

Generating Iterated Function Systems for the Vicsek Snowflake and the Koch Curve Author(s): Yuanyuan Yao and Wenxia Li Source: *The American Mathematical Monthly*, Vol. 123, No. 7 (August-September 2016), pp. 716-721 Published by: Mathematical Association of America Stable URL: http://www.jstor.org/stable/10.4169/amer.math.monthly.123.7.716 Accessed: 05-01-2017 13:13 UTC

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly

Generating Iterated Function Systems for the Vicsek Snowflake and the Koch Curve

Yuanyuan Yao and Wenxia Li

Abstract. We determine all generating iterated function systems for certain self-similar sets such as the Vicsek snowflake and the Koch curve.

1. INTRODUCTION. Our work is motivated by a basic problem in fractal geometry: How does one find all generating iterated function systems (IFSs) for a self-similar set? Applications of IFS can be seen in reptiles [**2**] and image compression [**1**, **3**, **6**].

We call a nonempty compact set $F \subseteq \mathbb{R}^d$ a *self-similar set* if it is a finite union of its self-similar copies; that is, there exists a family of contractive similitudes $\mathcal{F} = \{\phi_i(\vec{x}) = \rho_i U_i \vec{x} + \vec{b}_i\}_{i=1}^N$ (*N* is an integer no smaller than 2) such that $F = \bigcup_{i=1}^N \phi_i(F)$, where $\rho_i \in (0, 1)$, U_i is an orthonormal $d \times d$ matrix, and \vec{b}_i is a translation vector. The family \mathcal{F} is called a generating IFS for *F*. It is well-known that \mathcal{F} determines *F* uniquely, but the converse is not true.

Investigating all generating IFSs for a self-similar set was first done by Feng and Wang in \mathbb{R} [5]. However, in the higher-dimensional case, the situation is somewhat different since the form of an orthonormal matrix is much more complicated. The discussion is limited either to homogeneous IFSs (all $\rho_i U_i$ are the same) with the strong separation condition [4] or to special kinds of planar self-similar sets [8].

In this note, we first give an easy-to-check theorem. We then use it to deal with all generating IFSs for some self-similar sets that cannot be covered by the above works.

We denote by \mathcal{I}_E the collection of all isometries of a set $E \subseteq \mathbb{R}^{\tilde{d}}$. Readers can refer to [7] for more information about \mathcal{I}_E . By f_i , we mean $f_{i_1} \circ \cdots \circ f_{i_\ell}$ if $\mathbf{i} = i_1 \dots i_\ell$ is a finite sequence in $\bigcup_{k=1}^{\infty} \{1, \dots, N\}^k$, which is the set of all finite words over $\{1, \dots, N\}$. Then we have the following.

Theorem. Let $E \subseteq \mathbb{R}^d$ be the self-similar set generated by an IFS $\{\phi_i(x)\}_{i=1}^N$. Assume that for each contractive similitude $\phi(x)$ with $\phi(E) \subseteq E$, we have $\phi(E) \subseteq \phi_i(E)$ for some $i \in \{1, \ldots, N\}$. Then every contractive similitude ψ satisfying $\psi(E) \subseteq E$ can be written as $\phi_i \circ S$ for some $i \in \bigcup_{k=1}^{\infty} \{1, \ldots, N\}^k$ and $S \in \mathcal{I}_E$.

Remark. As an application, we investigate all generating IFSs for the triadic Cantor set C generated by the IFS { $\phi_1(x) = x/3$, $\phi_2(x) = (x + 2)/3$ }. Note that each contractive similitude ϕ with $\phi(\mathbf{C}) \subseteq \mathbf{C}$ satisfies $\phi(\mathbf{C}) \subseteq \phi_i(\mathbf{C})$ for some $i \in \{1, 2\}$, and $\mathcal{I}_{\mathbf{C}} = \{x, 1 - x\}$. Then by the **Theorem**, every $\psi_k(x)$ in a generating IFS { ψ_k } $_{k=1}^{\ell}$ for **C** must be of the form $\phi_i(x)$ or $\phi_i(1 - x)$.

2. PROOF OF THEOREM AND SOME EXAMPLES.

Proof of Theorem. Suppose that $\psi(E) \subseteq \phi_{i_1}(E)$ for some $i_1 \in \{1, ..., N\}$. Then $\phi_{i_1}^{-1} \circ \psi(E) \subseteq E$, so either $\phi_{i_1}^{-1} \circ \psi(E) = E$ or, by repeating the above process, $\phi_{i_2}^{-1} \circ \psi(E) = E$.

© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 123

http://dx.doi.org/10.4169/amer.math.monthly.123.7.716

MSC: Primary 28A80, Secondary 28A78

 $\phi_{i_1}^{-1} \circ \psi(E) \subseteq E$ for some $i_2 \in \{1, \dots, N\}$. We can obtain by induction that $\phi_{\mathbf{i}}^{-1} \circ \psi(E) = E$ for some $\mathbf{i} \in \bigcup_{k=1}^{\infty} \{1, \dots, N\}^k$, and hence, $\phi_{\mathbf{i}}^{-1} \circ \psi \in \mathcal{I}_E$.

Let *E* be the self-similar set generated by an IFS $\{\phi_i\}_{i=1}^N$. Assume that *F* is a compact set satisfying $\phi_i(F) \subseteq F$ for all $1 \leq i \leq N$. Then the following fact about self-similar sets will be used in all our examples:

$$E = \bigcap_{k=1}^{\infty} \bigcup_{\mathbf{i} \in \{1, \dots, N\}^k} \phi_{\mathbf{i}}(F) \subseteq F.$$
 (1)

The first example is Vicsek snowflake, a just-touching self-similar set.

Example 1. The Vicsek snowflake V (Figure 1) is generated by the IFS $\{f_i\}_{i=1}^5$, where

$$f_1\begin{pmatrix}x\\y\end{pmatrix} = \frac{1}{3}\begin{pmatrix}x\\y\end{pmatrix}, f_2\begin{pmatrix}x\\y\end{pmatrix} = \frac{1}{3}\begin{pmatrix}x\\y\end{pmatrix} + \begin{pmatrix}\frac{2}{3}\\y\end{pmatrix} + \begin{pmatrix}\frac{2}{3}\\0\end{pmatrix}, f_3\begin{pmatrix}x\\y\end{pmatrix} = \frac{1}{3}\begin{pmatrix}x\\y\end{pmatrix} + \begin{pmatrix}\frac{2}{3}\\\frac{2}{3}\end{pmatrix},$$
$$f_4\begin{pmatrix}x\\y\end{pmatrix} = \frac{1}{3}\begin{pmatrix}x\\y\end{pmatrix} + \begin{pmatrix}0\\\frac{2}{3}\\\frac{2}{3}\end{pmatrix}, f_5\begin{pmatrix}x\\y\end{pmatrix} = \frac{1}{3}\begin{pmatrix}x\\y\end{pmatrix} + \begin{pmatrix}\frac{1}{3}\\\frac{1}{3}\end{pmatrix}.$$

Suppose that ψ is a contractive similitude in \mathbb{R}^2 with $\psi(V) \subseteq V$. Then $\psi = f_i \circ S$ for some $\mathbf{i} \in \bigcup_{k=1}^{\infty} \{1, \ldots, 5\}^k$ and $S \in \mathcal{I}_V$.

Figure 1. The first three iterations of Vicsek snowflake

Proof. By the **Theorem**, it suffices to prove that $\psi(V) \subseteq f_i(V)$ for some $i \in \{1, \ldots, 5\}$.

By (1), V is a subset of $[0, 1] \times [0, 1]$ and contains its two diagonals \overline{AC} and \overline{BD} (Figure 2). We claim that each line segment I in V is parallel to \overline{AC} or \overline{BD} .

Figure 2. The diagonals of $[0, 1] \times [0, 1]$ are in the Vicsek snowflake.

Assume that $I \subseteq f_i(V)$ for some $\mathbf{i} \in \bigcup_{k=0}^{\infty} \{1, \ldots, 5\}^k$ and $I \not\subseteq f_{ii}(V)$ for all $i \in \{1, \ldots, 5\}$ with $f_{\{1, \ldots, 5\}^0}$ being the identity. Then $f_i^{-1}(I)$ is a line segment in V and it intersects at least two different $f_i([0, 1] \times [0, 1])$ s.

August–September 2016]

NOTES

717

Let *M* and *N* be the two endpoints of $f_i^{-1}(I)$. We claim that \overline{MN} lies on either \overline{AC} or \overline{BD} . We can reduce its proof into the following two cases.

Case 1. $M \in f_1(V)$ and $N \in f_2(V)$. Then $\overline{EF} \subseteq \overline{MN}$, which contradicts the fact that $\overline{EF} \cap V$ is the Cantor set and \overline{MN} is a line segment in V.

Case 2. $M \in f_1(V)$ and $N \in f_5(V)$. In this case, $E \in \overline{MN}$. By $f_5^{-1}(E) = A$, we can assume $\overline{EN} \subseteq f_{51^{*m}}(V)$ and $\overline{EN} \not\subseteq f_{51^{*(m+1)}}(V)$ for some nonnegative integer m, where 1^{*m} is the word by repeating 1 a total of m times. Then $f_{51^{*m}}^{-1}(\overline{EN})$ is a subset of V and it intersects both $f_1(V)$ and some $f_i(V)$ with $i \neq 1$, so it lies on \overline{AC} , giving $\overline{EN} \subseteq f_{51^{*m}}(\overline{AC}) \subseteq \overline{AC}$. Therefore, $\overline{MN} \subseteq \overline{AC}$, proving our claim.

The two diagonals of $\psi([0, 1] \times [0, 1])$ are in V; hence, they are parallel to \overline{AC} and \overline{BD} , respectively. Thus, all sides of $\psi([0, 1] \times [0, 1])$ are parallel to either \overline{AB} or \overline{CD} . Suppose that $\psi(V) \not\subseteq f_i(V)$ for all $i \in \{1, \dots, 5\}$. Then the four vertices of $\psi([0, 1] \times [0, 1])$ are in four different regions of the form $f_i([0, 1] \times [0, 1])$ with $i \neq$ 5. Therefore, $\psi(\overline{AB} \cap V)$ is a scaled copy of the Cantor set and contains a gap of length at least $\frac{1}{3}$, which is impossible as ψ is a contractive similitude.

The second example is a self-similar set for which substantial overlaps occur.

Example 2. The self-similar set W is generated by the IFS $\{g_1, g_2, g_3\}$ where

$$g_1\begin{pmatrix}x\\y\end{pmatrix} = \rho\begin{pmatrix}x\\y\end{pmatrix}, g_2\begin{pmatrix}x\\y\end{pmatrix} = \rho\begin{pmatrix}x\\y\end{pmatrix} = \rho\begin{pmatrix}x\\y\end{pmatrix} + \begin{pmatrix}\rho^2\\0\end{pmatrix}, g_3\begin{pmatrix}x\\y\end{pmatrix} = \rho^2\begin{pmatrix}x\\y\end{pmatrix} + \begin{pmatrix}0\\\rho\end{pmatrix}$$

with $\rho = \frac{\sqrt{5}-1}{2}$. Suppose that ψ is a contractive similation in \mathbb{R}^2 with $\psi(W) \subseteq W$. Then $\psi = g_i$ for some $\mathbf{i} \in \bigcup_{k=1}^{\infty} \{1, 2, 3\}^k$.

Proof. We point out that $g_{122} = g_{211}$, which is a complete overlap. Note that $\mathcal{I}_W = \{\text{identity}\}$. By the **Theorem**, we only need to show that $\psi(W) \subseteq g_i(W)$ for some $i \in \{1, 2, 3\}$. Figure 3 may help in following the proof.

Using (1), we can check that W is a subset of $\triangle OAB$ and contains all its three sides but no points of $(\triangle EFG)^{\circ}$, where $(\triangle EFG)^{\circ}$ is the interior of $\triangle EFG$ (Figure 3a).

We first prove that $\psi(\Delta OAB) \subseteq g_i(\Delta OAB)$ for some $i \in \{1, 2, 3\}$. Suppose otherwise. Let $\overline{P_1P_2} \subseteq W$ be one side of $\psi(\Delta OAB)$; there are two cases to consider.

Case 1. $P_1 \in \Delta BEF \setminus \{E, F\}, P_2 \in (\Delta EOI \setminus \{E\}) \cup (\Delta FHA \setminus \{F\}).$

Then $\overline{P_1P_2}$ lies on either \overline{BO} or \overline{BA} , say \overline{BO} since it cannot intersect $(\Delta EFG)^\circ$. Reasoning similarly, the third vertex of $\psi(\Delta OAB)$ lies on \overline{BA} . So P_1 equals B and $\Delta EFG \subseteq \psi(\Delta OAB)$, which contradicts the fact that ψ is a contractive similitude.

Case 2. $P_1 \in \Delta EOI \setminus \Delta GHI$, $P_2 \in \Delta FHA \setminus \Delta GHI$.

718

Recall that $(\Delta EFG)^{\circ}$ contains no points of W. So does $(g^k(\Delta EFG))^{\circ}$ by similarity, where $g = g_{12}$ or g_{21} , and g^k is the *k*th iteration of *g*.

Notice that $g^k(\Delta EFG)$ connect each other one by one. They are located along the line *FH* (or *EI*) and approach to the point *H* (or *I*) as $k \to \infty$. Thus, either $\overline{P_1P_2}$ or another side of $\psi(\Delta OAB)$ passes through Y_n for some *n* (Figure 3b gives the case Y_2), where

$$Y_n = \Big(\bigcup_{k=0}^n g_{12}^k(\Delta EFG)\Big)^\circ \cup \Big(\bigcup_{k=0}^n g_{21}^k(\Delta EFG)\Big)^\circ.$$

This is impossible since all three sides of $\psi(\Delta OAB)$ are in W.

Having known that $\psi(\triangle OAB) \subseteq g_i(\triangle OAB)$ for some $i \in \{1, 2, 3\}$, we will prove that $\psi(W) \subseteq g_i(W)$ by verifying $g_1(W) \cap \triangle GHI = g_2(W) \cap \triangle GHI$.

It follows from $g_{122} = g_{211}$ that $g_{21}^n \circ g_1 = g_1 \circ g_{22}^n$. Moreover, for each $n \in \mathbb{N}$, we can check that $g_{21}^n \circ g_3(O)$ lies in \overline{EI} , $g_{21}^n \circ g_{22}(O)$ equals I, and $g_{21}^n \circ g_{23}(O)$ lies over \overline{EI} . So

$$\begin{aligned} \Delta GHI \cap g_{21}^n(W) &= \Delta GHI \cap \left(g_1 \circ g_{22}^n(W) \cup g_{21}^n \circ g_2(W) \cup g_{21}^n \circ g_3(W) \right) \\ &\subseteq g_1(W) \cup \left(\Delta GHI \cap g_{21}^n \circ g_2(W) \right) \\ &= g_1(W) \cup \left(\Delta GHI \cap \left(g_{21}^{n+1}(W) \cup g_{21}^n \circ g_{22}(W) \cup g_{21}^n \circ g_{23}(W) \right) \right) \\ &\subseteq g_1(W) \cup \left(\Delta GHI \cap g_{21}^{n+1}(W) \right). \end{aligned}$$

Then

 $\Delta GHI \cap g_2(W) = \Delta GHI \cap g_{21}(W) \subseteq g_1(W) \cup (\Delta GHI \cap g_{21}^n(W)).$

Therefore, $\Delta GHI \cap g_2(W) \subseteq g_1(W)$ as $\bigcap_{n=1}^{\infty} g_{21}^n(W) = \{I\} \subseteq g_1(W)$. Using a similar argument yields $\Delta GHI \cap g_1(W) \subseteq g_2(W)$, which completes the proof.

All generating IFSs for the above examples can be iterated from their defining IFS. However, the famous *Koch curve*, which is a fractal invented by the Swedish mathematician Helge von Koch in 1904, is one of the exceptions.

Start with $E_0 = [0, 1]$. Let E_1 be the set consists of the four line segments obtained by replacing the middle third of E_0 by the other two sides of the equilateral triangle based on the removed segment. Inductively, we construct E_k by applying the same procedure to each line segments in E_{k-1} (Figure 4). Finally, we arrive at the Koch curve.

Figure 4. E_k with k = 0, 1, 2

Example 3. The Koch curve K is generated by the IFS $\{h_1, h_2\}$ where

$$h_1\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}\frac{x}{2} + \frac{\sqrt{3}}{6}y\\\frac{\sqrt{3}}{6}x - \frac{y}{2}\end{pmatrix} \text{ and } h_2\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}-\frac{x}{2} - \frac{\sqrt{3}}{6}y + 1\\\frac{\sqrt{3}}{6}x - \frac{y}{2}\end{pmatrix}.$$

Suppose that ψ is a contractive similated in \mathbb{R}^2 with $\psi(K) \subseteq K$. Then $\psi = h_i$ or $h_i \circ T$ for some $\mathbf{i} \in \bigcup_{k=1}^{\infty} \{1, 2, 3\}^k$, where

August–September 2016]

NOTES

719

$$h_3\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}\frac{x}{3} + \frac{1}{3}\\\frac{y}{3} + \frac{\sqrt{3}}{9}\end{pmatrix}$$
 and $T\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}1-x\\y\end{pmatrix}$.

Proof. Note that h_1 and h_2 map $\triangle ABC$ to $\triangle DBA$ and $\triangle ECA$, respectively (Figure 5). Owing to (1), we have $K \subseteq \triangle ABC$. By the **Theorem**, it remains to prove that $\psi(K) \subseteq h_i(K)$ for some $i \in \{1, 2, 3\}$ as $\mathcal{I}_K = \{\text{identity}, T\}$.

Figure 5. Possible positions of vertices of $\psi(\Delta ABC)$

Suppose that $\psi(K) \not\subseteq h_i(K)$ for $i \in \{1, 2\}$. Denote the three vertices of $\psi(\Delta ABC)$ by I, J and L. Without loss of generality, we can assume $I \in \Delta ABD \setminus \{A\}$ and $J \in \Delta AEC \setminus \{A\}$. Let H be the intersection point of \overline{IJ} and \overline{AE} . Let \overline{MN} be the line segment passing through H and parallel to \overline{BC} with $M \in \overline{AB}$ and $N \in \overline{AC}$.

Note that $K \cap \overline{AB}$ (also $K \cap \overline{AC}$ and $K \cap \overline{BC}$) is a similar copy of the triadic Cantor set C. So is $\psi(K) \cap \overline{IJ}$. Therefore, $|\overline{PH}| \leq \min\{|\overline{HJ}|, |\overline{PI}|\}$, which implies I = M and J = N. Otherwise, as we can see in Figure 5, $|\overline{HJ}| < |\overline{HN}| = |\overline{QH}| < |\overline{PH}|$, a contradiction!

Finally, we claim that L = A. Otherwise, either \overline{LM} or \overline{LN} is parallel to \overline{BC} by applying the same argument as above, which is impossible.

Now we get that $\psi(K \cap \overline{AB})$ is a subset of $K \cap \overline{AM}$ or $K \cap \overline{AN}$. We only consider the former case. A similar proof works for the latter case.

Notice that $K \cap \overline{AB} = \mathbb{C}/\sqrt{3}$. Letting $|\overline{AM}|/|\overline{AB}| = \rho$ yields $\rho \cdot (\mathbb{C}/\sqrt{3}) \subseteq \mathbb{C}/\sqrt{3}$ or, equivalently, $\rho \mathbb{C} \subseteq \mathbb{C}$. By the **Remark** in the introduction, we have $\rho = 3^{-n}$ for some positive integer *n*. Thus, $\psi(K) \subseteq h_3(K)$, which finishes our proof.

ACKNOWLEDGMENT. We thank the anonymous referee for careful reading of the manuscript and making many useful suggestions. The first author is supported by NSFC #11101148 and the Fundamental Research Funds for the Central Universities, ECUST #222201514321. The second author is supported by the NSFC #11271137 and STCSM #13dz2260400.

REFERENCES

- 1. M. F. Barnsley, L. P. Hurd, Fractal Image Compression, A K Peters, Wellesley, MA, 1993.
- 2. H. T. Croft, K. J. Falconer, R. K. Guy, Unsolved Problems in Geometry, Springer-Verlag, New York, 1991.
- A. Deliu, J. Geronimo, R. Shonkwiler, On the inverse fractal problem for two-dimensional attractors, *Proc. R. Soc. London, Ser. A* 355 (1997) 1017–1062.
- Q. R. Deng, K. S. Lau, On the equivalence of homogeneous iterated function systems, *Nonlinearity* 26 (2013) 2767–2775.
- D. J. Feng, Y. Wang, On the structure of generating iterated function systems of Cantor sets, *Adv. Math.* 222 (2009) 1964–1981.
- 6. N. Lu, Fractal Imaging, Academic Press, San Diego, CA, 1997.
- 7. M. Moran, The group of isometries of a self-similar set, J. Math. Anal. Appl. 392 (2012) 89-98.
- Y. Y. Yao, Generating iterated function systems of some planar self-similar sets, J. Math. Anal. Appl. 421 (2015), 938–949.

Department of Mathematics, East China University of Science and Technology, Shanghai 200237, P.R. China yaoyuanyuan@ecust.edu.cn

Department of Mathematics, Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, P.R. China wxli@math.ecnu.cn

NOTES