

# HAUSDORFF DIMENSION OF UNIVOQUE SETS OF SELF-SIMILAR SETS WITH COMPLETE OVERLAPS

MOHAMMAD GAREEB\*

Department of Mathematics, East China Normal University Shanghai 200062, P. R. China 52160601023@stu.ecnu.edu.cn; silver\_man321@hotmail.com

WENXIA LI

Department of Mathematics, Shanghai Key Laboratory of PMMP East China Normal University, Shanghai 200062, P. R. China wxli@math.ecnu.edu.cn

> Received October 28, 2019 Accepted December 20, 2019 Published May 4, 2020

# Abstract

Let  $\lambda \in (0,1)$  and  $m \geq 3$  an integer. We consider the collection  $\mathcal{A}$  of homogeneous self-similar sets on the line such that every two of copies  $f_i(K), f_j(K)$  of the self-similar set K are either separated or overlapped with rank k in  $\{2, \ldots, m\}$ . For  $K \in \mathcal{A}$  generated by n similitudes, we denote by  $n_j$  the number of overlaps with rank  $j \in \{2, \ldots, m\}$ . The set of points in the self-similar set having a unique coding is called the univoque set and denoted by  $\mathcal{U}$ . In this paper, we investigate a uniform method to calculate the Hausdorff dimension of the set  $\mathcal{U}$ .

*Keywords*: Iterated Function System (IFS); Graph-Directed Self-Similar Set; Univoque Set; Configuration of Finite Pattern; Hausdorff Dimension.

<sup>\*</sup>Corresponding author.

### 1. INTRODUCTION

Let  $\{g_j\}_{j=1}^n$  be an iterated function system (IFS) of similitudes defined on  $\mathbb{R}$  by

$$g_j(x) = r_j x + a_j,$$

where the similarity ratios  $r_j$  satisfy  $0 < |r_j| < 1$ , and  $a_j \in \mathbb{R}$ ,  $1 \le j \le n$ . Hutchinson<sup>1</sup> proved that there exists a unique non-empty compact set  $K \subset \mathbb{R}$ such that

$$K = \bigcup_{j=1}^{n} g_j(K).$$

We call K the self-similar set or the attractor generated by the IFS  $\{g_j\}_{j=1}^n$ . For any  $x \in K$ , there exists at least one sequence  $(i_k)_{k=1}^{\infty} \in \{1, \ldots, n\}^{\mathbb{N}}$ such that

$$x = \lim_{k \to \infty} g_{i_1} \circ \cdots \circ g_{i_k}(0) := \Pi((i_k)_{k=1}^{\infty}).$$

Thus,  $\Pi : \{1, \ldots, n\}^{\mathbb{N}} \to K$  is surjective and continuous. We call such sequence a coding of x. A point  $x \in K$  is called univoque point if its coding is unique. We denote by  $\mathcal{U}$  the set of all univoque points in K. For the univoque set, in the setting of  $\beta$ -expansions, there are many results.<sup>2-4</sup> But there are few results in the setting of general self-similar sets.<sup>5,6</sup>

In this paper, we consider a class of overlapping self-similar sets as follows:

Fix an integer  $m \geq 3$  and fix a  $\lambda \in (0, 1)$ . Let  $\mathcal{A}$  be the collection of all self-similar sets K generated by the IFSs  $\{f_i(x) = \lambda x + b_i\}_{i=1}^n$ , where  $n \geq 3$  and  $b_i \in \mathbb{R}$  for every  $1 \leq i \leq n$ , satisfying the following conditions:

- (I)  $0 = b_1 < b_2 < \dots < b_n = 1 \lambda;$
- (II)  $f_i([0,1]) \cap f_j([0,1]) = \emptyset$  for any  $1 \le i < j \le n$ with  $j - i \ge 2$ ;
- (III) There exist  $i, j \in \{1, \ldots, n-1\}$  such that

$$f_i([0,1]) \cap f_{i+1}([0,1]) = \emptyset$$
 and  
 $f_i([0,1]) \cap f_{i+1}([0,1]) \neq \emptyset;$ 

$$[0,1]) \cap f_{i+1}([0,1]) \neq \emptyset$$
, then  $|f_i|([0,1])$ 

(IV) If  $f_i([0,1]) \cap f_{i+1}([0,1]) \neq \emptyset$ , then  $|f_i([0,1]) \cap f_{i+1}([0,1])| = \lambda^j$  with  $j \in \{2,3,\ldots,m\}$ , where  $|\cdot|$  stands for the length of an interval.

The above conditions (I)–(IV) imply the fact: for a  $K \in \mathcal{A}$ , if  $|f_i([0,1]) \cap f_{i+1}([0,1])| = \lambda^j$  with  $j \ge 2$ , then

$$K \cap (f_i([0,1]) \cap f_{i+1}([0,1]))$$
  
=  $f_{in^{j-1}}(K) = f_{(i+1)1^{j-1}}(K).$ 

This will be proved in Proposition 2.1. Thus we have  $\mathcal{U} \cap (f_i([0,1]) \cap f_{i+1}([0,1])) = \emptyset.$ 

We now introduce some notations: Let

$$n_{j} := \|\{1 \le i \le n - 1 : |f_{i}([0, 1]) \\ \cap f_{i+1}([0, 1])| = \lambda^{j}\}\|, \quad j = 2, 3, \dots, m,$$

$$\Sigma := \sum_{j=2}^{m} n_{j},$$

$$s_{0} := \min\{1 \le i \le n - 1 : f_{i}([0, 1]) \\ \cap f_{i+1}([0, 1]) = \emptyset\},$$

$$t_{0} := \max\{2 \le i \le n : f_{i-1}([0, 1]) \\ \cap f_{i}([0, 1]) = \emptyset\}, \qquad (1)$$

where  $\|\cdot\|$  denotes the cardinality of a set. Thus,  $n - \Sigma$  is just the number of the connected components of  $\bigcup_{i=1}^{n} f_i([0,1])$ .

We classify the digit set  $\{1, 2, ..., n\}$ . For  $k, j \in \{2, ..., m\}$  let

$$J_{kj} := \{1 \le i \le n : |f_i([0,1]) \cap f_{i-1}([0,1])| \\ = \lambda^k \text{ and } |f_i([0,1]) \cap f_{i+1}([0,1])| = \lambda^j\}, \\ J_{0j} := \{1 \le i \le n : f_i([0,1]) \cap f_{i-1}([0,1]) \\ = \emptyset \text{ and } |f_i([0,1]) \cap f_{i+1}([0,1])| = \lambda^j\}, \\ J_{k0} : Z = \{1 \le i \le n : |f_i([0,1]) \cap f_{i-1}([0,1])| \\ = \lambda^k \text{ and } f_i([0,1]) \cap f_{i+1}([0,1]) = \emptyset\}, \\ J_{00} := \{1 \le i \le n : f_i([0,1]) \cap f_{i-1}([0,1]) \\ = f_i([0,1]) \cap f_{i+1}([0,1]) = \emptyset\},$$
(2)

where we adopt the convention that  $f_0([0,1]) = f_{n+1}([0,1]) = \emptyset$ .

Thus we have

$$\{1, 2, \dots, n\}$$
  
=  $J_{00} \cup \bigcup_{2 \le k, j \le m} (J_{kj} \cup J_{k0} \cup J_{0j})$ 

with pairwise disjoint union.

It is easy to observe that for each  $i \in J_{0j}$  with  $j \in \{2, \ldots, m\}$  there exists a unique  $i^* \in J_{k0}$  for some  $k \in \{2, \ldots, m\}$  such that  $i < i^*$  and  $\bigcup_{l=i}^{i^*} f_l([0, 1])$  is a closed interval. We call  $i^*$  the dual of i.

Notice that

$$\sum_{j=2}^{m} \|J_{0j}\| = \sum_{k=2}^{m} \|J_{k0}\|,$$
$$\|J_{00}\| + \sum_{j=2}^{m} \|J_{0j}\| = n - \Sigma,$$
$$\sum_{j=0,2,3,\dots,m} \sum_{k=2}^{m} \|J_{kj}\| = \Sigma,$$
(3)

and

$$\sum_{j=0,2,3,...,m} \|J_{kj}\| = n_k, \text{ for each } k = 2, 3, ..., m.$$
(4)

In this paper, we give a formula for the Hausdorff dimension of the univoque set  $\mathcal{U}$ .

**Theorem 1.1.** Let 
$$K \in \mathcal{A}$$
. Then  $\log \gamma$ 

$$\dim_H \mathcal{U} = \frac{\log\gamma}{-\log\lambda},$$

and  $\mathcal{H}^{\dim_H \mathcal{U}}(\mathcal{U}) > 0$ , where  $\gamma$  is the largest positive root of the equation:

(I)

$$x^{m} - nx^{m-1} + 2n_{2}x^{m-2} + 2n_{3}x^{m-3} + 2n_{4}x^{m-4} + \dots + 2n_{m-1}x + 2n_{m} = 0,$$

when  $f_1([0,1]) \cap f_2([0,1]) = f_{n-1}([0,1]) \cap f_n([0,1]) = \emptyset;$ 

(II)

$$x^{m+t-1} - nx^{m+t-2} + (n_2 x^{m-2} + n_3 x^{m-3} + \dots + n_m)(2x^{t-1} - 1) = 0,$$

when  $|f_1([0,1]) \cap f_2([0,1])| = \lambda^t$  and  $f_{n-1}([0,1]) \cap f_n([0,1]) = \emptyset$ , or  $|f_{n-1}([0,1]) \cap f_n([0,1])| = \lambda^t$  and  $f_1([0,1]) \cap f_2([0,1]) = \emptyset$ , for some  $t \in \{2, 3, ..., m\}$ ;

(III)

$$x^{m}(x^{t+q-2}-1) + nx^{m-1}(1-x^{t+q-2}) + (n_{2}x^{m-2} + n_{3}x^{m-3} + \cdots + n_{m})(2x^{t+q-2} - x^{q-1} - x^{t-1}) = 0,$$

 $\begin{array}{ll} when & |f_1([0,1]) \cap f_2([0,1])| = \lambda^t \text{ and } \\ |f_{n-1}([0,1]) \cap f_n([0,1])| = \lambda^q, \text{ or } |f_1([0,1]) \cap \\ f_2([0,1])| = \lambda^q \text{ and } |f_{n-1}([0,1]) \cap f_n([0,1])| = \\ \lambda^t, \text{ for some } t, q \in \{2,3,\ldots,m\}. \end{array}$ 

#### Hausdorff Dimension of Univoque Sets of Self-Similar Sets

The rest of this paper is arranged as follows. In Sec. 2, we prove an important property of the collection  $\mathcal{A}$  and introduce the concept of configuration. The proof of Theorem 1.1 is given in Sec. 3.

## 2. PRELIMINARIES

In this section, we first give a property of the collection  $\mathcal{A}$ , and then introduce the concept of configuration set.<sup>7</sup>

**Lemma 2.1 (Ref. 8).** The conditions (I) and (IV) imply that: If  $|f_i([0,1]) \cap f_{i+1}([0,1])| = \lambda^j$  for some  $1 \le i \le n-1$  and  $j \ge 2$  an integer, then

$$f_{in^{j-1}}(x) = f_{(i+1)1^{j-1}}(x).$$

**Proof.** In fact, we have  $f_1(0) = 0$  and  $f_n(1) = 1$  by (I). Thus

$$|f_i([0,1]) \cap f_{i+1}([0,1])|$$
  
=  $|[f_{i+1}(0), f_i(1)]| = |[b_{i+1}, \lambda + b_i]|$   
=  $\lambda + b_i - b_{i+1} = \lambda^j$ . (5)

Let  $f_{in^{j-1}}(x) = \lambda^j x + \alpha$  and let  $f_{(i+1)1^{j-1}}(x) = \lambda^j x + \beta$ . Then

$$\lambda^j + \alpha = f_{in^{j-1}}(1) = f_i(1) = \lambda + b_i$$

and

$$\beta = f_{(i+1)1^{j-1}}(0) = f_{i+1}(0) = b_{i+1}.$$
  
Hence,  $\alpha = \beta$  by (5).

Denote  $Q_{i,i+1} = f_i([0,1]) \cap f_{i+1}([0,1])$ . When  $Q_{i,i+1}$  is not empty, we denote by  $Q'_{i,i+1}$  the set obtained by deleting the right endpoint of  $Q_{i,i+1}$ , by  $Q''_{i,i+1}$  the set obtained by deleting the left endpoint of  $Q_{i,i+1}$ . We have  $Q'_{i,i+1} = Q''_{i,i+1} = \emptyset$  when  $Q_{i,i+1} = \emptyset$ .

**Lemma 2.2.** Let  $K \in A$ . Let  $|f_i([0,1]) \cap f_{i+1}([0,1])| = |Q_{i,i+1}| = \lambda^{u+1}$  for some  $u \in \mathbb{N}^+$ . Then:

- (I) If  $(f_i(K) \cap Q_{i,i+1}) \setminus (f_{i+1}(K) \cap Q_{i,i+1}) \neq \emptyset$ , then  $(f_{n-1}(K) \cap Q_{n-1,n}) \setminus (f_n(K) \cap Q_{n-1,n}) \neq \emptyset$ ;
- (II) If  $(f_{i+1}(K) \cap Q_{i,i+1}) \setminus (f_i(K) \cap Q_{i,i+1}) \neq \emptyset$ , then  $(f_2(K) \cap Q_{1,2}) \setminus (f_1(K) \cap Q_{1,2}) \neq \emptyset$ ;
- (III) Suppose that  $|f_{n-1}([0,1]) \cap f_n([0,1])| = |Q_{n-1,n}| = \lambda^{l+1}$  with  $l \in \mathbb{N}^+$ . If  $x \in (f_i(K) \setminus f_{i+1}(K)) \cap Q_{i,i+1}$ , then x has a unique coding  $in^{u-1}((n-1)n^{l-1})^{\infty}$ ;
- (IV) Suppose that  $|f_1([0,1]) \cap f_2([0,1])| = |Q_{1,2}| = \lambda^{h+1}$  with  $h \in \mathbb{N}^+$ . If  $x \in (f_{i+1}(K) \setminus f_i(K)) \cap Q_{i,i+1}$ , then x has a unique coding  $(i+1)1^{u-1} (21^{h-1})^{\infty}$ .

- **Proof.** (I) Take  $x \in (f_i(K) \cap Q_{i,i+1}) \setminus (f_{i+1}(K) \cap Q_{i,i+1})$ . Then the coding of x must begin with  $in^{u-1}$  and so  $x = f_{in^{u-1}}(y)$  with  $y \in f_n([0,1]) \cap K$ . Since  $y \notin f_n(K)$ , we have  $y \in (f_{n-1}(K) \cap Q_{n-1,n})$ . Therefore,  $(f_{n-1}(K) \cap Q_{n-1,n}) \setminus (f_n(K) \cap Q_{n-1,n}) \neq \emptyset$ .
- (II) Take  $x \in (f_{i+1}(K) \cap Q_{i,i+1}) \setminus (f_i(K) \cap Q_{i,i+1})$ . Then the coding of x must begin with  $(i + 1)1^{u-1}$  and so  $x = f_{(i+1)1^{u-1}}(y)$  with  $y \in f_1([0,1]) \cap K$ . Since  $y \notin f_1(K)$ , we have  $y \in (f_2(K) \cap Q_{1,2})$ . Therefore,

$$(f_2(K) \cap Q_{1,2}) \setminus (f_1(K) \cap Q_{1,2}) \neq \emptyset.$$

- (III) Take  $x \in (f_i(K) \cap Q_{i,i+1}) \setminus (f_{i+1}(K) \cap Q_{i,i+1})$ . Then the coding of x must begin with  $in^{u-1}$ and so  $x = f_{in^{u-1}}(y)$  with  $y \in f_n([0,1]) \cap K$ . Since  $y \notin f_n(K)$ , we have  $y \in f_{n-1}(K) \cap Q_{n-1,n}$ . Thus, the coding of y must begin with  $(n-1)n^{l-1}$ . Let  $y = f_{(n-1)n^{l-1}}(z)$  with  $z \in f_n([0,1]) \cap K$ . Note that  $z \notin f_n(K)$ . We repeat the above process as done on y, we have  $z = f_{(n-1)n^{l-1}}(w)$  with  $w \in (f_n([0,1]) \cap K) \setminus f_n(K)$ . Finally we have x has a unique coding  $in^{u-1}((n-1)n^{l-1})^{\infty}$ .
- (IV) Take  $x \in (f_{i+1}(K) \cap Q_{i,i+1}) \setminus (f_i(K) \cap Q_{i,i+1})$ . Then the coding of x must begin with  $(i + 1)1^{u-1}$  and so  $x = f_{(i+1)1^{u-1}}(y)$  with  $y \in f_1([0,1]) \cap K$ . Since  $y \notin f_1(K)$ , we have  $y \in f_2(K) \cap Q_{1,2}$ . Thus, the coding of y must begin with  $21^{h-1}$ . Let  $y = f_{21^{h-1}}(z)$  with  $z \in f_1([0,1]) \cap K$ . Note that  $z \notin f_1(K)$ . We repeat the above process as done on y, we have  $z = f_{21^{h-1}}(w)$  with  $w \in (f_1([0,1]) \cap K) \setminus f_1(K)$ . Finally we have x has a unique coding  $(i + 1)1^{u-1}(21^{h-1})^{\infty}$ .

Corollary 2.1. Let  $K \in \mathcal{A}$ . If  $|f_i([0,1]) \cap f_{i+1}([0,1])| = \lambda^j$  with  $j \geq 2$ , then

$$f_i(K) \cap Q_{i,i+1} = f_{i+1}(K) \cap Q_{i,i+1}.$$

**Proof.** Suppose that it is not true. Without loss of generality, assume that

$$(f_{i+1}(K) \cap Q_{i,i+1}) \setminus (f_i(K) \cap Q_{i,i+1}) \neq \emptyset.$$

From Lemma 2.2(II) and (IV) it follows that

$$(f_{i+1}(K) \cap Q_{i,i+1}) \setminus (f_i(K) \cap Q_{i,i+1})$$

$$= \{x\}$$
 and x has a coding  $(i+1)1^{j-2}(21^{h-1})^{\infty}$ .

Let  $x_k = f_{(i+1)1^{j-2}(21^{h-1})^k}(f_1(1))$ . Then  $x = \lim_{k \to \infty} x_k$ . Notice that

$$x_k = f_{(i+1)1^{j-2}(21^{h-1})^k}(f_1(1))$$

$$= f_{(i+1)1^{j-2}(21^{h-1})^{k-1}}(f_{21^{h}}(1))$$

$$= f_{(i+1)1^{j-2}(21^{h-1})^{k-1}}(f_{1n^{h}}(1))$$

$$= f_{(i+1)1^{j-2}(21^{h-1})^{k-1}}(f_{1}(1))$$

$$= x_{k-1} = \dots = f_{(i+1)1^{j-2}}(f_{1}(1))$$

$$= f_{(i+1)1^{j-1}}(1), \qquad (6)$$

where  $f_{(i+1)1^{j-1}}(1) = f_{in^{j-1}}(1) = f_i(1) \in f_i(K)$ , leading to a contradiction.

**Proposition 2.1.** Let  $K \in A$ . If  $|f_i([0,1]) \cap f_{i+1}([0,1])| = \lambda^j$  with  $j \ge 2$ , then

$$K \cap (f_i([0,1]) \cap f_{i+1}([0,1]))$$
  
=  $f_{in^{j-1}}(K) = f_{(i+1)1^{j-1}}(K)$ 

**Proof.** The second equality is obtained by Lemma 2.1. From the proof of Lemma 2.1 it follows that

$$f_{(i+1)1^{j-1}}(x) = \lambda^j x + b_{i+1}$$
 and so  
 $f_{(i+1)1^{j-1}}([0,1]) = f_i([0,1]) \cap f_{i+1}([0,1]).$ 

Thus

$$f_{(i+1)1^{j-1}}(K) \subseteq K \cap (f_i([0,1]) \cap f_{i+1}([0,1]))$$
  
=  $K \cap f_{(i+1)1^{j-1}}([0,1]).$ 

From Corollary 2.1 it follows that

$$K \cap (f_i([0,1]) \cap f_{i+1}([0,1]))$$
  
=  $(f_i(K) \cap Q_{i,i+1}) \cup (f_{i+1}(K) \cap Q_{i,i+1})$   
=  $f_i(K) \cap Q_{i,i+1} = f_{i+1}(K) \cap Q_{i,i+1}.$  (7)

Now take  $x \in K \cap (f_i([0,1]) \cap f_{i+1}([0,1])) = f_i(K) \cap Q_{i,i+1}$ . Then x has a coding begins with  $in^{j-2}$ . Let  $x = f_{in^{j-2}}(y)$  with  $y \in f_n([0,1])$  and  $y \in K$ . Thus

$$y \in f_n([0,1]) \cap K$$
  
=  $f_n([0,1]) \cap (f_{n-1}(K) \cup f_n(K))$   
=  $(f_{n-1}(K) \cap Q_{n-1,n}) \cup f_n(K)$   
=  $(f_n(K) \cap Q_{n-1,n}) \cup f_n(K)$  (8)

by Corollary 2.1. Thus  $x \in f_{in^{j-1}}(K)$ .

The key idea of this paper is the configuration set.  $^7$ 

**Definition 2.1.** Suppose (X, d) is a compact metric space. Let |A| be the diameter of  $A \subset X$ , and dist $(A, B) = \inf_{x \in A, y \in B} d(x, y)$ . We say that  $(X, d, \{\mathcal{D}^k\}_k, \{\delta_k\}_k)$  (for simplicity we may replace  $(X, d, \{\mathcal{D}^k\}_k, \{\delta_k\}_k)$  by X) is a configuration set if

there exists a constant  $c \geq 1$  such that  $\{\delta_k\}_k$  is a decreasing sequence with  $\lim_{k\to\infty} \delta_k = 0$ ,  $\delta_{k+1} \geq c^{-1}\delta_k$  for all k,  $\mathcal{D}^i$  consists of finitely many compact subsets of X for any  $i \geq 0$  with  $\mathcal{D}^0 = \{X\}$ , and for any  $A \in \mathcal{D}^k$ ,

$$c^{-1}\delta_k \le |A| \le c\delta_k,$$

and there exists some  $\mathcal{F}(A) \subset \mathcal{D}^{k+1}$  satisfying

$$A = \bigcup_{B \in \mathcal{F}(A)} B \text{ and } \operatorname{dist}(B, B')$$
$$\geq c^{-1} \delta_{k}, \quad \forall B, \quad B' \in \mathcal{F}(A) \text{ with } B \neq B'.$$

**Definition 2.2.** Let  $(X, d, \{\mathcal{D}^k\}_k, \{\delta_k\}_k)$  be a configuration set. We say that X is a configuration set of finite pattern if the following conditions are satisfied:

- (1)  $\delta_k = \lambda^k$  for some  $\lambda \in (0, 1)$ ;
- (2) there is a surjective label mapping  $\ell : \bigcup_{k=0}^{\infty} \mathcal{D}^k \to \{1, 2, \dots, m\}$  and a transition matrix  $M = (a_{ij})_{m \times m}$  such that for any  $1 \le i, j \le m$ , any  $k \ge 0$  and any  $A \in \mathcal{D}^k$  with  $\ell(A) = i$ ,

$$\|\{B \in \mathcal{F}(A) : \ell(B) = j\}\| = a_{ij}.$$

The following result was proved in Ref. 7.

**Theorem 2.1.** Suppose that X is a configuration set of finite pattern. Let  $\rho$  be the spectral radius of the transition matrix M. Then

$$\dim_H X = \dim_B X = s = \frac{\log \rho}{-\log \lambda},$$

and  $\mathcal{H}^{s}(X) > 0$ . Moreover, if the matrix M is irreducible, then

$$0 < \mathcal{H}^s(X) < \infty,$$

where  $\mathcal{H}^{s}(X)$  is the s-dimensional Hausdorff measure of the set X.

### 3. PROOF OF THEOREM 1.1

**Lemma 3.1.** Suppose that  $|f_1([0,1]) \cap f_2([0,1])| = \lambda^t$  and  $|f_{n-1}([0,1]) \cap f_n([0,1])| = \lambda^q$ , or  $|f_1([0,1]) \cap f_2([0,1])| = \lambda^q$  and  $|f_{n-1}([0,1]) \cap f_n([0,1])| = \lambda^t$  for some  $t, q \in \{2, 3, ..., m\}$ , then

$$\dim_H \mathcal{U} = \frac{\log \gamma}{-\log \lambda},$$

where  $\gamma$  is the largest positive root of the equation

$$x^{m}(x^{t+q-2}-1) + nx^{m-1}(1-x^{t+q-2}) + (n_{2}x^{m-2} + n_{3}x^{m-3} + \dots + n_{m})(2x^{t+q-2} - x^{q-1} - x^{t-1}) = 0.$$

**Proof.** In the following we only consider the case  $|f_1([0,1]) \cap f_2([0,1])| = \lambda^t$  and  $|f_{n-1}([0,1]) \cap f_n([0,1])| = \lambda^q$  for some  $t, q \in \{2, 3, \ldots, m\}$ . Thus  $1 \in J_{0t}$  and  $n \in J_{q0}$ . Without loss of generality we assume that  $t \leq q$ .

The proof of this lemma is arranged as follows:

- Construction of sets  $\{H_i\}_{i=1}^{n+2m-4}$ : We construct sets  $\{H_i\}_{i=1}^{n+2m-4}$  on the intervals  $\{[f_i(0), f_i(1)]\}_{i=1}^n$ .
- Graph-directed self-similar set structure: We show that there are non-empty compact sets  $\{E_i\}_{i=1}^{n+2m-4}$  such that  $E_i \subseteq H_i$  for every  $1 \leq i \leq n+2m-4$  and the set  $K^* := \bigcup_{i=1}^{n+2m-4} E_i$ is a graph-directed self-similar set. Then  $\mathcal{U} = K^*$  except for a countable set, hence  $\dim_H \mathcal{U} = \dim_H K^*$ .
- Decomposition of the set  $K^*$ : We decompose the set  $K^*$  into some groups and find the relation between this groups.
- *K*<sup>\*</sup> has a configuration structure: We define a label mapping *ℓ* and show that *K*<sup>\*</sup> has a configuration structure of finite pattern. □

# Construction of sets $\{H_i\}_{i=1}^{n+2m-4}$ :

For the first interval  $[f_1(0), f_1(1)]$ , we insert the points  $f_{1^k}(1), k = 2, \ldots, m-1$  to get m-1 number of sub-intervals as follows:

$$[f_1(0), f_{1^{m-1}}(1)] \setminus f_{1^{m-2}}(Q_{1,2}''),$$
  

$$[f_{1^{m-k+1}}(1), f_{1^{m-k}}(1)] \setminus f_{1^{m-k-1}}(Q_{1,2}'')$$
  
for  $k = 2, \dots, m-1.$ 

We label them as  $1, \ldots, m-1$  from the left to the right order, i.e.

$$H_1 = [f_1(0), f_{1^{m-1}}(1)] \setminus f_{1^{m-2}}(Q_{1,2}''),$$
  
$$H_k = [f_{1^{m-k+1}}(1), f_{1^{m-k}}(1)] \setminus f_{1^{m-k-1}}(Q_{1,2}'')$$

for k = 2, ..., m - 1.

For each of the middle n-2 intervals  $f_k([0,1])$ ,  $k = 2, \ldots, n-1$ , we remove the intersections if there exist to get a new interval:

$$f_k([0,1]) \setminus (Q'_{k-1,k} \cup Q''_{k,k+1}), \quad k = 2, \dots, n-1.$$

We label them as  $m, m+1, \ldots, m+n-3$  from the left to the right order, i.e.

$$H_{m+k-2} = f_k([0,1]) \setminus (Q'_{k-1,k} \cup Q''_{k,k+1}),$$
  

$$k = 2, \dots, n-1.$$
(9)

For the last interval  $[f_n(0), f_n(1)]$ , we insert the points  $f_{n^k}(0), k = 2, \ldots, m-1$  to get m-1 number

M. Gareeb & W. Li

of sub-intervals as follows:

$$[f_{n^k}(0), f_{n^{k+1}}(0)] \setminus f_{n^{k-1}}(Q'_{n-1,n}) \text{ for }$$
  

$$k = 1, \dots, m-2,$$
  

$$[f_{n^{m-1}}(0), f_n(1)] \setminus f_{n^{m-2}}(Q'_{n-1,n}).$$

We label them as  $n+m-2, n+m-1, \ldots, n+2m-4$ from the left to the right order, i.e.

$$H_{n+m+k-3} = [f_{n^k}(0), f_{n^{k+1}}(0)] \setminus f_{n^{k-1}}(Q'_{n-1,n}) \text{ for}$$
  

$$k = 1, \dots, m-2,$$
  

$$H_{n+2m-4} = [f_{n^{m-1}}(0), f_n(1)] \setminus f_{n^{m-2}}(Q'_{n-1,n}),$$

with the convention that  $f_{1^0}$  and  $f_{n^0}$  are the identity.

### Graph-directed self-similar set structure:

Note that in (9), for  $i = 2, \ldots, n-1$ 

$$\begin{split} H_{m+i-2} &= f_i([0,1]) \backslash (Q'_{i-1,i} \cup Q''_{i,i+1}) \\ &= \begin{cases} [f_i(0), f_i(1)] & \text{if } i \in J_{00}, \\ [f_i(0), f_{in^{j-1}}(0)] \\ & \text{if } i \in J_{0j} \backslash \{1\}; \ 2 \leq j \leq m, \\ [f_{i1^{k-1}}(1), f_i(1)] \\ & \text{if } i \in J_{k0} \backslash \{n\}; \ 2 \leq k \leq m, \\ [f_{i1^{k-1}}(1), f_{in^{j-1}}(0)] \\ & \text{if } i \in J_{kj}; \ 2 \leq k, \ j \leq m. \end{cases} \end{split}$$

Then we have

 $H_{m+i-2}$ 

$$\supseteq \begin{cases}
f_i \left( \bigcup_{l=1}^{n+2m-4} H_l \right) & \text{if } i \in J_{00}, \\
f_i \left( \bigcup_{l=1}^{n+m+j-5} H_l \right) \\
\text{if } i \in J_{0j} \setminus \{1\}; \quad 2 \leq j \leq m, \\
f_i \left( \bigcup_{l=m-k+2}^{n+2m-4} H_l \right) \\
\text{if } i \in J_{k0} \setminus \{n\}; \quad 2 \leq k \leq m, \\
f_i \left( \bigcup_{l=m-k+2}^{n+m+j-5} H_l \right) \\
\text{if } i \in J_{kj}; \quad 2 \leq k, \quad j \leq m,
\end{cases}$$
(10)

and

$$\begin{cases}
H_{1} \supseteq f_{1}(H_{1} \cup H_{2}), \\
H_{k} \supseteq f_{1}(H_{k+1}); \\
k = 2, \dots, m - 2, \\
H_{m-1} \supseteq f_{1} \left( \bigcup_{l=m}^{n+m+t-5} H_{l} \right), \\
H_{n+m-2} \supseteq f_{n} \left( \bigcup_{l=m-q+2}^{n+m-3} H_{l} \right), \\
H_{n+m+k-3} \supseteq f_{n}(H_{n+m+k-4}); \\
H_{n+2m-4} \supseteq f_{n}(H_{n+2m-5} \cup H_{n+2m-4}).
\end{cases}$$
(11)

Hence, from (10) and (11) we conclude that there are non-empty compact sets  $E_i \subseteq H_i, 1 \leq i \leq n + 2m - 4$ , i.e. a graph-directed self-similar set, satisfying

$$E_{m+i-2}$$

$$= \begin{cases} f_i \left( \bigcup_{l=1}^{n+2m-4} E_l \right) & \text{if } i \in J_{00}, \\ f_i \left( \bigcup_{l=1}^{n+m+j-5} E_l \right) & \text{if } i \in J_{0j} \setminus \{1\}; \ 2 \le j \le m, \\ f_i \left( \bigcup_{l=m-k+2}^{n+2m-4} E_l \right) & \text{if } i \in J_{k0} \setminus \{n\}; \ 2 \le k \le m, \\ f_i \left( \bigcup_{l=m-k+2}^{n+m+j-5} E_l \right) & \text{if } i \in J_{kj}; \ 2 \le k, \ j \le m, \end{cases}$$

$$(12)$$

and

$$\begin{cases}
E_{1} = f_{1}(E_{1} \cup E_{2}), \\
E_{k} = f_{1}(E_{k+1}); \\
k = 2, \dots, m - 2, \\
E_{m-1} = f_{1} \left( \bigcup_{l=m}^{n+m+t-5} E_{l} \right), \\
E_{n+m-2} = f_{n} \left( \bigcup_{l=m-q+2}^{n+m-3} E_{l} \right), \\
E_{n+m+k-3} = f_{n}(E_{n+m+k-4}); \\
k = 2, \dots, m - 2, \\
E_{n+2m-4} = f_{n}(E_{n+2m-4} \cup E_{n+2m-5}).
\end{cases}$$
(13)

2050051-6

Let  $K^* = \bigcup_{i=1}^{n+2m-4} E_i \subset K$ . From Proposition 2.1 it follows that

$$\mathcal{U} \cap \left( \bigcup_{i=1}^{n-1} Q_{i,i+1} \cup \bigcup_{k=1}^{m-2} f_{1^k}(Q_{1,2}) \right)$$
$$\cup \bigcup_{k=1}^{m-2} f_{n^k}(Q_{n-1,n}) = \emptyset.$$

This means  $\mathcal{U} \subseteq K^*$ . In fact, we have  $K^* \setminus \mathcal{U}$  is countable. One can refer to Ref. 8 for more information.

# Decomposition of the set $K^*$ :

As we know, determining the Hausdorff dimension of  $K^*$  by a routine way requires calculating the spectral radius of a  $(n+2m-4) \times (n+2m-4)$  incidence matrix. To reduce the size of this matrix, we group some parts of  $K^*$  to show that it is a configuration set of finite pattern defined in Definitions 2.1 and 2.2 (see also Ref. 7).

Note that

$$\bigcup_{l=1}^{m-1} E_l = f_1 \left( \bigcup_{l=1}^{n+m+t-5} E_l \right),$$
$$\bigcup_{l=n+m-2}^{n+2m-4} E_l = f_n \left( \bigcup_{l=m-q+2}^{n+2m-4} E_l \right).$$

Denote

$$L = \bigcup_{l=1}^{m+s_0-2} E_l, \quad M = \bigcup_{l=m+s_0-1}^{m+t_0-3} E_l,$$
$$R = \bigcup_{l=m+t_0-2}^{n+2m-4} E_l, \quad A = \bigcup_{l=m}^{m+s_0-2} E_l, \quad (14)$$
$$B = \bigcup_{l=m+t_0-2}^{n+m-3} E_l,$$

and for p = 2, 3, ..., m + 1,

$$L_p = \bigcup_{l=m-p+2}^{m-1} E_l, \quad R_p = \bigcup_{l=n+m-2}^{n+m+p-5} E_l, \quad (15)$$

with the convention that  $L_2 := \emptyset, R_2 := \emptyset$ . Hence  $L_{m+1} \cup A = L, B \cup R_{m+1} = R$ . Then we can rewrite

(12) and (13) as

$$E_{m+i-2} = \begin{cases} f_i(L \cup M \cup R) \\ & \text{if } i \in J_{00}, \\ f_i(L \cup M \cup B \cup R_j) \\ & \text{if } i \in J_{0j} \setminus \{1\}; \ j \in \{2, \dots, m\}, \\ f_i(L_k \cup A \cup M \cup R) \\ & \text{if } i \in J_{k0} \setminus \{n\}; \ k \in \{2, \dots, m\}, \\ f_i(L_k \cup A \cup M \cup B \cup R_j) \\ & \text{if } i \in J_{kj}; \ k, \ j \in \{2, \dots, m\}. \end{cases}$$
(16)

$$\begin{cases} E_1 = f_{1^{m-1}}(L \cup M \cup B \cup R_t), \\ E_l = f_{1^{m-l}}(A \cup M \cup B \cup R_t); \\ l = 2, 3, \dots, m-1, \\ E_{n+2m-4} = f_{n^{m-1}}(L_q \cup A \cup M \cup R), \\ E_{n+m+l-3} = f_{n^l}(L_q \cup A \cup M \cup B); \\ l = 1, 2, \dots, m-2. \end{cases}$$
(17)

Now we show the relation between the groups of  $K^*$ :

**Statement 1.** We have (I)

$$A = \bigcup_{k=2}^{m} \bigcup_{j=0,2,...,m} \bigcup_{i \in J_{kj} \cap \{3,...,s_0\}} \{f_{(i-1)}(B \cup R_k)$$
$$\cup f_i(L_k \cup A \cup M)\}$$
$$\cup \{f_2(L_t \cup A \cup M) \cup f_{s_0}(R)\};$$
$$B = \bigcup_{k=2}^{m} \bigcup_{j=2}^{m} \bigcup_{i \in J_{kj} \cap \{t_0+1,...,n-1\}} \{f_{(i-1)}(B \cup R_k)$$
$$\cup f_i(L_k \cup A \cup M)\}$$
$$\cup \{f_{t_0}(L \cup M) \cup f_{(n-1)}(B \cup R_q)\};$$

- (II)  $L_p = f_1(A \cup M \cup B \cup R_t) \cup f_1(L_{p-1}), p = 3, 4, \dots, m$ , while  $L_{m+1} = f_1(L \cup M \cup B \cup R_t);$
- (III)  $R_p = f_n(L_q \cup A \cup M \cup B) \cup f_n(R_{p-1}), p = 3, 4, \dots, m$ , while  $R_{m+1} = f_n(L_q \cup A \cup M \cup R);$
- (IV)  $L = f_1(L \cup M \cup B \cup R_t) \cup A;$

(V) 
$$R = B \cup f_n(L_q \cup A \cup M \cup R);$$

$$M = \bigcup_{i \in J_{00}} f_i(L \cup M \cup R) \cup \bigcup_{j=2}^m$$
$$\bigcup_{i \in J_{0j} \cap \{s_0+1,\dots,t_0-2\}} \{f_i(L \cup M) \cup f_i^*(R)\}$$

$$\cup \bigcup_{j=0,2,\ldots,m} \bigcup_{k=2}^{m} \bigcup_{\substack{i \in J_{kj} \cap \{s_0+2,\ldots,t_0-1\}}} \{f_{(i-1)}(B \cup R_k) \cup f_i(L_k \cup A \cup M)\},$$

where we adopt the convention  $\{i, \ldots, j\} = \emptyset$ when i > j.

**Proof of Statement 1.** (I) By (14), (16) we have

$$\begin{split} A &= \bigcup_{l=m}^{m+s_0-2} E_l = \bigcup_{l=m}^{m+s_0-3} E_l \cup E_{m+s_0-2} = \bigcup_{k=2}^{m} \bigcup_{j=2}^{m} U_{j,j} \\ &= \bigcup_{i \in J_{kj} \cap \{2, \dots, s_0-1\}}^{m} f_i(L_k \cup A \cup M \cup B \cup R_j) \\ &= \bigcup_{k=2}^{m} \bigcup_{j=0,2,\dots,m} \bigcup_{i \in J_{kj} \cap \{3,\dots, s_0\}}^{m} \{f_{(i-1)}(B \cup R_k) \\ &\cup f_i(L_k \cup A \cup M)\} \\ &\cup \{f_2(L_t \cup A \cup M) \cup f_{s_0}(R)\}, \\ B &= \bigcup_{l=m+t_0-2}^{n+m-3} E_l = E_{m+t_0-2} \cup \bigcup_{l=m+t_0-1}^{n+m-3} E_l \\ &= \bigcup_{j=2}^{m} \bigcup_{i \in J_{kj} \cap \{t_0+1,\dots, n-1\}}^{m} f_i(L_k \cup A \cup M \cup B \cup R_j) \cup \bigcup_{k=2}^{m} f_i(L_k \cup A \cup M) \\ &\cup f_i(L_k \cup A \cup M)\} \\ &\cup \{f_{t_0}(L \cup M) \cup f_{(n-1)}(B \cup R_q)\}. \end{split}$$

By (13)-(15) and (17) we have

$$L_p = \bigcup_{l=m-p+2}^{m-1} E_l$$
$$= E_{m-1} \cup \bigcup_{l=m-p+2}^{m-2} E_l$$

$$= f_1(A \cup M \cup B \cup R_t)$$
$$\cup f_1\left(\bigcup_{l=m-p+3}^{m-1} E_l\right)$$
$$= f_1(A \cup M \cup B \cup R_t)$$
$$\cup f_1(L_{p-1}), \text{ for } p = 3, \dots, m,$$
$$L_{m+1} = \bigcup_{l=1}^{m-1} E_l$$
$$= f_1\left(\bigcup_{l=1}^{m+s_0-2} E_l\right)$$
$$\cup \bigcup_{l=m+s_0-1}^{m+t_0-3} E_l \cup \bigcup_{l=m+t_0-2}^{n+m+t-5} E_l\right)$$
$$= f_1(L \cup M \cup B \cup R_t),$$

and

$$\begin{split} R_p &= \bigcup_{l=n+m-2}^{n+m+p-5} E_l = E_{n+m-2} \cup \bigcup_{l=n+m-1}^{n+m+p-5} \\ E_l &= f_n(L_q \cup A \cup M \cup B) \cup f_n \left( \bigcup_{l=n+m-2}^{n+m+p-6} E_l \right) \\ &= f_n(L_q \cup A \cup M \cup B) \\ &\cup f_n(R_{p-1}), \quad \text{for } p = 3, \dots, m, \\ R_{m+1} &= \bigcup_{l=n+m-2}^{n+2m-4} \\ E_l &= f_n \left( \bigcup_{l=m-q+2}^{m-1} E_l \cup \bigcup_{l=m}^{m+s_0-2} E_l \cup \right) \\ &= \int_{l=m+s_0-1}^{m+t_0-3} E_l \cup \bigcup_{l=m+t_0-2}^{n+2m-4} E_l \right) \\ &= f_n(L_q \cup A \cup M \cup R), \end{split}$$

which proves (II) and (III). The proof of (IV) and (V) is direct from (II), (III) and the facts  $L = L_{m+1} \cup A, R = B \cup R_{m+1}$ . (VI) By (14), (16) we have

$$M = \bigcup_{l=m+s_0-1}^{m+t_0-3}$$

$$\begin{split} E_l &= \bigcup_{i \in J_{00}} f_i(L \cup M \cup R) \cup \bigcup_{j=2}^m \\ &\qquad \bigcup_{i \in J_{0j} \cap \{s_0+1, \dots, t_0-2\}} f_i(L \cup M \cup B \cup R_j) \\ &\qquad \cup \bigcup_{k=2}^m \bigcup_{i \in J_{k0} \cap \{s_0+2, \dots, t_0-1\}} f_i(L_k \cup A \cup M \cup M \cup R) \\ &\qquad \cup \bigcup_{k=2}^m \bigcup_{j=2}^m \\ &\qquad \bigcup_{i \in J_{kj} \cap \{s_0+2, \dots, t_0-2\}} f_i(L_k \cup A \cup M \cup B \cup R_j) \\ &= \bigcup_{i \in J_{00}} f_i(L \cup M \cup R) \cup \bigcup_{j=2}^m \\ &\qquad \bigcup_{i \in J_{0j} \cap \{s_0+1, \dots, t_0-2\}} \{f_i(L \cup M) \cup f_{i^*}(R)\} \\ &\qquad \cup \bigcup_{k=2}^m \bigcup_{j=0,2, \dots, m} \\ &\qquad \bigcup_{i \in J_{kj} \cap \{s_0+2, \dots, t_0-1\}} \{f_i(L_k \cup A \cup M) \\ &\qquad \cup f_{(i-1)}(B \cup R_k)\}. \end{split}$$

### $K^*$ has a configuration structure:

Now we are ready to construct the collections  $\{\mathcal{D}^k\}_{k\geq 0}$  and to establish a label mapping  $\ell: \bigcup_{k\geq 0} \mathcal{D}^k \to \{1, 2, \ldots, m+t+q-2\}$ . We first define the label mapping  $\ell$  on certain subsets of  $K^*$ , and then construct the collections  $\{\mathcal{D}^k\}_{k\geq 0}$  according to  $\ell$ . A compact subset  $A \subseteq K^*$  is said to be of pattern k if  $\ell(A) = k$ .

Define the mapping  $\ell$  as follows: for any  $I, J \in \bigcup_{s=0}^{\infty} \{1, 2, \dots, n\}^s$  with same length

$$\begin{cases} \ell(f_I(L \cup M) \cup f_J(R)) = 1, \\ \ell(f_I(B \cup R_p) \cup f_J(L_p \cup A \cup M)) = p; \\ p = 2, \dots, m, \\ \ell(f_I(L_{t-p+1} \cup A \cup M) \cup f_J(R)) = m + p; \\ p = 1, \dots, t - 1, \\ \ell(f_I(L \cup M) \cup f_J(B \cup R_{q-p+1})) = m + t + p - 1; \\ p = 1, \dots, q - 1, \end{cases}$$
(18)

with the convention that  $f_I$  and  $f_J$  are the identity when s = 0. Let  $\mathcal{D}^0 = \{K^*\}$  and so  $\ell(K^*) = 1$  by (14) and (18). We call  $K^*$  the 0-level pattern 1 set.

The set  $K^*$  can be decomposed into a union of disjoint subsets, i.e.

$$\begin{split} K^* &= \bigcup_{i \in J_{00}} f_i \left( \bigcup_{l=1}^{n+2m-4} E_l \right) \cup \bigcup_{j=2}^m \bigcup_{i \in J_{0j}} \left\{ f_i \left( \bigcup_{l=1}^{m+t_0-3} E_l \right) \right\} \\ &\cup f_{i^*} \left( \bigcup_{l=m+t_0-2}^{n+2m-4} E_l \right) \right\} \cup \bigcup_{k=2}^m \bigcup_{j=0,2,3,\dots,m} \\ &\bigcup_{i \in J_{kj}} \left\{ f_{(i-1)} \left( \bigcup_{l=m+t_0-2}^{n+m+k-5} E_l \right) \cup f_i \left( \bigcup_{l=m-k+2}^{m+t_0-3} E_l \right) \right\} \\ &= \bigcup_{i \in J_{00}} \left\{ f_i (L \cup M \cup R) \right\} \cup \bigcup_{j=2}^m \\ &\bigcup_{i \in J_{0j}} \left\{ f_i (L \cup M) \cup f_{i^*}(R) \right\} \\ &\cup \bigcup_{k=2}^m \bigcup_{j=0,2,3,\dots,m} \bigcup_{i \in J_{kj}} \left\{ f_{(i-1)} (B \cup R_k) \right\} \\ &\cup f_i (L_k \cup A \cup M) \right\}. \end{split}$$

We take  $\mathcal{D}^1$  to be the collection of sets in the braces. Hence, by (3), (4) and (18),  $\mathcal{D}^1$  consists of  $(n - \Sigma)$ number of 1-level pattern 1 sets and  $n_p$  number of 1-level pattern p sets for each  $p \in \{2, 3, \ldots, m\}$ .

In the following statement we show that for each  $1 \le k \le m+t+q-2$ , an *s*-level pattern *k* set can be decomposed into a disjoint union of certain (s+1)-level sets of patterns in  $\{1, 2, \ldots, m+t+q-2\}$ .

- **Statement 2.** (I) Each *s*-level pattern 1 set can be represented as a disjoint union of  $(n - \Sigma)$ number of (s + 1)-level pattern 1 sets and  $n_j$ number of (s+1)-level pattern *j* sets for each  $j \in \{2, 3, ..., m\}$ ;
  - (II) Each s-level pattern p with  $p \in \{3, \ldots, m\}$ can be represented as a disjoint union of  $(n - \Sigma - 1)$  number of (s+1)-level pattern 1 sets,  $n_j$ number of (s+1)-level pattern j sets for each  $j \in \{2, 3, \ldots, p-2, p, \ldots, m\}$  and  $(n_{p-1} + 1)$ number of (s+1)-level pattern (p-1) sets;
- (III) Each s-level pattern 2 can be represented as a disjoint union of  $(n \Sigma 2)$  number of (s+1)-level pattern 1 sets,  $n_j$  number of (s+1)-level pattern j sets for each  $j \in \{2, 3, \ldots, t-1, t+1, \ldots, q-1, q+1, \ldots, m\}, (n_t 1)$  number of (s+1)-level pattern t sets,  $(n_q 1)$  number

of (s + 1)-level pattern q sets, one (s + 1)level pattern (m + 1) set and one (s + 1)-level pattern (m + t) set;

- (IV) Each s-level pattern (m + p) set with  $p \in \{1, 2, \ldots, t 2\}$  can be represented as a disjoint union of  $(n \Sigma 1)$  number of (s + 1)-level pattern 1 sets,  $n_j$  number of (s+1)-level pattern j sets for each  $j \in \{2, 3, \ldots, m\}$  and one (s + 1)-level of pattern (m + p + 1) set;
- (V) Each s-level pattern (m + t 1) set can be represented as a disjoint union of  $(n - \Sigma - 1)$  number of (s + 1)-level pattern 1 sets,  $n_j$ number of (s+1)-level pattern j sets for each  $j \in \{2, \ldots, t-1, t+1, \ldots, m\}, (n_t-1)$  number of (s+1)-level pattern t sets and one (s+1)level pattern (m + 1) set;
- (VI) Each s-level pattern (m + p + t 1) set with  $p \in \{1, 2, \ldots, q 2\}$  can be represented as a disjoint union of  $(n \Sigma 1)$  number of (s+1)-level pattern 1 sets,  $n_j$  number of (s+1)-level pattern j sets for each  $j \in \{2, 3, \ldots, m\}$  and one (s + 1)-level of pattern (m + p + t) set;
- (VII) Each s-level pattern (m+t+q-2) set can be represented as a disjoint union of  $(n-\Sigma-1)$ number of (s+1)-level pattern 1 sets,  $n_j$  number of (s+1)-level pattern j sets for each  $j \in \{2, \ldots, q-1, q+1, \ldots, m\}, (n_q-1)$  number of (s+1)-level pattern q sets and one (s+1)-level pattern (m+t) set.

**Proof of Statement 2.** In the following proof we adopt the convention that  $\{i, \ldots, j\} = \emptyset$  when i < j.

Let  $I, J \in \bigcup_{s=0}^{\infty} \{1, 2, \dots, n\}^s$  with same length, then by Statement 1(I) and (IV) we have

$$f_J(A) = \bigcup_{k=2}^m \bigcup_{j=0,2,\dots,m} \{f_{J(i-1)}(B \cup R_k) \\ \bigcup_{i \in J_{kj} \cap \{3,\dots,s_0\}} \{f_{J(i-1)}(B \cup R_k) \\ \bigcup f_{Ji}(L_k \cup A \cup M)\} \\ \cup \{f_{J2}(L_t \cup A \cup M) \cup f_{Js_0}(R)\},$$

$$f_I(B) = \bigcup_{k=2}^m \bigcup_{j=2}^m \bigcup_{i \in J_{kj} \cap \{t_0+1,\dots,n-1\}} \{f_{I(i-1)}(B \cup R_k) \\ \bigcup f_{Ii}(L_k \cup A \cup M)\}$$

$$\cup \{f_{It_0}(L \cup M) \cup f_{I(n-1)}(B \cup R_t)\},$$

$$f_J(M) = \bigcup_{i \in J_{00}} f_{Ji}(L \cup M \cup R) \cup \bigcup_{j=2}^m \bigcup_{i \in J_{0j} \cap \{s_0+1, \dots, t_0-2\}} \{f_{Ji}(L \cup M) \cup f_{Ji^*}(R)\}$$

$$\cup \bigcup_{k=2}^m \bigcup_{j=0,2,\dots,m} \{f_{J(i-1)}(B \cup R_k)$$

$$\cup f_{Ji}(L_k \cup A \cup M)\}.$$

Hence, by (3), (4) and (18),  $f_I(B) \cup f_J(A \cup M)$  can be represented as a disjoint union of  $(n - \Sigma - 2)$ number of (s+1)-level pattern 1 sets,  $n_j$  number of (s+1)-level pattern j sets for each  $j \in \{2, 3, \ldots, t-1, t+1, \ldots, q-1, q+1, \ldots, m\}$ ,  $(n_t - 1)$  number of (s+1)-level pattern t sets,  $(n_q - 1)$  number of (s+1)-level pattern q sets, one (s+1)-level pattern (m+1) set and one (s+1)-level pattern (m+t) set, which proves (III).

By Statement 1(IV) and (V), we have

$$\begin{split} f_I(L \cup M) \cup f_J(R) \\ &= f_{I1}(L \cup M) \cup f_{I1}(B \cup R_t) \cup f_I(A) \cup f_I(M) \\ &\cup f_J(B) \cup f_{Jn}(L_q \cup A \cup M) \cup f_{Jn}(R) \\ &= \bigcup_{k=2}^m \bigcup_{j=0,2,\dots,m} \bigcup_{i \in J_{kj} \cap \{3,\dots,s_0\}} \{f_{I(i-1)}(B \cup R_k) \\ &\cup f_{Ii}(L_k \cup A \cup M)\} \\ &\cup \{f_{I2}(L_t \cup A \cup M) \cup f_{Is_0}(R)\} \\ &\cup \{f_{I2}(L_t \cup A \cup M) \cup f_{Is_0}(R)\} \\ &\cup \{f_{I1}(L \cup M) \cup f_{I1}(B \cup R_t) \cup f_I(M) \\ &\cup \{f_{Jt_0}(L \cup M) \cup f_{J(n-1)}(B \cup R_q)\} \\ \\ &\cup \bigcup_{k=2}^m \bigcup_{j=2}^m \bigcup_{i \in J_{kj} \cap \{t_0+1,\dots,n-1\}} \{f_{J(i-1)}(B \cup R_k) \\ &\cup f_{Jn}(L_q \cup A \cup M) \cup f_{Jn}(R) \\ &= \bigcup_{k=2}^m \bigcup_{j=0,2,\dots,m} \bigcup_{i \in J_{kj} \cap \{2,\dots,s_0\}} \{f_{I(i-1)}(B \cup R_k) \\ &\cup f_{Ii}(L_k \cup A \cup M)\} \\ &\cup f_{Ii}(L_k \cup A \cup M)\} \\ &\cup \{f_{I1}(L \cup M) \cup f_{Is_0}(R)\} \end{split}$$

2050051-10

$$\cup f_I(M) \cup \{f_{Jt_0}(L \cup M) \cup f_{Jn}(R)\}$$

$$\cup \bigcup_{k=2}^m \bigcup_{j=0,2,\dots,m} \{f_{J(i-1)}(B \cup R_k)$$

$$\cup f_{Ji}(L_k \cup A \cup M)\},$$

which, by the decomposition of  $f_I(M)$  and Eqs. (3), (4) and (18), proves (I) By Statement 1(II) and (III), we get

$$\begin{split} f_{I}(B \cup R_{p}) \cup f_{J}(L_{p} \cup A \cup M) \\ &= f_{I}(B) \cup f_{In}(L_{q} \cup A \cup M \cup B \cup R_{p-1}) \\ &\cup f_{J}(A) \cup f_{J}(M) \\ &\cup f_{J1}(L_{p-1} \cup A \cup M \cup B \cup R_{t}) \\ &= \{f_{It_{0}}(L \cup M) \cup f_{I(n-1)}(B \cup R_{q})\} \\ &\cup \bigcup_{k=2}^{m} \bigcup_{j=2}^{m} \bigcup_{i \in J_{kj} \cap \{t_{0}+1, \dots, n-1\}} \{f_{I(i-1)}(B \cup R_{k}) \\ &\cup f_{Ii}(L_{k} \cup A \cup M)\} \cup f_{In}(L_{q} \cup A \cup M) \\ &\cup f_{In}(B \cup R_{p-1}) \\ &\cup \{f_{J2}(L_{t} \cup A \cup M) \cup f_{Js_{0}}(R)\} \\ &\cup \bigcup_{k=2}^{m} \bigcup_{j=0,2, \dots, m} \bigcup_{i \in J_{kj} \cap \{3, \dots, s_{0}\}} \{f_{J(i-1)}(B \cup R_{k}) \\ &\cup f_{Ji}(L_{k} \cup A \cup M)\} \\ &\cup f_{Ji}(L_{k} \cup A \cup M)\} \\ &\cup \int_{Ji}(L_{k} \cup A \cup M)\} \\ &\cup \int_{k=2}^{m} \bigcup_{j=0,2, \dots, m} \bigcup_{i \in J_{kj} \cap \{t_{0}+1, \dots, n\}} \{f_{I(i-1)}(B \cup R_{k}) \\ &\cup \int_{k=2}^{m} \bigcup_{j=0,2, \dots, m} \bigcup_{i \in J_{kj} \cap \{t_{0}+1, \dots, n\}} \{f_{J(i-1)}(B \cup R_{k}) \\ &\cup \int_{k=2}^{m} \bigcup_{j=0,2, \dots, m} \bigcup_{i \in J_{kj} \cap \{2, \dots, s_{0}\}} \{f_{J(i-1)}(B \cup R_{k}) \\ &\cup \int_{k=2}^{m} \bigcup_{j=0,2, \dots, m} \bigcup_{i \in J_{kj} \cap \{2, \dots, s_{0}\}} \{f_{J(i-1)}(B \cup R_{k}) \\ &\cup \int_{k=2}^{m} \bigcup_{j=0,2, \dots, m} \bigcup_{i \in J_{kj} \cap \{2, \dots, s_{0}\}} \{f_{J(i-1)}(B \cup R_{k}) \\ &\cup \int_{k=2}^{m} \bigcup_{j=0,2, \dots, m} \bigcup_{i \in J_{kj} \cap \{2, \dots, s_{0}\}} \{f_{J(i-1)}(B \cup R_{k}) \\ &\cup \int_{k=2}^{m} \bigcup_{j=0,2, \dots, m} \bigcup_{i \in J_{kj} \cap \{2, \dots, s_{0}\}} \{f_{J(i-1)}(B \cup R_{k}) \\ &\cup \int_{k=2}^{m} \bigcup_{j=0,2, \dots, m} \bigcup_{i \in J_{kj} \cap \{2, \dots, s_{0}\}} \{f_{J(i-1)}(B \cup R_{k}) \\ &\cup \int_{k=2}^{m} \bigcup_{j=0,2, \dots, m} \bigcup_{i \in J_{kj} \cap \{2, \dots, s_{0}\}} \{f_{J(i-1)}(B \cup R_{k}) \\ &\cup \int_{k=2}^{m} \bigcup_{i \in J_{k} \cup \{2, \dots, s_{0}\}} \{f_{J(i-1)}(B \cup R_{k}) \\ &\cup \int_{k=2}^{m} \bigcup_{i \in J_{k} \cup \{2, \dots, s_{0}\}} \{f_{J(i-1)}(B \cup R_{k}) \\ &\cup \int_{k=2}^{m} \bigcup_{i \in J_{k} \cup \{2, \dots, s_{0}\}} \{f_{J(i-1)}(B \cup R_{k}) \\ &\cup \int_{k=2}^{m} \bigcup_{i \in J_{k} \cup \{2, \dots, s_{0}\}} \{f_{J(i-1)}(B \cup R_{k}) \\ &\cup \int_{k=2}^{m} \bigcup_{i \in J_{k} \cup \{2, \dots, s_{0}\}} \{f_{J(i-1)}(B \cup R_{k}) \\ &\cup \int_{k=2}^{m} \bigcup_{i \in J_{k} \cup \{2, \dots, s_{0}\}} \{f_{J(i-1)}(B \cup R_{k}) \\ &\cup \int_{k=2}^{m} \bigcup_{i \in J_{k} \cup \{2, \dots, s_{0}\}} \{f_{J(i-1)}(B \cup R_{k}) \\ &\cup \int_{k=2}^{m} \bigcup_{i \in J_{k} \cup \{2, \dots, s_{0}\}} \{f_{J(i-1)}(B \cup R_{k}) \\ &\cup \int_{k=2}^{m} \bigcup_{i \in J_{k} \cup \{2, \dots, s_{0}\}} \{f_{J(i-1)}(B \cup R_{k}) \\ &\cup \int_{k=2}^{m} \bigcup_{i \in J_{k} \cup \{2, \dots,$$

which, by the decomposition of  $f_J(M)$  and Eqs. (3), (4) and (18), proves (II).

Hausdorff Dimension of Univoque Sets of Self-Similar Sets

By Statement 1(II),  

$$f_{I}(L_{t-p+1} \cup A \cup M) \cup f_{J}(R)$$

$$= f_{I1}(L_{t-p} \cup A \cup M \cup B \cup R_{t}) \cup f_{I}(A)$$

$$\cup f_{I}(M) \cup f_{J}(B) \cup f_{Jn}(L_{q} \cup A \cup M \cup R)$$

$$= f_{I1}(L_{t-p} \cup A \cup M) \cup f_{I1}(B \cup R_{t})$$

$$\cup \{f_{I2}(L_{t} \cup A \cup M) \cup f_{Is_{0}}(R)\}$$

$$\cup \int_{I_{12}(L_{t} \cup A \cup M)} \bigcup \{f_{Jt_{0}}(L \cup M)$$

$$\cup f_{Ii}(L_{k} \cup A \cup M)\} \cup \{f_{Jt_{0}}(L \cup M)$$

$$\cup f_{Jn}(L_{q} \cup A \cup M) \cup f_{Jn}(R)$$

$$\cup \bigcup_{k=2}^{m} \bigcup_{j=2i=2i\in J_{kj} \cap \{t_{0}+1,\dots,n-1\}} \{f_{J(i-1)}(B \cup R_{k})$$

$$\cup \int_{Ji}(L_{k} \cup A \cup M)\} \cup f_{Is_{0}}(R)\} \cup f_{I}(M)$$

$$\cup \bigcup_{k=2}^{m} \bigcup_{j=0,2,\dots,m} \bigcup_{i\in J_{kj} \cap \{2,\dots,s_{0}\}} \{f_{I(i-1)}(B \cup R_{k})$$

$$\cup f_{Ii}(L_{k} \cup A \cup M)\} \cup \bigcup_{k=2j=0,2,\dots,m} \{f_{J(i-1)}(B \cup R_{k})$$

$$\cup f_{Ii}(L_{k} \cup A \cup M)\} \cup \{f_{Jt_{0}}(L \cup M)$$

$$\cup f_{Jn}(R)\}; p = 1, 2, \dots, t - 2,$$
which, by the decomposition of  $f_{I}(M)$  and Eqs. (3),  
(4) and (18), proves (IV).  
By Statement 1(V),  
 $f_{I}(A \cup M) \cup f_{J}(R)$ 

$$= \{f_{I2}(L_{t} \cup A \cup M) \cup f_{Is_{0}}(R)\}$$

$$\cup f_{Jn}(L_{q} \cup A \cup M \cup R)$$

$$= \{f_{I2}(L_{t} \cup A \cup M) \cup f_{Is_{0}}(R)\}$$

$$\cup \int_{Im}(L_{q} \cup A \cup M \cup R)$$

$$= \{f_{I2}(L_{t} \cup A \cup M) \cup f_{Is_{0}}(R)\}$$

$$\cup \int_{Im}(L_{q} \cup A \cup M \cup R)$$

$$= \{f_{I2}(L_{t} \cup A \cup M) \cup f_{Is_{0}}(R)\}$$

$$\cup \int_{Im}(M) \cup \{f_{Jt_{0}}(L \cup M) \cup f_{J(n-1)}(B \cup R_{k})\}$$

$$\cup \int_{Im}(M) \cup \{f_{Jt_{0}}(L \cup M) \cup f_{J(n-1)}(B \cup R_{k})\}$$

$$\cup \int_{Im}(L_{q} \cup A \cup M \cup R)$$

$$= \{f_{I2}(L_{t} \cup A \cup M)\}$$

2050051-11

$$\cup \bigcup_{k=2}^{m} \bigcup_{j=2}^{m} \bigcup_{i \in J_{kj} \cap \{t_0+1,...,n-1\}} \{f_{J(i-1)}(B \cup R_k) \\ \cup f_{Ji}(L_k \cup A \cup M) \} \\ \cup f_{Jn}(L_q \cup A \cup M) \cup f_{Jn}(R) \\ = \{f_{I2}(L_t \cup A \cup M) \cup f_{Is_0}(R)\} \cup f_I(M) \\ \cup \{f_{Jt_0}(L \cup M) \cup f_{Jn}(R)\} \\ \cup \bigcup_{k=2}^{m} \bigcup_{j=0,2,...,m} \bigcup_{i \in J_{kj} \cap \{3,...,s_0\}} \{f_{I(i-1)}(B \cup R_k) \\ \cup f_{Ii}(L_k \cup A \cup M)\} \\ \cup \bigcup_{k=2}^{m} \bigcup_{j=0,2,...,m} \bigcup_{i \in J_{kj} \cap \{t_0+1,...,n\}} \{f_{J(i-1)}(B \cup R_k) \\ \cup f_{Ji}(L_k \cup A \cup M)\},$$

which, by the decomposition of  $f_I(M)$  and Eqs. (3), (4) and (18), proves (V).

By Statement 1(III) and (IV), we get

$$\begin{split} f_{I}(L \cup M) \cup f_{J}(B \cup R_{q-p+1}) \\ &= f_{I1}(L \cup M \cup B \cup R_{t}) \cup f_{I}(A) \cup f_{I}(M) \\ &\cup f_{J}(B) \cup f_{Jn}(L_{q} \cup A \cup M \cup B \cup R_{q-p}) \\ &= f_{I1}(L \cup M) \cup f_{I1}(B \cup R_{t}) \cup f_{I}(M) \\ &\cup \{f_{I2}(L_{t} \cup A \cup M) \cup f_{Is_{0}}(R)\} \\ &\cup \bigcup_{k=2}^{m} \bigcup_{j=0,2,...,m} \bigcup_{i \in J_{kj} \cap \{3,...,s_{0}\}} \{f_{I(i-1)}(B \cup R_{k}) \\ &\cup f_{Ii}(L_{k} \cup A \cup M)\} \\ &\cup \bigcup_{k=2}^{m} \bigcup_{j=2}^{m} \bigcup_{i \in J_{kj} \cap \{t_{0}+1,...,n-1\}} \{f_{J(i-1)}(B \cup R_{k}) \\ &\cup f_{Ji}(L_{k} \cup A \cup M)\} \cup \{f_{Jt_{0}}(L \cup M) \\ &\cup f_{J(n-1)}(B \cup R_{q})\} \cup f_{Jn}(L_{q} \cup A \cup M) \\ &\cup f_{Jn}(B \cup R_{q-p}) \\ &= \{f_{I1}(L \cup M) \cup f_{Is_{0}}(R)\} \cup f_{I}(M) \\ &\cup \bigcup_{k=2}^{m} \bigcup_{j=0,2,...,m} \bigcup_{i \in J_{kj} \cap \{t_{0}+1,...,n\}} \{f_{J(i-1)}(B \cup R_{k}) \\ &\cup \prod_{k=2}^{m} \bigcup_{j=0,2,...,m} \bigcup_{i \in J_{kj} \cap \{t_{0}+1,...,n\}} \{f_{J(i-1)}(B \cup R_{k}) \\ \\ &\cup \bigcup_{k=2}^{m} \bigcup_{j=0,2,...,m} \bigcup_{i \in J_{kj} \cap \{t_{0}+1,...,n\}} \{f_{J(i-1)}(B \cup R_{k}) \\ \\ &\cup \bigcup_{k=2}^{m} \bigcup_{j=0,2,...,m} \bigcup_{i \in J_{kj} \cap \{t_{0}+1,...,n\}} \{f_{J(i-1)}(B \cup R_{k}) \\ \\ &\cup \bigcup_{k=2}^{m} \bigcup_{j=0,2,...,m} \bigcup_{i \in J_{kj} \cap \{t_{0}+1,...,n\}} \{f_{J(i-1)}(B \cup R_{k}) \\ \\ &\cup \bigcup_{k=2}^{m} \bigcup_{j=0,2,...,m} \bigcup_{i \in J_{kj} \cap \{t_{0}+1,...,n\}} \{f_{J(i-1)}(B \cup R_{k}) \\ \\ &\cup \bigcup_{k=2}^{m} \bigcup_{j=0,2,...,m} \bigcup_{i \in J_{kj} \cap \{t_{0}+1,...,n\}} \{f_{J(i-1)}(B \cup R_{k}) \\ \\ &\cup \bigcup_{k=2}^{m} \bigcup_{j=0,2,...,m} \bigcup_{i \in J_{kj} \cap \{t_{0}+1,...,n\}} \{f_{J(i-1)}(B \cup R_{k}) \\ \\ &\cup \bigcup_{k=2}^{m} \bigcup_{j=0,2,...,m} \bigcup_{i \in J_{kj} \cap \{t_{0}+1,...,n\}} \{f_{J(i-1)}(B \cup R_{k}) \\ \\ &\cup \bigcup_{k=2}^{m} \bigcup_{j=0,2,...,m} \bigcup_{i \in J_{kj} \cap \{t_{0}+1,...,n\}} \{f_{J(i-1)}(B \cup R_{k}) \\ \\ &\cup \bigcup_{k=2}^{m} \bigcup_{j=0,2,...,m} \bigcup_{i \in J_{kj} \cap \{t_{0}+1,...,n\}} \{f_{J(i-1)}(B \cup R_{k}) \\ \\ &\cup \bigcup_{k=2}^{m} \bigcup_{j=0,2,...,m} \bigcup_{i \in J_{kj} \cap \{t_{0}+1,...,n\}} \{f_{J(i-1)}(B \cup R_{k}) \\ \\ &\cup \bigcup_{i \in J_{k} \cap I_{k}} \bigcup_{i \in J_{kj} \cap \{t_{k} \cup I_{k}\}} \bigcup_{i \in J_{k} \cap I_{k}} \bigcup_{i \in J_{k} \cap I$$

$$\bigcup f_{Jn}(B \cup R_{q-p}) \}; \ p = 1, 2, \dots, t-2,$$
which, by the decomposition of  $f_I(M)$  and Eqs. (3),  
(4) and (18), proves (VI).  
By Statement 1(IV), we have  

$$f_I(L \cup M) \cup f_J(B) = f_{I1}(L \cup M \cup B \cup R_t) \cup f_I(A) \cup f_I(M) \cup f_J(B)$$

$$= f_{I1}(L \cup M) \cup f_{I1}(B \cup R_t)$$

$$\cup \{f_{I2}(L_t \cup A \cup M) \cup f_{Is_0}(R)\} \cup f_I(M)$$

$$\cup \bigcup_{k=2}^m \bigcup_{j=0,2,\dots,m} \bigcup_{i \in J_{kj} \cap \{3,\dots,s_0\}} \{f_{I(i-1)}(B \cup R_k)$$

$$\cup f_{Ii}(L_k \cup A \cup M)\}$$

$$\cup \bigcup_{k=2}^m \bigcup_{j=2}^m \bigcup_{i \in J_{kj} \cap \{t_0+1,\dots,n-1\}} \{f_{J(i-1)}(B \cup R_k)$$

$$\cup f_{Ji}(L_k \cup A \cup M)\}$$

$$\cup \{f_{I1}(L \cup M) \cup f_{Is_0}(R)\} \cup \{f_{Jt_0}(L \cup M)$$

$$\cup f_{J(n-1)}(B \cup R_q)\} \cup f_I(M)$$

$$\cup \bigcup_{k=2}^m \bigcup_{j=0,2,\dots,m} \bigcup_{i \in J_{kj} \cap \{2,\dots,s_0\}} \{f_{I(i-1)}(B \cup R_k)$$

$$\cup f_{Ii}(L_k \cup A \cup M)\}$$

$$\cup \bigcup_{k=2}^m \bigcup_{j=0,2,\dots,m} \bigcup_{i \in J_{kj} \cap \{2,\dots,s_0\}} \{f_{I(i-1)}(B \cup R_k)$$

$$\cup f_{Ii}(L_k \cup A \cup M)\}$$

$$\cup \bigcup_{k=2}^m \bigcup_{j=0,2,\dots,m} \bigcup_{i \in J_{kj} \cap \{2,\dots,s_0\}} \{f_{I(i-1)}(B \cup R_k)$$

$$\cup f_{Ii}(L_k \cup A \cup M)\}$$

$$\cup \bigcup_{k=2}^m \bigcup_{j=0,2,\dots,m} \bigcup_{i \in J_{kj} \cap \{2,\dots,s_0\}} \{f_{I(i-1)}(B \cup R_k)$$

$$\cup \bigcup_{k=2}^m \bigcup_{j=0,2,\dots,m} \bigcup_{i \in J_{kj} \cap \{2,\dots,s_0\}} \{f_{I(i-1)}(B \cup R_k)$$

 $\cup f_{Ji}(L_k \cup A \cup M) \} \cup \{ f_{Jt_0}(L \cup M) \}$ 

 $\cup f_{Ji}(L_k \cup A \cup M)\},\$ 

which, by the decomposition of  $f_I(M)$  and Eqs. (3), (4) and (18), proves (VII). Thus according to above Statement 2 we can define  $\mathcal{D}^k$  inductively.

Now we take  $\delta_k = \lambda^k, \forall k \ge 1$ . For  $A \in \mathcal{D}^s; s \ge 0$ we have  $c_1 \lambda^s \leq |A| \leq n \lambda^s$ , where  $c_1 = \min\{\lambda, 1 - 1\}$  $\lambda$ . On the other hand, for every  $A \in \mathcal{D}^s$ ;  $s \ge 0$  and  $B, B' \in \mathcal{F}(A)$  with  $B \neq B'$  we have

$$\operatorname{dist}(B, B') \ge c_2 \lambda^s,$$

where  $c_2 = \lambda \min\{ \text{dist}(f_i(1), f_{(i+1)}(0)); 1 \le i \le n 1, f_i([0,1]) \cap f_{(i+1)}([0,1]) = \emptyset\}.$ 

Therefore,  $K^*$  satisfies the conditions in Definitions (2.1) and (2.2) for  $c = \max\{n, c_1^{-1}, c_2^{-1}\}$  and  $\delta_k = \lambda^k; k \ge 1.$ From the above analysis we find that  $K^*$  has a

configuration structure of (m + t + q - 2) patterns

and the corresponding  $(m\!+\!t\!+\!q\!-\!2)\!\times\!(m\!+\!t\!+\!q\!-\!2)$  matrix is

The spectral radius of the above matrix is just the largest positive root of the equation:

$$x^{m}(x^{t+q-2}-1) + nx^{m-1}(1-x^{t+q-2}) + (n_{2}x^{m-2} + n_{3}x^{m-3} + \dots + n_{m}) \times (2x^{t+q-2} - x^{q-1} - x^{t-1}) = 0.$$

This finishes the proof of the lemma.

**Lemma 3.2.** Suppose that  $|f_1([0,1]) \cap f_2([0,1])| = \lambda^t$  and  $f_{n-1}([0,1]) \cap f_n([0,1]) = \emptyset$ , or  $f_1([0,1]) \cap f_2([0,1]) = \emptyset$  and  $|f_{n-1}([0,1]) \cap f_n([0,1])| = \lambda^t$  for some  $t \in \{2, 3, ..., m\}$ , then

$$\dim_H \mathcal{U} = \frac{\log \gamma}{-\log \lambda}$$

where  $\gamma$  is the largest positive root of the equation

$$x^{m+t-1} - nx^{m+t-2} + (n_2 x^{m-2} + n_3 x^{m-3} + \dots + n_m)(2x^{t-1} - 1) = 0.$$

**Proof.** In the following we only consider the case  $f_{n-1}([0,1]) \cap f_n([0,1]) = \emptyset$  and  $|f_1([0,1]) \cap f_2([0,1])| = \lambda^t$  for some  $t \in \{2,3,\ldots,m\}$ . Thus  $1 \in J_{0t}$  and  $n \in J_{00}$ .

Since  $f_{n-1}([0,1]) \cap f_n([0,1]) = \emptyset$  then we have  $t_0 = n, B = \emptyset, R_{m+1} = R$  and an s-level set of pattern 2 does not generate any (s+1)-level set of pattern m+t for any  $s \ge 0$ , then we do not get any of the patterns  $m+t, m+t+1, \ldots, m+t+q-2$ .

Thus, the proof of this lemma is just a special case of the proof of Lemma 3.1. In this case we get  $K^* = \bigcup_{i=1}^{n+2m-4} E_i \subset K$ , where

$$E_{m+i-2}$$

$$= \begin{cases} f_i \left( \bigcup_{l=1}^{n+2m-4} E_l \right) & \text{if } i \in J_{00} \setminus \{n\}, \\ f_i \left( \bigcup_{l=1}^{n+m+j-5} E_l \right) & \text{if } i \in J_{0j} \setminus \{1\}; \quad 2 \le j \le m, \\ f_i \left( \bigcup_{l=m-k+2}^{n+2m-4} E_l \right) & \text{if } i \in J_{k0} \setminus; \quad 2 \le k \le m, \\ f_i \left( \bigcup_{l=m-k+2}^{n+m+j-5} E_l \right) & \text{if } i \in J_{kj}; \quad 2 \le k, \ j \le m, \end{cases}$$

$$(20)$$

and

$$\begin{cases} E_1 = f_1(E_1 \cup E_2), \\ E_k = f_1(E_{k+1}); \quad k = 2, \dots, \ m-2, \\ E_{m-1} = f_1 \left( \bigcup_{l=m}^{n+2m+t-5} E_l \right), \\ E_{n+m-2} = f_n \left( \bigcup_{l=1}^{n+m-3} E_l \right), \\ E_{n+m+k-3} = f_n(E_{n+m+k-4}); \quad k = 2, \dots, \ m-2, \\ E_{n+2m-4} = f_n(E_{n+2m-4} \cup E_{n+2m-5}). \end{cases}$$

$$(21)$$

We also have

$$L = \bigcup_{l=1}^{m+s_0-2} E_l, \quad M = \bigcup_{l=m+s_0-1}^{m+n-3} E_l,$$

$$R = \bigcup_{l=m+n-2}^{n+2m-4} E_l, \quad A = \bigcup_{l=m}^{m+s_0-2} E_l,$$
(22)

and for  $p = 2, 3, \ldots, m + 1$ ,

$$L_p = \bigcup_{l=m-p+2}^{m-1} E_l, \quad R_p = \bigcup_{l=n+m-2}^{n+m+p-5} E_l, \quad (23)$$

with the convention that  $L_2 := \emptyset, R_2 := \emptyset$ . Hence  $L_{m+1} \cup A = L, R_{m+1} = R$ . Then we can rewrite

(20) and (21) as

$$E_{m+i-2}$$

$$= \begin{cases} f_i(L \cup M \cup R) & \text{if } i \in J_{00} \setminus \{n\}, \\ f_i(L \cup M \cup R_j) & \text{if } i \in J_{0j} \setminus \{1\}; \ j \in \{2, \dots, m\}, \\ f_i(L_k \cup A \cup M \cup R) & \text{if } i \in J_{k0}; \ k \in \{2, \dots, m\}, \\ f_i(L_k \cup A \cup M \cup R_j) & \text{if } i \in J_{kj}; k, j \in \{2, \dots, m\}, \end{cases}$$
(24)

$$\begin{cases} E_1 = f_{1^{m-1}}(L \cup M \cup R_t), \\ E_l = f_{1^{m-l}}(A \cup M \cup R_t); \\ l = 2, 3, \dots, m-1, \\ E_{n+2m-4} = f_{n^{m-1}}(L \cup M \cup R), \\ E_{n+m+l-3} = f_{n^l}(L \cup M); \\ l = 1, 2, \dots, m-2. \end{cases}$$

$$(25)$$

Then we can define the label mapping as follows: for any  $I, J \in \bigcup_{s=0}^{\infty} \{1, 2, \dots, n\}^s$  with same length

$$\begin{cases}
\ell(f_I(L \cup M) \cup f_J(R)) = 1, \\
\ell(f_I(R_p) \cup f_J(L_p \cup A \cup M)) = p; \\
p = 2, \dots, m, \\
\ell(f_I(L_{t-p+1} \cup A \cup M) \cup f_J(R)) = m + p; \\
p = 1, \dots, t - 1,
\end{cases}$$
(26)

with the convention that  $f_I$  and  $f_J$  are the identity when s = 0.

Let  $\mathcal{D}^0 = \{K^*\}$  and so  $\ell(K^*) = 1$  by (22) and (26). We call  $K^*$  the 0-level pattern 1 set.

The set  $K^*$  can be decomposed into a union of disjoint subsets, i.e.

$$\begin{split} K^* &= \bigcup_{i \in J_{00}} f_i \left( \bigcup_{l=1}^{n+2m-4} E_l \right) \cup \bigcup_{j=2}^m \\ &\qquad \bigcup_{i \in J_{0j}} \left\{ f_i \left( \bigcup_{l=1}^{m+n-3} E_l \right) \cup f_{i^*} \left( \bigcup_{l=m+n-2}^{n+2m-4} E_l \right) \right\} \\ &\qquad \cup \bigcup_{k=2}^m \bigcup_{j=0,2,3,\dots,m} \bigcup_{i \in J_{kj}} \left\{ f_{(i-1)} \left( \bigcup_{l=m+n-2}^{n+m+k-5} E_l \right) \right\} \\ &\qquad \cup f_i \left( \bigcup_{l=m-k+2}^{m+n-3} E_l \right) \right\} \\ &= \bigcup_{i \in J_{00}} f_i \{ (L \cup M \cup R) \} \end{split}$$

$$\cup \bigcup_{j=2}^{m} \bigcup_{i \in J_{0j}} \{f_i(L \cup M) \cup f_{i^*}(R)\}$$
$$\cup \bigcup_{k=2}^{m} \bigcup_{j=0,2,3,\dots,m} \bigcup_{i \in J_{kj}} \{f_{(i-1)}(R_k)$$
$$\cup f_i(L_k \cup A \cup M)\}.$$

We take  $\mathcal{D}^1$  to be the collection of sets in the braces. Hence, by (3), (4) and (26),  $\mathcal{D}^1$  consists of  $(n - \Sigma)$ number of 1-level pattern 1 sets and  $n_p$  number of 1level pattern p sets for each  $p \in \{2, 3, \ldots, m\}$ . This way we can construct  $\mathcal{D}^k, k \geq 0$  inductively.

Statement 2 can be reformulated as follows.

- Statement 2. (I) Each *s*-level pattern 1 set can be represented as a disjoint union of  $(n - \Sigma)$ number of (s + 1)-level pattern 1 sets and  $n_j$ number of (s + 1)-level pattern *j* sets for each  $j \in \{2, 3, ..., m\}$ ;
- (II) Each s-level pattern p with  $p \in \{3, \ldots, m\}$  can be represented as a disjoint union of  $(n - \Sigma - 1)$  number of (s + 1)-level pattern 1 sets,  $n_j$ number of (s + 1)-level pattern j sets for each  $j \in \{2, 3, \ldots, p - 2, p, \ldots, m\}$  and  $(n_{p-1} + 1)$ number of (s + 1)-level pattern (p - 1) sets;
- (III) Each s-level pattern 2 can be represented as a disjoint union of  $(n \Sigma 2)$  number of (s + 1)-level pattern 1 sets,  $n_j$  number of (s + 1)-level pattern j sets for each  $j \in \{2, 3, \ldots, t 1, t+1, \ldots, m\}, (n_t-1)$  number of (s+1)-level pattern t sets and one (s + 1)-level pattern (m + 1) set;
- (IV) Each s-level pattern (m + p) set with  $p \in \{1, 2, ..., t 2\}$  can be represented as a disjoint union of  $(n \Sigma 1)$  number of (s + 1)-level pattern 1 sets,  $n_j$  number of (s + 1)-level pattern j sets for each  $j \in \{2, 3, ..., m\}$  and one (s + 1)-level of pattern (m + p + 1) set;
- (V) Each s-level pattern (m + t 1) set can be represented as a disjoint union of  $(n - \Sigma - 1)$  number of (s + 1)-level pattern 1 sets,  $n_j$ number of (s + 1)-level pattern j sets for each  $j \in \{2, \ldots, t-1, t+1, \ldots, m\}, (n_t-1)$  number of (s + 1)-level pattern t sets and one (s + 1)level pattern (m + 1) set.

Therefore,  $K^*$  has a configuration structure of (m + t - 1) patterns and the corresponding  $(m+t-1) \times (m+t-1)$  matrix is

where the spectral radius is the largest positive root of the equation:

$$x^{m+t-1} - nx^{m+t-2} + (n_2 x^{m-2} + n_3 x^{m-3} + \dots + n_m) \times (2x^{t-1} - 1) = 0.$$

This finishes the proof.

**Lemma 3.3.** Suppose that  $f_1([0,1]) \cap f_2([0,1]) =$  $f_{n-1}([0,1]) \cap f_n([0,1]) = \emptyset$ . Then

$$\dim_H \mathcal{U} = \frac{\log \gamma}{-\log \lambda}$$

where  $\gamma$  is the largest positive root of the equation

$$x^{m} - nx^{m-1} + 2(n_{2}x^{m-2} + n_{3}x^{m-3} + n_{4}x^{m-4} + \dots + n_{m-1}x + n_{m}) = 0.$$

**Proof.** Here we have  $1, n \in J_{00}$ . The proof is also a special case of the proof of Lemma 3.1. Since  $f_1([0,1]) \cap f_2([0,1]) = f_{n-1}([0,1]) \cap f_n([0,1]) = \emptyset$ then we have  $s_0 = 1, t_0 = n, A = B = \emptyset, L_{m+1} =$  $L, R_{m+1} = R$  and an s-level set of pattern 2 does not generate any (s+1)-level set of pattern m+1 or any (s+1)-level set of pattern m+t for any  $s \ge 0$ , then we do not get any of the patterns m + 1, m +2,..., m + t - 1, m + t, m + t + 1, ..., m + t + q - 2. In this case we get  $K^* = \bigcup_{i=1}^{n+2m-4} E_i \subset K$ , where

 $E_{m+i-2}$ 

$$= \begin{cases} f_{i} \left( \bigcup_{l=1}^{n+2m-4} E_{l} \right) & \text{if } i \in J_{00} \setminus \{1, n\}, \\ f_{i} \left( \bigcup_{l=1}^{n+m+j-5} E_{l} \right) & \text{if } i \in J_{0j}; \ 2 \leq j \leq m, \\ f_{i} \left( \bigcup_{l=m-k+2}^{n+2m-4} E_{l} \right) & \text{if } i \in J_{k0}; \ 2 \leq k \leq m, \\ f_{i} \left( \bigcup_{l=m-k+2}^{n+m+j-5} E_{l} \right) & \text{if } i \in J_{kj}; 2 \leq k, j \leq m, \end{cases}$$

$$(28)$$

and

$$\begin{cases} E_1 = f_1(E_1 \cup E_2), \\ E_k = f_1(E_{k+1}); \quad k = 2, \dots, m-2, \\ E_{m-1} = f_1 \left( \bigcup_{l=m}^{n+2m-4} E_l \right), \\ E_{n+m-2} = f_n \left( \bigcup_{l=1}^{n+m-3} E_l \right), \\ E_{n+m+k-3} = f_n(E_{n+m+k-4}); \\ k = 2, \dots, m-2, \\ E_{n+2m-4} = f_n(E_{n+2m-4} \cup E_{n+2m-5}). \end{cases}$$
(29)

We also have

$$L = \bigcup_{l=1}^{m-1} E_l, \quad M = \bigcup_{l=m}^{m+n-3} E_l,$$

$$R = \bigcup_{l=m+n-2}^{n+2m-4} E_l,$$
(30)

and for p = 2, 3, ..., m

$$L_p = \bigcup_{l=m-p+2}^{m-1} E_l, \quad R_p = \bigcup_{l=n+m-2}^{n+m+p-5} E_l, \quad (31)$$

with the convention that  $L_2 := \emptyset, R_2 := \emptyset$ . Then we can rewrite (28) and (29) as

$$E_{m+i-2} = \begin{cases} f_i(L \cup M \cup R) & \text{if } i \in J_{00} \setminus \{1, n\}, \\ f_i(L \cup M \cup R_j) & \text{if } i \in J_{0j}; \ j \in \{2, \dots, m\}, \\ f_i(L_k \cup M \cup R) & \text{if } i \in J_{k0}; \\ k \in \{2, \dots, m\}, \\ f_i(L_k \cup M \cup R_j) & \text{if } i \in J_{kj}; \\ k, j \in \{2, \dots, m\}, \end{cases}$$
(32)

$$\begin{cases} E_1 = f_{1^{m-1}}(L \cup M \cup R), \\ E_l = f_{1^{m-l}}(M \cup R); & l = 2, 3, \dots, m-1, \\ E_{n+2m-4} = f_{n^{m-1}}(L \cup M \cup R), \\ E_{n+m+l-3} = f_{n^l}(L \cup M); \\ & l = 1, 2, \dots, m-2. \end{cases}$$
(33)

Then we can define the label mapping as follows: for any  $I, J \in \bigcup_{s=0}^{\infty} \{1, 2, \dots, n\}^s$  with same length

$$\begin{cases} \ell(f_I(L\cup M)\cup f_J(R))=1,\\ \ell(f_I(R_p)\cup f_J(L_p\cup A\cup M))=p; \ p=2,\ldots,m, \end{cases}$$
(34)

with the convention that  $f_I$  and  $f_J$  are the identity when s = 0.

Let  $\mathcal{D}^0 = \{K^*\}$  and so  $\ell(K^*) = 1$  by (30) and (34). We call  $K^*$  the 0-level pattern 1 set.

The set  $K^*$  can be decomposed into a union of disjoint subsets, i.e.

$$\begin{split} K^* &= \bigcup_{i \in J_{00}} f_i \left( \bigcup_{l=1}^{n+2m-4} E_l \right) \cup \bigcup_{j=2}^m \\ &\bigcup_{i \in J_{0j}} \left\{ f_i \left( \bigcup_{l=1}^{m+n-3} E_l \right) \cup f_{i^*} \left( \bigcup_{l=m+n-2}^{n+2m-4} E_l \right) \right\} \\ &\cup \bigcup_{k=2}^m \bigcup_{j=0,2,3,\dots,m} \bigcup_{i \in J_{kj}} \left\{ f_{(i-1)} \left( \bigcup_{l=m+n-2}^{n+m+k-5} E_l \right) \right\} \\ &\cup f_i \left( \bigcup_{l=m-k+2}^{m+n-3} E_l \right) \right\} \\ &= \bigcup_{i \in J_{00}} f_i \{ (L \cup M \cup R) \} \cup \bigcup_{j=2}^m \\ &\bigcup_{i \in J_{0j}} \{ f_i (L \cup M) \cup f_{i^*} (R) \} \cup \bigcup_{k=2}^m \\ &\bigcup_{j=0,2,3,\dots,m} \bigcup_{i \in J_{kj}} \{ f_{(i-1)} (R_k) \cup f_i (L_k \cup M) \}. \end{split}$$

We take  $\mathcal{D}^1$  to be the collection of sets in the braces. Hence, by (3), (4) and (34),  $\mathcal{D}^1$  consists of  $(n - \Sigma)$ number of 1-level pattern 1 sets and  $n_p$  number of 1level pattern p sets for each  $p \in \{2, 3, \ldots, m\}$ . This way we can construct  $\mathcal{D}^k, k \geq 0$  inductively.

Statement 2 can be reformulated as follows.

**Statement 2.** (I) Each *s*-level pattern 1 set can be represented as a disjoint union of  $(n - \Sigma)$  number of (s + 1)-level pattern 1 sets and  $n_j$ number of (s + 1)-level pattern j sets for each  $j \in \{2, 3, \ldots, m\};$ 

- (II) Each s-level pattern p with  $p \in \{3, \ldots, m\}$ can be represented as a disjoint union of  $(n - \Sigma - 1)$  number of (s + 1)-level pattern 1 sets,  $n_j$  number of (s + 1)-level pattern j sets for each  $j \in \{2, 3, \ldots, p - 2, p, \ldots, m\}$ ,  $(n_{p-1} + 1)$ number of (s + 1)-level pattern (p - 1) sets;
- (III) Each s-level pattern 2 can be represented as a disjoint union of  $(n \Sigma 2)$  number of (s + 1)-level pattern 1 sets,  $n_j$  number of (s + 1)-level pattern j sets for each  $j \in \{2, 3, \ldots, m\}$ .

Therefore,  $K^*$  has a configuration structure of (m) patterns and the corresponding  $(m \times m)$  matrix is

$$\begin{pmatrix} n - \Sigma & n_2 & n_3 \cdots n_m \\ n - \Sigma - 2 & n_2 & n_3 \cdots n_m \\ n - \Sigma - 1 & n_2 + 1 & n_3 \cdots n_m \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ n - \Sigma - 1 & n_2 & n_3 \cdots n_m \end{pmatrix},$$
(35)

where the spectral radius is the largest positive root of the equation:

$$x^{m} - nx^{m-1} + 2(n_{2}x^{m-2} + n_{3}x^{m-3} + \dots + n_{m}) = 0.$$
  
This finishes the proof.

**Proof of Theorem 1.1.** It is just based on Lemmas 3.3, 3.2 and 3.1. □

# ACKNOWLEDGMENTS

The second author was supported by NSFC Nos. 11671147, 11971079 and Science and Technology Commission of Shanghai Municipality (STCSM) No. 13dz2260400.

# REFERENCES

- J. E. Hutchinson, Fractals and self-similarity, *Indiana* Univ. Math. J. **30**(5) (1981) 713–747.
- M. de Vries and V. Komornik, Unique expansions of real numbers, Adv. Math. 221(2) (2009) 390–427.
- 3. P. Erdős, M. Horváth and I. Joó, On the uniqueness of the expansions  $1 = \sum q^{-n_i}$ , Acta Math. Hungar. **58**(3–4) (1991) 333–342.
- P. Glendinning and N. Sidorov, Unique representations of real numbers in non-integer bases, *Math. Res. Lett.* 8(4) (2001) 535–543.

Hausdorff Dimension of Univoque Sets of Self-Similar Sets

- 5. K. Dajani, K. Jiang, D. Kong and W. Li, Multiple expansions of real numbers with digits set  $\{0, 1, q\}$ , preprint (2015), arXiv:1508.06138.
- X. Chen, K. Jiang and W. X. Li, Estimating the Hausdorff dimensions of univoque sets for self-similar sets, *Indag. Math.* **30**(5) (2019) 862–873.
- 7. K. Jiang, S. Wang and L. Xi, On self-similar sets with exact overlaps, submitted (2017).
- K. Dajani, K. Jiang, D. Kong, W. Li and L. Xi, Multiple codings for self-similar sets with overlaps, preprint (2016), arXiv:1603.09304.