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A connected graph is called fragile if it contains an independent vertex cut. In 2002 Chen 
and Yu proved that every connected graph of order n and size at most 2n − 4 is fragile, 
and in 2013 Le and Pfender characterized the non-fragile graphs of order n and size 2n −3. 
It is natural to consider minimum vertex cuts. We prove two results. (1) Every connected 
graph of order n with n ≥ 7 and size at most ⌊3n/2⌋ has an independent minimum vertex 
cut; (2) every connected graph of order n with n ≥ 7 and size at most 2n has a foresty 
minimum vertex cut. Both results are best possible.

© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI 
training, and similar technologies.

1. Introduction and main results

We consider finite simple graphs and use standard terminology and notation from [1] and [9]. The order of a graph is its 
number of vertices, and the size is its number of edges. We denote by V (G) the vertex set of a graph G , and for S ⊆ V (G)

we denote by G[S] the subgraph of G induced by S . A vertex cut of a connected graph G is a set S ⊂ V (G) such that G − S
is disconnected. A vertex cut S of a connected graph G is called an independent vertex cut if S is an independent set, and S
is called a foresty vertex cut if G[S] is a forest. There is a recent work involving independent vertex cuts [6].

Definition 1. A connected graph is called fragile if it contains an independent vertex cut.

Fragile graphs have applications in some decomposition algorithms [2]. The following result was conjectured by Caro 
(see [4]) and proved by Chen and Yu [4] in 2002.

Theorem 1. [4] Every connected graph of order n and size at most 2n − 4 is fragile.

The size bound 2n − 4 is sharp, and in 2013 Le and Pfender [7] characterized the non-fragile graphs of order n and size 
2n − 3 (see [8] for a related work). Also in 2002 Chen, Faudree and Jacobson [3] proved the following result.

Theorem 2. [3] Every connected graph of order n and size at most (12n/7) − 3 contains an independent vertex cut S with |S| ≤ 3.
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Recently Chernyshev, Rauch and Rautenbach [5] have initiated the study of foresty vertex cuts of graphs. A vertex cut S
of a graph of connectivity k is called minimum if |S| = k. It is natural to consider minimum vertex cuts.

In this paper we prove the following two results.

Theorem 3. Every connected graph of order n with n ≥ 7 and size at most ⌊3n/2⌋ has an independent minimum vertex cut, and the 
size bound ⌊3n/2⌋ is best possible.

Theorem 4. Every connected graph of order n with n ≥ 7 and size at most 2n has a foresty minimum vertex cut, and the size bound 2n
is best possible.

We give proofs of Theorems 3 and 4 in Section 2.
We denote by |G|, e(G) and κ(G) the order, size and connectivity of a graph G , respectively. The neighborhood of a 

vertex x is denoted by N(x) or NG(x), and the closed neighborhood of x is N[x] ≜ N(x) ∪ {x}. The degree of x is denoted 
by deg(x). We denote by δ(G) and Δ(G) the minimum degree and maximum degree of G , respectively. For a vertex subset 
S ⊆ V (G), we use N(S) to denote the neighborhood of S; i.e., N(S) = {y ∈ V (G) \ S | y has a neighbor in S}. For x ∈ V (G)

and S ⊆ V (G), N S (x) ≜ N(x) ∩ S and the degree of x in S is degS (x) ≜ |N S(x)|. Given two disjoint vertex subsets S and T of 
G , we denote by [S, T ] the set of edges having one endpoint in S and the other in T . The degree of S is deg(S) ≜ |[S, S]|, 
where S = V (G) \ S . We denote by Cn , Pn and Kn the cycle of order n, the path of order n and the complete graph of order 
n, respectively. G denotes the complement of a graph G . For two graphs G and H , G ∨ H denotes the join of G and H , which 
is obtained from the disjoint union G + H by adding edges joining every vertex of G to every vertex of H .

For graphs we will use equality up to isomorphism, so G = H means that G and H are isomorphic.

2. Proofs

We will repeatedly use the following fact.

Lemma 5. If S is a minimum vertex cut of a connected graph G, then every vertex in S has a neighbor in every component of G − S.

A 3-regular graph is called a cubic graph.

Lemma 6. Every connected cubic graph of order at least eight has an independent minimum vertex cut.

Proof. Let G be a connected cubic graph of order at least 8. Then κ(G) ∈ {1,2,3}. Lemma 6 holds trivially in the case 
κ(G) = 1. Next we consider the remaining two cases.

Case 1. κ(G) = 2.

Let S = {x, y} be a minimum vertex cut of G . If x and y are nonadjacent, then S is what we want. Now suppose that 
x and y are adjacent. Let H be a component of G − S . We assert that for any v ∈ V (H), degS(v) ≤ 1. Otherwise v would 
be a cut-vertex of G , contradicting our assumption κ(G) = 2. Since deg(x) = 3 and x and y are adjacent, x has exactly 
one neighbor p in H . By the above assertion, N S (p) = {x}, and consequently p has two neighbors in H . Then {p, y} is an 
independent minimum vertex cut of G .

Case 2. κ(G) = 3.

Choose a vertex v ∈ V (G) and denote S = N(v) = {x, y, z}. If S is an independent set, then it is an independent minimum 
vertex cut of G . Next suppose that S is not an independent set. Without loss of generality, suppose that x and y are adjacent. 
Since G is cubic and S is a minimum vertex cut, Δ(G[S]) = 1. It follows that G[S] = K2 + K1.

Denote T = V (G) \ N[v]. We assert that for any w ∈ T , w is adjacent to at most one of x and y. Otherwise {w, z} would 
be a vertex cut of G , contradicting our assumption κ(G) = 3. Let {p} = NT (x) and {q} = NT (y).

We assert that at least one of p and q is nonadjacent to z. To the contrary, suppose that both p and q are adjacent to 
z. Since G has order at least 8, T \ {p,q} ≠ ∅. Then {p,q} is a vertex cut, contradicting our assumption κ(G) = 3. If p is 
nonadjacent to z, then {p, y, z} is an independent minimum vertex cut of G; if q is nonadjacent to z, then {q, x, z} is an 
independent minimum vertex cut of G . This completes the proof. □

The graph in Fig. 1 shows that the lower bound 8 for the order in Lemma 6 is sharp. 

Proof of Theorem 3. We first use induction on the order n to prove the statement that every connected graph of order n
with n ≥ 7 and size at most ⌊3n/2⌋ has an independent minimum vertex cut.

The basis step. n = 7.
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Fig. 1. A cubic graph of order 6 without independent minimum vertex cut. 

Fig. 2. H1, H2 and H3. 

Let F be a connected graph of order 7 and size at most 10 = ⌊3 × 7/2⌋. We have δ(F ) ≤ 2, since otherwise we would 
have e(F ) ≥ 11 > 10, a contradiction. It follows that κ(F ) ≤ δ(F ) ≤ 2. The result holds trivially if κ(F ) = 1. Thus it suffices 
to consider the case when κ(F ) = δ(F ) = 2.

Let v be a vertex of degree 2 and let N(v) = {x, y}. If x and y are nonadjacent, then {x, y} is an independent minimum 
vertex cut of F . Next suppose that x and y are adjacent. Applying Lemma 5 and using the size restriction of F we deduce 
that F − {x, y} has at most four components; i.e., F − N[v] has at most three components. Then

F − N[v] ∈ {2K1 + K2, 2K2, K1 + P3, K1 + C3, K1 ∨ K3, P4, C4, K1 ∨ (K1 + K2), K −
4 }

where K −
4 is the graph obtained from K4 by deleting one edge.

Let R = V (F ) \ N[v] and let H1, H2, H3 be the graphs illustrated in Fig. 2.
• F − N[v] ∈ {2K1 + K2,2K2, K1 + P3, K1 ∨ K3, C4}. Since e(F ) ≤ 10 and κ(F ) = δ(F ) = 2, there exists a vertex in R with 

degree 2 whose neighborhood is an independent set of F , as required.
• F − N[v] = P4. If F = H1 (see Fig. 2), then {w1, w2} is an independent minimum vertex cut of F . Next assume that 

F ≠ H1. Then there exists a vertex in R with degree 2 whose neighborhood is an independent set of F , as required.
• F − N[v] = K1 + C3. Since e(F ) ≤ 10, by Lemma 5, we have F = H2. Thus {y, u} is an independent set of F , as required.
• F − N[v] = K1 ∨ (K1 + K2). If F = H1, then {w1, w2} is an independent minimum vertex cut of F . If F = H3, then 

{x, u2} is an independent minimum vertex cut of F . Now assume that F ∉ {H1, H3}. Then there exists a vertex in R with 
degree 2 whose neighborhood is an independent set of F , as desired.

• F − N[v] = K −
4 . Since e(F ) ≤ 10, by Lemma 5, |[N(v), R]| = 2. Since κ(F ) = 2, we have NR(x) ∩ NR(y) = ∅. Then 

{x} ∪ NR(y) is an independent minimum vertex cut of F , as desired.

The induction step. n ≥ 8.

Let G be a connected graph of order n ≥ 8 and size at most ⌊3n/2⌋ and suppose that the above statement holds for all 
graphs of order n − 1. It suffices to consider the case κ(G) ≥ 2. Since e(G) ≤ 3n/2, we have 2 ≤ κ(G) ≤ δ(G) ≤ 3.

Case 1. δ(G) = 3.

Since δ(G) = 3 and e(G) ≤ 3n/2, we have Δ(G) = 3 and hence G is cubic. The statement holds by Lemma 6.

Case 2. δ(G) = 2.

In this case κ(G) = 2. Choose a vertex v of degree 2 and let N(v) = {x, y}. If x and y are nonadjacent, then {x, y} is an 
independent minimum vertex cut. Next we assume that x and y are adjacent. Denote H = G − v . Then H is a connected 
graph of order n − 1 and

e(H) = e(G) − 2 ≤ 3n

2 
− 2 = 3n − 4

2 
<

3(n − 1)

2 
,

which implies that δ(H) ≤ 2 and hence κ(H) ≤ 2. On the other hand, since x and y are adjacent, the condition κ(G) = 2
implies that κ(H) ≥ 2. Thus κ(H) = 2. By the induction hypothesis, H has an independent vertex cut M with |M| = 2. 
Clearly M is an independent minimum vertex cut of G .

Now for every integer n ≥ 7 we construct a graph Gn of order n and size ⌊3n/2⌋ + 1 such that Gn has no independent 
minimum vertex cut. Hence the size bound ⌊3n/2⌋ in Theorem 3 is best possible.
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Fig. 3. G11 and G12. 

If n is odd, let C : v1 v2 . . . vn−1 v1 be an (n − 1)-cycle. Add a vertex vn to C and then add edges v1 v(n+1)/2, v1 vn , 
v(n+1)/2 vn , vi vn+1−i for i = 2,3, . . . , (n − 1)/2 to obtain Gn . If n is even, let D : v1 v2 . . . vn v1 be an n-cycle. Then in D add 
edges v2 vn/2, v(n+4)/2 vn , vi vn+2−i for i = 2,3, . . . ,n/2 to obtain Gn . We depict G11 and G12 in Fig. 3. 

Gn has order n and size ⌊3n/2⌋+ 1. If n is odd, {v1, v(n+1)/2} is the unique minimum vertex cut of Gn , which induces an 
edge. If n is even, Gn has exactly two minimum vertex cuts: {v2, vn} and {vn/2, v(n+4)/2}, each of which induces an edge. 
Thus Gn has no independent minimum vertex cut. This completes the proof. □

Now we prepare to prove Theorem 4.
Let S and T be two disjoint vertex subsets of a graph G . An (S, T )-path is a path P with one endpoint in S and the 

other in T such that S ∪ T contains no internal vertex of P . The following fact is well-known [9, p. 174] and it follows from 
Menger’s theorem ([1, p. 208] or [9, p. 167]).

Lemma 7. Let G be a k-connected graph. If S and T are two disjoint subsets of V (G) with cardinality at least k, then G has k pairwise 
vertex disjoint (S, T )-paths.

A k-matching is a matching of cardinality k.

Lemma 8. Let S be a vertex cut of a k-connected graph G and let H be a component of G − S. If |H | ≥ k, then the set [S, V (H)]
contains a k-matching.

Proof. Since G is k-connected, |S| ≥ k. By Lemma 7, G contains k pairwise vertex disjoint (S, V (H))-paths Pi , i = 1, . . . ,k. 
Clearly each Pi must be an edge, and hence {P1, P2, . . . , Pk} is a k-matching in [S, V (H)]. □
Lemma 9. Every connected 4-regular graph of order at least seven has a foresty minimum vertex cut.

Proof. Let G be a 4-regular graph of order n with n ≥ 7. We will show that G has a foresty minimum vertex cut. We have 
κ(G) ≤ 4. If κ(G) ≤ 2, the result holds trivially. Next suppose κ(G) ≥ 3 and we distinguish two cases.

Case 1. κ(G) = 3.

Let S be a vertex cut of G with |S| = 3. If G[S] ≠ C3, then S is a foresty minimum vertex cut of G . Suppose G[S] = C3. 
Since G is 4-regular, by Lemma 5 we deduce that G − S has exactly two components, which we denote by G1 and G2. 
Without loss of generality, suppose |G1| ≥ |G2|. Then |G1| ≥ (n − |S|)/2 ≥ (7 − 3)/2 = 2. Let S = {x, y, z}. We assert that 
degS (v) ≤ 1 for any v ∈ V (G1). To the contrary, suppose that there is v ∈ V (G1) such that degS(v) ≥ 2. Without loss of 
generality, suppose {x, y} ⊆ N S(v). Then {v, z} is a vertex cut of G , contradicting the assumption that κ(G) = 3.

Let u be the neighbor of x in G1. Then {u, y, z} is a vertex cut of G which induces K1 + K2. Hence it is a foresty minimum 
vertex cut.

Case 2. κ(G) = 4.

Choose a vertex v ∈ V (G) and denote T = N(v) = {x, y, z, u}. Then T is a minimum vertex cut of G . Denote H = G[T ]. If 
H is a forest, then T is what we want. Next suppose H contains a cycle. By Lemma 5 and the condition that G is 4-regular, 
we have Δ(H) ≤ 2. Thus H ∈ {C4, C3 + K1}.

Subcase 2.1. H = C4.

Let W = V (G) \ N[v]. We assert that for any w ∈ W , degT (w) ≤ 1. Otherwise there exists a w ∈ W with degT (w) ≥ 2. 
Since the order n ≥ 7 and G is 4-regular, N(w) ≠ T . Now {w}∪T \N(w) is a vertex cut of cardinality at most 3, contradicting 
κ(G) = 4.

Since G is 4-regular, by Lemma 5 we deduce that every vertex in T has exactly one neighbor in W . Let f be the neighbor 
of x in W . Then R ≜ { f , y, z, u} is a minimum vertex cut of G and G[R] = K1 + P3 is a forest.

Subcase 2.2. H = C3 + K1.
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Fig. 4. The graph Z . 

Without loss of generality, suppose that G[A] = C3 where A = {x, y, z}. We assert that every vertex in W has at most 
one neighbor in A. Otherwise, there exists a vertex w ∈ W which has at least two neighbors in A. Then {w, u} ∪ A \ N(w)

is a vertex cut of G of cardinality at most 3, contradicting κ(G) = 4.
Let p be the neighbor of x in W . Then {p, y, z, u} is a foresty minimum vertex cut of G . □

Remark. There is only one 4-regular graph of order 6, which has connectivity 4 and has no foresty minimum vertex cut. 
Thus the lower bound 7 for the order in Lemma 9 is sharp.

Proof of Theorem 4. The first part of Theorem 4 is the following

Statement. Every connected graph of order n with n ≥ 7 and size at most 2n has a foresty minimum vertex cut.

We use induction on the order n to prove this statement.

The basis step. n = 7.

Let M be a graph of order 7 and size at most 14. The condition e(M) ≤ 14 implies κ(M) ≤ δ(M) ≤ 4. If κ(M) ≤ 2 then 
the statement holds trivially. Next suppose 3 ≤ κ(M) ≤ δ(M) ≤ 4.

If δ(M) = 4, then M is 4-regular and by Lemma 9, M has a foresty minimum vertex cut. Now suppose δ(M) = 3. Then 
κ(M) = 3. Choose a vertex v ∈ V (M) with deg(v) = 3, let S = N(v) and let R = V (M) \ N[v]. If M[S] is a forest, then S is a 
foresty minimum vertex cut. Now suppose that M[S] = C3. If R is an independent set, then the condition δ(M) = 3 implies 
that e(M) = 15, contradicting e(M) ≤ 14. Hence M[R] ∈ {K2 + K1, P3, C3}.

Let S = {x, y, z} and let Z be the graph illustrated in Fig. 4. 
• M[R] = K2 + K1. Let R = {w1, w2, w3} where w1 w2 ∈ E(M). Recall that κ(M) = 3. Then degS (w3) = 3 and |N S (w1) ∪

N S (w2)| = 3, which implies that N(w1) is a foresty minimum vertex cut of M .
• M[R] = P3. By Lemma 8, [S, R] contains a 3-matching. Then there exists a vertex in R with degree 3 whose neighbor

hood induces a forest, as desired.
• M[R] = C3. Since e(M) ≤ 14, |[S, R]| ≤ 5. By Lemma 8, [S, R] contains a 3-matching. If M = Z (see Fig. 4), then 

{x, y, u} is a foresty minimum vertex cut. Next we assume that M ≠ Z . Then there exists a vertex in R with degree 3 whose 
neighborhood induces a forest, as desired.

The induction step. n ≥ 8.

Let G be a connected graph of order n with n ≥ 8 and size at most 2n, and suppose that the above statement holds for 
all graphs of order n − 1. The condition e(G) ≤ 2n implies κ(G) ≤ δ(G) ≤ 4. If κ(G) ≤ 2 then the statement holds trivially. 
Next suppose 3 ≤ κ(G) ≤ δ(G) ≤ 4. 

Case 1. δ(G) = 4.

Since e(G) ≤ 2n, G is 4-regular. The statement holds by Lemma 9.

Case 2. δ(G) = 3.

We have κ(G) = 3. Choose a vertex v ∈ V (G) with deg(v) = 3 and denote S = N(v). If G[S] is a forest, then S is a 
foresty minimum vertex cut. Otherwise G[S] = C3. Consider the graph H = G − v . H has order n − 1 and e(H) = e(G) − 3 ≤
2n − 3 < 2(n − 1), which implies that δ(H) ≤ 3. Hence κ(H) ≤ 3. Since any vertex cut of H is also a vertex cut of G and 
κ(G) = 3, we deduce that κ(H) = 3. By the induction hypothesis, H has a foresty minimum vertex cut T . Clearly T is also 
a foresty minimum vertex cut of G .

Now for every integer n ≥ 7 we construct a graph Fn of order n and size 2n + 1 such that Fn has no foresty minimum 
vertex cut. This shows that the size bound 2n in Theorem 4 is best possible. Recall that a chord xy of a cycle D is called a 
k-chord if the distance between x and y on D is k. Let C : v1 v2 . . . vn−1 v1 be a cycle of order n − 1. Add all the 2-chords to 
C to obtain a 4-regular graph R . Finally adding a new vertex vn to R and adding the edges vn v1, vn v2 and vn v3, we obtain 
Fn . We depict F11 and F12 in Fig. 5.

It is easy to see that κ(Fn) = 3 and {v1, v2, v3} is the unique minimum vertex cut, which induces a triangle. □
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Fig. 5. F11 and F12. 
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