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Random beta-transformations on fat Sierpinski gaskets

Karma Dajani, Wenxia Li, and Tingyu Zhang

Abstract. We consider the iterated function system (IFS)

f�q(�z) =
�z + �q

β
, �q ∈ {(0, 0), (1, 0), (0, 1)}.

As is well known, for β = 2 the attractor, Sβ , is a fractal called the Sierpiński
gasket (or sieve) and for β > 2 it is also a fractal. Our goal is to study random
β-transformations on the attractor for this IFS with 1 < β ≤ 3/2. In this case,
Sβ is a triangle. We show that all β-expansions of a point �z in Sβ can be

generated by a random map Kβ defined on {0, 1}N × {0, 1, 2}N × Sβ and Kβ

has a unique invariant measure of maximal entropy. Furthermore, we show
the existence of a Kβ-invariant probability measure of the form m1 ⊗ m2 ⊗
μβ , where m1,m2 are product measures on {0, 1}N, {0, 1, 2}N, respectively,
and μβ is absolutely continuous with respect to the two-dimensional Lebesgue
measure λ2.

1. Introduction

Let β > 1 and consider the iterated function system (IFS):

(1.1) f�q0(�z) =
�z + �q0

β
, f�q1(�z) =

�z + �q1
β

, f�q2(�z) =
�z + �q2

β
,

where the coordinates of the three points �q0, �q1, �q2 are (0, 0), (1, 0), (0, 1), respec-
tively. It is well known that there exists a unique nonempty compact set Sβ ⊂ R

2

such that Sβ = ∪2
i=0f�qi(Sβ); see [F] for further details. The attractor for the IFS,

Sβ, is a Sierpinski gasket. Denote the convex hull of Sβ by Δ which is a triangle
with vertices at (0, 0), ( 1

β−1 , 0) and (0, 1
β−1 ). For every point �z ∈ Sβ , there exists a

sequence (ai)
∞
i=1 ∈ {�q0, �q1, �q2}N such that

�z = lim
n→∞

fa1
◦ · · · ◦ fan

(�q0) =

∞∑
i=1

ai
βi

.

We call (ai)
∞
i=1 a coding of �z and

∑∞
i=1 aiβ

−i a representation of �z in base β, or
simple a β-expansion of �z.
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Let i ∈ {0, 1, 2}. For β > 2, the images f�qi(Δ) are disjoint. In this case the IFS
{f�qi} satisfies the strong separation condition and each point in Sβ has a unique
coding. For β = 2, the sets f�qi(Δ) overlap only at the vertices. Therefore only
countably many points in Sβ have two codings, and all other points have a unique
coding. When β ∈ (1, 2), we call Sβ a fat Sierpinski gasket and we distinguish
two cases. For 1 < β ≤ 3/2, we have a non-empty double and triple overlaps and
Sβ = Δ, see Figure 1. Furthermore, Lebesgue almost every point in Sβ has a
continuum of codings (see [S1, Theorem 3.5]). For 3/2 < β < 2, there are holes
in Sβ as well as overlaps, which makes its structure more complex. In [BMS],
Broomhead et al. described two special types of structures: those in which holes
are radially distributed and those that are totally self-similar. Total self-similarity
in our case implies f�qi(Sβ) = f�qi(Δ) ∩ Sβ . For more results on the Hausdorff
dimension of the attractors, see [KL,HP,SS,JP,H].

In this article, we focus on the case 1 < β ≤ 3/2. In order to capture all
possible β-expansions and to describe their statistical properties, we take an ergodic
view. We start by defining a map Kβ whose iterations generate all possible β-
expansions of points in Sβ. Dynamical properties of this map give information
on the asymptotic properties of these expansions. The definition of our map is
motivated from an analogous study of random β-expansions for points on an interval
with digits in {0, 1, · · · , �β	}, see [DK2,DV1,DV2]. Our main aim is to generalise
their results, in particular exhibit natural invariant ergodic measures for the random
β-transformation Kβ .

The rest of the article is organized as follows. In Section 2, we give the definition
of the random transformation Kβ on {0, 1}N × {0, 1, 2}N × Sβ and prove basic
properties. In Section 3, we prove that Kβ has a unique invariant measure of
maximal entropy. In Section 4, we give a position-dependent random map R on Sβ.
With two skew product transformations, we establish a connection between R and
Kβ, and finally prove that Kβ has an invariant measure of the form m1 ⊗m2 ⊗μβ ,
where m1 is the product measure on {0, 1}N with weights {p, 1 − p}, m2 is the
product measure on {0, 1, 2}N with weights {s, t, 1 − s − t}, and μβ is R-invariant
and absolutely continuous with respect to λ2, the normalized Lebesgue measure
on Sβ .

2. Random beta-transformations

Given 1 < β ≤ 3/2, recall that the fat Sierpinski gasket Sβ is the self-similar set
in R

2 generated by the IFS (1.1). For every point �z ∈ Sβ , there exists a sequence
(ai)

∞
i=1 ∈ {�q0, �q1, �q2}N such that �z =

∑∞
i=1 aiβ

−i. Notice that Sβ and its convex
hull Δ are identical, both being an isosceles right triangle. We denote the Borel
σ-algebra on Sβ by S. We also consider the following ordering of points in the
plane. We write (x1, y1) < (x2, y2) if x1 + y1 < x2 + y2, or x1 + y1 = x2 + y2 and
y1 < y2. Notice that �q0 < �q1 < �q2.
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Figure 1. Sβ for 1 < β ≤ 3
2

Divide Sβ into the following sets according to the overlapping structure of
f�qi(Sβ) (see Figure 1):

(2.1)

E0 = [0,
1

β
)× [0,

1

β
),

E1 = {(x, y) : 0 ≤ y <
1

β
,

1

β(β − 1)
< x+ y ≤ 1

β − 1
},

E2 = {(x, y) : 0 ≤ x <
1

β
,

1

β(β − 1)
< x+ y ≤ 1

β − 1
},

C01 = {(x, y) : x ≥ 1

β
, 0 ≤ y <

1

β
, x+ y ≤ 1

β(β − 1)
},

C12 = {(x, y) : x ≥ 1

β
, y ≥ 1

β
,

1

β(β − 1)
< x+ y ≤ 1

β − 1
},

C02 = {(x, y) : 0 ≤ x <
1

β
, y ≥ 1

β
, x+ y ≤ 1

β(β − 1)
},

C012 = {(x, y) : x ≥ 1

β
, y ≥ 1

β
, x+ y ≤ 1

β(β − 1)
}.

Notice that C012 = {( 23 ,
2
3 )} is a single point set if β = 3/2. These regions specify

the digits that our random map assigns to points in Sβ. For points in Ei the digit
assigned is qi, while in the double overlapping region Cij we have two choices, qi
or qj , and in the triple overlapping C012 we can choose q0, q1 or q2. The choices
will be dictated by either a double-sided coin or a triple-sided coin. To incorporate
these choices in our definition of the random map Kβ , we introduce two shift spaces
representing the required coin tosses.

Let Ω = {0, 1}N with the product σ-algebra A and Υ = {0, 1, 2}N with the
product σ-algebra B. Define metrics d and ρ on Ω and Υ, respectively, by

d((ωi), (ω
′
i)) = 2− inf{k:ωk �=ω′

k} and ρ((υi), (υ
′
i)) = 2− inf{k:υk �=υ′

k}.

Let σ : Ω → Ω and σ′ : Υ → Υ be the left shifts.
Throughout the article, the lexicographical ordering on Ω, Υ and {�q0, �q1, �q2}N

are all denoted by ≺ and �. More precisely, for two sequences (ci), (di) we write
(ci) ≺ (di) if c1 < d1, or there exists k ≥ 2 such that ci = di for all 1 ≤ i < k and
ck < dk. Similarly, we write (ci) � (di) if (ci) ≺ (di) or (ci) = (di).
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Let C=C01 ∪C12 ∪C02 and E=∪2
i=0Ei. Define Kβ : Ω×Υ×Sβ→Ω×Υ×Sβ by

Kβ(ω, υ, �z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(ω, υ, β�z − �qi), if �z ∈ Ei, i = 0, 1, 2,

(σω, υ, β�z − �qi), if ω1 = 0 and �z ∈ Cij , ij ∈ {01, 12, 02},
(σω, υ, β�z − �qj), if ω1 = 1 and �z ∈ Cij , ij ∈ {01, 12, 02},
(ω, σ′υ, β�z − �qi), if �z ∈ C012 and υ1 = i ∈ {0, 1, 2}.

The digits are given by

d1 = d1(ω, υ, �z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
�qi, if �z ∈ Ei, i = 0, 1, 2,

or (ω, υ, �z) ∈ Ω× {υ1 = i} × C012,

or (ω, υ, �z) ∈ {ω1 = 0} ×Υ× Cij , ij ∈ {01, 12, 02},
�qj , if (ω, υ, �z) ∈ {ω1 = 1} ×Υ× Cij , ij ∈ {01, 12, 02}.

Then

Kβ(ω, υ, �z) =

⎧⎪⎨
⎪⎩
(ω, υ, β�z − d1), if �z ∈ E,

(σω, υ, β�z − d1), if �z ∈ C,

(ω, σ′υ, β�z − d1), if �z ∈ C012.

Set dn = dn(ω, υ, �z) = d1(K
n−1
β (ω, υ, �z)), and π3 : Ω × Υ × Sβ → Sβ be the

canonical projection onto the third coordinate. Then

π3(K
n
β (ω, υ, �z)) = βn�z − βn−1d1 − · · · − βdn−1 − dn,

and rewriting yields

�z =
d1
β

+
d2
β2

+ · · ·+ dn
βn

+
π3(K

n
β (ω, υ, �z))

βn
.

Since π3(K
n
β (ω, υ, �z)) ∈ Sβ and Sβ is a bounded set in R

2, it follows that

‖�z −
n∑

i=1

di
βi

‖1 =
‖π3(K

n
β (ω, υ, �z))‖1
βn

→ 0,

where ‖ · ‖1 denotes the L1 norm, i.e., the sum of the absolute values of the vector
elements. This shows that for all ω ∈ Ω , υ ∈ Υ and for all �z ∈ Sβ one has

�z =

∞∑
i=1

di
βi

=

∞∑
i=1

di(ω, υ, �z)

βi
.

For each point �z ∈ Sβ , consider the set

D�z = {(d1(ω, υ, �z), d2(ω, υ, �z), . . .) : ω ∈ Ω, υ ∈ Υ}.
Theorem 2.1 shows how the lexicographical ordering on Ω and Υ affect the ordering
of the elements in D�z.

Theorem 2.1. Suppose ω, ω′ ∈ Ω, υ, υ′ ∈ Υ are such that ω ≺ ω′ and υ ≺ υ′.
Then for �z ∈ Sβ,

(d1(ω, υ, �z), d2(ω, υ, �z), . . .) � (d1(ω
′, υ′, �z), d2(ω

′, υ′, �z), . . .).

Proof. Let m := inf{i : ωi < ω′
i}, n := inf{i : υi < υ′

i}. Then we have
ωm < ω′

m and υn < υ′
n. Denote by ti the time of the ith visit to the region

Ω×Υ×C of the orbit of (ω, υ, �z) under Kβ. Denote by sj the time of the jth visit
to the region Ω × Υ × C012 of the orbit of (ω, υ, �z) under Kβ . One can see that
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Kti
β (ω, υ, �z) hits Ω×Υ×C for the ith time and K

sj
β (ω, υ, �z) hits Ω×Υ×C012 for

the jth time.
Let l = min{tm, sn}. Then π3(K

i
β(ω, υ, �z)) = π3(K

i
β(ω

′, υ′, �z)) for i = 0, . . . , l.

It follows that di(ω, υ, �z) = di(ω
′, υ′, �z) for i = 0, . . . , l.

If l = ∞, then di(ω, υ, �z) = di(ω
′, υ′, �z) for all i. If l < +∞, then Kl

β(ω, υ, �z) =

Kl
β(ω

′, υ′, �z) hits Ω × Υ × C for the mth time or Ω × Υ × C012 for the nth time.

Since ωm < ω′
m and υn < υ′

n, then

dl+1(ω, υ, �z) = d1(K
l
β(ω, υ, �z)) < d1(K

l
β(ω

′, υ′, �z)) = dl+1(ω
′, υ′, �z). �

Now we show that any representation of �z can be generated from the map Kβ

by choosing appropriate ω ∈ Ω and υ ∈ Υ. We need the following lemma.

Lemma 2.2. Let β ∈ (1, 3/2]. Let (x, y) ∈ Sβ and (x, y) =
∑∞

i=1 aiβ
−i with

ai ∈ {�q0, �q1, �q2} be a representation of (x, y) in base β. One has,

(i) If (x, y) ∈ Ei for some i ∈ {0, 1, 2}, then a1 = �qi;
(ii) If (x, y) ∈ Cij for some ij ∈ {01, 12, 02}, then a1 ∈ {�qi, �qj};
(iii) If (x, y) ∈ C012, then a1 ∈ {�q0, �q1, �q2}.

Proof.

(i) Suppose a1 �= �q0. From a1 ∈ {�q1, �q2} and (x, y) =
∑∞

i=1 aiβ
−i we have

x ≥ 1

β
or y ≥ 1

β
.

Then (x, y) /∈ E0.
Suppose a1 �= �q1. If a1 = �q0, then

x+ y =
∞∑
i=2

‖ ai ‖1
βi

≤ 1

β(β − 1)
.

If a1 = �q2, then y ≥ 1
β . In both cases, (x, y) /∈ E1.

Suppose a1 �= �q2. By a similar proof we have (x, y) /∈ E2.
(ii) If a1 = �q2, then y ≥ 1

β , which implies (x, y) /∈ C01. If a1 = �q0, then

x+ y ≤ 1
β(β−1) , which implies (x, y) /∈ C12. If a1 = �q1, then x ≥ 1

β , which

implies (x, y) /∈ C02.
(iii) holds trivially. �

Using the above lemma and a construction similar to the one used in [DV1,
Theorem 2], we have the following theorem.

Theorem 2.3. For β ∈ (1, 3/2], let �z ∈ Sβ and �z =
∑∞

i=1 aiβ
−i with ai ∈

{�q0, �q1, �q2} be a representation of �z in base β. Then there exists an ω ∈ Ω and an
υ ∈ Υ such that ai = di(ω, υ, �z).

3. Unique invariant measure of maximal entropy for random
beta-transformations

Equip Υ with the uniform product measure P and recall that σ′ is the left shift
on Υ. On the set Ω×Υ×Sβ we consider the product σ-algebra A× B × S. Define
the function ρ1 : Ω×Υ× Sβ → {�q0, �q1, �q2}N by

ρ1(ω, υ, �z) = (d1(ω, υ, �z), d2(ω, υ, �z), . . .).
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Define the function ρ2 : {�q0, �q1, �q2}N → Υ by

ρ2(�qb1 , �qb2 , �qb3 , . . .) = (b1, b2, b3, . . .).

Denote by ϕ = ρ2◦ρ1 which is a function from Ω×Υ×Sβ to Υ. Then ϕ◦Kβ = σ′◦ϕ,
and ϕ is surjective from Theorem 2.3.

It is easily seen that ϕ is measurable. In fact, the inverse image of the cylinder
set with the first digit fixed is measurable in Ω×Υ× Sβ :

ϕ−1({(b1, b2, . . .) ∈ Υ : b1 = 0})
= (Ω×Υ× E0) ∪ ({ω ∈ Ω : ω1 = 0} ×Υ× (C01 ∪ C02))

∪ (Ω× {υ ∈ Υ : υ1 = 0} × C012),

ϕ−1({(b1, b2, . . .) ∈ Υ : b1 = 1})
= (Ω×Υ× E1) ∪ ({ω ∈ Ω : ω1 = 1} ×Υ× C01)

∪ ({ω ∈ Ω : ω1 = 0} ×Υ× C12) ∪ (Ω× {υ ∈ Υ : υ1 = 1} × C012),

ϕ−1({(b1, b2, . . .) ∈ Υ : b1 = 2})
= (Ω×Υ× E2) ∪ ({ω ∈ Ω : ω1 = 1} ×Υ× (C02 ∪ C12))

∪ (Ω× {υ ∈ Υ : υ1 = 2} × C012).

To show that ϕ is an isomorphism, let

Z1 = {(ω, υ, �z) ∈ Ω×Υ× Sβ : Kn
β (ω, υ, �z) ∈ Ω×Υ× C infinitely often},

Z2 = {(ω, υ, �z) ∈ Ω×Υ× Sβ : Kn
β (ω, υ, �z) ∈ Ω×Υ× C012 infinitely often},

D1 = {(b1, b2, . . .) ∈ Υ :

∞∑
i=1

�qbj+i−1

βi
∈ C for infinitely many j},

D2 = {(b1, b2, . . .) ∈ Υ :

∞∑
i=1

�qbj+i−1

βi
∈ C012 for infinitely many j}.

Notice that

Z1 = ∩∞
n=1 ∪∞

m=n K−m
β (Ω×Υ× C)

and

Z2 = ∩∞
n=1 ∪∞

m=n K−m
β (Ω×Υ× C012),

which imply that Z1 and Z2 are Borel sets in Ω×Υ× Sβ . Let Z = Z1 ∩ Z2, D =

D1∩D2, then we have K−1
β (Z) = Z, (σ′)−1(D) = D and ϕ(Z) = D. Let ϕ′ = ϕ|Z .

Lemma 3.1. The map ϕ′ : Z → D is a bimeasurable bijection.

Proof. For any sequence (b1, b2, . . .) ∈ D, we can obtain a point

�z =

∞∑
i=1

�qbiβ
−i.

To determine ω and υ, we could define

r1 = min{j ≥ 1 :

∞∑
i=1

�qbj+i−1

βi
∈ C}, rk = min{j > rk−1 :

∞∑
i=1

�qbj+i−1

βi
∈ C},

s1 = min{j ≥ 1 :

∞∑
i=1

�qbj+i−1

βi
∈ C012}, sk = min{j > sk−1 :

∞∑
i=1

�qbj+i−1

βi
∈ C012}.
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• If
∑∞

i=1 �qbrk+i−1
β−i ∈ Cij , ij ∈ {01, 12, 02}, then brk ∈ {i, j} by Lemma 2.2.

• If brk = i, we let ωk = 0.
• If brk = j, we let ωk = 1.

• If
∑∞

i=1 �qbsk+i−1
β−i ∈ C012, then bsk ∈ {0, 1, 2} by Lemma 2.2. If bsk = i, we let

υk = i, i ∈ {0, 1, 2}.
Notice that for any N > 0, there exsit r, s > N such that

∞∑
i=1

�qbr+i−1
β−i ∈ C and

∞∑
i=1

�qbs+i−1
β−i ∈ C012,

which implies that Kn
β (ω, υ, �z) hits both Ω×Υ×C and Ω×Υ×C012 infinitely often.

Then the infinite sequences ω = (ω1, ω2, ω3, . . .) ∈ Ω and υ = (υ1, υ2, υ3, . . .) ∈ Υ
can be uniquely determined. Therefore, we can define the inverse of ϕ′. Let (ϕ′)−1 :
D → Z be

(ϕ′)−1((b1, b2, . . .)) = (ω, υ,

∞∑
i=1

�qbi
βi

).

If (ω, υ, �z) = (ω′, υ′, �z′) then ϕ′(ω, υ, �z) = ϕ′(ω′, υ′, �z′). Since Z = Z1 ∩ Z2 is a
Borel set in Ω×Υ×Sβ , then we have that (ϕ′)−1 is measurable (see [S2, Theorem
4.5.4]). Hence ϕ′ is a bimeasurable bijection. �

Lemma 3.2. If 1 < β < 3/2, then P(D) = 1.

Proof. Let us first prove P(D2) = 1. Let n ≥ 1 and denote a cylinder set in
Υ by

[υ1, υ2, . . . , υn] = {(b1, b2, . . .) ∈ Υ : bi = υi, i = 1, . . . , n}.
Let

Sβ,υ1,υ2,...,υn
= {�z =

∞∑
i=1

�qbi
βi

: (b1, b2, . . .) ∈ [υ1, υ2, . . . , υn]}.

Notice that Sβ,υ1,υ2,...,υn
is a right triangle with

∑n
i=1

�qbi
βi as its right-angled vertex

and a maximum diameter of
√
2

βn(β−1) when 1 < β < 3
2 . Since limn→∞

√
2

βn(β−1) = 0

and C012 has positive Lebesgue measure, then we can find a cylinder set
[c1, c2, . . . , cN ] such that Sβ,c1,c2,...,cN ⊂ C012.

Let

D′ = {(b1, b2, . . .) ∈ Υ : bjbj+1 . . . bj+N−1 = c1c2 . . . cN for infinitely many j}

then D′ ⊂ D2.
Now we show that P(D′) = 1. Notice that D′ = ∩∞

n=1 ∪∞
m=n D̃m, where

D̃m = {(b1, b2, . . .) ∈ Υ : bmbm+1 . . . bm+N−1 = c1c2 . . . cN}. Let Bn = ∪∞
m=nD̃m.

If (b1, b2, . . .) ∈ Υ \ Bn, then we have that for any j ≥ n, bjbj+1 . . . bj+N−1 �=
c1c2 . . . cN . Clearly,

Υ \Bn ⊆ B′ := {(b1, b2, . . .) : bn+kN . . . bn+(k+1)N−1 �= c1c2 . . . cN , k = 0, 1, 2, . . .}.

Since P(Υ \ Bn) ≤ P(B′) = limk→∞(1 − 1/3N )k = 0, then P(Bn) = 1. It follows
from D′ = ∩∞

n=1Bn and B1 ⊇ B2 ⊇ · · · that P(D′) = limn→∞ Bn = 1. Then we
get P(D2) = 1.
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To prove that P(D1) = 1, we can use a similar approach. Here we construct a
specific cylinder. Define

�zl = (xl, yl) =
�q1
β

+
�q0
β2

+ · · ·+ �q0
βl

+
�qb1
βl+1

+
�qb2
βl+2

+ · · · .

Then we have xl ≥ 1
β , and

0 ≤ yl ≤
∞∑
i=1

1

βl+i
=

1

βl(β − 1)
,

1

β
≤ xl + yl ≤

1

β
+

∞∑
i=1

1

βl+i
=

1

β
+

1

βl(β − 1)
.

Since liml→∞
1

βl(β−1)
= 0, then there exists L > 0 such that for any l ≥ L,

0 ≤ yl <
1

β
, xl + yl ≤

1

β(β − 1)
.

It follows that (xl, yl) ∈ C01 for any l ≥ L. Let
(3.1)
D′′ = {(b1, b2, . . .) ∈ Υ : bjbj+1 . . . bj+L−1 = 1 00 . . . 0︸ ︷︷ ︸

L−1 times

for infinitely many j},

then D′′ ⊂ D1. Since P(D′′) = 1, we have P(D1) = 1. Therefore, P(D) = 1. �

Theorem 3.3 can be obtained from Lemmas 3.1 and 3.2.

Theorem 3.3. Let β ∈ (1, 3/2] and set νβ(A) = P(ϕ(Z ∩ A)). The dynamical
systems (Ω×Υ× Sβ ,A× B × S, νβ,Kβ) and (Υ,B,P, σ′) are isomorphic.

Remark 3.4.

(i) Notice that Lemma 3.2 and Theorem 3.3 remain true if one replaces P by
any other non-uniform product measure on Υ giving a positive weight to
each symbol.

(ii) Since P is the unique measure of maximal entropy on Υ, the above theorem
implies that any other Kβ-invariant measure with support Z has entropy
strictly less than log 3. We now investigate the entropy of Kβ-invariant
measure μ for which μ(Zc) > 0.

Divide Zc into three Borel sets as follows:

Zc = (Z1 ∩ Z2)
c

= (Zc
1 \ Zc

2) ∪ (Zc
2 \ Zc

1) ∪ (Zc
1 ∩ Zc

2)

= (Z2 \ Z1) ∪ (Z1 \ Z2) ∪ (Zc
1 ∩ Zc

2)

:= Z3 ∪ Z4 ∪ Z5,
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where

Z3 =Z2 \ Z1

={(ω, υ, �z) ∈ Ω×Υ× Sβ : Kn
β (ω, υ, �z) ∈ Ω×Υ× C for finitely many n

and Kn
β (ω, υ, �z) ∈ Ω×Υ× C012 infinitely often},

Z4 =Z1 \ Z2

={(ω, υ, �z) ∈ Ω×Υ× Sβ : Kn
β (ω, υ, �z) ∈ Ω×Υ× C012 for finitely many n,

and Kn
β (ω, υ, �z) ∈ Ω×Υ× C infinitely often},

Z5 =Zc
1 ∩ Zc

2

={(ω, υ, �z) ∈ Ω×Υ× Sβ : Kn
β (ω, υ, �z) ∈ Ω×Υ× C for finitely many n,

and Kn
β (ω, υ, �z) ∈ Ω×Υ× C012 for finitely many n}.

We first prove Lemma 3.5.

Lemma 3.5. Let β ∈ (1, 3/2). Let μ3 be a Kβ-invariant measure for which
μ3(Z3) = 1. Then hμ3

(Kβ) < log 3. Similarly, let μ4 and μ5 be Kβ-invariant
measures for which μ4(Z4) = μ5(Z5) = 1. Then hμ4

(Kβ), hμ5
(Kβ) < log 3 also

holds.

Proof. Let

H3 = {�z =
∞∑
i=1

�qbi
βi

∈ Sβ :
∞∑
i=1

�qbj+i−1

βi
belongs to C012 for infinitely many j,

and never belongs to C}.

Then Ω×Υ×H3 ⊆ K−1
β (Ω×Υ×H3) and ∪∞

i=0K
−i
β (Ω×Υ×H3) = Z3. It follows

that μ3(Z3) = limi→∞ μ3(K
−i
β (Ω×Υ×H3)) = 1. Since μ3 is Kβ-invariant, then

μ3(Ω×Υ×H3) = μ3(K
−1
β (Ω×Υ×H3)) = μ3(K

−2
β (Ω×Υ×H3)) = · · · = 1.

Thus it is enough to study the entropy with respect to μ3 of the map Kβ restricted
to Ω×Υ×H3. Let π1, π2, π3 be the canonical projection onto the three coordinates
respectively. Notice that the action of the transformation Kβ on the first coordinate
is an identity, which implies thatKβ is essentially a product transformation IΩ×K ′

β ,

where K ′
β = (π2 ◦Kβ) × (π3 ◦Kβ) on Υ ×H3 and IΩ is the identity on Ω. Since

(υ, �z) ∈ Υ× Sβ and ω ∈ Ω are independent, and hμ(IΩ) = 0 for any measure μ on
(Ω,A), we see that hμ3

(Kβ) = hμ′
3
(K ′

β), where μ′
3(B × H) = μ3(Ω × B × H) for

B ∈ B, H ∈ (H3 ∩ S).
Let

D3 = {(b1, b2, . . .) ∈ Υ :
∞∑
i=1

�qbj+i−1

βi
belongs to C012 for infinitely many j,

and never belongs to C}.

Define a map φ from (Υ×H3,B× (H3 ∩S), μ′
3,K

′
β) to (D3, D3 ∩B, μ′

3 ◦φ−1, σ′) as

φ(υ, �z) = ρ2(ρ1(0
∞, υ, �z)).

Since �z ∈ H3, then φ is well defined and bijective. φ is measurable and the inverse
is also measurable (see [S2, Theorem 4.5.4]). Finally, φ preserves the measure and



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

24 KARMA DAJANI, WENXIA LI, AND TINGYU ZHANG

φ ◦K ′
β = σ′ ◦ φ. Then φ is an isomorphism and it follows that

hμ3
(Kβ) = hμ′

3
(K ′

β) = hμ′
3◦φ−1(σ′) ≤ hP(σ

′) = log 3.

Since P is the unique measure of maximal entropy onD3, to show hμ3
(Kβ) < log 3, it

is enough to prove that μ′
3◦φ−1 �= P. This is done by contradiction. If μ′

3◦φ−1 = P,
then

P(D3) = μ′
3(Υ×H3) = μ3(Ω×Υ×H3) = 1.

Since D3 ⊂ (D′′)c, where D′′ is defined as in (3.1), then P((D′′)c) = 1, which is a
contradiction to P(D′′) = 1. Therefore, hμ3

(Kβ) < log 3. Let

H4 = {�z =

∞∑
i=1

�qbi
βi

∈ Sβ :

∞∑
i=1

�qbj+i−1

βi
belongs to C for infinitely many j,

and never belongs to C012},

H5 = {�z =
∞∑
i=1

�qbi
βi

∈ Sβ :
∞∑
i=1

�qbj+i−1

βi
never belongs to C

and never belongs to C012},
= {�z ∈ Sβ : �z has a unique β-expansion}.

Then it follows that

μ4(Ω×Υ×H4) = μ5(Ω×Υ×H5) = 1.

We can also obtain that hμ4
(Kβ), hμ5

(Kβ) < log 3 using the similar method. �

From Lemma 3.5 we can obtain the upper bound of the entropy of Kβ-invariant
measure for which Zc has positive measure.

Lemma 3.6. Let β ∈ (1, 3/2]. Let μ be a Kβ-invariant measure for which
μ(Zc) > 0. Then hμ(Kβ) < log 3.

Proof. Notice that Z,Z3, Z4 and Z5 are pairwise disjoint and the union is
Ω×Υ×Sβ. Since Z,Z3, Z4 and Z5 are Kβ-invariant, then there exist Kβ-invariant
probability measures μ12, μ3, μ4 and μ5 concentrated on Z,Z3, Z4 and Z5, respec-
tively, such that

μ = (1− α3 − α4 − α5)μ12 + α3μ3 + α4μ4 + α5μ5,

where 0 ≤ α3, α4, α5 ≤ 1 and 0 < α3 + α4 + α5 ≤ 1. Then

hμ(Kβ) = (1− α3 − α4 − α5)hμ12
(Kβ) + α3hμ3

(Kβ) + α4hμ4
(Kβ) + α5hμ5

(Kβ).

Since hμ12
(Kβ) ≤ log 3 by Remark 3.4 and hμ3

(Kβ), hμ4
(Kβ), hμ5

(Kβ) < log 3 by
Lemma 3.5, then the result follows. �

Now we obtain the main result in this section.

Theorem 3.7. Let β ∈ (1, 3/2). The measure νβ(A) = P(ϕ(Z ∩ A)) is the
unique Kβ-invariant measure of maximal entropy.

Remark 3.8. The measure νβ is not self-similar, but the projection in the
third coordinate is a self-similar measure defined on Sβ . To be more precise, define
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h : Υ → Sβ by h(b1, b2, . . .) =
∑∞

i=1

�qbi
βi

and consider the commuting diagram

Ω×Υ× Sβ
π2−→ Sβ

↘ ϕ

�⏐⏐h

Υ,

Then, νβ ◦ π−1
2 satisfies νβ ◦ π−1

2 = 1
3

∑2
i=0 νβ ◦ f−1

i .

4. An absolutely continuous invariant measure for random
beta-transformations

We start by recalling that for β = 3/2, the region C012 = {( 23 ,
2
3 )} is a point.

As a result the analysis for this case is slightly different from the one conducted for
a general β ∈ (1, 3/2). In this section, we concentrate on the case β ∈ (1, 3/2) and
in Remark 4.9, we give a brief description of the case β = 3/2.

Endow Ω = {0, 1}N with the product measure m1 giving the symbol 0 proba-
bility p and the symbol 1 probability 1 − p, and Υ = {0, 1, 2}N with the product
measure m2 giving the symbol 0 probability s, the symbol 1 probability t and the
symbol 2 probability 1 − s − t. Consider the measure space (Sβ,S, λ2), where λ2

is the normalized Lebesgue measure. In this section we will prove that Kβ has an
invariant measure of the form m1 ⊗ m2 ⊗ μβ , where μβ is absolutely continuous
with respect to λ2. We will show the result by several steps.

Step 1. A position-dependent random transformation R.

Bahsoun and Góra [BG] gave a sufficient condition for the existence of an
absolutely continuous invariant measure for a random map with position-dependent
probabilities on a bounded domain of RN . We take some of their results a little
further.

For k = 1, . . . ,K, let τk : Sβ → Sβ be piecewise one-to-one and C2, non-
singular transformations on a common partition P of Sβ : P = {S1, . . . , Sq} and
τk,i = τk|Si

, i = 1, . . . , q. Let pk : Sβ → [0, 1] be piecewise C1 functions such

that
∑K

k=1 pk = 1. Denote by R = {τ1, . . . , τK ; p1(�z), . . . , pK(�z)} the position-
dependent random map, i.e., R(�z) = τk(�z) with probability pk(�z). Define the
transition function for R as follows:

P(�z,A) =
K∑

k=1

pk(�z)�A(τk(�z)),
where A is any measurable set and �A denotes the indicator function of the set A.

The iteration of R is denoted by Rn := {τk1k2···kn
; pk1k2···kn

}, k1k2 · · · kn ∈
{1, 2, . . . ,K}n, where τk1k2···kn

(�z) = τkn
◦ τkn−1

◦ · · · ◦ τk1
(�z) and

pk1k2···kn
(�z) = pkn

(τkn−1
◦ · · · ◦ τk1

(�z)) · pkn−1
(τkn−2

◦ · · · ◦ τk1
(�z)) · · · pk1

(�z).

The transition function P induces an operator P∗ on the set of probability measures
on (Sβ,S) defined by

P∗μ(A) =

∫
P(�z,A)dμ(�z) =

K∑
k=1

∫
τ−1
k (A)

pk(�z)dμ(�z) =

K∑
k=1

q∑
i=1

∫
τ−1
k,i (A)

pk(�z)dμ(�z).

We say that the measure μ is R-invariant iff P∗μ = μ.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

26 KARMA DAJANI, WENXIA LI, AND TINGYU ZHANG

If μ has density f with respect to λ2, then P∗μ also has a density which we
denote by PRf , i.e.,∫

A

PRf(�z)dλ2(�z) =

K∑
k=1

q∑
i=1

∫
τ−1
k,i (A)

pk(�z)f(�z)dλ2(�z).

We call PR the Perron–Frobenius operator of the random map R and it has very
useful properties[BG]:

(i) PR is linear;
(ii) PR is nonnegative;
(iii) PRf = f ⇐⇒ μ = f · λ2 is R-invariant;
(iv) ‖PRf‖1 ≤ ‖f‖1, where ‖ · ‖1 denotes the L1 norm;
(v) PR◦T = PR ◦ PT . In particular, PN

R = PRN .

Let each Si be a bounded closed domain having a piecewise C2 boundary of
finite 1-dimensional measure. Assume that the faces of ∂Si meet at angles bounded
uniformly away from 0 and the probabilities pk(�z) are piecewise C1 functions on
the partition P. We assume:

Condition (A).

max
1≤i≤q

K∑
k=1

pk(�z)‖Dτ−1
k,i (τk,i(�z))‖ < c < 1,

where Dτ−1
k,i (�z) is the derivative matrix of τ−1

k,i at �z.

Using the multidimensional notion of variation [G]:

V (f) =

∫
RN

‖Df‖dλN =sup{
∫
RN

fdiv(g)dλN : g = (g1, . . . , gN ) ∈ C1
0 (R

N ,RN )

and |g(x)| ≤ 1 for x ∈ R
N}

where f ∈ L1(R
N ) has bounded support, Df denotes the gradient of f in the

distributional sense, div(g) = ∇·g = ∂g1
∂x1

+ ∂g2
∂x2

+· · ·+ ∂gN
∂xN

is the divergence operator,

and C1
0 (R

N ,RN ) is the space of continuously differentiable functions from R
N into

R
N having compact support. Consider the Banach space [G, Remark 1.12],

BV (Sβ) = {f ∈ L1(Sβ) : V (f) < +∞},

with the norm ‖f‖BV = ‖f‖L1
+ V (f).

Fix 1 ≤ i ≤ q. Let F denote the set of singular points of ∂Si. At any x ∈ F
we construct the largest cone having a vertex at x and which lies completely in Si.
Let θ(x) denote the angle subtended at the vertex of this cone. Then define

γ(Si) = min
x∈F

θ(x).

Since the faces of ∂Si meet at angles bounded uniformly away from 0, γ(Si) > 0.
Let α(Si) = π/2 + γ(Si) and a(Si) = | cos(α(Si))|.

Now we start at points y ∈ F , where the minimal angle γ(Si) is attained,
defining Ly to be central rays of the largest regular cones contained in Si. Then we
extend this field of segments to a C1 field of segments Ly, y ∈ ∂Si, every Ly being
a central ray of a regular cone contained in Si, with angle subtended at the vertex
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y greater than or equal to β(Si). We make Ly short enough to avoid overlapping.
Let δ(y) be the length of Ly, y ∈ ∂Si. By the compactness of ∂Si we have

δ(Si) := inf
y∈∂(Si)

δ(y) > 0.

Let �z be a point in ∂Si and Jk,i the Jacobian of τk|Si
at �z.

We recall the following two theorems.

Theorem 4.1 ([BG, Theorem 6.3]). If R is a random map which satisfies
Condition (A), then

V (PRf) ≤ c(1 + 1/a)V (f) + (M +
c

aδ
)‖f‖1 for all f ∈ BV (Sβ),

where a = min{a(Si) : i = 1, . . . , q} > 0, δ = min{δ(Si) : i = 1 . . . , q} > 0,Mk,i =

sup�z∈Si
(Dpk(�z)− DJk,i

Jk,i
pk(�z)) and M =

∑K
k=1max1≤i≤q Mk,i.

Theorem 4.2 ([BG, Theorem 6.4]). If R is a random map which satisfies
Condition (A) and c(1 + 1/a) < 1, then the random map R preserves a measure
which is absolutely continuous with respect to Lebesgue measure. Furthermore, the
associated random Perron Frobenius operator PR is quasi compact.

Now, let R be a random map which is given by {τ1, . . . , τ6; p1(�z), . . . , p6(�z)}
where

τ1(�z) =

⎧⎪⎨
⎪⎩
β�z − �qi, if �z ∈ Ei, i ∈ {0, 1, 2}
β�z − �qi, if �z ∈ Cij , ij ∈ {01, 02, 12}
β�z, if �z ∈ C012,

τ2(�z) =

⎧⎪⎨
⎪⎩
β�z − �qi, if �z ∈ Ei, i ∈ {0, 1, 2}
β�z − �qi, if �z ∈ Cij , ij ∈ {01, 02, 12}
β�z − �q1, if �z ∈ C012,

τ3(�z) =

⎧⎪⎨
⎪⎩
β�z − �qi, if �z ∈ Ei, i ∈ {0, 1, 2}
β�z − �qi, if �z ∈ Cij , ij ∈ {01, 02, 12}
β�z − �q2, if �z ∈ C012,

τ4(�z) =

⎧⎪⎨
⎪⎩
β�z − �qi, if �z ∈ Ei, i ∈ {0, 1, 2}
β�z − �qj , if �z ∈ Cij , ij ∈ {01, 02, 12}
β�z, if �z ∈ C012,

τ5(�z) =

⎧⎪⎨
⎪⎩
β�z − �qi, if �z ∈ Ei, i ∈ {0, 1, 2}
β�z − �qj , if �z ∈ Cij , ij ∈ {01, 02, 12}
β�z − �q1, if �z ∈ C012,

τ6(�z) =

⎧⎪⎨
⎪⎩
β�z − �qi, if �z ∈ Ei, i ∈ {0, 1, 2}
β�z − �qj , if �z ∈ Cij , ij ∈ {01, 02, 12}
β�z − �q2, if �z ∈ C012,

The probabilities are defined as follows.

p1(�z) = p · s, p4(�z) = (1− p) · s,
p2(�z) = p · t, p5(�z) = (1− p) · t,(4.1)

p3(�z) = p · (1− s− t), p6(�z) = (1− p) · (1− s− t).
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We have Lemma 4.3.

Lemma 4.3. For any �z ∈ Sβ and n ∈ N,
∑

k1k2···kn∈{1,...,6}n pk1k2...kn
(�z) = 1.

Proof. We prove this lemma by induction. For n = 1, p1(�z)+ · · ·+p6(�z) = 1.
Assume it is true for n = m, i.e. for any �z ∈ Sβ ,∑

k1k2···km∈{1,...,6}n

pk1k2...km
(�z) = 1.

For n = m+ 1, ∑
k1k2···km+1∈{1,...,6}m+1

pk1k2...km+1
(�z)

=
∑

k1k2···km+1∈{1,...,6}m+1

pkm+1
(τkm

◦ · · · ◦ τk1
(�z))

· pkm
(τkm−1

◦ · · · ◦ τk1
(�z)) · · · pk1

(�z)

=p1(�z)
∑

k2···km+1∈{1,...,6}m

pk2...km+1
(τ1(�z))

+ p2(�z)
∑

k2···km+1∈{1,...,6}m

pk2...km+1
(τ2(�z))

+ · · ·+ p6(�z)
∑

k2···km+1∈{1,...,6}m

pk2...km+1
(τ6(�z))

=p1(�z) + · · ·+ p6(�z)

=1.

�
To prove the existence of an absolutely continuous invariant measure(acim),

we would like to use Theorem 4.2. This cannot be done directly since R does not
satisfy the hypothesis of the theorem, however a higher iterate of R does. For the
convenience of the reader we supply a complete proof.

Theorem 4.4. Let R = {τ1, . . . , τ6; p1(�z), . . . , p6(�z)}, then R admits an acim.

Proof. Denote the partition (2.1) by P with

S1 = E0, S2 = E1, S3 = E2, S4 = C01, S5 = C12, S6 = C02, S7 = C012.

Consider the iteration of the random map, Rn, the corresponding partition is
∨n−1
i=0 R

−iP, where

R−iP = ∨k1k2···ki∈{1,...,6}iτ−1
k1k2...ki

P.

For a set Pi ∈ ∨n−1
i=0 R

−iP and a sequence k1 . . . kn ∈ {1, . . . , 6}n, let τk1...kn,i =

τk1...kn
|Pi

and Mk1...kn,i = sup�z∈Pi
(Dpk1...kn

(�z) − DJk1...kn,i

Jk1...kn,i
pk1...kn,i(�z)), where

Jk1...kn,i is the Jacobian of τk1...kn,i. Let

Mn =
∑

k1...kn∈{0,1,2}n

max
Pi∈∨n−1

i=0 R−iP
Mk1...kn,i and δn = min

Pi∈∨n−1
i=0 R−iP

δ(Pi).

For any set Pi ∈ ∨n−1
i=0 R

−iP, the derivative matrix of τ−1
k1k2...kn

is equal to[ 1
βn 0

0 1
βn

]
.
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Using Lemma 4.3 we have

max
Pi∈∨n−1

i=0 R−iP

∑
k1k2···kn∈{1,...,6}n

pk1k2...kn
(�z)‖D(τk1k2...kn

|Pi
)−1‖ =

√
2

βn
<

2
√
2

βn
:= cn.

For the partition ∨n−1
i=0 R

−iP, we have an =
√
2/2 (Here an refers to a in Theorem

4.1). Let

rn = cn(1 +
1

an
) =

2
√
2 + 4

βn
, Rn = Mn +

cn
anδn

.

We can find l > log(2
√
2 + 4)/ log β such that rl < 1. Fix this l and let C1 =

max{r1, r2, . . . , rl−1}, C2 = max{R1, R2, . . . , Rl−1}. For any integer n, we have
n = jl + i, where 0 ≤ i ≤ l − 1. Notice that PRn = (PRl)jPRi . Apply Theorem 4.1
on Rl, then we get

V (PRnf) = V P j
Rl(PRif)

≤ rl · V P j−1
Rl (PRif) +Rl‖f‖1

≤ rl · (rl · V P j−2
Rl (PRif) +Rl‖f‖1) +Rl‖f‖1

· · ·
≤ rjl V (PRif) + (rj−1

l + rj−2
l + · · ·+ rl + 1)Rl‖f‖1

≤ rjl (C1V (f) + C2‖f‖1) + (rj−1
l + rj−2

l + · · ·+ rl + 1)Rl‖f‖1
= C1r

j
l V (f) + (C2r

j
l + rj−1

l + rj−2
l + · · ·+ rl + 1)Rl‖f‖1

≤ C1r
j
l V (f) + (C2 +

1

1− rl
)Rl‖f‖1.

By definition of the norm ‖ · ‖BV ,

‖PRnf‖BV = ‖PRnf‖1 + V (PRnf)

≤ ‖f‖1 + C1r
j
l V (f) + (C2 +

1

1− rl
)Rl‖f‖1.

Then the result follows by the technique in [GB, Theorem 1]. We write some details
for completeness. From the above inequality it follows that the set {Pn

R1}n≥l is
uniformly bounded, where 1 is the constant function equal to 1 on Sβ. Hence PR

has a nontrivial fixed point 1∗ which is the density of an acim by the Kakutani–
Yoshida Theorem (see [K,Y]). �

Step 2. For the skew product transformation R′ on Sβ × [0, 1).

Let (I,B(I), λ1) be the unit interval I = [0, 1), with B(I) the Borel σ-algebra
on I and λ1 being Lebesgue measure on (I,B(I)). Let Y = Sβ × I and the set Jk
be given by Jk={(�z, w) :

∑
i<k pi(�z)≤w<

∑
i≤k pi(�z)}. Define maps ϕk : Jk→I by

ϕk(�z, w) =
1

pk(�z)
w −

∑k−1
r=1 pr(�z)

pk(�z)
.

Define the skew product transformation R′ : Sβ × I → Sβ × I by

R′(�z, w) = (τk(�z), ϕk(�z, w))

for (�z, w) ∈ Jk.
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Since pk(�z) is defined as in (4.1), then we have

ϕ1(�z, w) =
w

ps
, ϕ4(�z, w) =

w − p

(1− p)s
,

ϕ2(�z, w) =
w − ps

pt
, ϕ5(�z, w) =

w − p− (1− p)s

(1− p)t
,

ϕ3(�z, w) =
w − ps− pt

p(1− s− t)
, ϕ6(�z, w) =

w − p− (1− p)s− (1− p)t

(1− p)(1− s− t)
.

We denote pk(�z) and ϕk(�z, w) by pk and ϕk(w), respectively, since each pk(�z) is a
constant. Therefore,

R′(�z, w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(τ1(�z), ϕ1(w)), if w ∈ [0, ps),

(τ2(�z), ϕ2(w)), if w ∈ [ps, ps+ pt),

(τ3(�z), ϕ3(w)), if w ∈ [ps+ pt, p),

(τ4(�z), ϕ4(w)), if w ∈ [p, p+ (1− p)s),

(τ5(�z), ϕ5(w)), if w ∈ [p+ (1− p)s, p+ (1− p)s+ (1− p)t),

(τ6(�z), ϕ6(w)), if w ∈ [p+ (1− p)s+ (1− p)t, 1).

Denote by μβ an acim for the position-dependent random transformation R =
{τ1, . . . , τ6; p1, . . . , p6}, which means μβ is R-invariant and absolutely continuous
with respect to Lebesgue measure λ2 in R

2. We start by recalling [BBQ, Lemma
3.2].

Lemma 4.5. μβ is invariant for the random map R if and only if μβ ⊗ λ1 is
invariant for the skew product R′.

Step 3. For the skew product transformation Rβ on Ω×Υ× Sβ .

Define the skew product transformation Rβ on Ω×Υ× Sβ as follows:

Rβ(ω, υ, �z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(σω, σ′υ, β�z − �qi), if �z ∈ Ei, i ∈ {0, 1, 2}
(σω, σ′υ, β�z − �qi), if �z ∈ Cij , ij ∈ {01, 02, 12} and ω1 = 0

(σω, σ′υ, β�z − �qj), if �z ∈ Cij , ij ∈ {01, 02, 12} and ω1 = 1

(σω, σ′υ, β�z − �qi), if �z ∈ C012, υ1 = i, i ∈ {0, 1, 2}.

Lemma 4.6. (Sβ × I,S × B(I), μβ ⊗λ1, R
′) and (Ω×Υ×Sβ,A× B × S,m1 ⊗

m2 ⊗ μβ, Rβ) are isomorphic.

Proof. Let π2 : Sβ × I → I be the canonical projection onto the second
coordinate. Consider the map ϕ = π2 ◦ R′ on (I,B(I), λ1). One can see that

ϕ(w) = ϕk(w) for w ∈ Ik, where I1 = [0, p1) and Ik =
[∑k−1

i=1 pi,
∑k

i=1 pi

)
for

2 ≤ k ≤ 6. Define

l(w) =
1

pk
and h(w) =

∑k−1
i=1 pi
pk

for w ∈ Ik. It follows that ϕ(w) = l(w) · w − h(w). Let

ln = ln(w) := l(ϕn−1(w)) and hn = hn(w) := h(ϕn−1(w)).

For w ∈ [0, 1), we can write the generalized Lüroth series (GLS) of w, which is

w =
h1

l1
+

h2

l1l2
+ · · ·+ hn

l1 · · · ln
+ · · · .
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Consider the system {{0, 1, 2, 3, 4, 5}N, C,m, σ′′}, where C is the product σ-algebra,
σ′′ is the left shift and m is the product measure with weights {p1, . . . , p6} as in
(4.1). Let φ1 : I → {0, 1, 2, 3, 4, 5}N be given by

φ1 : w =

∞∑
n=1

hi

l1l2 · · · li
�→ (γ1, γ2, . . . , ),

where γn = γn(w), n ≥ 1 is defined as follows:

γn := γn(w) = k − 1 ⇐⇒ ϕn−1(w) ∈ Ik,

for k ∈ {1, 2, 3, 4, 5, 6}. It is known that ϕ preserves the Lebesgue measure λ1

and φ1 is an isomorphism between the two dynamical systems (I,B(I), λ1, ϕ} and
{{0, 1, 2, 3, 4, 5}N, C,m, σ′′}. See [BBDK] for more details.

Next we give a map φ2 from {{0, 1, 2, 3, 4, 5}N, C,m, σ′′} to {Ω×Υ,A× B,m1⊗
m2, σ×σ′}. Let h1 : {0, 1, 2, 3, 4, 5} → {0, 1} and h2 : {0, 1, 2, 3, 4, 5} → {0, 1, 2} be
given by

h1(x) =

{
0, if x = 0, 1, 2,

1, if x = 3, 4, 5,
, h2(x) =

⎧⎪⎨
⎪⎩
0, if x = 0, 3,

1, if x = 1, 4,

2, if x = 2, 5.

Define φ2 : {0, 1, 2, 3, 4, 5}N → Ω×Υ by φ2(γ) = (ω, υ), where

ω = (h1(γ1), h1(γ2), h1(γ3), . . .) := h̃1(γ),

υ = (h2(γ1), h2(γ2), h2(γ3), . . .) := h̃2(γ).

One can see that φ2 maps a cylinder of rank n in {0, 1, 2, 3, 4, 5}N to the product
of two cylinders of the same rank n in Ω×Υ. It follows that φ2 is a bimeasurable
bijection. From the definition of the product measure, we can get the measure
preservingness on cylinders. Finally, it is easy to see that φ2 ◦ σ′′ = (σ × σ′) ◦ φ2.
Therefore, φ2 is an isomorphism.

Now let φ : Sβ × I → Ω×Υ× Sβ be given by

φ(�z, w) = (h̃1(φ1(w)), h̃2(φ1(w)), �z).

In fact, φ = ι◦(ISβ
×(φ2◦φ1)), where ISβ

is the identity map on Sβ and ι(�z, ω, υ) =
(ω, υ, �z) is a transformation that only changes the order of coordinates. Since φ2◦φ1

preserves the dynamics of π2 ◦R and σ × σ′, i.e.,

(φ2 ◦ φ1) ◦ (π2 ◦R) = (σ × σ′) ◦ (φ2 ◦ φ1),

we have that φ ◦R′ = Rβ ◦ φ. Therefore, the result follows. �

Step 4. For the random transformation Kβ on Ω×Υ× Sβ.

Define a skew product transformation Rβ as follows:

Rβ(ω, υ, �z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(σω, σ′υ, τ1(�z)), if ω1 = 0, υ1 = 0,

(σω, σ′υ, τ2(�z)), if ω1 = 0, υ1 = 1,

(σω, σ′υ, τ3(�z)), if ω1 = 0, υ1 = 2,

(σω, σ′υ, τ4(�z)), if ω1 = 1, υ1 = 0,

(σω, σ′υ, τ5(�z)), if ω1 = 1, υ1 = 1,

(σω, σ′υ, τ6(�z)), if ω1 = 1, υ1 = 2,
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Let μ be an arbitrary probability measure on Sβ . We will show that any product
measure of the form m1 ⊗m2 ⊗ μ is Kβ-invariant if and only if it is Rβ-invariant.

Lemma 4.7. m1 ⊗m2 ⊗ μ ◦K−1
β = m1 ⊗m2 ⊗ μ ◦R−1

β = m1 ⊗m2 ⊗ ν, where

ν =ps · μ ◦ τ−1
1 + pt · μ ◦ τ−1

2 + p(1− s− t) · μ ◦ τ−1
3

+ (1− p) · s · μ ◦ τ−1
4 + (1− p) · t · μ ◦ τ−1

5 + (1− p) · (1− s− t) · μ ◦ τ−1
6 .

Proof. Denote by C1 and C2 arbitrary cylinders in Ω and Υ, respectively. Let
S be a closed set in Sβ. It suffices to verify that the measures coincide on sets of the
form C1×C2×S, because the collection of these sets forms a generating π-system.
Let [i, C1] = {ω1 = i} ∩ σ−1(C1) for i = 0, 1 and [i, C2] = {υ1 = i} ∩ (σ′)−1(C2) for
i = 0, 1, 2. Notice that

τ−1
1 (S) ∩ E = τ−1

2 (S) ∩ E = · · · = τ−1
6 (S) ∩E,

τ−1
1 (S) ∩ C = τ−1

2 (S) ∩ C = τ−1
3 (S) ∩ C,

τ−1
4 (S) ∩ C = τ−1

5 (S) ∩ C = τ−1
6 (S) ∩ C,

τ−1
1 (S) ∩ C012 = τ−1

4 (S) ∩ C012,

τ−1
2 (S) ∩ C012 = τ−1

5 (S) ∩ C012,

τ−1
3 (S) ∩ C012 = τ−1

6 (S) ∩ C012.

We can divide K−1
β (C1 × C2 × S) into the union of some disjoint sets as follows:

K−1
β (C1 × C2 × S)

= C1 × C2 × (τ−1
1 (S) ∩ E) ∪ [0, C1]× C2 × (τ−1

1 (S) ∩ C)

∪ [1, C1]× C2 × (τ−1
4 (S) ∩ C) ∪ C1 × [0, C2]× (τ−1

1 (S) ∩ C012)

∪ C1 × [1, C2]× (τ−1
2 (S) ∩ C012) ∪ C1 × [2, C2]× (τ−1

3 (S) ∩ C012)

Hence,

m1 ⊗m2 ⊗ μ ◦K−1
β (C1 × C2 × S)

= m1(C1)m2(C2)μ(τ
−1
1 (S) ∩ E)

+ p ·m1(C1)m2(C2)μ(τ
−1
1 (S) ∩ C)

+ (1− p) ·m1(C1)m2(C2)μ(τ
−1
4 (S) ∩ C)

+ s ·m1(C1)m2(C2)μ(τ
−1
1 (S) ∩ C012)

+ t ·m1(C1)m2(C2)μ(τ
−1
2 (S) ∩ C012)

+ (1− s− t) ·m1(C1)m2(C2)μ(τ
−1
3 (S) ∩ C012)

= ps ·m1(C1)m2(C2)μ(τ
−1
1 (S))

+ pt ·m1(C1)m2(C2)μ(τ
−1
2 (S))

+ p(1− s− t) ·m1(C1)m2(C2)μ(τ
−1
3 (S))

+ (1− p)s ·m1(C1)m2(C2)μ(τ
−1
4 (S))

+ (1− p)t ·m1(C1)m2(C2)μ(τ
−1
5 (S))

+ (1− p)(1− s− t) ·m1(C1)m2(C2)μ(τ
−1
6 (S))

= m1 ⊗m2 ⊗ ν(C1 × C2 × S).
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On the other hand,

R−1
β (C1 × C2 × S)

= [0, C1]× [0, C2]× τ−1
1 (S) ∪ [0, C1]× [1, C2]× τ−1

2 (S)

∪ [0, C1]× [2, C2]× τ−1
3 (S) ∪ [1, C1]× [0, C2]× τ−1

4 (S)

∪ [1, C1]× [1, C2]× τ−1
5 (S) ∪ [1, C1]× [2, C2]× τ−1

6 (S).

Therefore, we complete the proof. �

Now we give the main result in this section.

Theorem 4.8. Let β ∈ (1, 3/2). Then Kβ has an invariant measure of the
form m1 ⊗m2 ⊗ μβ, where μβ is absolutely continuous with respect to λ2.

Proof. By Theorem 4.4, Lemma 4.5, Lemma 4.6, and Lemma 4.7, we complete
the proof. �

Remark 4.9. When β = 3/2, C012 = {( 23 ,
2
3 )} is a point. We modify the

definition of R,R′, Rβ, and give relevant conclusions.

(i) Let R = {τ1, τ2; p1(�z), p2(�z)} be a position-dependent random transfor-
mation on Sβ, where

τ1(�z) =

⎧⎪⎨
⎪⎩
β�z − �qi, if �z ∈ Ei, i ∈ {0, 1, 2},
β�z − �qi, if �z ∈ Cij , ij ∈ {01, 02, 12},
β�z, if �z = ( 23 ,

2
3 ),

τ2(�z) =

⎧⎪⎨
⎪⎩
β�z − �qi, if �z ∈ Ei, i ∈ {0, 1, 2},
β�z − �qj , if �z ∈ Cij , ij ∈ {01, 02, 12},
β�z, if �z = ( 23 ,

2
3 ),

and p1(�z) = p2(�z) = 1/2 for �z ∈ Sβ. Similar to Theorem 4.4, it is not
difficult to prove that R has an acim μβ .

(ii) By [BBQ, Lemma 3.2], μβ ⊗ λ1 is invariant for the skew product R′,
where

R′(�z, w) =

{
(τ1(�z),

w
p ), if w ∈ [0, p),

(τ2(�z),
w−p
1−p ), if w ∈ [p, 1).

(iii) Define the skew product transformation Rβ on Ω× Sβ as follows:

Rβ(ω, �z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(σω, β�z − �qi), if �z ∈ Ei, i ∈ {0, 1, 2},
(σω, β�z − �qi), if �z ∈ Cij , ij ∈ {01, 02, 12}, ω1 = 0,

(σω, β�z − �qj), if �z ∈ Cij , ij ∈ {01, 02, 12}, ω1 = 1,

(σω, β�z), if �z = ( 23 ,
2
3 ).

Then we have that the dynamical systems (Sβ × I,S × B(I), μβ ⊗ λ1, R
′)

and (Ω × Sβ,A× S,m1 ⊗ μβ, Rβ) are isomorphic. The proof is similar
and easier than that of Lemma 4.6.
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(iv) Let μ be an arbitrary probability measure on Sβ and let K̃β : Ω × Sβ →
Ω× Sβ be given by

K̃β(ω, �z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(ω, β�z − �qi), if �z ∈ Ei, i ∈ {0, 1, 2}
(σω, β�z − �qi), if �z ∈ Cij , ij ∈ {01, 02, 12}, ω1 = 0

(σω, β�z − �qj), if �z ∈ Cij , ij ∈ {01, 02, 12}, ω1 = 1

(ω, β�z), if �z = ( 23 ,
2
3 ).

It is easy to check that

m1 ⊗ μ ◦ K̃−1
β = m1 ⊗ μ ◦R−1

β = m1 ⊗ ν,

where

ν = p · μ ◦ τ−1
1 + (1− p) · μ ◦ τ−1

2

by using the same method of calculation in Lemma 4.7. Therefore, it follows from
(i)–(iv) that K̃β has an invariant measure of the form m1 ⊗ μβ .
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properties of generalized Lüroth series, Acta Arith. 74 (1996), no. 4, 311–327, DOI
10.4064/aa-74-4-311-327. MR1378226

[BBQ] Wael Bahsoun, Christopher Bose, and Anthony Quas, Deterministic representation for
position dependent random maps, Discrete Contin. Dyn. Syst. 22 (2008), no. 3, 529–540,
DOI 10.3934/dcds.2008.22.529. MR2429852
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