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Abstract
Cycles are the only 2-connected graphs in which any two nonadjacent vertices form a
vertex cut. We generalize this fact by proving that for every integer k ≥ 3 there exists
a unique graph G satisfying the following three conditions: (1) G is k-connected; (2)
the independence number ofG is greater than k; (3) any independent set of cardinality
k is a vertex cut of G. However, the edge version of this result does not hold. We also
consider the problem when replacing independent sets by the periphery.
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We consider finite simple graphs. For terminology and notations we follow the books
[2, 5]. It is known [4, p. 46] that cycles are the only 2-connected graphs in which any
two nonadjacent vertices form a vertex cut. We will generalize this fact and consider
two related problems.

We denote by V (G) the vertex set of a graph G. The order of G, denoted by |G|, is
the number of vertices of G. For S ⊆ V (G), the notation G[S] denotes the subgraph
of G induced by S. Let Ks, t denote the complete bipartite graph whose partite sets
have cardinality s and t, respectively.

Notation. The notation Ks,s − PM denotes the graph obtained from the balanced
complete bipartite graph Ks,s by deleting all the edges in a perfect matching of Ks,s .

Note that Ks,s − PM is an (s − 1)-connected (s − 1)-regular graph, K3,3 − PM
is the 6-cycle C6 and K4,4 − PM is the cube Q3.
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Theorem 1 Let k ≥ 3 be an integer. Then Kk+1,k+1 − PM is the unique graph G
satisfying the following three conditions: (1) G is k-connected; (2) the independence
number of G is greater than k; (3) any independent set of cardinality k is a vertex cut
of G.

Proof It is easy to verify that the graph Kk+1,k+1 − PM indeed satisfies the three
conditions in Theorem 1.

Conversely, let G be a graph satisfying the three conditions in Theorem 1. We
first assert that G has order at least 2k + 2. Let S be an independent set of G with
cardinality k + 1. Since G is k-connected, every vertex has degree at least k. Let T be
the neighborhood of one vertex in S. Then |T | ≥ k. Thus |G| ≥ |S| + |T | ≥ 2k + 1.
If |G| = 2k + 1, then T would be the common neighborhood of all the vertices in S.

But now any k vertices in S do not form a vertex cut, contradicting condition (3). This
shows that |G| ≥ 2k + 2.

Choose an arbitrary but fixed independent set A = {x1, x2, . . . , xk+1} of cardinality
k + 1 in G. By condition (3), for every i with 1 ≤ i ≤ k + 1, the graph Hi �
G − (A \ {xi }) is disconnected. Let Gi denote the union of all the components of Hi

except the component containing xi . Note that each Gi is disjoint from the set A.

Let Q and W be subgraphs of G or subsets of V (G). We say that Q and W are
adjacent if there exists an edge with one endpoint in Q and the other endpoint in W ;
otherwise Q and W are nonadjacent. Next we prove three claims.

Claim 1. V (Gi )∩V (G j ) = φ, Gi and G j are nonadjacent for 1 ≤ i < j ≤ k + 1.
In the sequel, for notational simplicity, a vertex v may also mean the set {v}. We

will use the fact that if T is a minimum vertex cut of G, then every vertex in T has a
neighbor in every component of G − T . Clearly, G has connectivity k. Since A \ x j
is a minimum vertex cut of G, the subgraph G[xi ∪ V (G j )] is connected and it is
contained in the component of Hi containing xi . By the definition of Gi , we deduce
that (xi ∪ V (G j )) ∩ V (Gi ) = φ, implying V (Gi ) ∩ V (G j ) = φ.

To show the second conclusion, just note that any vertex in Gi and any vertex in
G j lie in different components of the graph G − (A \ xi ).

Claim 2. A ∪ (
k+1∪
i=1

V (Gi )) = V (G).

To the contrary, suppose that F � V (G)\{A ∪ (
k+1∪
i=1

V (Gi ))} is not empty. Let

F1, F2, . . . , Fs be the components of G[F].
Recall that by definition, for 1 ≤ i ≤ k + 1, Gi denotes the union of all the

components of G − (A \ xi ) except the component Ri that contains xi . Hence, for
every p with 1 ≤ p ≤ s, Fp is a subgraph of Ri , implying that Gi is nonadjacent to
Fp. Note that

Ri = G

[
xi ∪ F ∪

(
∪
j �=i

V (G j )

)]
.

Since Ri is connected, xi is adjacent to every component of G j with j �= i and xi is
adjacent to each Fp for 1 ≤ p ≤ s. Thus, every Fp is adjacent to every vertex in A.
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We choose one vertex yi from Gi for each 1 ≤ i ≤ k. Then B � {y1, y2, . . . , yk} is
an independent set of G. We assert that every component of (

k+1∪
i=1

Gi ) − B is adjacent

to A, since otherwise G would have a cut-vertex. It follows that G − B is connected,
contradicting condition (3). This shows that F is empty and claim 2 is proved.

Claim 3. |Gi | = 1 for every 1 ≤ i ≤ k + 1.
To the contrary, we suppose that some Gi has order at least 2. Without loss of

generality, suppose |Gk | ≥ 2. Let z j be a neighbor of xk+1 inG j for j = 1, . . . , k−1.
Since xk+1 is adjacent to Gk, xk+1 has a neighbor w ∈ Gk . The condition |Gk | ≥ 2
ensures that Gk has a vertex zk distinct from w. Denote C = {z1, z2, . . . , zk}. Then C
is an independent set. We assert that every component of (G1 ∪G2 ∪ · · · ∪Gk)−C is
adjacent to A\xk+1, since otherwise some z j and xk+1 would form a vertex cut of G,

contradicting the condition thatG is k-connected and k ≥ 3.Also, every component of
Gk+1 is adjacent to every vertex in A\xk+1. It follows that the graphG−(C∪xk+1) is
connected. But xk+1 is adjacent to w, a vertex in Gk − zk . Hence G −C is connected,
contradicting condition (3). This shows that each Gi consists of one vertex.

Combining the information in the above three claims, we deduce that |G| = 2k+2
and the neighborhood of xi is {G1,G2, . . . ,Gk+1}\{Gi } for 1 ≤ i ≤ k+1. It follows
that G = Kk+1,k+1 − PM . This completes the proof. 	


Feng Liu [3] asked whether the edge version of Theorem 1 holds. The following
result shows that the answer is negative.

Corollary 2 Let k ≥ 3 be an integer. If a graph G is k-edge-connected with matching
number greater than k, then G contains a matching M of cardinality k such that
G − M is connected.

Proof To the contrary, suppose that for any matching M of cardinality k, G − M
is disconnected. Consider the line graph of G, denoted by H � L(G). Since G
is k-edge-connected, we deduce that [5, p. 283] H is k-connected. An independent
set of vertices in H corresponds to a matching in G. Applying Theorem 1 to H we
have H = Kk+1,k+1 − PM, where we use the equality sign for graphs to mean
isomorphism. It is known ([1] or [5, p. 282]) that any line graph of a simple graph
cannot have the claw as an induced subgraph. However, for k ≥ 3, Kk+1,k+1 − PM
contains an induced claw (many in fact). This contradiction shows that G contains a
matching M of cardinality k such that G − M is connected. 	

Remark As for the case k = 2 of Corollary 2, using the ideas in the above proof and
using the fact mentioned at the beginning of this paper, we see that cycles are the only
2-edge-connected graphs in which any two nonadjacent edges form a separating set.

Finally, we consider replacing independent vertices in Theorem 1 by peripheral
vertices. The eccentricity of a vertex v in a graph G, denoted by e(v), is the distance
to a vertex farthest from v. A vertex v is a peripheral vertex of G if e(v) is equal to
the diameter of G. The periphery of G is the set of all peripheral vertices. We pose
the following conjecture.
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Fig. 1 The graph F

Conjecture 3 Let k ≥ 2 be an integer. If G is a k-connected graph whose periphery
has cardinality at least k, then G contains a set S of k peripheral vertices such that
G − S is connected.

Observation 4 The case k = 2 of Conjecture 3 is true.

Proof To the contrary, suppose that any two peripheral vertices form a vertex cut of
G.Denote by d(u, v) the distance between two vertices u, v and let the diameter of G
be d. We have d ≥ 2. Choose vertices x, y such that d(x, y) = d. Let P be a shortest
(x, y)-path, and let y′ be the neighbor of y on P. Let H be a component of G −{x, y}
that does not contain the path P − {x, y}.

Since G is 2-connected, both x and y have a neighbor in H . Let x ′ be a neighbor
of x in H . Then d(x ′, y) ≥ d − 1. Since every (x ′, y′)-path contains either x or y,
we deduce that d(x ′, y′) = d. Thus x ′ is also a peripheral vertex. By our assumption,
G−{x, x ′} is disconnected. Let R be the component ofG−{x, x ′} containing y.Clearly
every component of G −{x, x ′} other than R is contained in H . Let Q be an arbitrary
such component. We assert that every vertex in Q is adjacent to x ′. Let z ∈ V (Q).

Any (z, y)-path must contain either x or x ′. Since d(x, y) = d, a shortest (z, y)-path
must contain x ′, which implies that z and x ′ are adjacent and z is a peripheral vertex,
since d(x ′, y) ≥ d − 1. Choose a vertex z0 from any component of G − {x, x ′} other
than R.Note that x ′ is adjacent to R, since {x, x ′} is a minimum vertex cut ofG. Thus,
the graph G − {x, z0} is connected, contradicting our assumption. 	


The graph F in Fig. 1 shows that the connectivity condition in Conjecture 3 cannot
be dropped. F has diameter 4 and periphery {v1, v2, v3, v4, v5, v6}. With k = 5, any
5 peripheral vertices of F form a vertex cut.
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