@XWM%
i
HPM 5

Y
b
Ny ﬁ‘ﬁ

&

L. % HPM i@

SHANGHAI HPM NEWSLETTER
2012 %% 1 A% 8

FEA LM LRE
(Felix Christian Klein, 1849-1925)



(LEHPMBERY # 157 8 HHpEL Ly

E G TR

BIES: 2 NIl B % K BER

G & (LUEKTEEF):

M EE ARG PO BEO0E RIERSE X BE N M REBRER 2 NI OEERE ILEE BIER
TS £ 97 £ B £%H %X K RRE WIER 8k B SN RS MER



HISTORICAL CONCEPTUAL DEVELOPMENTS AND THE TEACHING OF
MATHEMATICS ... FULVIA FURINGHETTI, LUIS RADFORD 2

i3

EE LT T3 & L0+ EGE ) 28
EFEXTE
BB FEBRIBD oo LIU PAN48
EREA
FIESD A TATRAF G EBERAZ o B ¥ 35 56

BB

£FREHHTMELZE ALK A EBE oo MAE, EB 65



OOHPMODO OO0 Shanghai HPM Newsletter
ooo 20120120 Vol. 1 NO.8 December 2012

Tl & #E

L+ H, AR,

TESAEH MG T2 IIEFRS T, (EHPMEI) F8i 5 KL T .

AW BTN FER e e Te e, EEEAHER . BFEBER. BFELEK.

1R L9t L0 A 20 tH LA W) 1 R B0 5K, tH SR S0 ) (B0 5 R —— R AR IR A B
BN, F ol ERTERUE RS a2, EARR U, LR e AR, AsrRE
WA AR T A IR, <R R AR B RN M. F SRR FEEREE, 324
CGRFrEAER L) (1871) CHnln LI 2= it iR L BB 22) (1872) ( ik L ik 7
FEMAVE ) (1884) AR bR A0S U ) (1897, 1912). (ML FIIFI S5 %) (1908, 1909)
o MAN, PSRRI (1o LHUE R R U ) (1926~1927) 15, AREH W likix
PURE L T ITF U o AV 2 B SR B R 0 S A T it

F SO SEBRDN BUE R 50 ik AR B R— R8s R AZ —, I EHCE
H SRR B Y A TV, SR P AR (R WL R O 1 G v U A, IR
IRHEEI T I ARECE

F S0 SERLE EHPMIBAR B T 550 . hilhy, T8 ] sE 2o HUE el 2 AR
B UIBCE S AR IR S, . BT S BT, JLPREAIMER, REaadk
WS, AN T, ROV KEABNE RGN, F53EH LI 5 S8
FHIHPMEAEAEILEE Rl st P IOATAEE0) A3 B R 80N AT, R IR 2 0 ikt
A RIFCAE BEAAS S NE . Han e T rh 0 BB {00 il 5, 76 [ U6 28 4 1 s
RIEZ JEthde e “ TEEREURRE B8 BE AR S & R 2R AR 8, il A1 B2
o —RRUL, ARG RGNS R OEBTHL . - PR A, R EE
17— MU A TCE O 5 T PR R X A . R R AR S ER T SE
IfERE, 45 T IX e A UKD 78 ARRE I ANATEHE 2 BN (K 8, TEZOM TR 3, R AE 15 74
T T

ZHEE, A BATE, FERIBRESIT, SATHHPMEF SRR E 2R
ESRR, R BRI 2 e S 5B,

P2y

e

SR TR, F « SRR FIHPMEAR e 2 a7, WL 20E 4B 444X, 2010(3):16-21.

1



OOHPMOO O0OO
ooo 20120120

% JLik ik

Shanghai HPM Newsletter
Vol. 1 NO.8 December 2012

HISTORICAL CONCEPTUAL DEVELOPMENTS AND THE

TEACHING OF MATHEMATICS: FROM PHYLOGENESIS

AND ONTOGENESIS THEORY TO CLASSROOM

PRACTICE

FULVIAFURINGHETTI,
LUIS RADFORD

1. INTRODUCTION

More than a century ago, Hieronymus Georg
Zeuthen wrote a book about the history of
mathematics (Zeuthen, 1902). Of course, this
was not the first book on the topic, but what
made Zeuthen’s book different was that it was
intended for teachers. Zeuthen proposed that
the history of mathematics should be part of
teachers’ general education. His humanistic
orientation fitted well with the work of Cajori,
1894 who, more or less by the same time, saw
in the history of mathematics an inspiring
source of information for teachers. Since then,
mathematics educators have increasingly
made use of the history of mathematics in
their lesson plans, and the spectrum of its uses
has widened. For instance, the history of
mathematics has been used as a powerful tool
to counter teachers’ and students’ widespread
perception that mathematical truths and
methods have never been disputed. The
biographies of several mathematicians have
been a source of motivation for students. By
stressing how certain mathematical theories
flourished in various countries, the diverse

contributions of  various cultures to

contemporary mathematics become evident.
Specialized study groups have emerged in the
past years as a result of the increasing interest
in the history of mathematics in educational
circles. Two of these are the Commission
INTER-IREM™ Epistemologie et Histoire des
Math’ematiques in  France and the
International Study Group on the Relations
between  History and Pedagogy  of
Mathematics, which is related to International
Commission on Mathematical Instruction
(ICMI). In addition, regular conferences are
organized, such as the European Summer
Universities on the History and the
Epistemology in Mathematics Education (see
Lalande, Jaboeuf, & Nouaz’e, 1995, and
Lagarto, Vieira, & Veloso, 1996, for
proceedings). Concomitantly, an important
number of books are now available to help
teachers use the history of mathematics
(Calinger, 1996; Chabert, Barbin, Guillemot,
Michel-Pajus, Borowczyk, Djebbar, &
Martzloff,1994; Dhombres, Dahan-Dalmedico,
Bkouche, Houzel, & Guillemot, 1987;
Fauvel&van Maanen, 2000; Katz, 2000;
Reimer&Reimer, 1995; Swetz, Fauvel,
Bekken, Johansson, & Katz, 1995).

Instead of offering an overview of the
different domains in which the pedagogical
use of the history of mathematics is now



ramified, we want, in this chapter, to focus on
something that Cajori started and in which
mathematics educators interested in the
history of mathematics are still involved. That
is, in considering history not only as a window
from where to draw a better knowledge of the
nature of mathematics but as a means to
transform the teaching itself. The specificity
of this pedagogical use of history is that it
interweaves our knowledge of past conceptual
developments with the design of classroom
activities, the goal of which is to enhance the
students’ development of mathematical
thinking. Cajori’s 1894 ideas have led us to
developments that he could not have
suspected. Indeed, Cajori adopted a
positivistic view of the formation of
knowledge. He saw knowledge as an objective
entity that grows gradually and cumulatively.
His reading of the history of mathematics was
framed by viewing history as an unfolding
process.

The direction or completion of the
process guaranteed by the idea of progress—
an idea underpinning the Enlightenment
philosophy and attitudes toward life from
which modern thought arose. Nonpositivistic
views about the formation of knowledge were
later elaborated by philosophers and
epistemologists such as Bachelard, Foucault,
and Piaget, among others, and by
anthropologists such as Durkheim,
Levy-Bruhl, and L "evi-Strauss, to mention but
a few.

Bachelard presented an interpretation of
the formation of knowledge in terms of
ruptures and discontinuities. Piaget was
interested in explaining genetic developments
in terms of stages and the intellectual
mechanisms allowing the passage from one
level to another. Foucault was opposed to the
conception of history as a date-labeling
practice and investigated the problem of the
constitution of knowledge in terms of the
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conditions of its emergence, which he related
to the different spheres of human activity.
Bachelard, Foucault, and Piaget had different
goals, and thus their projects differed. But
what is important for our discussion here is
that, contrary to what Cajori and many other
positivist thinkers believed, knowledge in
general and mathematical knowledge in
particular cannot be taken as an unproblematic
concept. Behind a concept of knowledge there
is an epistemological stance, and this
epistemological  stance  conditions  our
understanding of the formation of students’
mathematical thinking as it conditions the
interpretation  of  historical  conceptual
developments (Grugnetti & Rogers, 2000;
Radford, Boero, & Vasco, 2000). Nevertheless,
the study of the development of students’
thinking and of the conceptual development of
mathematics belong to two different
domains—the psychological and the historical,
respectively. Each has its specific problems as
well as the tools with which to investigate
them. Students’ conceptualizations can be
investigated through classroom observations,
interviews, tests, and soforth. The same cannot
be done in the historical domain, where
historical records are the only available
material for study. The difference in
methodologies in both domains is, in fact, a
token of more profound differences. These
cannot be ignored in the context of a
pedagogical use of the history of mathematics
as a useful tool to enhance the development of
students’ mathematical thinking. Despite their
differences, the psychological and historical
domains need to be weighed and articulated in
a specific way. One of today’s
controversial themes concerns the terms in
which such an articulation must be understood.
More specifically, the question is how to

more

relate  the students’
mathematical thinking to historical conceptual

mathematical developments. Psychological

development  of



recapitulation, which transposes the biological
law of recapitulation, claims that in their
intellectual  development our  students
naturally traverse more or less the same stages
as mankind once did; it has been taken as a
guarantee (sometimes implicitly) to ensure the
link between both domains. In its different
variants, however, psychological recapitula-
tion has been subject to a deep revision
recently, in part because of the emergence of
new conceptions about the role of culture in
the way we come to know and think.

The purpose of this chapter is to discuss
in some detail the basic problems referred to
in this introduction. In the next section, we
deal with psychological recapitulation and
mention some of the current arguments
against it. In section 3, we examine key ideas
about ontogenesis and phylogenesis as found
in the works of Piaget and in the works of
Vygotsky. In section 4, we present some
paradigmatic examples of mathematicians
who commented on phylogenesis and its
relation to ontogenesis. Section 5 focuses on a
particular interpretation of the recapitulation
law that led
approach”, which had an obvious impact on
early mathematics education. In section 6, we
discuss some examples of teachers who take
into consideration the history of mathematics
to improve their teaching; determining how
interpretations of the recapitulation law

to the so-called “genetic

articulate the teachers’ goals and actions
guides our discussion.

Section 7 provides a brief account of a
few current approaches in contemporary
mathematics education that relate to the
history of mathematics regarding either
theoretical or practical links between the
development of students mathematical
thinking and historical conceptual
developments. In the last section, we offer a
critical assessment of the law of recapitulation
and recommend ideas for conceptual and
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applied research in the 21st century regarding
historical and ontogenetic developments in
mathematics education.

2. FROM BIOLOGICAL TO
PSYCHOLOGICAL

RECAPITULATION
The way in which people perceived
psychological recapitulation at the beginning
of the 20th century was linked to the way they
perceived themselves in the overall view of
the world. As long as humans thought of
themselves as essentially different from
animals and plants, no relation in terms of
ancestry could be advocated. Even in the early
18th century, a common scholarly view to
explain the origin of species and to understand
the formation of living things was that species
came from those beings fortunate enough to
survive the deluge, as indicated in the Genesis
(see, e.g., Osborn, 1929), by finding refuge on
Noah’s ark. But with the appearance of the
early 19th-century philosophy of nature,
humans came to join the greater kingdom of
species. In their broader sense, however,
recapitulationist ideas data back, to the
pre-Socratic thinkers. They did not state them
in terms of a telescoping or condensed process
of lower life that culminates with humans.
Often their reference point was the cosmos.
Thus, Empedocles believed that the growth of
the embryo echos in a foreshortened way the
cosmogonic  process: The embryo is
submerged into amniotic fluid that evokes the
originally fluid earth (de Santillana, 1961, p.
114). During the 18th and early 19th centuries,
a vigorous debate separated two opposing
schools with regard to the concept of
recapitulation. One of them, which became
known as preformation theory, stated that
ontogenesis was the unfolding or growing of
preformed structures, whereas the other school
adopted a more dynamic stance, arguing that
the embryo was neither the exact miniature of
the developed species nor the unfolding of



preformed structures, but a being in a state of
development. The “causes” originating
embryo’s the unfolding or the changes were
variously interpreted.  Charles  Bonnet
(1720-1793), usually recognized as one of the
leaders of the preformationists, saw change as
coming from an affectionate God who had
ordered the world according to increasing
perfection and progress. Whereas in the
early-19th century Naturphilosophen
attributed development to a “natural” final
cause, Lamarck and Darwin envisioned a new
theory that replaced the philosophical idea of
final cause with an efficient cause—individual
development. (For a detailed discussion of
preformationist and Naturphilosophen ideas,
see Gould, 1977.) Indeed, from the mid-19"
century onward, the “causes” were seen in the
context of the theory of evolution.“Heredity
and adaptation are, in fact, the two
constructive physiological functions of living
things,” wrote Haeckel (1912, p. 6), who, in
one of the most famous statements ever made
in the realm of anthropogenesis (which he
modestly called the fundamental law of
biogeny), declared that

The series of forms through which the
individual organism passes during its
development from the ovum to the complete
bodily structure is a brief, condensed
repetition of the long series of forms which
the animal ancestors of the said organism, or
the ancestral forms of the species, have passed
through from the earliest period of organic life
down to the present day. (pp. 2-3)

Haeckel’s law was more than the simple
statement of a condensed repetition of steps.
What he was suggesting was that embryos of
man and dog, at a certain stage of their
development, are almost indistinguishable.
Indeed, to take one of Haeckel’s favorite
examples, “the human gill slits are (literally)
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the adult features of an ancestor” (Gould,
1977, p. 7).

How, then, was the discussion about the
biological growth of humans transferred to the
psychological domain? It was Haeckel who,
after discussing the nervous system, said “we
are enabled, by this story of the evolution of
the nervous system, to understand at length
the natural development of the human mind
and its gradual unfolding” (1912, p. 8, italics
as in the original). A sharper formulation was
the following: “the psychic development of
the child is but a brief repetition of the
phylogenetic evolution” (Haeckel quoted by
Mengal, 1993, p. 94). The adoption of the
psychological version of  biological
recapitulation served as a general framework
to conceive the functioning of child psyche as
something traveling the same path as his or
her ancestors. For instance, the child was seen
as behaving as humans in previous stages of
the chain of evolution (e.g., such as having, in
an early stage of his or her development, an
“animist” view of mnature, that is, that
immaterial forces animate the universe).
Psychological recapitulation endorses a
peculiar view of history and development.
Concerning development, for Bonnet and the
preformists, there was no development,
strictly speaking, but only growing or
unfolding. Environment cannot alter the
preformed structures and their growth. For
evolutionary-based recapitulation theories, in
contrast the environment is supposed to play
in the development of species a role. The
individual is seen as an organism adapting to
his or her environment; in the interplay
between individual and environment, some of
the biological and psychological functions
may develop, whereas others may be lost
according to the natural selection.

As for history, in contrast to views that
conceived a world that underwent different



creations, Bonnet saw the world as created at
one time, with its whole history encapsulated
within it. History was therefore the unfolding
of a predetermined plan. The concept of
history is much more problematic for
recapitulationists. Indeed, from a theoretical
point of view, history and recapitulation
become difficult to reconcil because, on one
hand, Haeckel’s psychological recapitulation
Supposes that present intellectual
developments are to some extent a condensed
version of those of the past.On the other hand,
natural selection is presented as a function of
the environment against which individuals act.
For recapitulation to be possible, therefore,
such an environment must remain essentially
the same, which obviously is not the case.
Given that the environment changes, it
becomes difficult to maintain that the
children’s intellectual
undergo the same process as the one children
experienced in the past. The variability that
natural selection imposes on the course of
events in history conflicts with the idea of
recapitulation as condensed repetition of some
intellectual aspects registered in past history.
Indeed, this point was recognized as a
weakness.

Werner (1957), for instance, advocated
contextual factors and argued that it is
impossible o equate a certain intellectual stage
of a child in a modern society to the stage an
adult could have reached in a ancient society
because the respective environments, as well
as the genetic processes involved in them, are
completely different (see Radford,1997a).
Elias also mentioned the differences that
necessarily result as a consequence of
variations in cultural settings. Whereas in
traditional societies children participate
directly in the life of the adults earlier and
their learning is done in situ (as apprentices),

development will

“modern” children are instructed indirectly in
mediating institutions, or schools (Elias,1991,

FULVIA FURINGHETTI, LUIS RADFORD: HISTORICAL CONCEPTUAL DEVELOPMENTS AND THE TEACHING OF MATHEMATICS

pp. 66-67). Consider memory, an example
that is addressed neither by Werner nor Elias
but which conveniently clarifies the previous
ideas. As many anthropological accounts
clearly show (see e.g., Levy-Bruhl, 1928),
memory plays a central role in illiterate
societies. In contrast, sign systems related to
writing in literate societies dispense with
memory to a certain and fundamental extent.
They create a different way to handle and
distribute knowledge and information between
the members of the society and shapes
attitudes about how to scrutinize the future
(see Lotman, 1990).

The theoretical difficulties encompassing
the crude version of psychological
recapitulation encouraged new reflections to
find more suitable explanations concerning the
relations  between phylogenesis  and
ontogenesis. In the next section, we will
discuss two different views that have been
influential in the use of history in mathematics
education.

3. PIAGET AND VYGOTSKY ON
ONTOGENESIS
AND PHYLOGENESIS

Piaget was interested in understanding the
process of the formation of knowledge. To do
so, he considered knowledge as something
that can be described in terms of levels and
strived to describe those levels, as well as the
passage from one level to a more complex one.
He said, “The study of such transformations of
knowledge, the progressive adjustment of
knowledge, is what | call genetic
epistemology” (Piaget cited in Bringuier, 1980,
p. 7). As a reaction to the simplistic
psychological version of recapitulationandthe
positivist view of knowledge thatwementioned
in the introduction, Piaget and Garcia
elaborated the concept of genetic development.
They envisioned the problem of knowledge in



terms of the intellectual instruments and
mechanisms  allowing its  acquisition.
According to Piaget and Garcia, the first of
those mechanisms is a general process that
accounts for the individual’s assimilation and
integration of what is new on the basis of his
or her previous knowledge. In addition to the
assimilation mechanism, they identified a
second mechanism, a process that leads from
the intraobject, or analysis of objects, to the
interobject, or analysis of the transformations
and relations of objects, to the transobject, or
construction of structures. This
epistemological viewpoint led them to revisit
the parallelism that recapitulationists had
emphasized. Therefore, Piaget concluded,“We
mustn’t
history and the individual development, but in
broad outline there certainly are stages that are
the same” (Bringuier, p. 48). The two
mechanisms were hence considered as
invariables, not only in time but also in space.
That is, we do not have to specify what they
are in a certain geographical space at a
particular time because they do not change
from place to place or from time to time. They
are exactly the same, regardless of the period
of history and the place of the individuals. In
modern mathematics, at the level of algebraic
geometry, of quantum mechanics, although

exaggerate the parallel between

it’s a much higher level of abstraction, you
find the same mechanisms in action—the
processes of the development of knowledge or
the cognitive system are constructed according
to the same kinds of evolutionary laws.(Garcia
in Bringuier, 1980, pp. 101-102) Thus, when
Piaget and Garcia investigated the relations
between ontogenesis and phylogenesis, they
did not seek a parallelism of contents between
historical and psychogenetical developments
but of the mechanisms of passage from one
historical period to the next. They tried to
show that those mechanisms are analogous to
those of the passage from one psychogenetic
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stage to the next.

The two mechanisms of passage
discussed by Piaget and Garcia have a
different theoretical background. The second,
that of the intra-, inter- and trans-objectual
relations, obeys a structural conception of
knowledge and reflects the role that
mathematical and scientific thinking played in
Piaget’s work. AsWalkerdine noted, “In the
work of Piaget, an evolutionary model was
used in which scientific and mathematical
reasoning were understood as the pinnacle of
an evolutionary process of adaptation”
(Walkerdine, 1997, p. 59). The first one, the
assimilation mechanism, has its roots in the
conception of knowledge as the prolongation
of the biological nature of the individuals:
“Thehumanmind is a product of biological
organization, a refined and superior product,
but still a product like another” (Piaget in
Bringuier, 1980, p. 108). Both intellectual
mechanisms of knowledge development
embody a general conception of rationality
that has been contested by some critics who
find missing, among other things, a more vivid
role of the culture and the social practices in
the formation of knowledge. For instance, the
epistemologist Wartofsky, who has stressed an
intimate link between knowledge and the
activities from which knowledge arises and is
used, said:

We are, in effect, the products of our own
activity, in this way; we transform our own
perceptual and cognitive modes, our ways of
seeing and of understanding, by means of the
representations we make. . . . Theoretical
artifacts, in the sciences, and pictorial or
literary artifacts, in the arts constitute the a
priori forms of our perception and cognition.
But contrary to the ahistorical and essentialist
traditional forms of Kantianism, | propose
instead that it is we who create and transform
these a priori structures. Thus, they are neither



the unchanging transcendental structures of
the understanding, nor only the biologically
evolved a priori structures which emerge in
species evolution (as, for example, Piaget and
the evolutionary epistemologists suggest).
Piaget’s dynamic, or genetic structuralism is
important here, of course. His dictum, “no
genesis without structure, no structure without
genesis,” suggests the dialectical interplay of
the practical emergence and transformation of
structures with the shaping of our experience
and thought by structures. But the domain of
this genesis | take to be the context of our
social, cultural and scientific practice, and not
that of biological species-evolution alone. . . .
In a sense, then, our ways of knowing are
themselves artifacts which we ourselves have
created and changed, using the raw materials
of our biological inheritance. (Wartofsky,
1979, p. xxiii)

Vygotsky, in many writings, dealt with the
problem of recapitulation and, like Piaget,
believed that the understanding of ontogenesis
and phylogenesis had to be based on a deep
understanding of our biological nature. (This
is clear, for instance, in his book Speech and
Thinking, as well as in the influence he had on
his student Luria and the huge amount of
physiological research that the latter
conducted.) Instead of posing the problem of
the formation of knowledge in terms of
universal and atemporal mechanisms
functioning beyond culture, however, he saw
the cognitive functions allowing the
production of knowledge as inevitably
overlapping with the context in which
individuals act and live. His basic distinction
between lower and higher mental functions is
reinforced by the idea that the former belong
to the sphere of the biological structure,
whereas the latter are intrinsically social. Thus,
in a passage from Tool and Symbol in Child
Development, when discussing the problem of
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the history of the higher psychological
functions, Vygotsky and Luria commented:

Within  this  general process of
development two qualitatively original main
lines can already be distinguished: the line
of biological formation of elementary
processes and the line of the socio-cultural
formation of the higher psychological
functions; the real history of child behaviour is
born from the interweaving of these two lines.
(Vygotsky&Luria, 1994, p. 148)

The merging of the natural and the
sociocultural lines of development in the
intellectual development of the child definitely
precludes any recapitulation:

In the development of the child, two
types of mental development are represented
(not repeated) which we find in an isolated
form in phylogenesis: biological and historical,
or natural and cultural development of
behavior. In ontogenesis both processes have
their analogs (not parallels). . . . By this, we do
not mean to say that ontogenesis in any form
or degree repeats or produces phylogenesis or
is its parallel. We have in mind something
completely different which only by lazy
thinking could be taken to be a return to the
reasoning of biogenetic law. (Vygotsky, 1997,
p. 19)

For Vygotsky even the elementary
intellectual functions of the individual are
intrinsically human, acquired through the
activities and actions on which are based the
intercourse between individuals and between
people and objects. One of the central reasons
for this is that human activities are mediated
by diverse kinds of tools, artifacts, languages,
and other systems of signs which, Vygotsky
argued, are a constitutive part of our cognitive
functions. Most important, these systems of



signs, as well as tools and artifacts, are much
more than technical aids: They modify our
cognitive  functioning. The  knowledge
produced by the individuals hence becomes
intimately related to the activities out of which
knowledge arises and the conceptual and
material “cultural tool kit” (to borrow
Bruner’s expression, see Bruner, 1990) with
which the individuals are equipped. Of course,
it does not mean that with every new
generation, all knowledge must be constructed
anew. As Tulviste (1991) noted, whereas rats
are still doing what they did centuries ago,
humans have, from one generation to the next,
assimilated, produced, and passed on their
knowledge. During this process, humans have
changed their activities and the way in which
they think about the world. In Vygotsky’s
view, knowledge appears as an individual and
social creative reappropriation and
coconstruction carried out using conceptual
and material tools that culture makes available
to its individuals. In turn, in the course of this
process, the previous tools and signs may
become modified, and new ones may be
created. It is in this sense that tools and
concepts have embodied the social
characteristics from which they arose, and
their insertion into other activities allows their
transformation and eventually their growth.
Because activities, sign use, and attitudes
toward the meaning of scientific inquiry do
not necessarily remain the same throughout
time, changes are effected in phylogenetic
lines (and the plural of lines needs to be
emphasized  here)  serving as  the
historicocultural starting point to new genetic
developments. Epistamologica reflexions have
then to evidence the relation between
cognitive context and action. As Wartofsky
pointed out:

If, in fact, our modes of cognitive
practice change with changes in our modes of
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production, of social organization, of
technology and technique, then the connection
between cognition and action, between
theoretical and applied practice, between
consciousness and conduct, has to be shown.
(Wartofsky, 1979, p. xxii)

One implication of the previous remarks
for the use of the history of mathematics in
education is that the study of recapitulation
can be advantageously replaced by the
contextual study of the social elements in
which the historical geneses of concepts are
subsumed. This can be accomplished through
a careful investigation of the cultural symbolic
webs shaping the form and content of
scientific inquiry and the ways in which
mathematical concepts are semiotically
represented (Radford, 1997a, 1998, 1999a,
2000a).We return to this point in section 7.

4. INTERPRETATION OF
RECAPITULATION
LAW BY MATHEMATICIANS

In the period when the treatises of Zeuthen
and Cajori appeared, the history of
mathematics was growing as a scientific
discipline.  The first journals dealing
exclusively with the history of mathematics
were appearing in that period. We have
extensive evidence that mathematicians and
mathematics educators were both looking at
the history of mathematics with great interest.
Mathematics educators were creating new
areas of work in their field linked to changes
in societies. As discussed in Furinghetti (2000)
and in Furinghetti and Somaglia (1998), the
history of mathematics was considered a
suitable means to find efficient ways of
teaching in different situations.Among
mathematicians, the axiomatization and the
foundational works were undertaken. These
themes were addressing mathematicians’
attention to reflections on the nature of
mathematics and on the activity of doing



mathematics. The history of mathematics was
considered a field that offered inspiration to
discuss these kinds of problems. In this
context, we consider some interpretations of
recapitulation law made by important
mathematicians.

In thefirst issue (1899) of L ‘enseignement
math ematique, an important journal devoted
to the teaching of mathematics, the eminent
mathematician Henri Poincare clearly stated
his position on the relations between
conceptual and historical developments:

Without a doubt, it is difficult for a
teacher to teach a reasoning that does not
satisfy him completely. . . . But the teacher’s
satisfaction is not the sole purpose of
teaching. . . above all one should be concerned
with the student’s mind and of what we want
him to become.

Zoologists claim that the embryonal
development of animals summarizes in a very
short time all the history of its ancestors of
geologic epochs. It seems that the same
happens to the mind’s development. The
educators’ task is to make children follow the
path that was followed by their fathers,
passing quickly through certain stages without
eliminating any of them. In this way, the
history of sciences has to be our guide.
(Poincar’e, 1899, p. 159; our translation)

Poincare gave examples of concepts to
be taught at an intuitive stage before
presenting them rigorously. Among these
examples were fractions, continuity, and area.
As far as we know, Poincare never used his
ideas on the efficacy of recapitulation law
directly with teachers. This makes Poincar’e’s
position different fromthat of Felix Klein,
another supporter of the use of history in
mathematics in teaching. In contrast, Klein
applied his ideas in courses for prospective
teachers and in related texts that he wrote.
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Klein supported the German translation
of the famous book A study of Mathematical
Education by Benchara Branford (1921) in
which, according to Fauvel (1991, p. 3), the
theory of recapitulation “reached its apogee.”
This can be considered evidence of Klein’s
agreement to the recapitulation law (Fauvel,
1991, p. 3). Nevertheless, from what Klein
wrote in his articles and books (see Klein,
1924), we understand that the application of
the law was not advocated in a literal sense.
As in the case of Poincar’e, his opinion on the
use of history was born of his wish to abolish
the use of mathematical logic and the excesses
of rigor advocated by some of his colleagues.
Klein was interested in the dichotomy of
“intuition versus rigor” and, as far as school is
concerned, was in favor of intuition.Hesingled
out the history of mathematics as being the
suitable context for bringing intuition back
into the teaching and learning process:

I maintain that mathematical intuition . . .
is always far in advance of logical reasoning
and covers a wider field. . . . | might now
introduce a historical excursus, showing that
in the development of most of the branches of
our science [mathematics], intuition was the
starting point, while logical treatment
followed. This holds in fact, not only of the
origin of the infinitesimal calculus as a whole
[this issue was discussed at the beginning of
Klein’s paper] but also of many subjects that
have come into existence only in the present
[19th] century. (Klein, 1896, p. 246)

Klein claimed that in school, as well as in
research, the phase of formalization must be
preceded by a phase of exploration based on
intuition.

We find an analogous statement in a
secondary school geometry book written by a
famous Italian mathematician, Francesco
Severi, which clearly refers to school practice:



We need to take inspiration from the
principle that in learning new notions, the
mind tends to follow a process analogous to
that according to which science has
developed.One who is aware of the value of
foundation theories [in Italian critica dei
principi] does not make the dangerous mistake
of giving to the elementary teaching a critical
and excessively abstract style. It is necessary
to know foundation theories for personal
intellectual maturity; but in the elementary
teaching they are not to be considered as a
pedagogical means. (Severi, 1930, p. IX; our
translation)

Both Klein and Severi do not clearly
state what “intuition” means for them, but
both state to what intuition is opposed: rigor,
excessive abstraction, and formal logic used at
the beginning of the presentation of a
mathematical notion. (It may be interesting to
note that Severi, famous during the first half
of the 20th century, is one of the scholars of
the Italian school of algebraic geometry who
based his results on intuition to such a degree
that these were published without being
careful verified by a mathematical proof, as
reported by Hanna, 1996).

5. THE GENETIC APPROACH

Using the history of mathematics in teaching
does not necessarily entail a direct assumption
of the recapitulation law; it also may be used
in the so-called genetic approach to teaching.
The term “genetic” is an ambiguous one
because it is used with different meanings. In
particular, in the foundation literature, the
term genetic method is used in contrast to
axiomatic method. David Hilbert probably
introduced this term, which was popularized
by Edward V. Huntington. Before Hilbert, we
find other uses of the word ‘“genetic.”
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Immanuel Kant stated that all mathematical
definitions are genetic; after Kant, the term
“genetic definition” is present in all major
logic treatises.

In addition to its wuse among
mathematicians and philosophers, we find the
word “genetic” in other fields of research.
Piaget and Garcia wused it their
epistemological studies. As to mathematics
education, Ed Dubinsky, who dealt with
genetic decomposition, used the word.

Here we are concerned with the word

in

“genetic” as it is used in connection with
history. In the 1920s the idea of a genetic
principle was taking shape, as evidenced by
the work of N. A. Izvolsky.

Gusev and Safuanov (2000) report that,
according to lzvolsky, nor teachers nor
textbooks try to explain the origin of
geometrical theorems. He suggested that,
when attempts to do this are done, students see
geometry in a different way. Moreover
sometimes students themselves guess that a
given theorem was not originated by a mere
wish of the teacher or textbooks’ authors, but
by questions arisen in previous works. It
happens that students try to imagine the origin
of a theorem. According to lzvolsky, even if
their hypotheses are not correct from the
historical point of view, this approach to the
teaching of geometry is valuable.

The idea of a genetic approach later
took a definite form in a work by Otto
Toeplitz that he wrote to describe a method of
presenting analysis to university students. The
following passage illustrates the ideas
underlying the genetic method:

Regarding all these basic topics in
infinitesimal calculus which we teach today as
canonical requisites, e.g., mean-value theorem,
Taylor series, the concept of convergence, the
definite integral, and the differential quotient
itself, the question is never raised “Why so?”



or “How does one arrive at them?” Yet all
these matters must at one time have been
goals of an urgent quest, answers to burning
questions, at the time, namely, when they
were created. If we were to go back to the
origins of these ideas, they would lose that
dead appearance of cut and dried facts and
instead take on fresh and vibrant life again.

Burn explains in this way Toeplitz’s ideas:

The question which Toeplitz was
addressing was the question of how to remain
rigorous in one’s mathematical exposition and
the teaching structure while at the same time
unravelling a deductive presentation far
enough to let a learner meet the ideas in a
developmental sequence and not just in a
logical sequence. While the genetic method
depends on careful historical scholarship it is
not itself the study of history. For it is
selective in its choice of history, and it uses
modern symbolism and terminology (which of
course have their own genesis) without
restraint. (Burn, 1999, p. 8)

It is not by chance that this alternative
approach developed in the domain of teaching
calculus. It is in this domain where the notion
that learning mathematics takes place in a
sequence predetermined by mathematical
logic has shown its pedagogical limitations.
Indeed, when organized around their logical
basis, the definitions of the main concepts of
calculus (integrals, limits, derivatives) are
abstract, and therein lies the burden of formal
rules and theorems. Students have difficulty
grasping the meaning of that with which they
are asked to work. At present there are
projects (not based on history) that take into
account these difficulties and organize the
teaching of calculus according to different
patterns. (See, for example, the Harvard
project based on giving an informal, operative
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approach to concepts in Hughes-Hallet et al.,
1994).

What Toeplitz proposed is realistic and
may be considered a compromise between the
two ways of thinking about teaching
mathematics, the logical versus developmental
sequences. Toeplitz’s historically based
approach aims to provide a slow process of
understanding that the student performs
through a sequence of steps. Because
Toeplitz’s aim is to provide teaching materials
that facilitate the learning of calculus, the
main concern of the author is not to teach
history, but to find learning sequences. Burn
(1999) elaborated on these ideas. If we
analyze Toeplitz’s proposals or the more
recent ideas of Burn, we may find an example
of the history of mathematics used as a key
element in the construction of a teaching
sequence (on calculus) from intuition to
logical deduction. The role of history is
therefore that of providing materials on which
to develop intuition. The presentation of the
historical materials is not shaped according to
recapitulationist principles because it uses
modern symbols, verbal expressions, and
cultural tools that are different from those of
past authors.

An older example of the use of the
genetic method (intertwined with a na"ive
heuristic approach) is in the treatise on
geometry by Alexis-Claude Clairaut (1771).
The preface of his book is an early example of
predidactic literature. Its importance lies in the
traces of Clairaut’s thought that can be found
in works on mathematics education through
the 20th century. Clairaut wrote:

Even if geometry is abstract in itself, we
nonetheless must agree that the difficulties
suffered by beginners come mostly from the
way it is taught in usual treatises. They always
start with a great deal of definitions, questions,
axioms, and preliminary principles, which



only seem to promise dry issues for
readers. . . . To avoid this dry quality that is
naturally linked to the study of geometry,
some authors put examples after each
proposition to show it is possible to do them;
but in this way, they only prove the usefulness
of geometry without making it any easier to
learn. Because each proposition is presented
before its use, the mind reaches concrete ideas
after having toiled with abstract ideas. Having
realized this fact, | intended to find out what
may have given birth to geometry and tried to
explain principles with the most natural
methods, which | suppose were adopted by the
first inventors, while trying to avoid the wrong
attempts they had necessarily made. (Clairaut,
1771, pp. 2-4; our translation).

According to Glaeser (1983), Clairaut
contributed greatly to the introduction of the
genetic method. Glaeser commented on
with  the
“Giving up the
exposition, and to follow the true historical
development of discovery, this method
consists on imagining a road that learned

Clairaut’s  work following

observations: dogmatic

peoples “could have followed”! Thus this is
pretense education”. (Glaeser, 1983, p. 341,
our translation).

In spite of Glaeser’s criticism, Clairaut’s
attempts present interesting features, even
more so if we consider that in the period when
this author conceived his project, the paradigm
of geometrical teaching was based on the
hypothetical-deductive Euclidean method. If
we compare the passage from Toeplitz’s book

and Clairaut’s passage, Wwe see an
extraordinary coincidence of intentions and
didactic observations (i.e., the idea of
“dryness” that is present in the work of both
authors).

Freudenthal ~ (1973) provided an

interpretation of the genetic method:
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Urging that ideas are taught genetically
does not mean that they should be presented in
the order in which they arose, not even with
all the deadlocks closed and all the detours cut
out. What the blind invented and discovered,
the sighted afterwards can tell how it should
have been discovered if there had been
teachers who had known what we know
now. . . . It is not the historical footprints of
the inventor we should follow but an
improved and better guided course of history.
(Freudenthal, 1973, pp. 101, 103; our italics).

Freundenthal termed this way of using
history “guided reinvention.” It implies an
active and aware participation of the teacher in
designing and carrying out teaching with
history.

6. THE HISTORY OF
MATHEMATICS IN THE
CLASSROOM FROM THE

TEACHER’S POINT OF VIEW

We have argued elsewhere (Furinghetti, 1997)
that to study the applications of the history of
mathematics in the classroom; we need a
systemic net of experiments to analyze. For
this reason, one of the authors (F. F.) has
constituted a permanent monitor to keep track
of the use of history in mathematics teaching
in ltaly. This means that teachers
experimenting with the use of the history of
mathematics, or only wishing to do so, are
invited to contact the monitor and to discuss
their ideas. In this way, it has been possible to
create a file containing a range of different
situations. The examples that we shall present
in what follows come from these data.

First, we report on a workshop of
teachers held by Jan van Maanen in Italy to
present and discuss the ICMI Study document,
“The role of the history of mathematics in the

teaching and learning of mathematics,”



together  with  Italian  researchers in
mathematics education and high school
teachers. Teachers participating in the

workshop were asked if they use history in
their classrooms. The answer, in general, was
negative because of the constraints of the
school system. Nonetheless, all the teachers
expressed the strong interest in using it if they
were given the opportunity. When asked to
explain why they consider the use of history
fruitful, the answer was  something
echoing—usually unintentionally—the recap-
itulation law. Some of the paradigmatic
statements (quoted literally) include the
following: “The students’ development of
concepts follows the historical sequence,”
“The historical genesis of the concept may
help teachers understand the genesis of the
concept in students’ minds,” and “If I present
the students with how algebra developed in
history, they feel differently about their
difficulties in learning it.”

Although not necessarily in a conscious
or explicit way, the answers exhibit an
understanding of the relation between
ontogenesis and phylogenesis that is close to
Haeckel’s psychological version of the law of
recapitulation. The following three examples
illustrate, in a more detailed way, some
teachers’ positions about recapitulation.

We will see that in these cases the initial

stimulus to consider the history of
mathematics in their teaching is the vague idea
that some parallelism between child

development and mathematical development
exists. Nonetheless, the kind and amount of
adaptations that result from changes due to
differences in historical periods and their
cultural contexts are so significant that it is not
possible to talk about some form of genuine
recapitulation.

6.1. First Example

The first teacher is a mathematics instructor in
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a middle school (students aged 11 to 13), who
studied biological sciences in college (and
hence does not have a substantially deep
understanding of mathematics) but is fond of
mathematics and of teaching.

She confesses her difficulties in teaching
because of students’ lack of motivation and
her personal incapacity to interpret their
difficulties. She has never carried out
experiments in the classroom encompassing
the use of history in mathematics teaching;
nonetheless, she wrote (see also Gallo, 1999):

| feel that my mathematical preparation
lacks a historical perspective. | think | could
find in history some answer to my teaching
problems.

In my opinion, to follow the evolution of
the mathematical thinking could help the
teacher understand how learning mathematics
develops in children and preadolescents.

As an example, | mention the use of
fractions by the Egyptians: It is closer to the
intuitive concept held by a primary pupil. |
gave my 10-year-old daughter an Egyptian
problem of dividing loaves among men taken
from a seventh-grade mathematics textbook.
She solved the problem in the way that the
Papyrus Rhind solves it.

I think it could be interesting to show
students other issues taken from history: the
geometrical representations of numbers, the
geometrical representations of algebraic
situations offered by Euclid. I think that the
latter are more illuminating than the usual
modern presentations.

The division problem the teacher used is
the following problem in the Rhind Papyrus
(ca. 1650 BCE): “Example of reckoning out
100 loaves for 10 men, a sailor, a foreman
and a watchman with double” (see Peet, 1923,
p. 109). Here we have an example of a teacher
who does not have historical preparation; she



only has some scattered ideas taken from
notes in books and articles. She never carried

out experiments using history in the classroom.

Her experience is based on anecdotal facts.We
interpret what she writes about history as
being representative of the ideas that teachers
in similar situations have about the use of
history in teaching: There is a parallel between
history and the way students learn.

6.2. Second Example

Other examples of the relationship of teachers
with history that are more precise focus on
experiments performed in the classroom. In
these cases, the ideas expressed by the teacher
are not mere intuition but are based on fact.
The first case concerns a class of twenty-one
15-year-old high school students. We only
briefly report on this experiment. (For a wider
account, see Paola, 1998.) The teacher has a
extensive experience in instruction and
research in mathematics education. In the
experiment, he acted as a teacher and as an
observer. His purpose was to work with
students on the concept of probability, which
they had already encountered in previous
school years. He chose to work with history to
return to the concept of probability using a
different (historical) approach. The work in
the classroom was centered on a problem that
is treated in many books of arithmetic from
the Middle Ages “How can the stake be
divided in a game where the two players are of
the same value (in modern terms, have the
same probability of winning) if the game is
interrupted before one of the two players has
realized the winning score?” This problem is
known as “the problem of partition.” Luca
Pacioli gave his solution (based on
proportionality) to this problem in his famous
treatise Summa de arithmetica geometria
proportioni et proportionalit'a (Printed in
1494). The classroom activity was developed
through discussion of the problem between
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students divided into groups. The teacher not
only orchestrated the discussion but also acted
as an observer and reported all that happened
in the classroom. Initially all students agreed
that the best way to solve the problem would
be to divide the stake in parts that were
proportional to the scores earned by each
player. The teacher easily refuted this solution
by proposing that one of the two players had a
score of zero when the game was interrupted.
After a discussion on this particular case,
another group of students proposed other ways
of solving it that did not satisfy their
classmates. At this point, the teacher read
Pacioli’s solution, which is similar to that of
the students, allowing them to see that an
important historical personage followed the
same process they did. The students seemed
ready to approach the concept of fair division
of the stake. Additional classes were dedicated
to discussing this concept, but the students did
not arrive at effective results on their own (i.e.,
they were not able to grasp the concept of
probability). The teacher expounded Pascal’s
the solution to the problem, as reported in
(Pascal, 1954), and thus introduced students to
the concept of probability.

As we said previously, the teacher acted
as an observer, and he accurately reported the
activity in the classroom (Paola, 1998). Even
if some elements of probability had been
taught to these students in the previous school
years, it is clear from the chronicle of the
classroomactivity that their strategies were
based on proportionality, as Pacioli’s were.
The teacher believes this experiment shows
that students follow the path of history: The
voice of history is again evoked by the teacher
to give dignity to the students’ solutions which
actually follow the path hinted by
mathematicians before Pascal and Fermat.
(Paola 1998, p. 34) There are many passages
suggesting that the teacher is concerned with
the mistakes in the ancient attempts of solving



Pacioli’s “The
incursion into history had the goal of giving
dignity to the mistake made by students: it
was not a trivial mistake if a mathematician

problem. For example:

made it” (p. 33). The teacher showed interest
in the parallels between the strategies his
pupils and Pacioli used, but he did not draw
general theoretical conclusions concerning the
recapitulation law. Fromhis conclusions, we
see only that he has a certain confidence in the
validity of following the stages of the
historical development for didactic purposes:
With another session | could have read and
commented on the Pascal-Fermat letters in the
classroom and thus | would have stressed the
role of history [in helping students to bypass
some obstacles in constructing concepts of
probability theory] (Paola, p. 35).

6.3. Third Example

The last case we present concerns a high
school mathematics and physics teacher who
works with students ranging in age from 16 to
19 years. The teacher has researched the
history of mathematics. She is interested in
proof and tries to develop students’ abilities
on this subject using historical examples. To
this end, she uses the method of analysis and
synthesis, found in the Pappus’s Collectiones
Mathematicae. We describe this method with
the following passage taken from Hintikka
and Remes (1974):

Now analysis is the way from what is
sought—as if it were admitted—through its
concomitants [the usual translation reads
consequences] in order to something admitted
in synthesis. For in analysis we suppose that
which is sought to be already done, and we
inquire from what it results, and again what is
the antecedent of the latter, until we on our
backward way light upon something already
known and being first in order.

And we call such a method analysis, as
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being a solution backwards. In synthesis, on
the other hand, we suppose that which was
reached last in analysis to be already done,
and arranging in their natural order as
consequents the former antecedents and
linking them one with another, we in the end
arrive at the construction of the thing sought.
And this we call synthesis. (p. 8)

The method of analysis is described in a
manual for teachers (Smith, 1911) as follows:

I can prove this proposition if | can
prove this thing; | can prove this thing if | can
prove that; | can prove that if | can prove a
third thing,” and so the reasoning runs until
the pupil comes to the point where he is able
to add, “but I can prove that.” This does not
prove the proposition, but it enables him to
reverse the process, beginning with the thing
he can prove and going back, step by step, to
the thing that he is to prove. Analysis is,
therefore, his method of discovery of the way
in which he may arrange his synthetic proof.
(Smith, 1911, pp. 161-162)

Historically this method originated in the
field of geometry, but it hassince been used in
other branches of mathematics. For example,
the method of analysis is at the heart of
algebra: The introduction of symbols made
byVi'ete in the 16th century did not arise
spontaneously but was a consequence of
having adopted the method of analysis for
solving algebraic problems (Charbonneau,
1996). The method of analysis also is not
specific to mathematics; for example, in
Marchi (1980), it is applied to chemistry. The
method of analysis represents a link between
history and education. In their chapter on
proof, Alibert and Thomas (1991) proposed a
method of proving that is similar to the
method of analysis, probably without
considering the history of mathematics. The
teaching experiment with this method that the



teacher in this example carried out lasted for
many years. We report on only briefly this
experiment; for a lengthier account, see
Somaglia (1998). At the beginning of the
lesson, the teacher presents herstudents with
the method of analysis in the field of
Euclidean geometry. Students experience the
application of this method in different
problems until the method is mastered and
recognized as a tool for attacking geometrical
problems. Afterward, the teacher has the
students apply the method to other parts of
mathematics (algebra and calculus) so that
they become aware of the transversality of the
method (i.e., that the method is not linked to a
particular domain of knowledge but can be
generalized).

Students are then ready to attack
problems in physics and in chemistry using

this method (see Clavarino & Somaglia, 2001).

In the description of her work, the teacher
never mentioned any parallel between the
strategies of her students and those of past
mathematicians, nor the persistence of errors.
In our experience, this fact is unusual among
teachers dealing with mathematics history.
There are two developments in the work of
this high school teacher, the historical and the
educational, that interact, and her way of
looking at these processes is very positive.
The teacher looks for what can give students
the means to realize the condensation of
concepts (see Sfard, 1991). This teacher has
an excellent knowledge of mathematics
history, and moreover it is quite natural for her
to work with original sources.

Thus, history is an integral part in her
mathematics teaching. Her contact with the
past is not that of someone who looks at the
past with the eyes of the present but one who
sees the concepts of the past as real and
important content—as foundations in an
architectonic sense—upon which our modern
concepts and methods are based. She puts in
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action Gadamer’s way of looking at the past,
that is, as “a dialogical process in which two
horizons (the past and the present) are fused
together” (Radford, 1997a, p. 27).

7. THE RECOURSE TO HISTORY
IN CONTEMPORARY
MATHEMATICS EDUCATION

In the previous sections, we discussed some
interpretations of recapitulation law made by
past mathematicians and teachers. Let us now
examine a few examples of contemporary
mathematics  educators, confining  our
discussion to two specific cases.

The first emphasizes (mainly although
not exclusively) a theoretical interest. The
second appears closer to specific contexts
arising from the needs to enhance teaching
and learning processes in mathematics
instruction. In the first case, the history of
mathematics appears as a theoretical tool to
understand  developmental  aspects  of
mathematical thinking. The purpose of the
second case is to facilitate, through explicit
pedagogical interventions, students’ learning
of mathematics by attempting to relate the
development of students’
thinking to historical
developments.

mathematical
conceptual

7.1. The Interface Between History and
Developmental Aspects of Mathematical

Thinking

The work of Sfard (1995) provides a clear
example of contemporary views on the
relation  between  history and  the
developmental aspects of mathematical
thinking. She analyzed the development of
algebra by blending historical and
psychological perspectives. At the beginning
of her article, she claimed that

there are good reasons to expect that,



when scrutinized, the phylogeny and ontogeny
of mathematics will reveal more than marginal
similarities. At least, this is what follows from
the constructivist view according to which
learning consists in the reconstruction of
knowledge. (p. 15)

The similarities between the phylogenetic
and ontogenetic domains result in this account
from “inherent properties of knowledge.” For
Sfard, who  follows a  Piagetian
epistemological perspective, knowledge can
be theoretically described in terms of genetic
structural levels, and it is precisely the nature
of the relationship between the different levels
that accounts for the similarity of phenomena
appearing the historical and the
individual’s construction of knowledge. As

in in
she noted, “difficulties experienced by an
individual learner at different stages of
knowledge formation may be quite close to
those that once challenged generations of
mathematicians” (Sfard, 1995, pp. 15-16). A
large part of the text is devoted to the
discussion of the development of algebraic
language. Indeed, using Nesselmann’s (1842)
distinction between rhetorical, syncopated,
and symbolic algebra, Sfard endeavored to
locate those “constants” (more precisely, those
“developmental invariants”) that ensure the
passage from rhetorical and syncopated
algebra to symbolic algebra. Rhetorical
algebra refers to the reliance on nonsymbolic,
verbal expressions to state and solve a
problem, as it appears, for instance, in Arabic,
Hindu, and Italian Medieval texts. Syncopated
algebra is seen as a more elaborate algebra in
that, although still relying heavily on verbal
expressions, it introduces some symbols, the
work of Diophantus being the canonical
example. Vi'ete’s systematic introduction of
letters epitomizes symbolic algebra.

After confronting experimental
classroom results with the traditional view of
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the historical development of algebra, Sfard
concluded that one of the development
invariants underpinning the passage from
rhetorical and syncopated algebra to symbolic
(Vietan) algebra is the precedence of
operational ~ over  structural  thinking.
Operational thinking, in this context, means a
way of thinking about algebraic objects in
terms of computational operations. Structural
thinking is related to more abstract objects
conceived structurally on a higher level.

As we can see, the use of history in
Sfard’s approach is an attempt to corroborate
parallelisms  between  ontogenetic  and
phylogenetic developments. As she said,
“history will be used here only to the extent
which is necessary to substantiate the claims
about historical and psychological parallels”
(Sfard, 1995, p. 17). Although she stressed the
importance for teachers to be aware of the
historical development of mathematics, the
intention is not that of creating a historically
inspired classroom activity. This is the goal of
another  perspective contemporary
mathematics education, discussed in section
7.2. For the time being, we want to mention a

in

sociocultural approach that shares Sfard’s use
of history for epistemological reasons but, in
contrast, emphasizes the crucial link between
cognition and the practical human activity in
which cognition is embedded. This approach
(see Radford, 1997a; Radford et al., 2000),
inspired by key ideas of the Vygotskian and
cultural perspectives alluded to in section 3 of
this chapter, is driven by a conception of
knowledge that differs from Piagetian genetic
structuralism, particularly in that knowledge
and the individuals’ intellectual means to
produce it are seen as intimately and
contextually related to their cultural setting.
Knowledge, in fact, is conceived as the
product of a mediated cognitive reflexive
praxis (see Radford, 2000b). The mediated
character of knowledge refers to the role



played by artifacts, tools, sign systems, and
other means to achieve and objectify the
cognitive praxis. The reflexive nature of
knowledge is to be understood in Ilyenkov’s
sense, that is, as the distinctive component that
makes cognition an intellectual reflection of
the external world in the forms of the
individual’s activity (Ilyenkov, 1977, p. 252).
Knowledge as the result of a cognitive praxis
(praxis cogitans) emphasizes the fact that
what we know and the way we come to know
it is framed by ontological stances and by
cultural meaning-making processes that shape
a certain kind of rationality out of which
specific kinds of mathematical questions and
problems are posed.

Theoretically, however, this does not
mean that the study of knowledge is
determined by social, economical, and
political factors because these are also
historically produced. Certainly, the link
between culture and cognition is more subtle
than the distinction between the “internal” and
“external” realms employed in many
historiographic approaches that see the
external as mere stimulus for conceptual
changes and development. Methodologically,
this means that the study of the historical
development of mathematics cannot be
reduced to the sociology of knowledge. This
also means that such a study cannot be done
through the analysis of texts only. The
“archive” (to borrow Foucault’s expression),
as a historical repository of previous
experiences and conceptualizations, bears the
sediments of social, economic, and symbolic
human activities. Therefore, understanding the
rationality within which a mathematical text
was produced requires relocating the text with
in its own context.

The goal of this kind of epistemological
reflection is not to find a parallel between
phylogenetic and ontogenetic developments.
In the sociocultural approach that we advocate,
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mathematical texts from other cultures are
investigated while taking into account the
cultures in which they were embedded. This
allows the researcher to scrutinize the way
mathematical ~ concepts, notations, and
meanings were produced. Through an oblique
contrast with the notations and concepts
taught in contemporary curricula, we seek to
gain  insights about the intellectual
requirements that learning mathematics
demands of our students.We also seek to
broaden the scope of our interpretations of
classroom activities. In designing classroom
activities, we aim at eventually adapting
conceptualizations embedded in history to
facilitate of
mathematics. Our work on Babylonian algebra
and the teaching of second-degree equations
(Radford & Guerette, 2000) is an example of
the latter. Our classroom research on the
strategies students use to deal with the
algebraic generalization of patterns and the
way they conceive relations between the
concrete and the abstract (see Radford, 1999b,
2000c)—research based on our investigation
of pre- and Euclidean forms to convey
generality (Radford, 1995a)—is an example of
oblique contrast between past developments

students’  understanding

and contemporary students’ conceptualizing
processes.

Our classroom  research on the
introduction of algebraic symbolism also
benefited from our epistemological inquiries
based on editions of original texts from
Medieval and Renaissance Italian
mathematics (Radford, 1995b, 1997b). Space
constraints do not allow us to go further, but
this  anthropological approach to the
epistemology of mathematics offers a new
view of the rise of symbolic algebra in the
16th century. The difference from traditional
views stressing the passage from syncopated
to abstract algebra in terms of abstractive
processes is that, in our account, changes in



development are related to changes in societal
practices and the way in which mathematical
conceptualizations are subsumed in them.
Briefly, what we find in our analysis is that
there were two main mathematical practices in
the early Renaissance, that used by merchants
and abacus mathematicians and that used by
humanists and court mathematicians. While
the latter were busy with the restoration of
Greek texts, the former were applying Arabic
algebraic techniques to practical as well as
nonpractical problems (e.g., problems about
numbers).  Symbolic  algebra was a
timeconsuming effort made by Italian
humanist and engineer mathematicians, such
as the priest Francesco Maurolico, who
eradicated all commercial content in his
Demonstratio Algebrae, which was completed
October 7, 1569 and edited by Napoli in the
19th  Century (Napoli, 1876). Another
example is the engineer Rafael Bombelli, who,
after having learned that the first books of
Diophantus’ Arithmetic were on the shelves of
a Roman library, studied them and ended up
eliminating the commercial problems in his
Algebra. Bombelli provided a final version of
it that conformed much more to the humanist
understanding of Greek mathematics.
France, a similar effort was made by the
humanists Jacques Peletier and Guillaume
Gosselin (although in this case, the promotion
of French as a scientific language was an
important drive; Cifoletti, 1992).

The underlying reason for the effort to
introduce a specific symbolism in algebra was
not due to the limitations of wvernacular
language. Mathematicians working within the
possibilities offered by rhetorical algebra
produced many difficult problems involving
several unknowns, as can be seen in
Fibonacci’s Il Flos (Picutti, 1983). These
problems could not be simplified by the
introduction of letters because what was
symbolized in the emergence of symbolic

In
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algebra did not include all of the unknowns
mentioned in a problem but only one of them.
(See, for instance Bombelli’s symbolism or
the neogeometrical example in Piero della
edited by
Arrighi, 1970.) It was only later that some in
Germany began using letters for several
unknowns (see Radford, 1997b). In our
approach, the emergence of algebraic
symbolism appears to be related to the effort
made by humanists and court-related
mathematicians to render the merchant’s
algebra noble and Court worthy (details in
Radford, 2000b). This was accomplished by
the lawyer and mathematician Fran cois
Vi'ete, at the French court, who followed the
prestigious Greek traditions typified by
Diophantus’  Arithmetic rather than the
multitude 15th- and 16th-century of abacus
treatises.

We now discuss a second reference to the
use of history in contemporary mathematics
education, that which aims at enhancing,
through explicit pedagogical interventions the

Francesca’s Trattato d’abaco,

students’ learning of mathematics.

7.2. Enhancing Students’ Mathematical

Thinking Through Historically Based

Pedagogical Actions

Boero and collaborators (see Boero,
Pedemonte, & Robotti, 1997; Boero,
Pedemonte, Robotti,&Chiappini, 1998) made
use of the mathematics history to investigate
the nature of theoretical knowledge and the
conditions by which it emerges. Their
historicoepistemological analysis aims at
looking for elements considered typical of
mathematical thinking, such as organization,
coherence, and systematic character. They
have investigated the role played by
definitions and proofs, as well as by the type
of theoretical discourse. The framework draws
from Bakhtin’s theory of discourse, mainly

from the theoretical construct of ‘“voice”



(Bachtin, 1968, Wertsch, 1991) and from
Vygostky’s distinction between scientific and
everyday concepts (Vygotsky, 1962).

The historico-epistemological inquiry is
subsequently invested in the design and
implementation of teaching settings based on
a careful selection of primary sources of
which the main objective is to allow the
students to echo the wvoice of past
mathematicians. In the students’ echoing
process, the students bring their individual
subjective and cultural backgrounds to build
from it a “voices and echoes game,” which
proves to be fruitful for the acquisition of
theoretical knowledge. The voices from the
past are not listened to passively but actively
appropriated  through an  effort  of
interpretation. Usually the students’ echoes
may take various forms. Boero and his team
have provided a categorization of some of the
ways in which the students enter the dialogical
game. For instance, a ‘“mechanical echo”
consists in precise paraphrasing of a verbal
voice, whereas an ‘“‘assimilation echo” refers
to the transfer of the content and method
conveyed by a voice to other problem
situations. A
appropriation of a voice as a way of
reconsidering and representing his or her

“resonance” is a student’s

experience.
Among the concrete instance of
theoretical knowledge examined by the

authors are the theories of the falling bodies of
Galileo and Newton, Mendel’s probabilistic
model of the transmission of hereditary traits,
and theories of mathematical proof and
algebraic language, all of which feature
aspects of a counterintuitive character.
Another example of the contemporary
use of history in the classroom is the research
of Sierpinska and collaborators. One of the
goals of this research is to provide an
alternative, based on the use of the
Cabri-Geom’etre software, to the traditional
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axiomatic approach to the teaching linear
algebra in undergraduate courses. A problem
examined in this research, which underlies
important aspects of the learning of basic
linear algebra, is that of understanding key
differences the  representations  of
mathematical objects. In this line of thought,
Sierpinska has emphasized the distinction

in

between a “numerical” and “geometrical”
space. The objects of the arithmetic spaces are
sets of n-tuples of real numbers defined by
conditions (in the form of equations,
inequalities, etc.) on the terms of the n-tuples
belonging to the sets. It stresses the fact that
these objects can be represented by geometric
figures (e.g., lines, surfaces). Geometric
objects, in contrast, are defined as a locus of
points verifying some conditions (e.g., the
“geometric circle” means the locus of points
equidistant from a given point). The geometric
objects can be represented by sets of n-tuples
defined by conditions on their terms (e.g., by
equations). Thus, in the case of arithmetical
spaces, the geometrical aspect is derived from
the numerical one; in the case of geometrical
spaces, the numerical aspect results from the
geometrical one. A suitable understanding of
elementary linear algebra requires the students
to establish a convenient relation between the
geometrical and the numerical views of the
objects of linear algebra and to grasp that the
roles of objects and representations are
reversed.

The difference between geometrical and
numerical space is clear in the history of linear
algebra. Sierpinska, Defence, Khatcherian,
and Saldanha (1997) identified three modes of
which they labeled
“analytic-arithmetic,”

reasoning,
“synthetic-geometric,”
and “analytic-structural.” As they noted (a
more detailed report is in Bartolini Bussi&
Sierpinska, 2000), the concepts of linear
algebra do not all have the same meaning and,
in the classroom, they are not equally



accessible to beginning students. The design
of the teaching activities as well as the
understanding of students’ answers took into
account the modes of reasoning as determined
in the historico-epistemological analysis. (An
extended account of the teaching activities can
be found in Sierpinska, Trgalova, Hillel, &
Dreyfus, 1999a and Sierpinska, Dreyfus, &
Hillel, 1999b.)

8. SYNTHESIS AND CONCLUSION

In this chapter, we dealt with one of the many
uses of the history of mathematics
mathematics education, namely, a use that can
be characterized as an attempt to investigate
historical conceptual developments to deepen
our understanding of mathematical thinking

in

and to enhance the students’ conceptual
achievement. In the first part of the article, we
saw how psychological recapitulation was
imported from biological recapitulation and
gave rise to a discourse that framed much of
the discussions about child development since
the beginning of the 20th century.
Psychological recapitulation was adopted by
some eminent mathematicians who, in one
form or another, supported the idea that in
developing their mathematical thinking,
children would traverse similar steps as those
followed by humans. Within this conception,
children will supposedly find during their
development  some  similar  problems,
difficulties, or obstacles as those encountered
by past mathematicians. Recapitulationism,
we argued, served the cause of some
mathematicians as a means to counter the
teaching orientation based on commitments to
rigor and logical structures arising in the flow
of the research on the foundations of
mathematics at the turn of the 20th century.
Nonetheless, one of the problems with
the recapitulationist approach is that
conceptual  developments are seen as
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chronologically self-explanatory, and
psychological evolution is taken for granted.
Furthermore, knowledge
having little (if any) bond to its context, and
the idea of history is reduced to a linear
sequence of events judged from the vantage
point of the modern observer. In all likelihood,
the extremely low number of studies that
attempt to check the validity of recapitulation

law is evidence of the impossibility of
reproducing the conditions in which ideas
developed in the past. As Dorier and Rogers

is conceived as

1313

noted,
in many forms and now we accept that the
relation between ontogenesis and
phylogenesis is universally recognized to be
much more complex than was originally
believed” (Dorier & Rogers, 2000, p. 168).
This statement corresponds well with
recent nonpositivist  epistemological and
anthropological trends.Indeed, in emphasizing
the relation between knowledge and social
practices, these trends have raised some
criticisms to the acultural stance conveyed by
the general and universal character of the
recapitulation law, thereby opening new ways
to reconceptualize the relations between
historical conceptual developments and the
teaching of mathematics. In the course of our
discussion, we mentioned two different and
critical stances toward the relation between
ontogenesis and phylogenesis as elaborated by
Piaget and Garcia on one hand and by
Vygotsky and his collaborators on the other.
The way Piagetian and Vygotskian
epistemologies have inspired current work on
contemporary mathematics education was
made clear in the brief presentations of
specific traits in the works of Sfard, Radford,
Boero, and Sierpinska, works that attempt to
contrast (with different purposes and
different senses) ontogenetic and phylogenetic
developments to shed light on the nature of
mathematical knowing as well as on the

naive recapitulationism’ has persisted

in



teaching and learning of mathematics.
Regarding recommendations for future
research, it can be suggested, in light of the
previous discussion, that a pedagogical use of
the history of mathematics committed to
enhance students’ conceptual achievements
requires a critical reflexion about the
conceptions of ontogenesis and phylogenesis
and, of course, of knowledge itself. But to be
fruitful in practical terms, such a critical
reflexion must be clear about its classroom
implications. In particular, efforts to include
teachers in the reflexive enterprise must be
made. The work of Furinghetti suggests that to
reach effectiveness in using history, teachers’
willingness is not enough. To use history
productively, teachers need to gain an
appropriate  understanding of differences
between ontogenetic and  phylogenetic
developments and to bear a critical stance
toward recapitulation views. As the
sophisticated of Boero’s
approach suggests, this requires teachers to be
amply comfortable in handling cognitive and
historical aspects. Let us make three
suggestions concerning actions for research.

methodology

1. Ona theoretical level, discussions
about recapitulation and its different meanings
should be promoted among historians,
epistemologists,psychologists,anthropologists
and mathematics educators.

2. On a practical level, models of
contrasts and conceptualizations between
ontogenetic and phylogenetic developments
also should be considered further. Models of
contrast may help us to better grasp specific
traits of mathematical thinking, its relation to
the cultural settings, and the mathematical
concepts thus produced. This can lead to a
better understanding of the kind of practical
pedagogical interventions that can be
envisioned.

3. Theoretical reconceptualizations of
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recapitulation and contrasts and comparisons
between ontogenetic and phylogenetic
domains should be explicit as to how they can
frame the engineering of material and teaching
sequences. We consider these related research
topics as being interactively fed by theoretical
enquiries, historical studies, and also
classroom observations.

The course of the three aforementioned
actions for future research will ultimately
depend on the very conception of
mathematical knowledge to be adopted. At
this point, two main contrasting trends seem to
be emerging. In the first trend, what makes the
specificity of mathematical knowledge is its
systemic, objective, and logical nature (see
Fujimura, 1998). In the second trend, which is
much  more  anthropologically  driven,
knowledge is conceived as a kind of culturally
framed activity enabling individuals to enquire
about their world and themselves. Here
“systematicity” and “logicality” are seen as
circumscribed characteristics of knowledge
that can be different from culture to culture
(see Radford, 1999c). Between them, of
course, many possibilities can be envisaged.
To theoretically elaborate on some of those
possibilities, to build practical and conceptual
reflexions about historical and contemporary
deepen  our
understanding of mathematics and facilitate
the way students learn is a challenge for the
years to come.

“developments,” and to
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(2) B2 A (B
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HUFTT RS AR L BUAB IR B A SO TR B I % B 5 AT T 4l T 0 SR 32
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R 2 O R A A AR B R 0 SR ) s R R 2 TR AR AE T A AR AL
an, % (). Macé 1815~1894) I\, JLHEAJZE]—UI N3], RER SRS
SR, HAKBRKOBAETES —NILES EXSEHIFLHE. » (Mace, 1862) i 4
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JUETE H R st f b e AL 75 2k s IR B AU R ME. > ('Smiith, 1900) 3 [ % SR
F K M KR (M. Kline, 1908~1992) 1M i 5 R BRI s % M — kAR AR . ) s By
KETBRI WA, ER P E MBS IRenT, A R B NRm. » (ERRE,
2004a)

F. 73EH (F Klein, 1849~1925). JEME (Poincare, 1854~1912). K. (G. Polya,
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AP s, (Freudenthal, 1980)

173 AR AL (I O B 2 B R S DRy, R — MR 1 D] SR MU AS S
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2 1-6 4F4% 144 225 LRI, R ILEA RS AREU BRI FR 22 DB AR, im0
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BN 1) e P A IR D R R I, bR BRI TE 75 R =, 17 SE R R 5 /MM R g
FEALLR o

Keiser (2004)iid PR 5 WS VTR A R IN, 7S A A B ARV Kl i
CRRZANH, SHAEEEER P EE B A MUY Zormbala & Tzanakis (2004)i8id %} 51
L RFARBCE LA IS 2 A S BRI T A, R IR P T M & BEAR 5 )T
2 )R f#E(Parmenides, A 5 tH40) . ##E (Heron, 1 fH40) . 34 JE %k (G. W. Leibniz, 1646~
1716). ¥4 (R. Simson, 1687~1768). i (C.F. Gauss, 1777~1855). JZ¥=H (M. Pieri,
1860~1930) ZEHER MELMAEA MM Thomaidis & Tzanakis (2007) HFFLKRIL, 24
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SEREARAE, PR A AN BT UART R B FEAR A BT B, D s BV BB ) 1 g KT
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51 WA X
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Van Maanen (1992)F| i fif ~2 % 5 &7 (F. van Shooten, 1615~1660) 1[4k il 22 /£ &
TR, gwifilmh A E i E .

FPE RO PR E TR WP 1 pTR. KR AB TTSE A 5, AB = a; K4F BE i@
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KL _EREhS, EAbRIZESRRIE 1 6 .

B 1 4FiEaoRF R T A

(D HULANES, KLAXxH, BES KLIRMAA o, Ha. bHlg RERMEMNE
FAALR

(2) Rel E WPUERE AL TR, E RP0E RS A RIBEIE ?

(3) #PHIIX—THRRSEGMEER (G BB EE ) 2

AU, 5t /I 2 i) PRk Ty P2 o ) A 3 A P P 8 IR 1 S IR e
#, 2012):
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#h, tRI: AN, KA, —AER, MLE=, BRE— THIFL. X
ANeERAR A BRI, b EFRAIBOANTAAY AA Z AV @ @K, AdoB T E
&4, ZAOC=/BOC=/0OBA=/ABC=90S AB=0C=2, OB=a (a>0), F ALK
OB L#jzh %, EADB#F %, 9, 45 FEghI|H242E0, ALK AF 5 OF AT A&
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Bagni (2000)3% 1 5 D1F] (R. Bombelli, 1526~1572) (fA%2%) (1572) Fff5eT 1. -1,
iv - S EIENILL YL (A, Caylay, 1821~1895) MISRIERKIIAFM S ZE, KKK
T FH 0% 505K BN H R 20 (0 Ak

Earnest (1998) 1L A= R A0 st kb gl /R b o, 2558, BRRTBUTAI B 8 2R M
R, W RAR LR R, IR RIS RIS IR AL RS SRR
S, HREEMAS BRI AR B2 A AN BFESE R LER.
T B T B 5 P RO R SR, I Bk 22 R s RIS SR
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What is the Key to Make Dynamic Geometry Software
Xu Zhangtao
(College of Mathematics and Statistic, Central Normal University, Wuhan 430079)

Abstract: Using a unified method to make elliptic, hyperbolic, and other graphics. From this
process, we can see what is the key to make dynamic geometry .1t is necessary to use the thinking
and methods of mathematics flexibly. The way of making dynamic geometry software can
promote the development of teacher profession.

Keywords: dynamic geometry software; the thinking and methods of mathematics; the

development of teacher profession
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