Bull. Aust. Math. Soc. 104 (2021), 196-202
doi:10.1017/S0004972720001471

THE DIAMETER AND RADIUS OF RADIALLY
MAXIMAL GRAPHS

PU QIAO and XINGZHI ZHAN®™

(Received 18 November 2020; accepted 22 November 2020; first published online 11 January 2021)

Abstract

A graph is called radially maximal if it is not complete and the addition of any new edge decreases its
radius. Harary and Thomassen [‘Anticritical graphs’, Math. Proc. Cambridge Philos. Soc. 79(1) (1976),
11-18] proved that the radius » and diameter d of any radially maximal graph satisfy r <d <2r —2.
Dutton et al. [‘Changing and unchanging of the radius of a graph’, Linear Algebra Appl. 217 (1995),
67-82] rediscovered this result with a different proof and conjectured that the converse is true, that is, if r
and d are positive integers satisfying r < d < 2r — 2, then there exists a radially maximal graph with radius
r and diameter d. We prove this conjecture and a little more.
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1. Introduction

We consider finite simple graphs. Denote by V(G) and E(G) the vertex set and edge
set of a graph G, respectively. The complement of G is denoted by G. The radius and
diameter of G are denoted by rad(G) and diam(G), respectively.

DEFINITION 1.1. A graph G is said to be radially maximal if it is not complete and
rad(G + e) < rad(G) foranye € EG).

Thus, a radially maximal graph is a noncomplete graph in which the addition of
any new edge decreases its radius. Since adding edges in a graph cannot increase its
radius, every graph is a spanning subgraph of some radially maximal graph with the
same radius. It is well known that the radius r and diameter d of a general graph satisfy
r <d < 2r [4, page 78]. In 1976, Harary and Thomassen [3, page 15] proved that the
radius r and diameter d of any radially maximal graph satisfy

r<d<2r-2. (1.1)
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In 1995, Dutton et al. [1, page 75] rediscovered this result with a different proof and
posed the conjecture that the converse is true, that is, if » and d are positive integers
satisfying (1.1), then there exists a radially maximal graph with radius r and diameter
d [1, page 76]. We prove this conjecture and a little more.

We denote by dg(u, v) the distance between two vertices u and v in a graph G. The
eccentricity, denoted by eg(v), of a vertex v in G is the distance to a vertex farthest
from v. The subscript G might be omitted if the graph is clear from the context. Thus,
e(v) = max{d(v,u) | u € V(G)}. If e(v) = d(v, x), then the vertex x is called an eccentric
vertex of v. By definition the radius of a graph G is the minimum eccentricity of all
the vertices in V(G), whereas the diameter of G is the maximum eccentricity. A vertex
v is a central vertex of G if e(v) = rad(G). A graph G is said to be self-centred if
rad(G) = diam(G). Thus, self-centred graphs are those graphs in which every vertex is
a central vertex. We denote by Ng(v) the neighbourhood of a vertex v in G. The order
of a graph is the number of its vertices. The symbol Cj denotes a cycle of order k.

2. Main results

We will need the following operation on a graph. The extension of a graph G at
a vertex v, denoted by G{v}, is the graph with V(G{v}) = V(G) U {v'} and E(G{v}) =
EG)U W} U Vx| vx € E(G)}, where v ¢ V(G). Clearly, if G is a connected graph
of order at least two, then egy, () = eg(u) for every u € V(G) and egp,) (V') = egpy(v) =
eg(v). In particular, rad(G{v}) = rad(G) and diam(G{v}) = diam(G).

Gliviak et al. proved the following result.

LEMMA 2.1 ([2, Lemma 5]). Let G be a radially maximal graph. If v € V(G) is not
an eccentric vertex of any central vertex of G, then the extension of G at v is radially
maximal.

Now we are ready to state and prove the main result.

THEOREM 2.2. Let r,d and n be positive integers. If r > 2 and n > 2r, then there exists
a self-centred radially maximal graph of radius r and order n. If r < d < 2r — 2 and
n > 3r — 1, then there exists a radially maximal graph of radius r, diameter d and
order n.

PROOF. We first treat the easier case of self-centred graphs. Suppose that r > 2 and
n > 2r. The even cycle C,, is a self-centred radially maximal graph of radius r and
order 2r. Let v be an arbitrary but fixed vertex of C,,. For n > 2r, by successively
performing extensions at the vertex v starting from C,,, we obtain a graph G(r, n) of
order n. The graph G(4, 11) is depicted in Figure 1.

Denote G(r,2r) = C,,. Since G(r, n) has the same diameter and radius as C,,, it is
self-centred with radius r. Let xy be an edge of the complement of G(r, n). Denote by
S the set consisting of v and the vertices outside C,. Then S is a clique. If one end
of xy, say x, lies in S, then y ¢ N[v], the closed neighbourhood of v in G(r, n), and so
e(x) < r. Otherwise x,y € V(Cy,) \ S and we have e(x) < r and e(y) < r. In both cases,
rad(G(r, n) + xy) < rad(G(r, n)). Hence, G(r, n) is radially maximal.
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FIGURE 1. The graph G(4, 11).
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FIGURE 2. The graph H(r,d,3r - 1).

Next suppose that r <d <2r—2 and n>3r—1. We define a graph H =
H(r,d,3r — 1) of order 3r — 1 as follows: V(H) = {x1,x2,..., X1} U{y1, Y2, ..., ¥}
and

EH) ={xixip1 [i=1,2,...,2r = 1} U {xo,1y1} U dxoroji2yi |/ = 1,2,..., 2r — d}
U {xg—rs1Yor—as ) Uy 1t =2r—d+1,...,r=1 if d > r+2},

where xp, = x;. That is, H is obtained from the odd cycle C,,_; by attaching edges
and one path. The graph H is depicted in Figure 2 and the graphs H(6,d, 17) with
d=17,8,9, 10 are depicted in Figure 3.

Clearly, H has radius r, diameter d and order 3r — 1. To see this, note that x;_,; is
a central vertex and ey(y,) = d.
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FIGURE 3. The graphs H(6,d, 17) withd = 7,8, 9, 10.

Now we show that H is radially maximal. Let C be the cycle of length 2r — 1,
that is, C = xjxp - - - x3,_1X1. We specify two orientations of C. Call the orientation
X1,X2, . ..,X2,_1,X1 clockwise and call the orientation x»,_1, X2,_2, . . . , X1, X2,_1 counter-

clockwise. For two vertices a, b € V(C), we denote by B(a, b) the clockwise (a, b)-path
h

on C and by C(a, b) the counterclockwise (a, b)-path on C.

For uv € E(H), denote T = H + uv. To show that rad(7T) < r, it suffices to find a
vertex z such that e7(z) < r. Denote

A=V(C) ={x1,x2,...,x1} and B=VH)\V(C)={y,y2....yr}

We distinguish three cases.
Case l. u,v € A. Letu = x; and v = x; with i > j.

Since d — r + 1 < 2r — 3, the vertex y, is a leaf whose only neighbour is x,,_,. Note

that in H, the three vertices x,, x,_; and x,_, are central vertices, y; is the unique
eccentric vertex of x, and y, is the unique eccentric vertex of x,_; and x,_,. If j > r or

. - - .
i < r,then er(x,) < r. For, in the former case C(x,,v) Uvu U C(u, x3,-1) U X3,_1y; is an

(x,, y1)-path of length less than r and, in the latter case, <E(x,, u) Uuy U (5(1/, X)) Uxiyp
is an (x,, y;)-path of length less than r.

Next suppose thati > r > j. If |(i — r) — (r — j)| = 2, then in T there is an (x,, y;)-path
of length less than r, which implies that ez(x,) < r. It remains to consider the case
i—r)—(r-HI<1L.IfGE-r)—(r—j)=0orl,thenin T there is an (x,_;, y2)-path of
length less than r and hence er(x,_1) < r. If (r —j) — (i — r) = 1, then in H there is an
(xy—2, y2)-path of length » — 1 and hence ey(x,_3) < r.

Case 2. u,veB.Letu=y;andv=y;withl <i<j<r.

Subcase 2.1. i = 1 and j < 2r — d. In what follows, the subscript arithmetic for x; is
taken modulo 2r — 1. Vertex x,_»j4> is a central vertex of H whose unique eccentric
vertex is y;. To see this, note thatif r —2j + 2 < d — r + 1, then

dg(xXr—2js2,y7) <d —r+1-(r=2j+2)+r-Q2r-d)=2d-3r+2j-1<r-1
since j < 2r—dand,if r —2j+2 >d—r+ 1, then
dy(X,2js2,y) Sr=2+2-d-r+D+r-Qr-d)=r-2j+1<r-3

since j > 2.
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If r—2j+2>1, in T there is the (x,_sj2,yj)-path (E(xr_2j+2,x1) Uxiyr Uyry;.

Hence, dr(x,-2j42,y) <7 =2j+2—-1+2=r-2j+3 <r-1 since j > 2, implying
that ez(x,_2j42) < r. If r — 2j + 2 < 0, there is the pathzz(xr_zﬁz,xz,_l) U xo,—1y1 U Y1y
in T. Hence, dr(x,-2j42,y;) £ 0—(r—=2j+2)+2=2j—r <r—2sincej < 2r — d and
d > r + 1, implying that er(x,_j2) < 7.
Subcase 2.2. i=1 and 2r—d+1<j<r. First suppose that j=r. Observe
that x,4-3,41 1S a central vertex of H whose unique eccentric vertex is Y.
Also, the condition d < 2r —2 implies that 2d —3r+1 <d —r+ 1. On the other
hand, if 2d-3r+1>1, then dy(xpg_3/+1,yr) <2d—-3r+1-1+2<r-2. If
2d —3r+1 <0, then dr(xp4-3,41,y,) <0—(2d —3r+ 1) + 2 < r— 1, where we have
used the fact that d > r + 1. Hence, er(xoq_3,41) < 7.

Next suppose that 2r —d + 1 < j < r— 1. Observe that x, is a central vertex of H
whose unique eccentric vertex is y;. Note also that » > d — r + 1. Now in T there is the

H
(. y1)-path C(xr, Xg-r11) U Xq—rs1Y2r-as1 - . ¥; U yjy1. Hence,
dr(x,,y1))<r—=d-r+ D) +j-Qr-d)y+1=j<r-1,
implying that ey (x,) < r.

Subcase 2.3. i > 2 and j < 2r — d. First suppose 2(j —i) <r—1. Then 2r —2j +2 >
r—2i+ 3. Clearly, xp,_5j;> is the unique neighbour of y; in H. By considering the
two possible cases r—2i+3<d—-r+1 and r—-2i+3>d-r+1, it is easy to
verify that x,_,;.3 is a central vertex of H whose unique eccentric vertex is y;. In

. —>
T there is the (x,_2i43,y)-path C(x,_pi13, X2,-2j+2) U X2,-2j42y; U y;y;. It follows that
dr(x,—2i3,y) S2r=2j+2—-(r-2i+3)+1+1=r-2(G—-i)+1<r-1, implying
that ez (x,_2;43) < r.
Next suppose that 2(j — i) > r. Then r — 2i + 2 > 2r — 2j + 2. Observe that x,_5;;2 is
a central vertex of H whose unique eccentric vertex is y;. Also, j—i <2r—d — 2. As
before,
dr(X,—2is2, V) Sr—2i+2-Q2r-2j+2)+1+1
=2-r+2(G-)<2-r+2Qr—-d-2)<r-2,
implying that e7(x,_2;2) < 7.
Subcase 2.4.2 <i<2r —dand2r —d + 1 < j < r. First suppose that 2r + 2 < 2i + d.
Then d —r + 1 > r — 2i + 3. Note that x,_5;;3 is a central vertex of H whose unique
eccentric vertex is y;. Thus, 2(x,,2,~+3,xd,,+1) U Xg—re1Y2r—d+1 --- Y U Yjyi- s an
(xr—2i+3, yi)-path in T and
dr(x,—2i3,y) <d—r+1—-(r=-2i+3)+j-Q2r—-d)+1
<d-r+1-(r-2i+3)+r—-Q2r—-d)+1
=2d-3r+2i-1<r-1,

implying that ez(x,_;+3) < r.
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Next suppose that 2r +2 > 2i+d + 1. Then r—2i+2 >d —r+ 1. Observe that
X,—2i+2 18 a central vertex of H whose unique eccentric vertex is y;. As before,

dr(X,—2i2, Vi) Sr—=2i+2—-(d-r+D)+j-Q2r-d)+1
<r-2i+2-d-r+1)+r—-Q2r—-d)+1
=r-2i+2<r-2,

implying that er(x,_2;42) < 1.

Subcase 2.5. 2r —d + 1 < i <j < r. Observe that x,.; is a central vertex of H whose
unique eccentric vertex is y,. Clearly, er(x,4+1) < r.

Case3. uc€AandveB. Letu=x;andv =yj;.

Observe that x, is a central vertex of H whose unique eccentric vertex is yj. If
j =1, then er(x,) < r. Now suppose that 2 < j < 2r — d. Then both x,_5j,> and x,_5j.3
are central vertices of H whose unique eccentric vertex is y;. If u lies on the path
8(x2,_2j+2,x,_2j+2), then eT(xr_2j+2) < r; if u lies on the path (E(xz,_zj+2,x,_2j+3), then
er(xy_2j+3) <T.

Finally, suppose that 2r —d +1 <j<r. We have 2d -3r+ 1 <d-r+1<r+1.
Observe that both x,,; and x,4-3,41 are central vertices of H whose unique eccentric
vertex is y,. If 2d —3r+1<i<d-r+1, then dy(x4-3,+1,y-) < r—1 and hence
er(Xpg-3r41) < r.Similarly, if d —r +2 <i < r+ 1, then ep(x,4+1) < 1.

It remains to consider the case when u = x; lies on the path Ez(tz,de,_g,). We
assert that ey(u) < r. First note that if w € {y2,—4+1, Y2r-d+2, - - - » i}, then dp(x;, w) <
d—r<r-2. Also, if we V(C), we have dr(x;,w) <r—1 since diam(C) =r— 1.
Next suppose that w = y; with 1 < s < 2r —d. Let x; and x4+, be the two vertices on
C with d¢(x;, x;) = de(x;, xk41) = ¥ — 1. Since x; lies on the path 2(x,+2,x2d_3r), we
have k >2 and k+ 1 < 2d —2r < 2(d — r + 1). It follows that dy(x;,w) < r —1 since
Nu(y1) = {x2,-1,x1} and Ny(y2,—a) = {x2(4-r+1)}. This completes the proof that H is
radially maximal.

Note that by the two inequalities in (1.1), any non-self-centred radially maximal
graph has radius at least three. Obviously, the vertex x,,_, is not an eccentric vertex of
any vertex in H. Hence, by Lemma 2.1, the extension of H at x,,_,, denoted Hs,, is
radially maximal. Also, H3, has the same diameter and radius as H and has order 3r.
Again, the vertex x,,_, is not an eccentric vertex of any vertex in Hs,. For any
n > 3r — 1, performing extensions at the vertex x,,_, successively, starting from H,
we can obtain a radially maximal graph of radius r, diameter d and order n. This
completes the proof. O

Combining restriction (1.1) on the diameter and radius of a radially maximal graph
and Theorem 2.2, we obtain the following corollary.

COROLLARY 2.3. There exists a radially maximal graph of radius r and diameter d if
andonly if r <d < 2r = 2.
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3. Final remarks

Since any graph with radius r has order at least 2r, Theorem 2.2 covers all the
possible orders of self-centred radially maximal graphs.

Gliviak et al. [2, page 283] conjectured that the minimum order of a
non-self-centred radially maximal graph of radius r is 3r — 1. This conjecture is
known to be true for the first three values of r; thatis, r = 3,4, 5 [2, page 283], but it is
still open in general. If this conjecture is true, then Theorem 2.2 covers all the possible
orders of radially maximal graphs with a given radius.
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