
 

 
Generating Iterated Function Systems for the Vicsek Snowflake and the Koch Curve
Author(s): Yuanyuan Yao and  Wenxia Li
Source: The American Mathematical Monthly, Vol. 123, No. 7 (August-September 2016), pp.
716-721
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/10.4169/amer.math.monthly.123.7.716
Accessed: 05-01-2017 13:13 UTC

 
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted

digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about

JSTOR, please contact support@jstor.org.

 

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

http://about.jstor.org/terms

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access
to The American Mathematical Monthly

This content downloaded from 202.120.14.45 on Thu, 05 Jan 2017 13:13:41 UTC
All use subject to http://about.jstor.org/terms



Generating Iterated Function Systems for the
Vicsek Snowflake and the Koch Curve

Yuanyuan Yao and Wenxia Li

Abstract. We determine all generating iterated function systems for certain self-similar sets
such as the Vicsek snowflake and the Koch curve.

1. INTRODUCTION. Our work is motivated by a basic problem in fractal geome-
try: How does one find all generating iterated function systems (IFSs) for a self-similar
set? Applications of IFS can be seen in reptiles [2] and image compression [1, 3, 6].

We call a nonempty compact set F ⊆ R
d a self-similar set if it is a finite union

of its self-similar copies; that is, there exists a family of contractive similitudes
F = {φi(�x) = ρiUi �x + �bi }N

i=1 (N is an integer no smaller than 2) such that
F = ⋃N

i=1 φi(F), where ρi ∈ (0, 1), Ui is an orthonormal d × d matrix, and �bi is
a translation vector. The family F is called a generating IFS for F . It is well-known
that F determines F uniquely, but the converse is not true.

Investigating all generating IFSs for a self-similar set was first done by Feng and
Wang in R [5]. However, in the higher-dimensional case, the situation is somewhat
different since the form of an orthonormal matrix is much more complicated. The
discussion is limited either to homogeneous IFSs (all ρiUi are the same) with the
strong separation condition [4] or to special kinds of planar self-similar sets [8].

In this note, we first give an easy-to-check theorem. We then use it to deal with all
generating IFSs for some self-similar sets that cannot be covered by the above works.

We denote by IE the collection of all isometries of a set E ⊆ R
d . Readers can refer

to [7] for more information about IE . By fi, we mean fi1 ◦ · · · ◦ fi� if i = i1 . . . i�
is a finite sequence in

⋃∞
k=1{1, . . . , N }k , which is the set of all finite words over

{1, . . . , N }. Then we have the following.

Theorem. Let E ⊆ R
d be the self-similar set generated by an IFS {φi (x)}N

i=1. Assume
that for each contractive similitude φ(x) with φ(E) ⊆ E, we have φ(E) ⊆ φi(E) for
some i ∈ {1, . . . , N }. Then every contractive similitude ψ satisfying ψ(E) ⊆ E can
be written as φi ◦ S for some i ∈ ⋃∞

k=1{1, . . . , N }k and S ∈ IE .

Remark. As an application, we investigate all generating IFSs for the triadic Cantor
set C generated by the IFS {φ1(x) = x/3, φ2(x) = (x + 2)/3}. Note that each con-
tractive similitude φ with φ(C) ⊆ C satisfies φ(C) ⊆ φi(C) for some i ∈ {1, 2}, and
IC = {x, 1 − x}. Then by the Theorem, every ψk(x) in a generating IFS {ψk}�k=1 for
C must be of the form φi(x) or φi(1 − x).

2. PROOF OF THEOREM AND SOME EXAMPLES.

Proof of Theorem. Suppose that ψ(E) ⊆ φi1(E) for some i1 ∈ {1, . . . , N }. Then
φ−1

i1
◦ ψ(E) ⊆ E , so either φ−1

i1
◦ ψ(E) = E or, by repeating the above process, φ−1

i2
◦
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φ−1
i1

◦ ψ(E) ⊆ E for some i2 ∈ {1, . . . , N }. We can obtain by induction that φ−1
i ◦

ψ(E) = E for some i ∈ ⋃∞
k=1{1, . . . , N }k , and hence, φ−1

i ◦ ψ ∈ IE .

Let E be the self-similar set generated by an IFS {φi }N
i=1. Assume that F is a com-

pact set satisfying φi(F) ⊆ F for all 1 ≤ i ≤ N . Then the following fact about self-
similar sets will be used in all our examples:

E =
∞⋂

k=1

⋃
i∈{1,...,N }k

φi(F) ⊆ F. (1)

The first example is Vicsek snowflake, a just-touching self-similar set.

Example 1. The Vicsek snowflake V (Figure 1) is generated by the IFS { fi }5
i=1, where
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Suppose that ψ is a contractive similitude in R
2 with ψ(V ) ⊆ V . Then ψ = fi ◦ S

for some i ∈ ⋃∞
k=1{1, . . . , 5}k and S ∈ IV .

Figure 1. The first three iterations of Vicsek snowflake

Proof. By the Theorem, it suffices to prove that ψ(V ) ⊆ fi(V ) for some i ∈
{1, . . . , 5}.

By (1), V is a subset of [0, 1] × [0, 1] and contains its two diagonals AC and BD
(Figure 2). We claim that each line segment I in V is parallel to AC or BD.

A B

CD

E F

f1 f 2

f 3f4

f5

Figure 2. The diagonals of [0, 1] × [0, 1] are in the Vicsek snowflake.

Assume that I ⊆ fi(V ) for some i ∈ ∪∞
k=0{1, . . . , 5}k and I 
⊆ fii (V ) for all i ∈

{1, . . . , 5} with f{1,...,5}0 being the identity. Then f −1
i (I ) is a line segment in V and it

intersects at least two different fi([0, 1] × [0, 1])s.
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Let M and N be the two endpoints of f −1
i (I ). We claim that MN lies on either AC

or BD. We can reduce its proof into the following two cases.
Case 1. M ∈ f1(V ) and N ∈ f2(V ). Then EF ⊆ MN, which contradicts the fact

that EF ∩ V is the Cantor set and MN is a line segment in V .
Case 2. M ∈ f1(V ) and N ∈ f5(V ). In this case, E ∈ MN. By f −1

5 (E) = A, we
can assume EN ⊆ f51∗m (V ) and EN 
⊆ f51∗(m+1) (V ) for some nonnegative integer m,
where 1∗m is the word by repeating 1 a total of m times. Then f −1

51∗m (EN) is a subset
of V and it intersects both f1(V ) and some fi (V ) with i 
= 1, so it lies on AC, giving
EN ⊆ f51∗m (AC) ⊆ AC. Therefore, MN ⊆ AC, proving our claim.

The two diagonals of ψ([0, 1] × [0, 1]) are in V ; hence, they are parallel to AC
and BD, respectively. Thus, all sides of ψ([0, 1] × [0, 1]) are parallel to either AB
or CD. Suppose that ψ(V ) 
⊆ fi (V ) for all i ∈ {1, . . . , 5}. Then the four vertices of
ψ([0, 1] × [0, 1]) are in four different regions of the form fi ([0, 1] × [0, 1]) with i 
=
5. Therefore,ψ(AB ∩ V ) is a scaled copy of the Cantor set and contains a gap of length
at least 1

3 , which is impossible as ψ is a contractive similitude.

The second example is a self-similar set for which substantial overlaps occur.

Example 2. The self-similar set W is generated by the IFS {g1, g2, g3} where

g1
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= ρ
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)

with ρ =
√

5−1
2 . Suppose that ψ is a contractive similitude in R

2 with ψ(W ) ⊆ W .
Then ψ = gi for some i ∈ ⋃∞

k=1{1, 2, 3}k .

O (0, 0) A (1, 0)

B (0, 1)

E F

G

H I

f1 f2

f3

O (0, 0) A (1, 0)

B (0,1)

E F

G

H I

Figure 3a. Figure 3b.

Proof. We point out that g122 = g211, which is a complete overlap. Note that
IW = {identity}. By the Theorem, we only need to show that ψ(W ) ⊆ gi (W ) for
some i ∈ {1, 2, 3}. Figure 3 may help in following the proof.

Using (1), we can check that W is a subset of �OAB and contains all its three sides
but no points of (�EFG)◦, where (�EFG)◦ is the interior of �EFG (Figure 3a).

We first prove that ψ(�O AB) ⊆ gi(�OAB) for some i ∈ {1, 2, 3}. Suppose other-
wise. Let P1 P2 ⊆ W be one side of ψ(�OAB); there are two cases to consider.

Case 1. P1 ∈ �BEF \ {E, F}, P2 ∈ (�EOI \ {E}) ∪ (�FHA \ {F}).
Then P1 P2 lies on either BO or BA, say BO since it cannot intersect (�EFG)◦.

Reasoning similarly, the third vertex of ψ(�OAB) lies on BA. So P1 equals B and
�EFG ⊆ ψ(�OAB), which contradicts the fact that ψ is a contractive similitude.

Case 2. P1 ∈ �EOI \�GHI, P2 ∈ �FHA \�GHI.
Recall that (�EFG)◦ contains no points of W . So does

(
gk(�EFG)

)◦
by similarity,

where g = g12 or g21, and gk is the kth iteration of g.
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Notice that gk(�EFG) connect each other one by one. They are located along the
line FH (or EI) and approach to the point H (or I ) as k → ∞. Thus, either P1 P2 or
another side of ψ(�OAB) passes through Yn for some n (Figure 3b gives the case Y2),
where

Yn = ( n⋃
k=0

gk
12(�EFG)

)◦ ∪ ( n⋃
k=0

gk
21(�EFG)

)◦
.

This is impossible since all three sides of ψ(�OAB) are in W .
Having known that ψ(�OAB) ⊆ gi (�OAB) for some i ∈ {1, 2, 3}, we will prove

that ψ(W ) ⊆ gi (W ) by verifying g1(W ) ∩�GHI = g2(W ) ∩�GHI.
It follows from g122 = g211 that gn

21 ◦ g1 = g1 ◦ gn
22. Moreover, for each n ∈ N, we

can check that gn
21 ◦ g3(O) lies in EI, gn

21 ◦ g22(O) equals I , and gn
21 ◦ g23(O) lies over

EI. So

�GHI ∩ gn
21(W ) = �GHI ∩ (g1 ◦ gn

22(W ) ∪ gn
21 ◦ g2(W ) ∪ gn

21 ◦ g3(W )
)

⊆ g1(W ) ∪ (�GHI ∩ gn
21 ◦ g2(W )

)
= g1(W ) ∪

(
�GHI ∩ (gn+1

21 (W ) ∪ gn
21 ◦ g22(W ) ∪ gn

21 ◦ g23(W )
))

⊆ g1(W ) ∪ (�GHI ∩ gn+1
21 (W )

)
.

Then
�GHI ∩ g2(W ) = �GHI ∩ g21(W ) ⊆ g1(W ) ∪ (�GHI ∩ gn

21(W )
)
.

Therefore, �GHI ∩ g2(W ) ⊆ g1(W ) as
⋂∞

n=1 gn
21(W ) = {I } ⊆ g1(W ). Using a

similar argument yields �GHI ∩ g1(W ) ⊆ g2(W ), which completes the proof.

All generating IFSs for the above examples can be iterated from their defining IFS.
However, the famous Koch curve, which is a fractal invented by the Swedish mathe-
matician Helge von Koch in 1904, is one of the exceptions.

Start with E0 = [0, 1]. Let E1 be the set consists of the four line segments obtained
by replacing the middle third of E0 by the other two sides of the equilateral triangle
based on the removed segment. Inductively, we construct Ek by applying the same
procedure to each line segments in Ek−1 (Figure 4). Finally, we arrive at the Koch
curve.

E0 E1 E2

Figure 4. Ek with k = 0, 1, 2

Example 3. The Koch curve K is generated by the IFS {h1, h2} where

h1

(
x
y

)
=
(

x
2 +

√
3

6 y√
3

6 x − y
2

)
and h2

(
x
y

)
=
(

− x
2 −

√
3

6 y + 1√
3

6 x − y
2

)
.

Suppose that ψ is a contractive similitude in R
2 with ψ(K ) ⊆ K . Then ψ = hi or

hi ◦ T for some i ∈ ⋃∞
k=1{1, 2, 3}k , where
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h3

(
x
y

)
=
( x

3 + 1
3

y
3 +

√
3

9

)
and T

(
x
y

)
=
(

1 − x
y

)
.

Proof. Note that h1 and h2 map �ABC to �DBA and �ECA, respectively (Fig-
ure 5). Owing to (1), we have K ⊆ �ABC. By the Theorem, it remains to prove that
ψ(K ) ⊆ hi (K ) for some i ∈ {1, 2, 3} as IK = {identity, T }.

A (1/2, √3/6)

B (0, 0) C (1, 0)D (1/3, 0) E (2/3, 0)
I

J
H

M N

P

Q

Figure 5. Possible positions of vertices of ψ(�ABC)

Suppose that ψ(K ) 
⊆ hi (K ) for i ∈ {1, 2}. Denote the three vertices of ψ(�ABC)
by I, J and L . Without loss of generality, we can assume I ∈ �ABD \ {A} and J ∈
�AEC \ {A}. Let H be the intersection point of IJ and AE. Let MN be the line segment
passing through H and parallel to BC with M ∈ AB and N ∈ AC.

Note that K ∩ AB (also K ∩ AC and K ∩ BC) is a similar copy of the triadic Cantor
set C. So is ψ(K ) ∩ IJ. Therefore, |PH| ≤ min{|HJ|, |PI|}, which implies I = M
and J = N . Otherwise, as we can see in Figure 5, |HJ| < |HN| = |QH| < |PH|, a
contradiction!

Finally, we claim that L = A. Otherwise, either LM or LN is parallel to BC by
applying the same argument as above, which is impossible.

Now we get that ψ(K ∩ AB) is a subset of K ∩ AM or K ∩ AN. We only consider
the former case. A similar proof works for the latter case.

Notice that K ∩ AB = C/
√

3. Letting |AM|/|AB| = ρ yields ρ · (C/√3
) ⊆ C/

√
3

or, equivalently, ρC ⊆ C. By the Remark in the introduction, we have ρ = 3−n for
some positive integer n. Thus, ψ(K ) ⊆ h3(K ), which finishes our proof.
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