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1. Introduction

1.1. Spectral measures and infinite convolutions

In 1974, Fuglede [21] studied the existence of commuting self-adjoint partial differen-
tial operators and proposed the well-known spectral set conjecture.

Spectral Set Conjecture: Let Γ ⊂ Rd be a measurable set with positive finite Lebesgue 
measure. Then there exists a set Λ ⊂ Rd such that {eλ(x) = e2πiλ·x : λ ∈ Λ} forms 
an orthogonal basis for L2(Γ), if and only if Γ tiles Rd by translations.

The spectral set conjecture connects the analysis and geometry on a set. It remains open 
until Tao [44] gave the first counterexample in higher dimensions d ≥ 5 in 2004. Later, 
some counterexamples in lower dimensions were also constructed [15,16,28,29,39]. The 
conjecture is still open in dimensions d = 1 and d = 2. Recently, Nev and Matolcsi [31]
showed that the spectral set conjecture holds in all dimensions for general convex bodies 
(that is, a compact convex set with non-empty interior).

A Borel probability measure μ on Rd is called a spectral measure if there exists a set 
Λ ⊂ Rd such that the family of exponential functions

E(Λ) =
{
eλ(x) = e2πiλ·x : λ ∈ Λ

}
forms an orthonormal basis for L2(μ), where the set Λ is called a spectrum of μ. Note 
that E(Λ) is an orthonormal basis for L2(μ) if and only if

• orthogonality: for all λ �= λ′ ∈ Λ,

〈eλ, eλ′〉L2(μ) =
∫
Rd

e2πi(λ−λ′)·x dμ(x) = μ̂(λ′ − λ) = 0,

where μ̂(ξ) is the Fourier transform of μ;
• completeness: if f ∈ L2(μ), and 〈f, eλ〉L2(μ) = 0 for all λ ∈ Λ, then f = 0 μ-a.e.

In the context of classical Fourier analysis, the Lebesgue measure on the unit hypercube 
[0, 1]d is a spectral measure with a spectrum Zd. The support of a spectral measure 
typically exhibits a strong geometric structure, which is generally uncommon in nature.

In 1998, Jorgensen and Pedersen [25] discovered that the self-similar measure μ4,{0,2}
satisfying the equation

μ( · ) = 1
2μ(4 · ) + 1

2μ(4 · −2)

is a spectral measure with a spectrum
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Λ =
∞⋃

n=1

{
�1 + 4�2 + · · · + 4n−1�n : �1, �2, . . . , �n ∈ {0, 1}

}
, (1.1)

but the standard middle-third Cantor measure is not. We refer readers to [26] on self-
similar sets and measures. Note that the self-similar measure μ4,{0,2} is mutually singular 
with respect to Lebesgue measure. From then on, singularly continuous spectral measures 
have entered into the realm of fractal geometry and have been extensively explored 
[2–5,7–9,11,13,17,18,20,22,30,32,33,35–38,42].

Many surprising phenomena appear in singularly continuous spectral measures. Be-
sides the set Λ defined in (1.1), the sets 5Λ, 7Λ, 11Λ, 13Λ, 17Λ, . . . are all spectra of μ4,{0,2}
[13]. The scaling property was first found in [30] and is common to many singularly con-
tinuous spectral measures [1,9,17,22]. When the spectrum exists, we could investigate 
the convergence of Fourier series of functions

∑
λ∈Λ

〈f, eλ〉L2(μ) eλ(x).

However, the convergence of the mock Fourier series may be very different for distinct 
spectra of singularly continuous spectral measures [10,19,40,43]. For the spectral mea-
sure μ4,{0,2}, Strichartz [43] proved that the mock Fourier series of continuous functions 
converges uniformly with respect to the spectrum Λ, but associated with the spectrum 
17Λ, Dutkey, Han and Sun [10] showed that there exists a continuous function such that 
its mock Fourier series is divergent at 0. In addition, it was showed that for a class of 
Moran spectral measures, the Beurling dimension of spectra has the intermediate value 
property [33]. All of these findings suggest that spectra of singularly continuous spectral 
measures are more intricate than those of absolutely continuous spectral measures. This 
motivates us to find or construct more singularly continuous spectral measures.

It has been proved that a compact supported spectral measure must be of pure type, 
that is, it is either discrete, or singularly continuous, or absolutely continuous [23]. For 
absolutely continuous spectral measures, the density function must be constant on its 
support [12], and thus this case is reduced to the original spectral set conjecture. For 
discrete spectral measures, we introduce the concept of admissible pair, which is also 
used in convolution to construct singularly continuous spectral measures.

Our focus is on the real line. For a finite subset A ⊂ R, we define the discrete measure

δA = 1
#A

∑
a∈A

δa,

where # denotes the cardinality of a set and δa denotes the Dirac measure concentrated 
on the point a. Given an integer N with |N | ≥ 2 and a finite subset B ⊂ Z with #B ≥ 2, 
we say that (N, B) is an admissible pair if the discrete measure δN−1B admits a spectrum 
L ⊂ Z, that is, the matrix
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(
1√
#B

e−2πi b�
N

)
b∈B,�∈L

(1.2)

is unitary. To emphasize the set L, (N, B, L) is also called a Hadamard triple. If there 
are finitely many admissible pairs {(Nk, Bk)}nk=1, then the convolution

μn = δN−1
1 B1

∗ δ(N1N2)−1B2 ∗ · · · ∗ δ(N1N2···Nn)−1Bn

is a spectral measure with a spectrum

Λn = L1 + N1L2 + N1N2L3 + · · · + N1N2 · · ·Nn−1Ln,

where Lk ⊂ Z is a spectrum of δN−1
k Bk

for all 1 ≤ k ≤ n. A natural question comes to 
mind.

Question: Given a sequence of admissible pair {(Nk, Bk)}∞k=1, under what condition 
is the infinite convolution

μ = δN−1
1 B1

∗ δ(N1N2)−1B2 ∗ · · · ∗ δ(N1N2···Nk)−1Bk
∗ · · · (1.3)

a spectral measure?

The infinite convolution generated by a sequence of admissible pairs was first raised by 
Strichartz [42] to construct more spectral measures. If the infinite convolution defined 
in (1.3) exists, then it must be of pure type [24, Theorem 35], and in most cases it 
is singularly continuous. The admissible pair assumption implies the existence of an 
infinite mutually orthogonal set of exponential functions, but it is difficult to show the 
completeness. When (Nk, Bk) = (N, B) for all k ≥ 1, the infinite convolution is reduced 
to self-similar measure

μN,B = δN−1B ∗ δN−2B ∗ · · · ∗ δN−kB ∗ · · · .

Łaba and Wang [30] showed that if (N, B) is an admissible pair, then the self-similar 
measure μN,B is a spectral measure, and Dutkay, Haussermann and Lai [11] generalized 
it to self-affine measures in higher dimensions.

However, the admissible pair assumption alone is not enough to guarantee that the 
corresponding infinite convolution is a spectral measure (see Example 4.3 in [3]), even 
if the sequence of admissible pairs is chosen from a finite set of admissible pairs (see 
Example 1.8 in [14]). Nevertheless, it is widely believed that negative examples are very 
rare. An, Fu and Lai [2] introduced the concept of equi-positivity, and used the integral 
periodic zero set to define an admissible family, both of which have been extensively 
employed in analyzing the spectrality of infinite convolutions [34–36,38].

In the paper, we first simply the admissible family condition for spectrality of infinite 
convolutions (see Theorem 1.1). Then we focus on the integral periodic zero set. For 
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general Borel probability measures, we use the structure of support to characterize the 
integral periodic zero set (see Theorem 1.2). For infinite convolutions generated by ad-
missible pairs, we generalize the argument for self-similar measures (see Theorem 1.3 and 
the proof). The analysis becomes more complicated due to the absence of self-similarity. 
Next, the above results are applied to the random convolution generated by finitely many 
admissible pairs. We show that almost all random convolutions are spectral measures 
(see Theorem 1.5), which primarily relies on the ergodic property of symbolic space and 
Theorem 1.3. This means that the non-spectral random convolution is null in the sense 
of measure. Finally, we study a special random convolution generated by two admissible 
pairs by analyzing the support of measures (see Theorem 1.6).

1.2. Main results

We always assume that the infinite convolution μ defined in (1.3) exists as a Borel 
probability measure in weak limit sense, see [36] for the sufficient and necessary condition 
of weak convergence of infinite convolutions. The infinite convolution μ may be rewritten 
as μ = μn ∗ μ>n, where

μn = δN−1
1 B1

∗ δ(N1N2)−1B2 ∗ · · · ∗ δ(N1N2···Nn)−1Bn
,

and

μ>n = δ(N1N2···Nn+1)−1Bn+1 ∗ δ(N1N2···Nn+2)−1Bn+2 ∗ · · · .

Then for n ≥ 1, we define

ν>n( · ) = μ>n

(
1

N1N2 · · ·Nn
·
)
, (1.4)

that is,

ν>n = δN−1
n+1Bn+1

∗ δ(Nn+1Nn+2)−1Bn+2 ∗ · · · .

We write P(R) for the set of all Borel probability measures on R. For ν ∈ P(R), we 
write

Z(ν) = {ξ ∈ R : ν̂(ξ + k) = 0 for all k ∈ Z} (1.5)

for the integral periodic zero set of Fourier transform of ν. Using the integral periodic 
zero set, An, Fu and Lai [2] defined the admissible family to analysis the spectrality. 
Here, we simply the admissible family condition.

Theorem 1.1. Given a sequence of admissible pair {(Nk, Bk)}∞k=1, suppose that the infi-
nite convolution μ defined by (1.3) exists, and the sequence {ν>n} is defined by (1.4). If 
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there exists a subsequence {ν>nj
} which converges weakly to ν, and Z(ν) = ∅, then μ is 

a spectral measure with a spectrum in Z.

The integral periodic zero set plays an crucial role in determining the spectrality of 
infinite convolutions. It has been showed in [2] that if ν ∈ P(R) with spt(ν) ⊂ [0, 1], 
then Z(ν) = ∅ if and only if ν = 1

2δ0 + 1
2δ1. It was also pointed out that for the Borel 

probability measure outside [0, 1], the integral periodic zero set cannot be easily analyzed. 
We use the structure of support to characterize the integral periodic zero set.

Theorem 1.2. Let ν ∈ P(R). If there exists a Borel subset E ⊂ R such that ν(E) > 0, 
and

ν(E + k) = 0

for all k ∈ Z \ {0}, then we have that Z(ν) = ∅.

For infinite convolutions generated by a sequence of admissible pairs, we generalize 
the argument for self-similar measures in [11, Theorem 5.4]. The analysis becomes more 
complicated due to the absence of self-similarity. For a finite subset B ⊂ Z, we set

MB(ξ) = 1
#B

∑
b∈B

e−2πibξ.

For a function f : R → C, we denote the zero set of f by

O(f) =
{
x ∈ R : f(x) = 0

}
.

A set A ⊂ R is called discrete if the set A has no accumulation points, that is, for h > 0
the set [−h, h] ∩A is finite.

Theorem 1.3. Let {(Nk, Bk)}∞k=1 be a sequence of admissible pairs. The infinite convolu-
tion μ and the sequence {ν>n} are defined by (1.3) and (1.4). Suppose that

(i) there exists a weak convergent subsequence {ν>nj
};

(ii) the set

∞⋃
k=1

NkO(MBk
)

is discrete;
(iii) for each k ≥ 1,

gcd

⎛⎝ ∞⋃
(Bj −Bj)

⎞⎠ = 1.

j=k
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Then we have that Z(μ) = ∅.

Note that the set O(MB) is discrete for every finite subset B ⊂ Z because MB(ξ) is 
extendable to an entire function on the complex plane. If the sequence of admissible pairs 
{(Nk, Bk)}∞k=1 is chosen from a finite set of admissible pairs, then it is clear that the 
conditions (i) and (ii) in Theorem 1.3 hold. We immediately have the following corollary.

Corollary 1.4. Suppose that the sequence of admissible pairs {(Nk, Bk)}∞k=1 is chosen 
from a finite set of admissible pairs. If for each k ≥ 1,

gcd

⎛⎝ ∞⋃
j=k

(Bj −Bj)

⎞⎠ = 1,

then we have that Z(μ) = ∅.

Next we apply the above results to random convolutions. Let {(Nj , Bj)}mj=1 be finitely 
many admissible pairs. Let Ω = {1, 2, . . . , m}N be the symbolic space over the alphabet 
{1, 2, . . . , m}. For ω = (ωk)∞k=1 ∈ Ω, we define the random convolution

μω = δN−1
ω1 Bω1

∗ δ(Nω1Nω2 )−1Bω2
∗ · · · ∗ δ(Nω1Nω2 ···Nωk

)−1Bωk
∗ · · · .

More generally, given a sequence of positive integers {nk}, for ω = (ωk)∞k=1 ∈ Ω, we 
define the infinite convolution

μω,{nk} = δ
N

−n1
ω1 Bω1

∗ δ
N

−n1
ω1 N

−n2
ω2 Bω2

∗ · · · ∗ δ
N

−n1
ω1 N

−n2
ω2 ···N−nk

ωk
Bωk

∗ · · · .

Note that {(Nnk
ωk

, Bωk
)}∞k=1 is a sequence of admissible pairs. If nk = 1 for all k ≥ 1, then 

we have that μω,{nk} = μω. However, if the sequence {nk} is unbounded, the infinite 
convolution μω,{nk} is not generated by finitely many admissible pairs.

The random convolution was first studied by Strichartz in [42], where he constructed 
the spectrum under a specific uniform separation condition. But in general, this condition 
is challenging to verify. If finitely many admissible pairs {(N, Bj)}mj=1 satisfy that the 
set L ⊂ Z is a common spectrum for all discrete measures δN−1Bj

, 1 ≤ j ≤ m, then 
An, He and Lau [5] could construct the spectrum under the condition that L + L ⊂
{0, 1, . . . , N − 1}, and Dutkay and Lai [14] showed that almost all random convolutions 
admit a common spectrum. The authors [35] showed that if gcd(Bj − Bj) = 1 for all 
1 ≤ j ≤ m, then all infinite convolutions μω,{nk} are spectral measures. Considering the 
Bernoulli measure on symbolic space, we prove that almost all random convolutions are 
spectral measures.

Theorem 1.5. Given finitely many admissible pairs {(Nj , Bj)}mj=1 and a sequence of pos-
itive integers {nk}, for every Bernoulli measure P on Ω, the infinite convolution μω,{nk}
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is a spectral measure for P -a.e. ω ∈ Ω. In particular, the random convolution μω is a 
spectral measure for P -a.e. ω ∈ Ω.

Generally, it is difficult to improve the “almost all” answer to a deterministic an-
swer. For the following special case, we give a complete characterization of spectrality of 
random convolutions.

Theorem 1.6. Given an integer t ≥ 1 and two coprime integers N, p ≥ 2, let

Ω = {1, 2}N , N1 = N2 = tN, B1 = {0, 1, . . . , N − 1} , B2 = p · {0, 1, . . . , N − 1} .

(i) If t = 1, then for ω ∈ Ω, the infinite convolution μω is a spectral measure if and 
only if ω = 2∞ or the symbol “1” occurs infinitely many times in ω.

(ii) If t ≥ 2, then for all ω ∈ Ω, the infinite convolution μω is a spectral measure.

The rest of paper is organized as follows. In Section 2, we introduce some definitions 
and some known results. In Section 3, we give the proof of Theorem 1.1. In Section 4, 
we investigate the integral periodic zero set of Fourier transform and prove Theorem 1.2
and 1.3. The proofs of Theorem 1.5 and 1.6 are given in Section 5 and 6, respectively. 
Finally, we give some examples of spectral measures in Section 7.

2. Definitions and preliminaries

We first introduce the symbolic space. The symbolic space Ω = {1, 2, . . . , m}N , 
equipped with a metric

ρ(ω, η) = 2−min{k≥1:ωk �=ηk}

for ω = (ωk)∞k=1, η = (ηk)∞k=1 ∈ Ω, is a compact metric space. For a sequence {ω(j)} in 
Ω, we have that ω(j) converges to η in Ω if and only if for k ≥ 1 there exists j0 ≥ 1 such 
that for all j ≥ j0,

ω1(j)ω2(j) · · ·ωk(j) = η1η2 · · · ηk.

For i1, i2, . . . , in ∈ {1, 2, . . . , m}, we define the n-level cylinder

[i1i2 · · · in] = {(ωk)∞k=1 ∈ Ω : ωj = ij for j = 1, 2, . . . , n} .

Given a probability vector (p1, p2, . . . , pm), we define a probability measure P on Ω by

P ([i1i2 · · · in]) = pi1pi2 · · · pin



W. Li et al. / Journal of Functional Analysis 287 (2024) 110539 9
for all i1, i2, . . . , in ∈ {1, 2, . . . , m}. The probability measure P is called the Bernoulli 
measure associated with the probability vector (p1, p2, . . . , pm). A probability vector 
(p1, p2, . . . , pm) is called positive if pj > 0 for all 1 ≤ j ≤ m.

For μ ∈ P(R), the Fourier transform of μ is given by

μ̂(ξ) =
∫
R

e−2πiξx dμ(x), ξ ∈ R.

It is easy to verify that μ̂(ξ) is uniformly continuous on R and μ̂(0) = 1.
For μ ∈ P(R), the support of μ is defined to be the smallest closed subset with full 

measure, i.e.,

spt(μ) = R \
⋃

{U ⊂ R : U is open, and μ(U) = 0} .

Let μ, μ1, μ2, . . . ∈ P(R). We say that μn converges weakly to μ if

lim
n→∞

∫
R

f(x) dμn(x) =
∫
R

f(x) dμ(x)

for all f ∈ Cb(R), where Cb(R) is the set of all bounded continuous functions on R. The 
weak convergence can be characterized by Fourier transform, see section 1.6 in [6] for 
details.

Theorem 2.1. Let μ, μ1, μ2, . . . ∈ P(R). Then μn converges weakly to μ if and only if 
lim
n→∞

μ̂n(ξ) = μ̂(ξ) for every ξ ∈ R. Moreover, if μn converges weakly to μ, then for 
h > 0 we have that μ̂n(ξ) converges to μ̂(ξ) uniformly for ξ ∈ [−h, h].

For μ, ν ∈ P(R), the convolution μ ∗ ν is given by

μ ∗ ν(B) =
∫
R

ν(B − x) dμ(x) =
∫
R

μ(B − y) dν(y),

for every Borel subset B ⊂ R. Equivalently, the convolution μ ∗ ν is the unique Borel 
probability measure satisfying∫

R

f(x) dμ ∗ ν(x) =
∫

R×R

f(x + y) dμ× ν(x, y),

for all f ∈ Cb(R). It is easy to check that

μ̂ ∗ ν(ξ) = μ̂(ξ)ν̂(ξ).

The following criterion is frequently employed to verify the spectrality of measures [25,
35].
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Theorem 2.2. Let μ ∈ P(R) and let Λ ⊂ R be a countable subset. Define

Q(ξ) =
∑
λ∈Λ

|μ̂(ξ + λ)|2.

Then the set Λ is a spectrum of μ if and only if Q(ξ) = 1 for all ξ ∈ R.

The spectrality of measures is invariant under linear transformations. For a, b ∈ R

with a �= 0, we define Ta,b : R → R by

Ta,b(x) = ax + b. (2.1)

Lemma 2.3. If μ ∈ P(R) is a spectral measure with a spectrum Λ, then the measure 
μ ◦ T−1

a,b is a spectral measure with a spectrum Λ/a for a, b ∈ R with a �= 0.

Proof. Write ν = μ ◦ T−1
a,b and Λ′ = Λ/a. Obviously, we have that

ν̂(ξ) = e−2πibξμ̂(aξ).

Since Λ is a spectrum of μ, by Theorem 2.2, we have that

Q(ξ) =
∑
λ∈Λ′

|ν̂(ξ + λ)|2

=
∑
λ∈Λ′

|e−2πib(ξ+λ)μ̂(aξ + aλ)|2

=
∑
λ∈Λ′

|μ̂(aξ + aλ)|2

=
∑
λ∈Λ

|μ̂(aξ + λ)|2

= 1.

It follows from Theorem 2.2 that Λ′ is a spectrum of ν. �
In the end, we list some simple properties of admissible pairs, which are needed in our 

proofs.

Lemma 2.4. Suppose that (N, B) is an admissible pair, and L ⊂ Z is a spectrum of the 
discrete measure δN−1B.

(i) The elements in L are distinct module N .
(ii) If L̃ ≡ L (mod N), then L̃ is also a spectrum of δN−1B.
(iii) For b ∈ Z, (N, B − b) is an admissible pair.
(iv) If d | gcd(B), then (N, 1dB) is an admissible pair.
(v) For t ∈ Z with t �= 0, (tN, B) is an admissible pair
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Proof. (i) It follows from the fact that the matrix in (1.2) is unitary.
(ii) Since L̃ ≡ L (mod N), we have that the matrix(

1√
#B

e−2πi b�̃
N

)
b∈B,�̃∈L̃

=
(

1√
#B

e−2πi b�
N

)
b∈B,�∈L

is unitary. It follows that L̃ is also a spectrum of δN−1B .
Note that

δN−1(B−b) = δN−1B ◦ T−1
1,−b/N , δN−1( 1

dB) = δN−1B ◦ T−1
1/d,0, δ(tN)−1B = δN−1B ◦ T−1

1/t,0.

(iii), (iv) and (v) follow immediately from Lemma 2.3. �
3. Spectrality of infinite convolutions

The equi-positivity was first raised by An, Fu and Lai [2] to study the spectrality of 
infinite convolutions, and the authors [35] generalized it into the following form.

Definition 3.1. We call Φ ⊂ P(R) an equi-positive family if there exists ε > 0 and γ > 0
such that for x ∈ [0, 1) and μ ∈ Φ there exists an integer kx,μ ∈ Z such that

|μ̂(x + y + kx,μ)| ≥ ε,

for all |y| < γ, where kx,μ = 0 for x = 0.

The following theorem is very useful to study the spectrality of infinite convolutions, 
see [35] for the proof. It was proved in [2] under the no-overlap condition.

Theorem 3.2. Given a sequence of admissible pairs {(Nk, Bk)}∞k=1, suppose that the in-
finite convolution μ defined by (1.3) exists, and the sequence {ν>n} is defined by (1.4). 
If there exists a subsequence {ν>nj

} which is an equi-positive family, then μ is a spectral 
measure with a spectrum in Z.

Proof of Theorem 1.1. By Theorem 3.2, it suffices to show that there exists j0 ≥ 1 such 
that the family {ν>nj

}∞j=j0
is equi-positive.

Since Z(ν) = ∅, for each x ∈ [0, 1], there exists kx ∈ Z such that ν̂(x + kx) �= 0. Since 
ν̂(ξ) is continuous, there exists εx > 0 and γx > 0 such that

|ν̂(x + kx + y)| ≥ εx (3.1)

for all |y| < γx. Note that

[0, 1] ⊂
⋃

(x− γx/2, x + γx/2).

x∈[0,1]
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By the compactness of [0, 1], there exist finitely many x1, x2, . . . , xq ∈ [0, 1] such that

[0, 1] ⊂
q⋃

�=1

(x� − γx�
/2, x� + γx�

/2). (3.2)

Since ν̂(0) = 1 and ν̂(ξ) is continuous, there exists γ0 > 0 such that

|ν̂(y)| ≥ 1/2 (3.3)

for all |y| < γ0.
Let ε = min

{
1/4, εx1/2, εx2/2, . . . , εxq

/2
}

and γ = min
{
γ0, γx1/2, γx2/2, · · · , γxq

/2
}
. 

Let h = 1 + γ + max
{
|kx1 |, |kx2 |, . . . , |kxq

|
}
. Since {ν>nj

} converges weakly to ν, by 
Theorem 2.1, we have that ν̂>nj

(ξ) converges to ν̂(ξ) uniformly on [−h, h]. Thus, there 
exists j0 ≥ 1 such that

|ν̂>nj
(ξ) − ν̂(ξ)| < ε (3.4)

for all j ≥ j0 and all ξ ∈ [−h, h].
For each x ∈ (0, 1), by (3.2), we may find 1 ≤ � ≤ q such that |x − x�| < γx�

/2. For 
j ≥ j0 and |y| < γ, noting that |x + kx�

+ y| < h, it follows from (3.4) that

|ν̂>nj
(x + kx�

+ y)| ≥ |ν̂(x + kx�
+ y)| − ε.

Since |x − x� + y| < γx�
/2 + γ ≤ γx�

, by (3.1), we have that

|ν̂(x + kx�
+ y)| = |ν̂(x� + kx�

+ x− x� + y)| ≥ εx�
≥ 2ε.

Thus, for j ≥ j0 and |y| < γ,

|ν̂>nj
(x + kx�

+ y)| ≥ ε.

For x = 0, it follows from (3.4) and (3.3) that for j ≥ j0 and for |y| < γ,

|ν̂>nj
(y)| ≥ |ν̂(y)| − ε ≥ 1/4 ≥ ε.

Therefore, we conclude that the family {ν>nj
}∞j=j0

is equi-positive. �
4. The integral periodic zero set

In this section, we study the integral periodic zero set of Fourier transform. Let T =
R/Z, and write M(T ) for the set of all complex Borel measures on T . The following is 
the uniqueness theorem of Fourier coefficients in classical harmonic analysis.
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Theorem 4.1. [27, Corollary 7.1] Let ν ∈ M(T ). If the Fourier coefficients

ν̂(k) =
∫
T

e−2πikx dν(x) = 0

for all k ∈ Z, then ν = 0.

Proof of Theorem 1.2. Since ν(E) > 0, there exists k0 ∈ Z such that ν
(
E∩[k0, k0+1)

)
>

0. Let Ẽ = (E − k0) ∩ [0, 1) and ν̃ = ν ∗ δ{−k0}. For any Borel subset F ⊂ R, we have 
that

ν̃(F ) = ν ∗ δ{−k0}(F ) = ν(F + k0).

It follows that ν̃
(
Ẽ
)

= ν
(
E ∩ [k0, k0 + 1)

)
> 0, and

ν̃
(
Ẽ + k

)
= ν

(
(E + k) ∩ [k + k0, k + k0 + 1)

)
= 0

for all k ∈ Z \ {0}. Noting that ̂̃ν(ξ) = e2πik0ξν̂(ξ), we have that Z(ν̃) = Z(ν). Since 
Ẽ ⊂ [0, 1), we can assume that E ⊂ [0, 1). Recall that a Borel probability measure on R
is regular, see [41, Theorem 2.18]. We have that ν(E) = sup {ν(K) : K ⊂ E is compact}. 
Therefore, in the following, we assume that E ⊂ [0, 1) is compact.

For ξ ∈ R, we define a complex measure νξ on R by

dνξ
dν = e−2πiξx.

Consider the natural homomorphism π : R → T , and let ρξ = νξ ◦ π−1 be the image 
measure on T of νξ by π, i.e., for each Borel subset F ⊂ T ,

ρξ(F ) = νξ(F + Z) =
∑
k∈Z

νξ(F + k).

Assume that ξ ∈ Z(ν). For each k ∈ Z, we have that

ρ̂ξ(k) =
∫
T

e−2πikx dνξ ◦ π−1(x)

=
∫
R

e−2πikπ(x) dνξ(x)

=
∫
R

e−2πikx dνξ(x)

=
∫

e−2πikx · e−2πiξx dν(x)

R
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= ν̂(ξ + k) = 0,

where the last equality follows from ξ ∈ Z(ν). By Theorem 4.1, we conclude that ρξ = 0. 
It follows that

0 = ρξ(E) = νξ(E + Z) =
∫

E+Z

e−2πiξx dν(x).

Since ν
(
E + k

)
= 0 for all k ∈ Z \ {0}, we obtain that∫

E

e−2πiξx dν(x) = 0.

Let τ be the normalized measure of ν on E, i.e., τ( · ) = 1
ν(E)ν( · ∩ E). Then we have 

that

τ̂(ξ) = 1
ν(E)

∫
E

e−2πiξx dν(x) = 0.

Therefore, we obtain that τ̂(ξ) = 0 for all ξ ∈ Z(ν).
Suppose that Z(ν) �= ∅ and take ξ ∈ Z(ν). Since ξ + k ∈ Z(ν) for all k ∈ Z, we have 

that for all k ∈ Z,

τ̂(ξ + k) = 0.

Consider the complex measure τξ defined by

dτξ
dτ = e−2πiξx. (4.1)

Since spt(τ) ⊂ [0, 1), τξ can be viewed as a complex measure on T . Moreover, the Fourier 
coefficients

τ̂ξ(k) = τ̂(ξ + k) = 0

for all k ∈ Z. By Theorem 4.1, we have that τξ = 0. But, by (4.1) and Theorem 6.13 
in [41], we have that the total variation |τξ| = τ �= 0, which leads to a contradiction. 
Therefore, we conclude that Z(ν) = ∅. �

Next, we focus on the infinite convolution generated by admissible pairs. For conve-
nience, in the rest of this section, we always assume that {(Nk, Bk)}∞k=1 is a sequence of 
admissible pairs, that the infinite convolution

μ = δN−1B ∗ δ(N1N2)−1B2 ∗ · · · ∗ δ(N1N2···Nn)−1Bn
∗ · · ·
1 1
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exists, and that for every n ≥ 1,

ν>n = δN−1
n+1Bn+1

∗ δ(Nn+1Nn+2)−1Bn+2 ∗ · · · .

In order to prove Theorem 1.3, we need the following two lemmas.

Lemma 4.2. Suppose that the condition (i) in Theorem 1.3 holds. Then for each n ≥ 1
we have that

O(ν̂>n) =
∞⋃
k=1

Nn+1Nn+2 · · ·Nn+kO(MBn+k
).

Proof. Fix n ≥ 1. Note that for q ≥ 1, we have that

ν̂>n(ξ) =
q∏

k=1

MBn+k

(
ξ

Nn+1Nn+2 · · ·Nn+k

)
· ν̂>n+q

(
ξ

Nn+1Nn+2 · · ·Nn+q

)
.

It follows that

∞⋃
k=1

Nn+1Nn+2 · · ·Nn+kO(MBn+k
) ⊂ O(ν̂>n).

Let ν denote the weak limit of {ν>nj
}. Since ν̂(0) = 1 and ν̂(ξ) is continuous, there 

exists h > 0 such that |ν̂(ξ)| ≥ 1/2 for all |ξ| ≤ h. Since {ν>nj
} converges weakly to ν, 

by Theorem 2.1, we have that ν̂>nj
(ξ) converges to ν̂(ξ) uniformly on [−h, h]. Hence, 

there exists j0 ≥ 1 such that for all j ≥ j0 and all |ξ| ≤ h,

|ν̂>nj
(ξ) − ν̂(ξ)| ≤ 1/4.

Thus, we obtain that for j ≥ j0 and |ξ| ≤ h,

|ν̂>nj
(ξ)| ≥ 1/4.

Assume that ν̂>n(ξ0) = 0. Choose a sufficiently large integer j ≥ j0 such that nj > n

and ∣∣∣∣ ξ0
Nn+1Nn+2 · · ·Nnj

∣∣∣∣ < h.

It follows that ∣∣∣∣ν̂>nj

(
ξ0

Nn+1Nn+2 · · ·Nnj

)∣∣∣∣ ≥ 1
4 .

Note that
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0 = ν̂>n(ξ0) =
nj−n∏
k=1

MBn+k

(
ξ0

Nn+1Nn+2 · · ·Nn+k

)
· ν̂>nj

(
ξ0

Nn+1Nn+2 · · ·Nnj

)
.

Thus, we conclude that

ξ0 ∈
∞⋃
k=1

Nn+1Nn+2 · · ·Nn+kO(MBn+k
).

So we have that

O(ν̂>n) ⊂
∞⋃
k=1

Nn+1Nn+2 · · ·Nn+kO(MBn+k
).

This completes the proof. �
Lemma 4.3. Suppose that the conditions (i) and (ii) in Theorem 1.3 hold. Then for each 
h > 0, there exists a constant C > 0, depending only on h, such that for all n ≥ 1,

#
(
[−h, h] ∩ Z(ν>n)

)
≤ C.

Proof. Noting that Z(ν>n) ⊂ O(ν̂>n), it suffices to show that for all n ≥ 1,

#
(
[−h, h] ∩ O(ν̂>n)

)
≤ C.

Let

D =
∞⋃
k=1

NkO(MBk
).

Since 0 �∈ O(MBk
) for each k ≥ 1, we have that 0 �∈ D. Since D is discrete, there exists 

δ > 0 such that [−δ, δ] ∩D = ∅.
For h > 0, we choose k0 ≥ 1 such that 2k0δ > h. By Lemma 4.2, we have that

O(ν̂>n) ⊂
∞⋃
k=1

Nn+1Nn+2 · · ·Nn+k−1D,

where Nn+1Nn+2 · · ·Nn+k−1 = 1 for k = 1. Noting that all |Nk| ≥ 2, we have that for 
k ≥ k0 + 1,

(
[−h, h] ∩Nn+1Nn+2 · · ·Nn+k−1D

)
⊂ Nn+1Nn+2 · · ·Nn+k−1

(
[−δ, δ] ∩D

)
= ∅.

Thus,
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[−h, h] ∩ O(ν̂>n) ⊂
k0⋃
k=1

(
[−h, h] ∩Nn+1Nn+2 · · ·Nn+k−1D

)
.

It follows that

#
(
[−h, h] ∩ O(ν̂>n)

)
≤

k0∑
k=1

#
(
[−h, h] ∩Nn+1Nn+2 · · ·Nn+k−1D

)
≤ k0 · #

(
[−h, h] ∩D

)
,

where the constant k0 · #
(
[−h, h] ∩D

)
depends only on h. �

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. For k ≥ 1, since (Nk, Bk) is an admissible pair, by Lemma 2.4
(ii), we may find Lk ⊂ {0, 1, . . . , |Nk| − 1} such that the set Lk is a spectrum of δN−1

k Bk
. 

It follows from Theorem 2.2 that for all ξ ∈ R,

∑
�∈Lk

∣∣∣∣MBk

(
ξ + �

Nk

)∣∣∣∣2 = 1.

For � ∈ Lk, we define

τ�,k(x) = N−1
k (x + �).

We prove this theorem by contradiction. Suppose that Z(μ) �= ∅. Arbitrarily choose 
ξ0 ∈ Z(μ) and set Y0 = {ξ0}. For n ≥ 1, we define

Yn =
{
τ�,n(ξ) : ξ ∈ Yn−1, � ∈ Ln, MBn

(
τ�,n(ξ)

)
�= 0

}
.

First, we show that for each n ≥ 1,

#Yn−1 ≤ #Yn.

Since for each ξ ∈ Yn−1, ∑
�∈Ln

∣∣MBn

(
τ�,n(ξ)

)∣∣2 = 1,

there exists at least one element � ∈ Ln such that MBn

(
τ�,n(ξ)

)
�= 0. On the other hand, 

for �1�2 · · · �n �= �′1�
′
2 · · · �′n where �j , �′j ∈ Lj for 1 ≤ j ≤ n, we have that

τ�n,n ◦ · · · ◦ τ�2,2 ◦ τ�1,1(ξ0) �= τ�′n,n ◦ · · · ◦ τ�′2,2 ◦ τ�′1,1(ξ0).

Otherwise,
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ξ0 + �1 + N1�2 + · · · + N1N2 · · ·Nn−1�n
N1N2 · · ·Nn

= ξ0 + �′1 + N1�
′
2 + · · · + N1N2 · · ·Nn−1�

′
n

N1N2 · · ·Nn
,

that is,

�1 + N1�2 + · · · + N1N2 · · ·Nn−1�n = �′1 + N1�
′
2 + · · · + N1N2 · · ·Nn−1�

′
n.

Let j0 = min
{
1 ≤ j ≤ n : �j �= �′j

}
. Then we have that Nj0 | �j0 − �′j0 . This contradicts 

with Lemma 2.4 (i). Therefore, we conclude that #Yn−1 ≤ #Yn for n ≥ 1.
Next, we prove that for each n ≥ 1,

Yn ⊂ Z(ν>n).

Write ν>0 = μ, and it is clear that Y0 ⊂ Z(ν>0). For n ≥ 1, we assume that Yn−1 ⊂
Z(ν>n−1). For each τ�,n(ξ) ∈ Yn where ξ ∈ Yn−1, � ∈ Ln and MBn

(
τ�,n(ξ)

)
�= 0, we 

have that for all k ∈ Z,

0 = ν̂>n−1(ξ + � + Nnk)

= MBn

(
ξ + �

Nn
+ k

)
ν̂>n

(
ξ + �

Nn
+ k

)
= MBn

(
τ�,n(ξ)

)
ν̂>n

(
τ�,n(ξ) + k

)
,

where the last equality follows from integral periodicity of MBn
. Since MBn

(
τ�,n(ξ)

)
�= 0, 

we have that

ν̂>n

(
τ�,n(ξ) + k

)
= 0,

for all k ∈ Z. This implies that τ�,n(ξ) ∈ Z(ν>n). Thus, Yn ⊂ Z(ν>n). By induction, we 
obtain that Yn ⊂ Z(ν>n) for all n ≥ 1.

For every ξ ∈ Yn, by the definition of Yn, we write ξ as

ξ = τ�n,n ◦ · · · ◦ τ�2,2 ◦ τ�1,1(ξ0) = ξ0 + �1 + N1�2 + · · · + N1N2 · · ·Nn−1�n
N1N2 · · ·Nn

.

Since |Nj | ≥ 2 and 0 ≤ �j < |Nj | for each j ≥ 1, we have that

|ξ| ≤ |ξ0|
2n + 1

2n−1 + 1
2n−2 + · · · + 1 ≤ |ξ0| + 2.

Let h = |ξ0| + 2. Then, we have that Yn ⊂ [−h, h] for all n ≥ 1. It follows that

Yn ⊂ [−h, h] ∩ Z(ν>n).

By the increasing cardinality of Yn and Lemma 4.3, there exists n0 ≥ 1 such that 
#Yn = #Yn+1 for all n ≥ n0.



W. Li et al. / Journal of Functional Analysis 287 (2024) 110539 19
Choose η0 ∈ Yn0 . Since #Yn0+1 = #Yn0 , there exists a unique �1 ∈ Ln0+1 such that 
MBn0+1

(
τ�1,n0+1(η0)

)
�= 0. Note that

∑
�∈Ln0+1

∣∣MBn0+1

(
τ�,n0+1(η0)

)∣∣2 = 1.

Let η1 = τ�1,n0+1(η0). Then we have that η1 ∈ Yn0+1 and |MBn0+1(η1)| = 1, that is,

∣∣∣∣∣∣ 1
#Bn0+1

∑
b∈Bn0+1

e−2πibη1

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1
#Bn0+1

∑
b∈Bn0+1

e−2πi(b−b1)η1

∣∣∣∣∣∣ = 1,

where b1 ∈ Bn0+1 is arbitrarily chosen. It follows that (b − b1)η1 ∈ Z for all b ∈ Bn0+1. 
Thus, we have that

η1 ∈ 1
gcd(Bn0+1 −Bn0+1)

Z.

Recursively, we define a sequence {ηk}∞k=1 such that ηk = τ�k,n0+k(ηk−1) ∈ Yn0+k for 
some �k ∈ Ln0+k, and

ηk ∈ 1
gcd(Bn0+k −Bn0+k)

Z. (4.2)

Since η1 is a rational number, η0 must be rational. Write η0 = q/p with p ∈ N, q ∈ Z, 
and gcd(p, q) = 1. Then for every k ≥ 1, we have that

ηk = τ�k,n0+k ◦ · · · ◦ τ�2,n0+2 ◦ τ�1,n0+1(η0)

= η0 + �1 + Nn0+1�2 + · · · + Nn0+1Nn0+2 · · ·Nn0+k−1�k
Nn0+1Nn0+2 · · ·Nn0+k

= q + p(�1 + Nn0+1�2 + · · · + Nn0+1Nn0+2 · · ·Nn0+k−1�k)
pNn0+1Nn0+2 · · ·Nn0+k

.

Note that q + p(�1 + Nn0+1�2 + · · · + Nn0+1Nn0+2 · · ·Nn0+k−1�k) and p are coprime. It 
follows from (4.2) that

p | gcd(Bn0+k −Bn0+k).

Thus,

p | gcd

⎛⎝ ∞⋃
j=n +1

(Bj −Bj)

⎞⎠ .
0
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By the condition (iii), we have that p = 1. It follows that η0 is an integer. This contradicts 
the facts that η0 ∈ Z(ν>n0) and Z(ν>n0) ∩ Z = ∅.

Therefore we obtain that Z(μ) = ∅. The proof is completed. �
5. Spectrality of general random convolutions

Recall that {(Nj , Bj)}mj=1 are finitely many admissible pairs, and Ω = {1, 2, . . . , m}N . 
Given a sequence of positive integers {nk}, for ω = (ωk)∞k=1 ∈ Ω, we define the infinite 
convolution

μω,{nk} = δ
N

−n1
ω1 Bω1

∗ δ
N

−n1
ω1 N

−n2
ω2 Bω2

∗ · · · ∗ δ
N

−n1
ω1 N

−n2
ω2 ···N−nk

ωk
Bωk

∗ · · · . (5.1)

For q ≥ 1, we write

μω,{nk},q = δ
N

−n1
ω1 Bω1

∗ δ
N

−n1
ω1 N

−n2
ω2 Bω2

∗ · · · ∗ δ
N

−n1
ω1 N

−n2
ω2 ···N−nq

ωq Bωq

.

Note that μω,{nk},q converges weakly to μω,{nk} as q approaches the infinity.

Lemma 5.1. For f ∈ Cb(R) and ε > 0, there exists q0 ≥ 1 such that∣∣∣∣∣∣
∫
R

f(x) dμω,{nk},q0(x) −
∫
R

f(x) dμω,{nk}(x)

∣∣∣∣∣∣ < ε

for all ω ∈ Ω and all sequences of positive integers {nk}.

Proof. Let h = max {|b| : b ∈ Bj , 1 ≤ j ≤ m}. For f ∈ Cb(R) and ε > 0, since f is 
uniformly continuous on [−(h + 1), h + 1], there exists 0 < γ < 1 such that for all 
|x|, |y| ≤ h + 1 with |x − y| < γ we have that

|f(x) − f(y)| < ε. (5.2)

Choose a sufficiently large integer q0 such that 2−q0h < γ.
Fix ω ∈ Ω and a sequence of positive integers {nk}. For every sequence {bωk

}∞k=1
where bωk

∈ Bωk
for each k ≥ 1, noting that |Nj | ≥ 2 for 1 ≤ j ≤ m, we have that∣∣∣∣∣

q∑
k=1

bωk

Nn1
ω1 N

n2
ω2 · · ·Nnk

ωk

∣∣∣∣∣ ≤
q∑

k=1

h

2k < h.

Thus, we have that

spt(μω,{nk},q) ⊂ [−h, h].

The infinite convolution μω,{nk} may be written as μω,{nk} = μω,{nk},q∗μω,{nk},>q, where
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μω,{nk},>q = δ
N

−n1
ω1 N

−n2
ω2 ···N−nq+1

ωq+1 Bωq+1
∗ δ

N
−n1
ω1 N

−n2
ω2 ···N−nq+2

ωq+2 Bωq+2
∗ · · ·

is the tail of infinite convolution. It is easy to check that

spt(μω,{nk},>q) ⊂ [−2−qh, 2−qh].

Note that ∫
R

f(x) dμω,{nk}(x) =
∫
R

f(x) dμω,{nk},q ∗ μω,{nk},>q(x)

=
∫
R2

f(x + y) dμω,{nk},q × μω,{nk},>q(x, y)

=
∫
R

∫
R

f(x + y) dμω,{nk},>q(y) dμω,{nk},q(x).

Thus, by (5.2), we have that∣∣∣∣∣∣
∫
R

f(x) dμω,{nk},q0(x) −
∫
R

f(x) dμω,{nk}(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
R

∫
R

(
f(x) − f(x + y)

)
dμω,{nk},>q0(y) dμω,{nk},q0(x)

∣∣∣∣∣∣
≤

h∫
−h

2−q0h∫
−2−q0h

|f(x) − f(x + y)| dμω,{nk},>q0(y) dμω,{nk},q0(x)

< ε.

This completes the proof. �
Proposition 5.2. Let {(Nj , Bj)}mj=1 be finitely many admissible pairs, and let μω,{nk} be 
defined by (5.1). If the sequence {nk} is unbounded, then all infinite convolutions μω,{nk}
for ω ∈ Ω are spectral measures.

Proof. Fix ω ∈ Ω and write μ = μω,{nk}. Then the measure μ is the infinite convolution 
generated by the sequence of admissible pairs {((Nωk

)nk , Bωk
)}∞k=1. Recall the notation 

ν>k defined in (1.4) for the infinite convolution μ. We have that

ν>k = δ
N

−nk+1
ωk+1 Bωk+1

∗ δ
N

−nk+1
ωk+1 N

−nk+2
ωk+2 Bωk+2

∗ · · · .

Let h = max {|b| : b ∈ Bj , 1 ≤ j ≤ m}, and it is clear that
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spt(ν>k) ⊂ [−2−nk+1+1h, 2−nk+1+1h].

Since the sequence {nk} is unbounded, we may find a subsequence {nkj
} such that

lim
j→∞

nkj
= ∞.

Consider the sequence {ν>kj−1}, and we have that spt(ν>kj−1) ⊂ [−2−nkj
+1h, 2−nkj

+1h]. 
Thus, the sequence {ν>kj−1} converges weakly to δ0, the Dirac measure concentrated 
on 0. Obviously, we have that Z(δ0) = ∅. It follows from Theorem 1.1 that μ = μω,{nk}
is a spectral measure. �

We denote by σ the left shift on the symbolic space Ω, that is,

σ(ω) = ω2ω3ω4 · · ·

for ω = (ωk)∞k=1 ∈ Ω.

Lemma 5.3. Suppose that the Bernoulli measure P on Ω is associated with a positive 
probability vector. Then for P -a.e. ω ∈ Ω, there exists a subsequence {kj} such that 
{σkj (ω)} converges to (12 · · ·m)∞ in Ω.

Proof. Let (p1, p2, . . . , pm) be the positive probability vector associated with the 
Bernoulli measure P . Since the left shift σ is ergodic with respect to the Bernoulli mea-
sure P on Ω [45], by Birkhoff ergodic theorem, there exists a full measure subset Ω0 ⊂ Ω
such that for any ω ∈ Ω0 and for any finite word i1i2 · · · iq, where ij ∈ {1, 2, . . . , m} for 
1 ≤ j ≤ q, we have that

lim
n→∞

# {1 ≤ k ≤ n : ωkωk+1 · · ·ωk+q−1 = i1i2 · · · iq}
n

= pi1pi2 · · · piq .

It follows that for ω ∈ Ω0 and q ≥ 1,

lim
n→∞

# {1 ≤ k ≤ n : ωkωk+1 · · ·ωk+qm−1 = (12 · · ·m)q}
n

= (p1p2 · · · pm)q > 0. (5.3)

Fix ω ∈ Ω0. By (5.3), we first choose k1 ≥ 1 such that ωk1+1ωk1+2 · · ·ωk1+m =
12 · · ·m. Assume that we have chosen k1 < k2 < · · · < kq such that ωkj+1ωkj+2 · · ·
ωkj+jm = (12 · · ·m)j for 1 ≤ j ≤ q. Then, by (5.3), we can find kq+1 > kq such that

ωkq+1+1ωkq+1+2 · · ·ωkq+1+(q+1)m = (12 · · ·m)q+1.

Thus, we recursively find a subsequence {kj} such that for all j ≥ 1,

ωkj+1ωkj+2 · · ·ωkj+jm = (12 · · ·m)j .

It follows that {σkj (ω)} converges to (12 · · ·m)∞ in Ω. The proof is completed. �
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Proposition 5.4. Let {(Nj , Bj)}mj=1 be finitely many admissible pairs, and let μω,{nk} be 
defined by (5.1). If the sequence {nk} is bounded, then for every Bernoulli measure P on 
Ω, the infinite convolution μω,{nk} is a spectral measure for P -a.e. ω ∈ Ω.

Proof. The probability vector associated with the Bernoulli measure P is denoted by 
(p1, p2, . . . , pm). By rearranging the symbols, there exists 1 ≤ m′ ≤ m such that pj > 0
for 1 ≤ j ≤ m′ and pm′+1 = pm′+2 = · · · = pm = 0. Let Ω′ = {1, 2, . . . , m′}N . Then we 
have that P (Ω′) = 1. Let P ′ be the restriction of P on Ω′. In fact, P ′ is the Bernoulli 
measure on Ω′ associated with the positive probability vector (p1, p2, . . . , pm′). It suffices 
to show that the infinite convolution μω,{nk} is a spectral measure for P ′-a.e. ω ∈ Ω′. 
Thus, we assume that the probability vector (p1, p2, . . . , pm) is positive.

Let

d = gcd

⎛⎝ m⋃
j=1

(Bj −Bj)

⎞⎠ .

For 1 ≤ j ≤ m, we define B′
j = (Bj − bj)/d for some bj ∈ Bj . Then we have that

gcd

⎛⎝ m⋃
j=1

(B′
j −B′

j)

⎞⎠ = 1.

We write

μ′
ω,{nk} = δ

N
−n1
ω1 B′

ω1
∗ δ

N
−n1
ω1 N

−n2
ω2 B′

ω2
∗ · · · ∗ δ

N
−n1
ω1 N

−n2
ω2 ···N−nk

ωk
B′

ωk

∗ · · · .

It is easy to check that

μω,{nk} = μ′
ω,{nk} ◦ T

−1
d,bω

,

where

bω =
∞∑
k=1

bωk

Nn1
ω1 N

n2
ω2 · · ·Nnk

ωk

,

and the function Td,bω is defined in (2.1). By Lemma 2.3, it suffices to show that μ′
ω,{nk}

is a spectral measure for P -a.e. ω ∈ Ω. Note by Lemma 2.4 (iii) and (iv) that (Nj , B′
j)

is also an admissible pair for each 1 ≤ j ≤ m. So, in the following, we also assume that

gcd

⎛⎝ m⋃
j=1

(Bj −Bj)

⎞⎠ = 1. (5.4)
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Let η = (ηk)∞k=1 = (12 · · ·m)∞. The measure μη,{nk} is the infinite convolution gener-
ated by the sequence of admissible pairs {((Nηk

)nk , Bηk
)}∞k=1. Since the sequence {nk}

is bounded, the sequence {((Nηk
)nk , Bηk

)}∞k=1 is chosen from a finite set of admissible 
pairs. By (5.4) and Corollary 1.4, we have that

Z(μη,{nk}) = ∅, (5.5)

for all bounded sequences {nk}.
By Lemma 5.3, there exists a full measure subset Ω0 ⊂ Ω such that for ω ∈ Ω0 we 

have that {σkj (ω)} converges to η for some subsequence {kj}. Fix ω ∈ Ω0 and such a 
subsequence {kj}. Next, we show that μω,{nk} is a spectral measure.

Write μ = μω,{nk}. Then the measure μ is the infinite convolution generated by the 
sequence of admissible pairs {((Nωk

)nk , Bωk
)}∞k=1. Recall the notation ν>k defined in 

(1.4) for the infinite convolution μ. For k ≥ 1, we have that

ν>k = μσk(ω),{nk+�}∞
�=1

.

Let M = max{nk : k ≥ 1}, and let Σ be the symbolic space over the alphabet 
{1, 2, . . . , M}. By the compactness of Ω × Σ, the sequence

{(
σkj (ω), {nkj+�}∞�=1

)}∞
j=1

has a convergent subsequence in Ω × Σ. By taking the subsequence, we assume that {(
σkj (ω), {nkj+�}∞�=1

)}∞
j=1 converges to (η, {mk}) for some sequence {mk} ∈ Σ.

For f ∈ Cb(R) and ε > 0, by Lemma 5.1, there exists q0 ≥ 1 such that

∣∣∣∣∣∣
∫
R

f(x) dμσkj (ω),{nkj+�}∞
�=1,q0

(x) −
∫
R

f(x) dμσkj (ω),{nkj+�}∞
�=1

(x)

∣∣∣∣∣∣ < ε

2

for all j ≥ 1, and ∣∣∣∣∣∣
∫
R

f(x) dμη,{mk},q0(x) −
∫
R

f(x) dμη,{mk}(x)

∣∣∣∣∣∣ < ε

2 .

Since 
{(

σkj (ω), {nkj+�}∞�=1
)}∞

j=1 converges to (η, {mk}), there exists j0 ≥ 1 such that 
for j ≥ j0, we have that

μσkj (ω),{nkj+�}∞
�=1,q0

= μη,{mk},q0 .

Thus, for j ≥ j0,



W. Li et al. / Journal of Functional Analysis 287 (2024) 110539 25
∣∣∣∣∣∣
∫
R

f(x) dμσkj (ω),{nkj+�}∞
�=1

(x) −
∫
R

f(x) dμη,{mk}(x)

∣∣∣∣∣∣ < ε.

This implies that the sequence {ν>kj
= μσkj (ω),{nkj+�}∞

�=1
} converges weakly to μη,{mk}. 

By (5.5), we have that Z(μη,{mk}) = ∅. It follows from Theorem 1.1 that μ = μω,{nk} is 
a spectral measure. �
Proof of Theorem 1.5. It follows from Proposition 5.2 and Proposition 5.4. �
6. Spectrality of special random convolutions

Recall that t ≥ 1 is an integer, N, p ≥ 2 are integers with gcd(N, p) = 1, and

N1 = N2 = tN, B1 = {0, 1, . . . , N − 1} , B2 = p {0, 1, . . . , N − 1} .

Let L = {0, t, 2t, . . . , (N − 1)t}. It is straightforward to verify that these two matrices(
1√
N

e−2πi b�
tN

)
b∈B1,�∈L

,

(
1√
N

e−2πi b�
tN

)
b∈B2,�∈L

are unitary. This implies that (N1, B1) and (N2, B2) are admissible pairs.
For ω ∈ Ω = {1, 2}N , we define

μω = δ(tN)−1Bω1
∗ δ(tN)−2Bω2

∗ · · · ∗ δ(tN)−kBωk
∗ · · · .

It follows that

μ̂ω(ξ) =
∞∏
k=1

MBωk

(
ξ

(tN)k

)
.

As we have done in the proof of Lemma 4.2, we conclude that

O(μ̂ω) =
∞⋃
k=1

(tN)kO
(
MBωk

)
. (6.1)

Lemma 6.1. For η = 12∞, we have that Z(μη) = ∅.

Proof. By simple calculation, we have that

O(MB1) = Z \NZ

N
, O(MB2) = Z \NZ

pN
.

It follows from (6.1) that
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O(μ̂η) =
(
tNO(MB1)

)
∪

∞⋃
k=2

(tN)kO(MB2)

=
(
t(Z \NZ)

)
∪

∞⋃
k=1

tk+1Nk(Z \NZ)
p

⊆
(
Z ∪ NZ

p

)
\ {0}.

Suppose that Z(μη) �= ∅. Take ξ0 ∈ Z(μη) ∩ [0, 1). Then we have that μ̂η(ξ0 + k) = 0
for all k ∈ Z. It follows that ξ0, ξ0 + 1 ∈ O(μ̂η). Thus, there exists k1, k2 ∈ Z such that

ξ0 = k1N

p
, ξ0 + 1 = k2N

p
.

So we have that

p = (k2 − k1)N.

This contradicts with gcd(N, p) = 1. Therefore, we conclude that Z(μη) = ∅. �
Proposition 6.2. For ω ∈ Ω, if ω = 2∞ or the symbol “1” occurs infinitely many times 
in ω, then the infinite convolution μω is a spectral measure.

Proof. For ω = 2∞, the infinite convolution μω is the self-similar measure generated by 
the admissible pair (N2, B2), and it follows from the classical result by Łaba and Wang 
[30] that it is a spectral measure. In the following, we assume that the symbol “1” occurs 
infinitely many times in ω.

Write μ = μω. Then the measure μ is the infinite convolution generated by the se-
quence of admissible pairs {(Nωk

, Bωk
)}∞k=1. Recall the notation ν>n defined in (1.4) for 

the infinite convolution μ. Then we have that ν>n = μσn(ω). The proof is divided into 
two cases.

Case (i): there exists � ∈ N such that the sequence ω does not contain the finite 
word 2�. By the compactness of Ω, there exists a subsequence {nj} such that {σnj (ω)}
converges to ζ in Ω for some ζ ∈ Ω. As in the proof of Proposition 5.4, we have that the 
sequence {ν>nj

= μσnj (ω)} converges weakly to μζ . Note that the sequence σnj (ω) does 
not contain the finite word 2� for every j ≥ 1. Thus the sequence ζ also does not contain 
the finite word 2�. This means that the symbol “1” occurs infinitely many times in ζ. It 
follows from Corollary 1.4 that Z(μζ) = ∅. Therefore, by Theorem 1.1, we conclude that 
μ = μω is a spectral measure.

Case (ii): for every � ≥ 1, the sequence ω contains the finite word 2�. Note that the 
symbol “1” occurs infinitely many times in ω. Let

{k1 < k2 < · · · < kj < · · · } = {k ≥ 1 : ωk = 1} .
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Then we have that

lim sup
j→∞

(kj+1 − kj) = ∞.

So we may find a subsequence {nj} such that

lim
j→∞

(knj+1 − knj
) = ∞.

Note that the sequence σknj
−1(ω) begins with the finite word 12knj+1−knj

−1. Thus, we 
have that {σknj

−1(ω)} converges to η = 12∞ in Ω. As in the proof of Proposition 5.4, we 
have that the sequence {ν>knj

−1 = μ
σ
knj

−1(ω)} converges weakly to μη. By Lemma 6.1, 
we have that Z(μη) = ∅. Therefore, by Theorem 1.1, we conclude that μ = μω is a 
spectral measure. �

Recall that we write

μN,B = δN−1B ∗ δN−2B ∗ · · · ∗ δN−kB ∗ · · ·

for the self-similar measure.

Lemma 6.3. Suppose that t ≥ 2 and let μ = μtN,B2 . Then we have that for all j ∈ Z \{0},

μ
(
spt(μ) + j

)
= 0.

Proof. Note that B2 = p{0, 1, . . . , N − 1}. We have that

spt(μ) =
{
p

∞∑
k=1

εk
(tN)k : εk ∈ {0, 1, . . . , N − 1} for k ∈ N

}
.

Let Σ = {0, 1, 2, . . . , N−1}N and let P be the uniform Bernoulli measure on Σ. Consider 
the coding mapping πtN : Σ → spt(μ) defined by

πtN

(
(εk)

)
= p

∞∑
k=1

εk
(tN)k .

Then we have that μ = P ◦ π−1
tN .

Suppose that there exists j ∈ Z \ {0} such that μ(spt(μ) + j) > 0. Let

Σ′ =
{

(εk) ∈ Σ : p
∞∑
k=1

εk
(tN)k ∈ spt(μ) + j

}
.

Then we have that P (Σ′) > 0. For (εk) ∈ Σ′, we have that
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p
∞∑
k=1

εk
(tN)k = j + p

∞∑
k=1

ηk
(tN)k

for some (ηk) ∈ Σ. That is,

j

p
+ N − 1

tN − 1 =
∞∑
k=1

εk + (N − 1 − ηk)
(tN)k .

Note that εk + (N − 1 − ηk) ∈ {0, 1, 2, . . . , 2N − 2} for each k ≥ 1. Thus, there exists a 
unique sequence (ζk) ∈ {0, 1, 2, . . . , 2N − 2}N such that

j

p
+ N − 1

tN − 1 =
∞∑
k=1

ζk
(tN)k .

It follows that for k ≥ 1,

ζk = εk + (N − 1 − ηk),

i.e.,

εk = ζk + ηk −N + 1.

Thus, for each k ≥ 1, we have that

εk ∈

⎧⎪⎪⎨⎪⎪⎩
Aζk = {0, 1, . . . , ζk} , if ζk < N − 1;
Aζk = {0, 1, . . . , N − 1} , if ζk = N − 1;
Aζk = {ζk −N + 1, ζk −N + 2, . . . , N − 1} , if ζk > N − 1.

So we get that

Σ′ = {(εk) ∈ Σ : εk ∈ Aζk for k ∈ N} .

It follows that

P (Σ′) = lim
n→∞

n∏
k=1

#Aζk

N
.

Note that P (Σ′) > 0. Thus the sequence (ζk) ends with (N − 1)∞.
Let k0 = min{k ∈ N : ζn = N −1 for all n > k}. Then k0 ≥ 1 and ζk0 �= N −1. Write

x = j

p
+ N − 1

tN − 1 , xk =
∞∑ ζk+�

(tN)� .

�=1
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Note that

(tN)k N − 1
tN − 1 (mod 1) ≡ N − 1

tN − 1 .

Thus we have that

(tN)kx (mod 1) ≡ (tN)kj
p

+ N − 1
tN − 1 (mod 1) ≡ xk.

Since xk0 = (N − 1)/(tN − 1), we must have that

p | (tN)k0j.

Moreover, we have that

p � (tN)k0−1j.

Let q ∈ {0, 1, . . . , p − 1} satisfy q ≡ (tN)k0−1j (mod p). Since p | (tN)k0j, we have 
that p | qtN . Noting that gcd(N, p) = 1, we obtain that p | qt. It follows that

N ≤ qtN

p
≤ (t− 1)N.

Thus, we have that

q

p
+ N − 1

tN − 1 ≤ (t− 1)N
tN

+ N − 1
tN − 1 < 1,

and

q

p
+ N − 1

tN − 1 ≥ N

tN
+ N − 1

tN − 1 >
2N − 1
tN

.

On the one hand,

xk0−1 ≡ (tN)k0−1x (mod 1) = q

p
+ N − 1

tN − 1 >
2N − 1
tN

.

On the other hand,

xk0−1 =
∞∑
�=1

ζk0−1+�

(tN)� <
ζk0 + 1
tN

≤ 2N − 1
tN

.

This is a contradiction.
Therefore, we obtain that μ

(
spt(μ) + j

)
= 0 for all j ∈ Z \ {0}. �
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Proof of Theorem 1.6. By Proposition 6.2, it remains to consider the infinite convolution 
μω for ω ∈ Ω in which the symbol “1” occurs only finitely many times. In the following, 
we fix ω ∈ Ω satisfying

ωk0 = 1 and ωk0+1ωk0+2ωk0+3 · · · = 2∞

for some k0 ∈ N.
(i) For the case that t = 1, let

B = Nk0−1Bω1 + Nk0−2Bω2 + · · · + NBωk0−1 + Bωk0
,

and define

μ̃ω = δB ∗ μN,B2 .

Note that

μω = δN−1Bω1
∗ · · · ∗ δN−k0Bωk0

∗ δN−k0−1B2 ∗ δN−k0−2B2 ∗ · · · .

We have that μ̃ω = μω ◦ T−1
Nk0 ,0, where the function TNk0 ,0 is defined in (2.1). By 

Lemma 2.3, μω is a spectral measure if and only if μ̃ω is a spectral measure.
Note that

μN,B2 = 1
p
L|[0,p],

where L|[0,p] denotes the restriction of Lebesgue measure on the interval [0, p]. Thus, the 
measure μ̃ω may be written as

μ̃ω = 1
#B

∑
b∈B

δb ∗ μN,B2 = 1
p · #B

∑
b∈B

L|[b,b+p].

Noting that {0, 1, . . . , N −1} ⊂ B and p ≥ 2, it is easy to check that μ̃ω is not uniformly 
distributed on its support. However, an absolutely continuous spectral measure must be 
uniform on its support [12]. As a consequence, μ̃ω is not a spectral measure. It follows 
that μω is not a spectral measure.

(ii) For the case that t ≥ 2, the measure μ = μω is the infinite convolution generated 
by the sequence of admissible pairs {(Nωk

, Bωk
)}∞k=1. Recall the notation ν>n defined in 

(1.4) for the infinite convolution μ. Then we have that ν>n = μσn(ω) = μtN,B2 for all 
n ≥ k0. By Lemma 6.3 and Theorem 1.2, we have that Z(μtN,B2) = ∅. It follows from 
Theorem 1.1 that μ = μω is a spectral measure. �
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7. Examples

In this section, we give some examples to illustrate our results.

Example 7.1. Let N1 = N2 = 2, B1 = {0, 1}, and B2 = {0, 3}. Example 1.8 in [14]
showed that the random convolution μη is not a spectral measure for η = 12∞ because 
μη is not uniformly distributed on its support. By Theorem 1.6, for ω ∈ {1, 2}N , we have 
that μω is a spectral measure if and only if ω = 2∞ or the symbol “1” occurs infinitely 
many times in ω. In particular, for

ω = 1 2 11 12 21 22 111 112 · · ·

which enumerates all finite words in lexicographical order, we have that μω is a spectral 
measure.

Next, we construct some new examples of spectral measures by applying Theorem 1.1
and Theorem 1.2. The spectrality of infinite convolutions with three elements in digit sets 
has been studied in [3,20]. However, the following example cannot be deduced directly 
from these known results.

Example 7.2. Let N > 3 be an integer with 3 | N . Choose a sequence of integers {bj}∞j=1
such that 3 | bj and

lim
j→∞

bj
N j

= n0 + 5
6 (7.1)

for some n0 ∈ Z. For k ≥ 1, we define

Bk =
{
{2, 4, bj}, if k = j(j + 1)/2 for some j ≥ 1;

{0, 2, 4}, otherwise.

Then the infinite convolution

μ = δN−1B1 ∗ δN−2B2 ∗ · · · ∗ δN−kBk
∗ · · · (7.2)

is a spectral measure.
Since Bk ≡ {0, 1, 2} (mod 3) for k ≥ 1, the discrete measure δN−1Bk

admits a spec-
trum L = {0, N/3, 2N/3} for all k ≥ 1. Thus, {(N, Bk)}∞k=1 is a sequence of admissible 
pairs. Let

M = sup
j≥1

|bj |
N j

.

It is easy to check that
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∞∑
k=1

max{|b| : b ∈ Bk}
Nk

≤ 1 +
∞∑
j=1

|bj |
N

j(j+1)
2

≤ 1 +
∞∑
j=1

M

N
j(j−1)

2
≤ 1 + 2M.

Thus the infinite convolution μ defined in (7.2) exists.
Let nj = j(j + 1)/2 for j ≥ 1. Then we have that

ν>nj
= δN−1Bnj+1 ∗ δN−2Bnj+2 ∗ · · · ∗ δN−kBnj+k

∗ · · ·

= δN−1{0,2,4} ∗ · · · ∗ δN−j{0,2,4} ∗ δN−(j+1){2,4,bj+1} ∗ νj ,

where νj is the tail part of infinite convolution. One can easily check that

spt(νj) ⊂
[
−1 + 2M

N j+1 ,
1 + 2M
N j+1

]
. (7.3)

Note that

ν>nj
= 2

3δN
−1{0,2,4} ∗ · · · ∗ δN−j{0,2,4} ∗ δN−(j+1){2,4} ∗ νj

+ 1
3δN

−1{0,2,4} ∗ · · · ∗ δN−j{0,2,4} ∗ δ{bj+1/Nj+1} ∗ νj .

Thus, by (7.1) and (7.3), we have that {ν>nj
} converges weakly to

ν = 2
3μN,{0,2,4} + 1

3δ{n0+5/6} ∗ μN,{0,2,4},

where μN,{0,2,4} = δN−1{0,2,4} ∗ δN−2{0,2,4} ∗ · · · ∗ δN−k{0,2,4} ∗ · · · .
Since 5/6 �∈ spt(μN,{0,2,4}), there exists 0 < γ < 1/6 such that

(5/6 − γ, 5/6 + γ) ∩ spt(μ6,{0,2,4}) = ∅.

Let E = (n0 + 5/6 − γ, n0 + 5/6 + γ). Then we have that ν(E) > 0 and ν(E + k) = 0 for 
all k ∈ Z \ {0}. By Theorem 1.2, we have that Z(ν) = ∅. It follows from Theorem 1.1
that the infinite convolution μ defined in (7.2) is a spectral measure.

Note that the number 5/6 in (7.1) is deliberately chosen. More generally, if we choose 
x0 ∈ [0, 1) \ spt(μN,{0,2,4}), and substitute (7.1) by the condition that

lim
j→∞

bj
N j

= n0 + x0

for some n0 ∈ Z, then as we have done above, the resulting infinite convolution in 
Example 7.2 is still a spectral measure.

We give another example of spectral measures, whose digit sets are almost consecutive 
digit sets.
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Example 7.3. Let N = tp where t, p ≥ 2 are integers. Let 0 ≤ x0 < 1 satisfy

x0 �∈
{ ∞∑

k=1

dk
Nk

: dk ∈ {0, 1, . . . , p− 1} for k ≥ 1
}
.

For instance, we may choose x0 = 1/2. Choose a sequence of integers {bj}∞j=1 such that 
p | bj and

lim
j→∞

bj
N j

= n0 + x0

for some n0 ∈ Z. For k ≥ 1, we define

Bk =
{
{1, 2, . . . , p− 1, bj}, if k = j(j + 1)/2 for some j ≥ 1;
{0, 1, . . . , p− 1}, otherwise.

Then the infinite convolution

μ = δN−1B1 ∗ δN−2B2 ∗ · · · ∗ δN−kBk
∗ · · · (7.4)

is a spectral measure.
Since Bk ≡ {0, 1, . . . , p −1} (mod p), the discrete measure δN−1Bk

admits a spectrum 
L = {0, t, 2t, . . . , (p − 1)t} for all k ≥ 1. Thus, {(N, Bk)}∞k=1 is a sequence of admissible 
pairs. Let nj = j(j + 1)/2 for j ≥ 1. Note that

ν>nj
= δN−1{0,1,...,p−1} ∗ · · · ∗ δN−j{0,1,...,p−1} ∗ δN−(j+1){1,2,...,p−1,bj+1} ∗ · · · .

Then we have that {ν>nj
} converges weakly to

ν = p− 1
p

μN,{0,1,...,p−1} + 1
p
δ{n0+x0} ∗ μN,{0,1,...,p−1},

where

μN,{0,1,...,p−1} = δN−1{0,1,...,p−1} ∗ δN−2{0,1,...,p−1} ∗ · · · ∗ δN−k{0,1,...,p−1} ∗ · · · .

Note that x0 �∈ spt(μN,{0,1,...,p−1}). Thus there exists a neighborhood E of n0 + x0 such 
that ν(E) > 0 and ν(E + k) = 0 for all k ∈ Z \ {0}. By Theorem 1.2, we have that 
Z(ν) = ∅. It follows from Theorem 1.1 that the infinite convolution μ defined in (7.4) is 
a spectral measure.

Data availability
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