + 2) + r - (2r - d) = 2d - 3r + 2j - 1 \le r - 1$$

since $j \le 2r - d$ and, if $r - 2j + 2 > d - r + 1$, then

$$d_H(x_{r-2j+2}, y_r) \le r - 2j + 2 - (d - r + 1) + r - (2r - d) = r - 2j + 1 \le r - 3$$

since $j \ge 2$.

If $r-2j+2 \ge 1$, in T there is the (x_{r-2j+2}, y_j) -path $\overleftarrow{C}(x_{r-2j+2}, x_1) \cup x_1y_1 \cup y_1y_j$. Hence, $d_T(x_{r-2j+2}, y_j) \le r-2j+2-1+2=r-2j+3 \le r-1$ since $j \ge 2$, implying that $e_T(x_{r-2j+2}) < r$. If $r-2j+2 \le 0$, there is the path $\overrightarrow{C}(x_{r-2j+2}, x_{2r-1}) \cup x_{2r-1}y_1 \cup y_1y_2$ in T. Hence, $d_T(x_{r-2j+2}, y_j) \le 0-(r-2j+2)+2=2j-r \le r-2$ since $j \le 2r-d$ and $d \ge r+1$, implying that $e_T(x_{r-2j+2}) < r$.

Subcase 2.2. i=1 and $2r-d+1 \le j \le r$. First suppose that j=r. Observe that $x_{2d-3r+1}$ is a central vertex of H whose unique eccentric vertex is y_r . Also, the condition $d \le 2r-2$ implies that 2d-3r+1 < d-r+1. On the other hand, if $2d-3r+1 \ge 1$, then $d_T(x_{2d-3r+1},y_r) \le 2d-3r+1-1+2 \le r-2$. If $2d-3r+1 \le 0$, then $d_T(x_{2d-3r+1},y_r) \le 0-(2d-3r+1)+2 \le r-1$, where we have used the fact that $d \ge r+1$. Hence, $e_T(x_{2d-3r+1}) < r$.

Next suppose that $2r - d + 1 \le j \le r - 1$. Observe that x_r is a central vertex of H whose unique eccentric vertex is y_1 . Note also that r > d - r + 1. Now in T there is the (x_r, y_1) -path $C(x_r, x_{d-r+1}) \cup x_{d-r+1}y_{2r-d+1} \dots y_j \cup y_jy_1$. Hence,

$$d_T(x_r, y_1) \le r - (d - r + 1) + j - (2r - d) + 1 = j \le r - 1,$$

implying that $e_T(x_r) < r$.

Subcase 2.3. $i \ge 2$ and $j \le 2r - d$. First suppose $2(j-i) \le r-1$. Then $2r-2j+2 \ge r-2i+3$. Clearly, $x_{2r-2j+2}$ is the unique neighbour of y_j in H. By considering the two possible cases $r-2i+3 \le d-r+1$ and r-2i+3 > d-r+1, it is easy to verify that x_{r-2i+3} is a central vertex of H whose unique eccentric vertex is y_i . In T there is the (x_{r-2i+3},y_i) -path $\overrightarrow{C}(x_{r-2i+3},x_{2r-2j+2}) \cup x_{2r-2j+2}y_j \cup y_jy_i$. It follows that $d_T(x_{r-2i+3},y_i) \le 2r-2j+2-(r-2i+3)+1+1=r-2(j-i)+1 \le r-1$, implying that $e_T(x_{r-2i+3}) < r$.

Next suppose that $2(j-i) \ge r$. Then $r-2i+2 \ge 2r-2j+2$. Observe that x_{r-2i+2} is a central vertex of H whose unique eccentric vertex is y_i . Also, $j-i \le 2r-d-2$. As before,

$$d_T(x_{r-2i+2}, y_i) \le r - 2i + 2 - (2r - 2j + 2) + 1 + 1$$

= $2 - r + 2(j - i) \le 2 - r + 2(2r - d - 2) \le r - 2$,

implying that $e_T(x_{r-2i+2}) < r$.

Subcase 2.4. $2 \le i \le 2r - d$ and $2r - d + 1 \le j \le r$. First suppose that $2r + 2 \le 2i + d$. Then $d - r + 1 \ge r - 2i + 3$. Note that x_{r-2i+3} is a central vertex of H whose unique eccentric vertex is y_i . Thus, $\overrightarrow{C}(x_{r-2i+3}, x_{d-r+1}) \cup x_{d-r+1}y_{2r-d+1} \dots y_j \cup y_jy_i$. is an (x_{r-2i+3}, y_i) -path in T and

$$d_T(x_{r-2i+3}, y_i) \le d - r + 1 - (r - 2i + 3) + j - (2r - d) + 1$$

$$\le d - r + 1 - (r - 2i + 3) + r - (2r - d) + 1$$

$$= 2d - 3r + 2i - 1 < r - 1.$$

implying that $e_T(x_{r-2i+3}) < r$.

Next suppose that $2r + 2 \ge 2i + d + 1$. Then $r - 2i + 2 \ge d - r + 1$. Observe that x_{r-2i+2} is a central vertex of H whose unique eccentric vertex is y_i . As before,

$$d_T(x_{r-2i+2}, y_i) \le r - 2i + 2 - (d - r + 1) + j - (2r - d) + 1$$

$$\le r - 2i + 2 - (d - r + 1) + r - (2r - d) + 1$$

$$= r - 2i + 2 \le r - 2,$$

implying that $e_T(x_{r-2i+2}) < r$.

Subcase 2.5. $2r - d + 1 \le i < j \le r$. Observe that x_{r+1} is a central vertex of H whose unique eccentric vertex is y_r . Clearly, $e_T(x_{r+1}) < r$.

Case 3. $u \in A$ and $v \in B$. Let $u = x_i$ and $v = y_i$.

Observe that x_r is a central vertex of H whose unique eccentric vertex is y_1 . If j=1, then $e_T(x_r) < r$. Now suppose that $2 \le j \le 2r - d$. Then both x_{r-2j+2} and x_{r-2j+3} are central vertices of H whose unique eccentric vertex is y_j . If u lies on the path $\overrightarrow{C}(x_{2r-2j+2}, x_{r-2j+2})$, then $e_T(x_{r-2j+2}) < r$; if u lies on the path $C(x_{2r-2j+2}, x_{r-2j+3}) < r$.

Finally, suppose that $2r - d + 1 \le j \le r$. We have 2d - 3r + 1 < d - r + 1 < r + 1. Observe that both x_{r+1} and $x_{2d-3r+1}$ are central vertices of H whose unique eccentric vertex is y_r . If $2d - 3r + 1 \le i \le d - r + 1$, then $d_T(x_{2d-3r+1}, y_r) \le r - 1$ and hence $e_T(x_{2d-3r+1}) < r$. Similarly, if $d - r + 2 \le i \le r + 1$, then $e_T(x_{r+1}) < r$.

It remains to consider the case when $u=x_i$ lies on the path $\overrightarrow{C}(x_{r+2},x_{2d-3r})$. We assert that $e_T(u) < r$. First note that if $w \in \{y_{2r-d+1},y_{2r-d+2},\ldots,y_r\}$, then $d_T(x_i,w) \le d-r \le r-2$. Also, if $w \in V(C)$, we have $d_T(x_i,w) \le r-1$ since $\operatorname{diam}(C)=r-1$. Next suppose that $w=y_s$ with $1 \le s \le 2r-d$. Let x_k and x_{k+1} be the two vertices on C with $d_C(x_i,x_k)=d_C(x_i,x_{k+1})=r-1$. Since x_i lies on the path $\overrightarrow{C}(x_{r+2},x_{2d-3r})$, we have $k \ge 2$ and $k+1 \le 2d-2r < 2(d-r+1)$. It follows that $d_H(x_i,w) \le r-1$ since $N_H(y_1)=\{x_{2r-1},x_1\}$ and $N_H(y_{2r-d})=\{x_{2(d-r+1)}\}$. This completes the proof that H is radially maximal.

Note that by the two inequalities in (1.1), any non-self-centred radially maximal graph has radius at least three. Obviously, the vertex x_{2r-2} is not an eccentric vertex of any vertex in H. Hence, by Lemma 2.1, the extension of H at x_{2r-2} , denoted H_{3r} , is radially maximal. Also, H_{3r} has the same diameter and radius as H and has order 3r. Again, the vertex x_{2r-2} is not an eccentric vertex of any vertex in H_{3r} . For any n > 3r - 1, performing extensions at the vertex x_{2r-2} successively, starting from H, we can obtain a radially maximal graph of radius r, diameter d and order n. This completes the proof.

Combining restriction (1.1) on the diameter and radius of a radially maximal graph and Theorem 2.2, we obtain the following corollary.

COROLLARY 2.3. There exists a radially maximal graph of radius r and diameter d if and only if $r \le d \le 2r - 2$.

3. Final remarks

Since any graph with radius r has order at least 2r, Theorem 2.2 covers all the possible orders of self-centred radially maximal graphs.

Gliviak *et al.* [2, page 283] conjectured that the minimum order of a non-self-centred radially maximal graph of radius r is 3r - 1. This conjecture is known to be true for the first three values of r; that is, r = 3, 4, 5 [2, page 283], but it is still open in general. If this conjecture is true, then Theorem 2.2 covers all the possible orders of radially maximal graphs with a given radius.

References

- R. D. Dutton, S. R. Medidi and R. C. Brigham, 'Changing and unchanging of the radius of a graph', Linear Algebra Appl. 217 (1995), 67–82.
- [2] F. Gliviak, M. Knor and L. Šoltés, 'On radially maximal graphs', Australas. J. Combin. 9 (1994), 275–284.
- [3] F. Harary and C. Thomassen, 'Anticritical graphs', *Math. Proc. Cambridge Philos. Soc.* **79**(1) (1976), 11–18.
- [4] D. B. West, Introduction to Graph Theory (Prentice Hall, Upper Saddle River, NJ, 1996).

PU QIAO, Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China e-mail: pq@ecust.edu.cn

XINGZHI ZHAN, Department of Mathematics, East China Normal University, Shanghai 200241, China e-mail: zhan@math.ecnu.edu.cn