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SUMMARY

Newton-HSS methods, which are variants of inexact Newton methods different from the Newton–Krylov
methods, have been shown to be competitive methods for solving large sparse systems of nonlinear
equations with positive-definite Jacobian matrices (J. Comp. Math. 2010; 28:235–260). In that paper, only
local convergence was proved. In this paper, we prove a Kantorovich-type semilocal convergence. Then we
introduce Newton-HSS methods with a backtracking strategy and analyse their global convergence. Finally,
these globally convergent Newton-HSS methods are shown to work well on several typical examples using
different forcing terms to stop the inner iterations. Copyright q 2010 John Wiley & Sons, Ltd.

Received 6 January 2009; Revised 9 January 2010; Accepted 28 January 2010

KEY WORDS: systems of nonlinear equations; semilocal convergence; inexact Newton methods; the
Newton-HSS method; globally convergent Newton-HSS method

1. INTRODUCTION

Consider solving the system of nonlinear equations with n equations in n variables:

F(x)=0, (1)

where F :D⊂Cn→Cn is a nonlinear continuously differentiable operator mapping from an open
convex subset D of the n-dimensional complex linear space Cn into Cn , and the Jacobian matrix
F ′(x) is sparse, nonsymmetric and positive definite. This is satisfied in many practical cases
[1–3]. The Newton method is the most common iterative method for solving (1.1) (see [4, 5], for
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example). It has the following form:

xk+1= xk−F ′(xk)−1F(xk), k=0,1, . . .. (2)

Hence, it is necessary to solve the Newton equation

F ′(xk)sk=−F(xk), (3)

to obtain the (k+1)th iteration xk+1= xk+sk . Equation (3) is a system of linear equations that we
denote generally by

Ax=b. (4)

In general, there are two types of iterative methods for solving (4) [6]. One comprises nonsta-
tionary iterative methods such as the Krylov methods. If Krylov subspace methods are used to
solve the Newton equation, then we get Newton–Krylov subspace methods. We call the linear
iteration, for example the Krylov subspace iteration, an inner iteration, whereas the nonlinear
iteration that generates the sequence {xk} is an outer iteration. Newton-CG and Newton-GMRES
iterations, using CG and GMRES as an inner iteration, respectively, are widely studied [6–10]. The
second type of iterative methods that include methods such as Jacobi, Gauss–Seidel and successive
overrelaxation (SOR) are classical stationary iterative methods. These methods do not depend on
the history of their iterations. They are based on splittings of A. When splitting the coefficient
matrix A of the linear equation into B and C , A= B−C , splitting methods to solve (4) of the form

Bx�=Cx�−1+b, �=0,1, . . . (5)

are obtained. Hence, if these methods are regarded as inner iterations (and we assume that as is
common the initial iterate is 0), we obtain the inner/outer iteration [3, 4, 11–17]

x0 given,

xk+1= xk−(T �k−1
k +·· ·+Tk+ I)B−1k F(xk),

Tk= B−1k Ck,

F ′(xk)= Bk−Ck, k=0,1, . . .,

(6)

where �k is the number of inner iteration steps.
Bai et al. [3] have proposed the Hermitian/skew-Hermitian splitting (HSS) method for non-

Hermitian positive-definite linear systems based on the Hermitian and skew-Hermitian splittings.
They have proved that this method converges unconditionally to the unique solution of the system
of linear equations and, when the optimal parameters are used, it has the same upper bound for
the convergence rate as that of the CG method.

In [18], Bai and Guo use the HSS method as the inner iteration and obtain the Newton-HSS
method to solve the system of nonlinear equations with non-Hermitian positive-definite Jacobian
matrices. Numerical results on two-dimensional nonlinear convection–diffusion equations have
shown that the Newton-HSS method considerably outperforms the Newton-USOR, the Newton-
GMRES and the Newton-GCG methods in the sense of number of iterations and CPU time.

There are three fundamental problems concerning the convergence of the iteration [4]. The first
is local convergence that assumes a particular solution x∗. The second type of convergence, called
semilocal, does not require knowledge of the existence of a solution, but imposes all the conditions
on the initial vectors. Finally, global convergence, the third and most elegant type of convergence
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result, states that beginning from an arbitrary point in Cn , or at least in a large part of it, the
iterates will converge to a solution. In [18], we gave two types of local convergence theorems.
In this paper, we will first present semilocal convergence theorems for the Newton-HSS method.
Then, to obtain the globally convergent result, we define a Newton-HSS method with backtracking
and prove its global convergence. Finally, computational results are demonstrated.

2. PRELIMINARIES

Throughout this paper, the norm is the Euclidean norm. We denote by B(x,r)≡{y|‖y−x‖<r}
an open ball centred at x with radius r>0, whereas B(x,r) is its closed ball. A∗ represents the
conjugate transpose of A. We also use xk,� with subscripts k as the step of the outer iteration and
� as the step of the inner iteration, respectively.

Inexact Newton methods [19] compute an approximate solution of the Newton equation as
follows:

Algorithm IN [19]
1. Given x0 and a positive constant tol.
2. For k=0,1,2, . . . until ‖F(xk)‖�tol‖F(x0)‖ do:

2.1. For a given �k ∈[0,1) find sk that satisfies

‖F(xk)+F ′(xk)sk‖<�k‖F(xk)‖.
2.2. Set xk+1= xk+sk .

For large sparse non-Hermitian and positive-definite systems of linear equations (4), the HSS
iteration method [3, 20] can be written as

Algorithm HSS [3]
1. Given an initial guess x0, and positive constants � and tol.
2. Split A into its Hermitian part H and its skew-Hermitian part S

H= 1
2(A+A∗) and S= 1

2(A−A∗).

3. For �=0,1,2, . . . until ‖b−Ax�‖�tol‖b−Ax0‖, compute x�+1 by

(�I+H)x�+1/2 = (�I−S)x�+b,
(�I+S)x�+1 = (�I−H)x�+1/2+b.

3. SEMILOCAL CONVERGENCE OF THE NEWTON-HSS METHOD

Now we present a Newton-HSS algorithm to solve large systems of nonlinear equations with a
positive-definite Jacobian matrix (1):

Algorithm NHSS (the Newton-HSS method [18])
1. Given an initial guess x0, positive constants � and tol, and a positive integer sequence{�k}∞k=0.
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2. For k=0,1, . . . until ‖F(xk)‖�tol‖F(x0)‖ do:
2.1. Set dk,0 :=0.
2.2. For �=0,1,2, . . .,�k−1, apply Algorithm HSS:

(�I+H(xk))dk,�+1/2 = (�I−S(xk))dk,�−F(xk),

(�I+S(xk))dk,�+1 = (�I−H(xk))dk,�+1/2−F(xk),
(7)

and obtain dk,�k such that

‖F(xk)+F ′(xk)dk,�k‖<�k‖F(xk)‖ for some �k ∈[0,1), (8)

where H(xk)= 1
2 (F
′(xk)+F ′(xk)∗) and S(xk)= 1

2 (F
′(xk)−F ′(xk)∗).

2.3. Set

xk+1= xk+dk,�k . (9)

In [18], �k , for all k, is set equal to a positive constant �̃ less than 1 that is pre-specified before
implementing the algorithm. However, the globally convergent algorithm in the next section is
based on different �k [21] per step.

If the last direction dk,�k at the kth step is given in terms of the first direction dk,0 in (7) (here
the value is 0), we get

dk,�k = (I−T �k
k )(I−Tk)−1B−1k F(xk), (10)

where Tk :=T (�; xk), Bk := B(�; xk) and
T (�; x) = B(�; x)−1C(�; x),
B(�; x) = 1

2�
(�I+H(x))(�I+S(x)),

C(�; x) = 1

2�
(�I−H(x))(�I−S(x)).

(11)

Then, from the expressions for Tk in (11) and dk,�k in (10), the Newton-HSS iteration in (9) can
be written as

xk+1= xk−(I−T �k
k )F ′(xk)−1F(xk). (12)

In order to get a Kantorovich-type semilocal convergence theorem for the above Newton-HSS
method, we need the following assumption.

Assumption 3.1
Let x0∈Cn , and F :D⊂Cn−→Cn be G-differentiable on an open neighbourhood N0⊂D on
which F ′(x) is continuous and positive definite. Suppose F ′(x)=H(x)+S(x), where H(x)=
1
2(F
′(x)+F ′(x)∗) and S(x)= 1

2(F
′(x)−F ′(x)∗) are the Hermitian and the skew-Hermitian parts

of the Jacobian matrix F ′(x), respectively. In addition, assume the following conditions hold.

(A1) (THE BOUNDED CONDITION) there exist positive constants � and � such that

max{‖H(x0)‖,‖S(x0)‖}��, ‖F ′(x0)−1‖��, ‖F(x0)‖��, (13)
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(A2) (THE LIPSCHITZ CONDITION) there exist nonnegative constants Lh and Ls such that
for all x , y∈B(x0,r)⊂N0,

‖H(x)−H(y)‖ � Lh‖x− y‖,
‖S(x)−S(y)‖� Ls‖x− y‖. (14)

From Assumption 3.1, F ′(x)=H(x)+S(x), L= Lh+Ls and Banach’s theorem (see
Theorem V.4.3 in [22], or the Perturbation Lemma 2.3.2 in [4]), Lemma 3.1 easily follows.

Lemma 3.1
Under Assumption 3.1, we have

(1) ‖F ′(x)−F ′(y)‖�L‖x− y‖;
(2) ‖F ′(x)‖�L‖x−x0‖+2�;
(3) If r�1/(�L), then F ′(x) is nonsingular and satisfies

‖F ′(x)−1‖� �

1−�L‖x−x0‖ .
Then we can give the following semilocal convergence theorem.

Theorem 3.2
Assume that Assumption 3.1 holds with the constants satisfying

��2L� 1−�

2(1+�2)
, (15)

where �=maxk{�k}<1, r=min(r1,r2) with

r1 = �+�

L

(√
1+ 2���

(2�+���)(�+�)2
−1
)

,

r2 = b−√b2−2ac
a

,

a = �L(1+�)

1+2�2�L�
, b=1−�, c=2��,

(16)

and with �∗= lim infk→∞ �k satisfying‡ �∗>�ln�/ln((�+1)�)�, �∈ (0, (1−�)/�) and

�≡�(�; x0)=‖T (�; x0)‖<1. (17)

Then the iteration sequence {xk}∞k=0 generated by the Algorithm NHSS is well-defined and
converges to x∗, which satisfies F(x∗)=0.

Proof
First of all, we will show the following estimate about the iterative matrix T (�; x) of the linear
solver: if x ∈B(x0,r), then

‖T (�; x)‖�(�+1)�<1. (18)

‡Here, the ‘floor’ symbol �·� represents the largest integer less than or equal to the corresponding real number.
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In fact, from the definition of B(�; x) in (11) and Assumption (A2), we can obtain

‖B(�; x)−B(�; x0)‖

�1

2
‖(H(x)−H(x0))+(S(x)−S(x0))‖+ 1

2�‖H(x)S(x)−H(x0)S(x0)‖

� L

2
‖x−x0‖+ 1

2� (‖(H(x)−H(x0))+H(x0)‖‖S(x)−S(x0)‖+‖H(x)−H(x0)‖‖S(x0)‖)

� L

2
‖x−x0‖+ 1

2� ((Lh‖x−x0‖+�)Ls‖x−x0‖+�Lh‖x−x0‖)

� L

2
‖x−x0‖+ 1

2�

(
L2

2
‖x−x0‖2+�L‖x−x0‖

)

= L2

4�
‖x−x0‖2+ (�+�)L

2�
‖x−x0‖. (19)

Similarly, we have

‖C(�; x)−C(�; x0)‖� L2

4�
‖x−x0‖2+ (�+�)L

2�
‖x−x0‖. (20)

Then because F ′(x)= B(�; x)−C(�; x) and the definition of T (�; x) in (11), it follows that

‖B(�; x0)−1‖= ‖(I−T (�; x0))F ′(x0)−1‖
< (1+�)�

< 2�. (21)

Meanwhile, r�r1 implies that

L2r2+2(�+�)Lr<
2���

2�+���
<
2�

�
. (22)

Hence, again using the Banach theorem, we get

‖B(�; x)−1‖� ‖B(�; x0)−1‖
1−‖B(�; x0)−1‖‖B(�; x)−B(�; x0)‖

� 8��

4�−2�(L2‖x−x0‖2+2(�+�)L‖x−x0‖) . (23)

Hence, as in Theorem 3.2 of [18], this together with (17), (19), (20) and (22), the estimate about
the inner iteration matrix T (�; x) and T (�; x0) is obtained as follows:

‖T (�; x)−T (�; x0)‖
=‖B(�; x)−1(C(�; x)−C(�; x0))−B(�; x)−1(B(�; x)−B(�; x0))B(�; x0)−1C(�; x0)‖
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� 4�(L2‖x−x0‖2+2(�+�)L‖x−x0‖)
4�−2�(L2‖x−x0‖2+2(�+�)L‖x−x0‖)

<��. (24)

Consequently,

‖T (�; x)‖�‖T (�; x)−T (�; x0)‖+‖T (�; x0)‖�(�+1)�<1. (25)

Second, we claim that the following iterative sequence {tk} converges monotone increasingly to r2:

t0 = 0,

tk+1 = tk− g(tk)

h(tk)
, k=0,1,2, . . .,

(26)

where

g(t) = 1
2at

2−bt+c,
h(t) = at−1. (27)

In short, the following inequalities hold:

tk<tk+1<r2 for k=0,1, . . . . (28)

In fact, from inequality (15) we have

��2L� (1+2�2�L�)(1−�)

2(1+�)
,

that is,

c= t1<
b

a
.

Based on g(t1)= 1
2ac

2+�c>0=g(r2), and g(t) decreasing in [0,b/a], it holds that
t1<r2.

Hence (28) is true for k=0.
Suppose that tk−1<tk<r2. Then we consider

tk+1= tk− g(tk)

h(tk)
.

g(t) decreasing and g′(t) increasing in [0,b/a] imply that g(tk)>0 and g′(tk)�0, respectively.
Furthermore, h(tk)�g′(tk) implies −h(tk)�0. Hence,

tk+1>tk .

On the other hand, the function

t− g(t)

g′(t)
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increases in [0,b/a]. Combining with

−g(tk)

h(tk)
�− g(tk)

g′(tk)
,

we have

tk+1�r2− g(r2)

g′(r2)
=r2.

Hence, (28) is also true for k. Consequently, the claim (28) holds for all nonnegative integers.
Furthermore, there exists t∗ such that limk tk= t∗. Then we can assert t∗=r2 [23].

Finally, we prove by induction

‖xk+1−xk‖� tk+1− tk,
‖xk+1−x0‖� tk+1− t0�r2,

‖F(xk)‖� 1−�Ltk
�(1+�)

(tk+1− tk) for k=0,1, . . .. (29)

Since

‖x1−x0‖= ‖F ′(x0)−1F(x0)+T �∗
0 F ′(x0)−1F(x0)‖

� �(1+��∗)�

� 2��

= t1− t0,
and

‖F(x0)‖��� 2�

1+�
= 1−�Lt0

�(1+�)
(t1− t0),

(29) is correct for k=0. Suppose that (29) holds for all nonnegative integers less than k. We need
to prove that it holds for k.

It follows from the integral mean-value theorem and Lemma 3.1 that when x, y∈B(x0,r),

‖F(x)−F(y)−F ′(y)(x− y)‖=
∥∥∥∥∥
∫ 1

0
F ′(y+ t (x− y))(x− y)dt−F ′(y)(x− y)

∥∥∥∥∥
�
∫ 1

0
‖F ′(y+ t (x− y))−F ′(y)‖‖x− y‖dt

�
∫ 1

0
Lt‖x− y‖2 dt

= L

2
‖x− y‖2. (30)
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Therefore, because of (8) and xk−1, xk ∈B(x0,r2),

‖F(xk)‖� ‖F(xk)−F(xk−1)−F ′(xk−1)(xk−xk−1)‖+‖F(xk−1)+F ′(xk−1)(xk−xk−1)‖

� L

2
‖xk−xk−1‖2+�‖F(xk−1)‖,

then using the inductive hypothesis, we have

�(1+�)

1−�Ltk
‖F(xk)‖� �(1+�)

1−�Ltk

(
L

2
(tk− tk−1)2+�

1−�Ltk−1
�(1+�)

(tk− tk−1)
)

� 1

2

(1+�)�L

1−�Ltk
(tk− tk−1)2+ �

1−�Ltk
(tk− tk−1)

� 1

2

a

−h(tk)
(tk− tk−1)2+ �

−h(tk)
(tk− tk−1).

The above last inequality is true because (15) implies ��1/(2�2L); therefore, 1−�Ltk�−h(tk),
whereas tk>t1=2�� implies (1+�)�L/(1−�Ltk)<a/(−h(tk)).

Hence, from

g(tk)−g(tk−1)−h(tk)(tk− tk−1)= 1
2a(tk− tk−1)2+�(tk− tk−1),

we obtain

�(1+�)

1−�Ltk
‖F(xk)‖� 1

−h(tk)
(g(tk)−g(tk−1)−h(tk)(tk− tk−1))

= tk+1− tk . (31)

Consequently, from the iterative formula (12), (25) and Lemma 3.1, we get

‖xk+1−xk‖ � ‖(I−T �k
k )F ′(xk)−1F(xk)‖

� (1+((�+1)�)�∗) �

1−�Ltk
‖F(xk)‖.

Then, based on the choice of �∗, it follows that

‖xk+1−xk‖�(1+�)
�

1−�Ltk
‖F(xk)‖,

so that, from (31), the first inequality in (29) is also correct for k. The second one in (29) is easy
to get from

‖xk+1−x0‖� ‖xk+1−xk‖+‖xk−xk−1‖+· · ·+‖x1−x0‖
� tk+1− tk+ tk− tk−1+·· ·+ t1− t0
� tk+1− t0
� r2.
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Hence, (29) is true for all k. Since the sequence {tk} converges to t∗, the sequence {xk} also
converges, to say x∗. Because ‖T (�; x∗)‖<1 [3], from the iteration (12), we have

F(x∗)=0.

Therefore, the conclusion of this theorem follows. �

Note: The semilocal convergence of inexact Newton methods was proved in [17] under the
following assumptions:

‖F ′(x0)−1F(x0)‖ � �,

‖F ′(x0)−1(F ′(x)−F ′(y))‖ � �‖x− y‖,
‖F ′(x0)−1sn‖
‖F ′(x0)−1F(xn)‖ � �n,

(32)

and

���g1(�), (33)

where

g1(�)=
√

(4�+5)3−(2�2+14�+11)
(1+�)(1−�)2

. (34)

Later, Shen and Li [23] substituted g1(�) with g2(�), where

g2(�)= (1−�)2

(1+�)(2(1+�)−�(1−�)2
. (35)

These could be used to obtain convergence results for the Newton-HSS method as a subclass
of these techniques. However, our detailed proof in Theorem 3.2 is targeted specifically at the
Newton-HSS method and so gives better bounds for the semilocal convergence result, see Figure 1.
The corresponding bound in our theorem is

g3(�)= 1−�

2(1+�2)
. (36)

An unconditional convergence theorem of the HSS iteration (see Theorem 2.2 in [3]) shows
that the Euclidean norm of T satisfies

‖T (�; x)‖� max
	∈
(H)

�−	

�+	
<1,

where 	(·) represents the spectrum of the corresponding matrix. Hence, Equation (17) holds and
is not a part of the assumption. It serves only to define the scalar parameter �.

4. GLOBAL CONVERGENCE OF THE NEWTON-HSS METHOD

In the previous section, we have answered an important question [4]. From a specific initial
approximation x0, the existence of solutions can be ascertained directly from the iterative process.
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Figure 1. Graphs of g1(�), g2(�) and g3(�).

This point x0 needs to satisfy some conditions. These may (at least in principle) be used to find
solutions. In fact, in [24] we have utilized such criteria on x0 to solve an integral equation. We
now look at a stronger type of convergence. A globally convergent algorithm for solving (1)
means an algorithm with the property that, for any initial iterate, the iteration either converges
to a root of F or fails to do so in one of the small number of ways [6]. There are three main
ways that such algorithms can be globalized: linear search methods, trust region methods and
continuation/homotopy methods. Various inexact Newton methods with such global strategies are
at present widely considered to be among the best approaches for solving nonlinear systems of
equations, especially globally convergent Newton-GMRES subspace methods [6, 10, 25–28].

A general framework can be obtained by augmenting the inexact Newton condition with a
sufficient decrease condition on ‖F‖ [25].
Algorithm GIN (global inexact Newton method [25])
Let x0 and t ∈ (0,1) be given.

1. For k=0 step 1 until∞ do:

1.1. For a given �k ∈[0,1), find an sk that satisfies

‖F(xk)+F ′(xk)sk‖��k‖F(xk)‖
and

‖F(xk+sk)‖�[1− t (1−�k)]‖F(xk)‖.
1.2. Set xk+1= xk+sk .
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Eisenstat and Walker [25] give a thorough demonstration that trust region methods are in some
sense dual to line search methods and the inexact Newton method with practically implemented
Goldstein–Armijo conditions can be regarded as a special case of Algorithm GIN.

Hence, in this section, we select a backtracking linear search paradigm to implement the Newton-
HSS method. Eisenstat and Walker [25] offer the following inexact Newton backtracking method
containing strong global convergence properties combined with potentially fast local convergence:

Algorithm INB (inexact Newton backtracking method [21, 25])
Let x0, �max∈[0,1), t ∈ (0,1), and 0<�min<�max<1 be given.

1. For k=0 step 1 until∞ do:

1.1. Choose �k ∈[0,�max) and dk such that

‖F(xk)+F ′(xk)dk‖��k‖F(xk)‖.
1.2. Set dk=dk and �k=�k .
1.3. While ‖F(xk+dk)‖>[1− t (1−�k)]‖F(xk)‖ do:

1.3.1 Choose �∈[�min,�max].
1.3.2 Update dk←−�dk and �k←−1−�(1−�k).

1.4. Set xk+1= xk+dk .
Eisenstat and Walker [21] have examined in great detail the choice of the parameter �k

(the so-called forcing term). This is used to reduce the effort required to obtain too accurate a
solution of the Newton equation.

Choice 1: For �= (1+√5)/2 and any �0∈[0,1), choose

�k=
|‖F(xk)‖−‖F(xk−1)+F ′(xk−1)dk−1‖|

‖F(xk−1)‖ , k=1,2, . . .,

with
Choice 1 safeguard: �k=max{�k,��

k−1} wherever ��
k−1>0.1.

Choice 2: Given 	∈[0,1] and �∈ (1,2], select any �0∈[0,1) and choose

�k=	

( ‖F(xk)‖
‖F(xk−1)‖

)�

, k=1,2, . . .,

with
Choice 2 safeguard: �k=max{�k,	��

k−1} wherever 	��
k−1>0.1.

Then in both cases after applying the above two safeguards, it is necessary for Algorithm INB
to use another additional safeguard [26]:

�k←−min{�k,�max}. (37)

When �k‖F(xk)‖ is small enough, a larger �k can actually be used for the outer iteration. Hence,
Pernice and Walker [26] impose the following final safeguard:

�k←−0.8�/‖F(xk)‖ wherever �k�2�/‖F(xk)‖. (38)

Now we give the Newton-HSS method with backtracking as follows.
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Algorithm NHSSB (the Newton-HSS method with backtracking).
Let x0, �max∈[0,1), t ∈ (0,1), 0<�min<�max<1, tol>0 be given.

1. While ‖F(xk)‖>tolmin{‖F(x0)‖,√n} and k<1000 do:

1.1. Choose �k ∈[0,�max], apply Algorithm HSS to the kth Newton equation to obtain dk
such that

‖F(xk)+F ′(xk)dk‖<�k‖F(xk)‖.

1.2. Perform the Backtracking Loop (BL), i.e.

1.2.1. Set dk=dk,�k=�k .
1.2.2. While ‖F(xk+dk)‖>[1− t (1−�k)]‖F(xk)‖do:

1.2.2.1. Choose �∈[�min,�max].
1.2.2.2. Update dk=�dk and �k=1−�(1−�k).

1.3. Set xk+1= xk+dk .
Assumption 3.1 guarantees that Lemma 3.1 holds. That means that F ′ is Lipschitz continuous

with Lipschitz constant L , and there exists a positive constant m f such that ‖F ′(x)−1‖�m f on
the set

�({xn},r)=
∞⋃
n=0
{x |‖x−xn‖�r}.

Hence, we have the following two global convergence theorems for NHSSB by Theorem 8.2.1 of
Kelley [6], Theorems 2.2 and 2.3 of Pernice and Walker [26].
Theorem 4.1
Let x0∈Cn and t ∈ (0,1) be given. Assume that {xk} is given by Algorithm NHSSB, in which
each �k is given by Choice 1 followed by all ‘the safeguards’. Furthermore, suppose that {xk} is
bounded, and Assumption 3.1 holds. Then {xk} converges to a root {x∗} of F . Moreover

(1) if �k−→0, the convergence is q-superlinear, and
(2) if �k�K�‖F(xk)‖p for some K�>0, the convergence is q-superlinear with q-order 1+ p.

Theorem 4.2
Let x0∈Cn and t ∈ (0,1) be given. Assume that {xk} is given by Algorithm NHSSB, in which
each �k is given by Choice 2 followed by all ‘the safeguards’. Furthermore, suppose that {xk} is
bounded, and Assumption 3.1 holds. Then {xk} converges to a root {x∗} of F . Moreover,

(1) if 	<1, the convergence is of q-order �, and
(2) if 	=1, the convergence is of r -order � and of q-order p for every p∈[1,�).

Remark
In fact, it is not necessary here to use the first bound condition (A1) in Assumption 3.1 for proving
these two theorems.
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5. NUMERICAL TESTS

In this section, we illustrate Algorithm NHSSB with five kinds of forcing terms on nonlinear
convection–diffusion equations. Since a comparison between the Newton-HSS method and other
methods such as Newton-GMRES, Newton-USOR and Newton-GCG were shown in detail in [18],
in this paper we just demonstrate the effectiveness of the Newton-HSS method with backtracking
and the effect of the forcing terms. Also, comparison between the Newton-HSS method and the
Newton-GMRES method with backtracking and forcing terms is shown.

We consider the two-dimensional nonlinear convection–diffusion equation

−(uxx+uyy)+q(ux+uy) = −eu (x, y)∈�,

u(x, y) = 0 (x, y)∈��,
(39)

where �= (0,1)×(0,1), with �� its boundary, and q is a positive constant used to control the
magnitude of the convective terms [1, 2, 18]. Now we apply the five-point finite-difference scheme
to the diffusive terms and the central difference scheme to the convective terms, respectively. Let
h=1/(N+1) and Re=qh/2 denote the equidistant step-size and the mesh Reynolds number,
respectively. Then we get the system of nonlinear equations of the form

Au+h2 eu = 0,

u = (u1,u2, . . .,uN )�, ui= (ui1,ui2, . . .,uiN )�, i=1,2, . . .,N,

where the coefficient matrix of the linear term is

A=Tx⊗ I+ I⊗Ty .

Here, ⊗ means the Kronecker product, and Tx and Ty are the tridiagonal matrices

Tx= tridiag(t2, t1, t3), Ty= tridiag(t2,0, t3),

with

t1=4, t2=−1−Re, t3=−1+Re.

Discretization is on a 100×100 uniform grid, so that the dimension n=10000. In the imple-
mentations of Algorithm NHSSB, �=qh/2 is adopted [3]. Five types of forcing terms in the
figures are represented as follows:

Choice 1 denotes Choice 1 with Choice 1 safeguard, additional safeguard and final safeguard;
Choice 2 denotes Choice 2 with Choice 2 safeguard, additional safeguard and final safeguard;
Choice 3 �k=0.1, for all k;
Choice 4 �k=0.0001, for all k;
Choice 5 �k=|‖F(xk)‖−‖F(xk−1)+F ′(xk−1)dk−1‖|/‖F(xk)‖, k=1,2, . . ., with Choice 1
safeguard, additional safeguard and final safeguard.

Note: Choice 5 is a new option that we introduce that has a different denominator from
Choice 1. Since the term ‖F(xk)‖ is closer to the current iterate than ‖F(xk−1)‖, it is reasonable
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to adopt this value in our forcing term. From the proof of the local convergence order of Choice 1
(see Theorem 2.2 of [21]), the corresponding estimate can easily be obtained as

‖xk+1−x∗‖��(‖xk−x∗‖2+‖xk−1−x∗‖2).
It looks a bit weaker than q-superlinear and two-step q-quadratic convergence, but it is effective
in numerical tests (see Figures 4 and 7).

We follow [21] in our choice of values for the other parameters. We set �0=0.5 in Choices 1, 2
and 5 and use �max=0.9 for safeguards in Choices 1, 2 and 5. As for the backtracking search, we
choose t=10−4, �min= 1

10 , �max= 1
2 . We select � in Step 1.2.2.1 of Algorithm NHSSB such that

the merit function g(�)≡‖F(xk+�dk)‖2 is minimized over [�min,�max]. 	=1 and �= (1+√5)/2
are chosen in Choice 2 as they have been seen to be most effective by [21].

We give the results in the following six figures. The horizontal axis indicates the total number
of inner iterations (denoted as ‘IT’), the total number of outer iterations (denoted as ‘OT’) and
the total CPU time (denoted as ‘t’), respectively. The corresponding vertical axis is log‖F(xk)‖.
In every figure, results for two values of q (200 and 600) are shown. We let e be the vector of
all 1s. We use x0=e in the first three figures and x0=16e in the last three figures. The reason
for choosing these two points is that the solution is near 0 and any points over 16e can cause
problems with the convergence for some choices of parameter values resulting in a large increase
in run time. For example, when we let x0=17e and x0=18e, we require more than our limit of
1000 inner iterations to get the direction dk for the iteration with Choice 4.

One sees from Figure 2 that fewer inner iterations are needed in the case of Choice 5 than in
the other cases. The poorest is Choice 4. Choices 1, 2 and 3 are almost the same. But a different
situation is found with the number of outer iterations. That is, the least number of outer iterations
are performed for Choice 4, then the order is Choices 1, 5, 2 and 3 (see Figure 3). This is not
that surprising as, if the inner equation is solved more accurately (hence more inner iterations),
one might expect that fewer outer iterations would be needed. Hence, because the initial point is
close to the solution, it is not very astonishing that the CPU times have the same behaviour as the
number of iterations in Figure 3. This is shown in Figure 4.
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Figure 2. The total number of inner iterations versus the norms of the nonlinear function values when
q=200 and q=600, respectively, with x0=e.
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Figure 3. The number of outer iterations versus the norms of the nonlinear function values when q=200
and q=600, respectively, with x0=e.
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Figure 4. CPU times versus the norms of the nonlinear function values when q=200
and q=600, respectively, with x0=e.

When the starting point is far from the solution (for example, x0=16e in our tests), more inner
iterations are needed than in the case of x0=e. The number of inner iterations is still the main
influence on the CPU time, see Figures 5, 6 and 7. Choice 5 is still a good choice.

Though Newton-HSS and Newton-GMRES have been compared in [18], the comparison using
a globalization strategy and choosing forcing terms dynamically was not carried out. Such a
comparison is given in Figures 8 and 9, using GMRES(20). One can notice that Newton-GMRES
needs more inner iterations because some inner GMRES iterations still do not converge after the
maximum number of inner iteration steps (here, it is 1000). Tests with other different forcing terms
give similar results to Figures 8 and 9.

Note: The Newton-HSS method with a back-tracking global strategy and choices of forcing
terms performs better than the Newton-GMRES method with same global strategy and choices,
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Figure 5. The total number of inner iterations versus the norms of the nonlinear function values when
q=200 and q=600, respectively, with x0=16e.
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Figure 6. The number of outer iterations versus the norms of the nonlinear function values when q=200
and q=600, respectively, with x0=16e.

especially on the problem (39) and for big Reynolds numbers. But we are restricted in our choice
of test problems because the Jacobian matrix F ′(x) needs to be positive definite. On the other
hand, although Newton-HSS cannot be implemented in the Jacobian-free way as Newton-GMRES,
it is less important for Newton-HSS. GMRES needs to compute and store r, Ar, A2r, . . . (r is the
residual), but HSS is a stationary iterative and so avoids this. For solving systems of nonlinear
equations (1), one can use

F ′(x)d≈ F(x+�d)−F(x)

�
, (40)
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Figure 7. CPU times versus the norms of the nonlinear function values when q=200 and
q=600, respectively, with x0=16e.
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Figure 8. The total number of inner iterations versus the norms of the nonlinear function
values when q=600 and q=2000, respectively, with x0=e and Choice 1 for the Newton-HSS

method and the Newton-GMRES method.

where � is a small perturbation (say, see [7]), to carry out Jacobian-free Newton-GMRES. While,
in Newton-HSS, (�h F)(x) [6] can be introduced, where

(�h F)(x) j=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F(x+h‖x‖e j)−F(x)

h‖x‖ , x �=0,

F(he j )−F(x)

h
, x=0,

(41)

to implement derivative-free Newton-HSS. Furthermore, it is very easy to compute Jacobian
matrices for some problems such as (39).
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Figure 9. The total number of inner iterations versus the norms of the nonlinear function values
when q=600 and q=2000, respectively, with x0=16e and Choice 1 for the Newton-HSS

method and the Newton-GMRES method.

6. CONCLUSIONS

We have proved the semilocal convergence for the Newton-HSS method, which ensures that
the sequence {xk} produced by Algorithm NHSS converges to the solution of the system of
nonlinear Equations (1) under some reasonable assumptions. This means that in principle any
point can be tested to be an effective initial point or not by checking this semilocal convergence
theorem. But in order to consider the convergence of iterates starting from an arbitrary point, we
present Algorithm NHSSB combining the Newton-HSS method with a backtracking strategy and
prove global convergence with two typical forcing terms. Finally, numerical tests are shown on
convection–diffusion equations. We compare five choices for the stopping criteria of the inner
iterations. Among them, from the results in this paper, Choice 5 needs the least run time.
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