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Abstract

An approach is given for estimating the Hausdorff dimension of the univoque set of a self-similar
set. This sometimes allows us to get the exact Hausdorff dimensions of the univoque sets.
c⃝ 2019 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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1. Introduction

Let { fi }
m
i=1 be an iterated function system (IFS) of contractive similitudes on Rd defined as

fi (x) = ri Ri x + bi , i ∈ Ω = {1, . . . , m},

where 0 < ri < 1 is the contractive ratio, Ri is a d × d orthogonal transformation
and x, bi ∈ Rd . Then there exists a unique nonempty compact set K ⊆ Rd satisfying
(cf. [9])

K =

m⋃
i=1

fi (K ). (1)
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The set K is called the self-similar set generated by the IFS { f j }
m
j=1. The IFS { f j }

m
j=1 is said

to satisfy the open set condition (OSC) (cf. [9]) if there exists a non-empty bounded open set
V ⊆ Rd such that

V ⊇

m⋃
i=1

fi (V ) with disjoint union on the right side.

Under the open set condition, the Hausdorff dimension of K coincides with the similarity
dimension, denoted by dimS K , which is the unique solution s of the equation

∑m
j=1 r s

j = 1.
For any x ∈ K , there exists a sequence (in)∞n=1 ∈ {1, . . . , m}

N such that

x = lim
n→∞

fi1 ◦ · · · ◦ fin (0) =

∞⋂
n=1

fi1 ◦ · · · ◦ fin (K ).

Such sequence (in)∞n=1 is called a coding of x . The attractor K defined by (1) may equivalently
be defined to be the set of points in Rd which admit a coding, i.e., one can define a surjective
projection map between the symbolic space ΩN

= {1, . . . , m}
N and the self-similar set K by

Π ((in)∞n=1) := lim
n→∞

fi1 ◦ · · · ◦ fin (0).

A point x ∈ K may have multiple codings. x ∈ K is called a univoque point if it has only one
coding. The set of univoque points is called the univoque set, denoted by U or U1. Generally,
for k ∈ N we set

Uk = {x ∈ K : x has exact k codings}.

The univoque set plays a pivotal role in studying the sets of multiple codings (cf. [4,5,10]),
e.g., we have

dimH Uk ≤ dimH U for k ≥ 2, (2)

since Uk ⊆
⋃

i∈Ω∗ fi(U ) where, as usual, Ω∗
=

⋃
∞

n=1 Ω
n and fi = fi1 ◦ · · · ◦ fin for

i = i1 · · · in ∈ Ωn . Therefore, it is crucial to find the Hausdorff dimension of the univoque set
for self-similar sets. There are many papers about the Hausdorff dimension of U when K is an
interval (cf. [1,2,6,7,12–14,19,20]). In geometry measure theory, the slicing problem has strong
connection with the multiple representations, see [3,11,22,23]. To consider the dimension of
set of points with unique representation is essentially a problem of finding the dimension of the
univoque sets. Motivated by the multiple codings, Gu, Ye, and Xi [8] considered the geodesics
on the higher-dimensional (bigger than 3) Sierpinski gasket, and they proved that the cardinality
of the geodesics between two points in the Sierpinski gasket must be in {1, 2, 3, 4, 5, 6, 8}. For
more results concerning geodesics, see [16,21,24–26].

In the present paper, we offer an approach to estimate dimH U for general self-similar sets.
Let M be a nonempty compact subset of Rd satisfying fi (M) ⊆ M for 1 ≤ i ≤ m (so K ⊆ M).
Let (Recalling that Ω = {1, . . . , m})

S1 = {k ∈ Ω : fk(M) ∩ fj(M) = ∅ for all j ∈ Ω \ {k}},

T1 = Ω \ S1.

For positive integer i let

Si+1 = {k ∈ Ti × Ω : fk(M) ∩ fj(M) = ∅ for all j ∈ (Ti × Ω ) \ {k}},

Ti+1 = (Ti × Ω ) \ Si+1.
(3)
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We have that both Si and Ti are subsets of Ω i , and that Sk = Tk = ∅ for k > i if Ti = ∅ for
some i . Note that Si+1 may also be empty even if Ti ̸= ∅. Let

Γ =

⋃
i≥1

Si . (4)

From the definition of Si it follows that sets fk(M), k ∈ Γ are pairwise disjoint. It is clear that
Γ becomes largest when M is taken as K . To help the readers have a better understanding of
the definitions of Si and Ti , we provide some examples in Section 3. In Example 3.1, we offer
the sets Si , Ti , 1 ≤ i ≤ 3. Other Si , Ti , i ≥ 4 can be obtained inductively. An i ∈ ΩN is said to
begin with Γ if i|k ∈ Γ for some k ∈ N. Let

V = {i ∈ ΩN
: i does not begin with Γ }. (5)

Each k ∈ Γ is a word of finite length, i.e., k ∈ Ω∗. The concatenation of an infinite sequence
from Γ is just an element of ΩN. Thus the product set ΓN can be identified as the subset of
ΩN and so Π

(
ΓN)

⊆ Π
(
ΩN)

= K . In this paper we obtain

Theorem 1.1. Let Γ and V be defined by (4) and (5) respectively. Then

dimH U = max{dimH Π
(
ΓN) , dimH Π (V ∩ Π −1(U ))}.

Let s be determined by∑
i∈Γ

r s
i = 1.

Then we have dimH Π
(
ΓN)

= s which will be proved in Lemma 2.1. Hence

Corollary 1.2. We have dimH U ≥ s and the equality holds if and only if dimH Π (V ∩

Π −1(U )) ≤ s.

The OSC plays an important role in determining the Hausdorff dimension of a self-similar
set. Let us recall that K is generated by the IFS { fi }

m
i=1 in (1). The following fact is obvious:

0 < Hs(U ) = Hs(K ) < ∞ if { fi }
m
i=1 satisfies the OSC, (6)

where s is given by
∑m

i=1 r s
i = 1. In fact, we have U = K \

(
K ∗

∪
⋃

i∈Ω∗ fi(K ∗)
)

with
K ∗

=
⋃

i ̸= j ( fi (K ) ∩ f j (K )) and the OSC implies that Hs( fi (K ) ∩ f j (K )) = 0 for any i ̸= j
(see [18]).

From (6) it follows that dimH U = dimH K = dimS K if the IFS { fi }
m
i=1 satisfies the open set

condition. We shall show that under some extra condition the inverse is also true. An IFS { fi }
m
i=1

is said to have an exact overlap if there exist distinct i, j ∈ Ω∗ such that fi = fj. The notion of
“generalized finite type condition” appeared in the following lemma which was posed by Lau
and Ngai in [15]. This condition is a little complicated. It is weaker than the open set condition.
Roughly speaking, when the IFS has some overlaps that are not so complex, i.e. the overlaps in
each level, when generating the overlapping self-similar set, appear regularly. Therefore, we are
able to define the so-called “type”. The key of generalized finite type condition is that there are
only finite “types” in all the levels. From the symbolic perspective, we transform the full shift
into some sofic shift or subshift of finite type. Subsequently, we are allowed to calculate the
dimension of the associated attractor. With the definition of generalized finite type condition,
we have the following result.
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Theorem 1.3. Let K be the self-similar set generated by the IFS { fi }
m
i=1. Suppose that { fi }

m
i=1

satisfies the generalized finite type condition. Then { fi }
m
i=1 satisfies the open set condition if

and only if dimH U = dimS K .

This paper is organized as follows. In Section 2, we give the proofs of Theorems 1.1 and
1.3. Section 3 is devoted to some examples.

2. Proof of Theorems 1.1 and 1.3

Denote by ij the concatenation of i, j ∈ Ω∗ and ik stands for the concatenation of i with
itself k times. By |i| we denote the length of i ∈ Ω∗. For i = i1 · · · ik ∈ Ω∗ we denote by [i] the
cylinder set based on i, i.e., [i] = {(xi ) ∈ ΩN

: xi = ii for 1 ≤ i ≤ k}. For an i = (ik)k≥1 ∈ ΩN

let i|p = i1 · · · i p. For i = i1 · · · ik ∈ Ω∗ denote fi = fi1 ◦ · · · ◦ fik and ri =
∏k

ℓ=1 riℓ .

Lemma 2.1. Let Γ ⊆ Ω∗ be given by (4). Then Π
(
ΓN)

⊆ U and dimH Π
(
ΓN)

= s where
s is determined by

∑
i∈Γ r s

i = 1.

Proof. Note that by the definition of Γ we have
(I) [i], i ∈ Γ are pairwise disjoint;
(II) fi(K ) ∩ Π

(
ΩN

\ [i]
)

= ∅ for each i ∈ Γ .
First we show that Π

(
ΓN)

⊆ U . For an x ∈ Π
(
ΓN) let x = Π ((xk)k≥1) with (xk)k≥1 ∈ ΓN.

Suppose that (yk)k≥1 ∈ ΩN satisfies that x = Π ((yk)k≥1). We claim that (yk)k≥1 = (xk)k≥1. On
the contrary, let ℓ be the smallest integer such that yℓ ̸= xℓ. Let (xk)k≥1 = (ik)k≥1 with ik ∈ Γ .
Let γ be smallest integer such that ℓ ≤ |i1 · · · iγ |. Then

Π ((xk)k≥δ) = Π ((yk)k≥δ) where δ = |i1 · · · iγ | − |iγ | + 1.

However, Π ((xk)k≥δ) ∈ fiγ (K ), iγ ∈ Γ and (yk)k≥δ /∈ [iγ ]. This leads to a contradiction to the
fact fiγ (K ) ∩ Π

(
ΩN

\ [iγ ]
)

= ∅.
In what follows we prove that dimH Π

(
ΓN)

= s. If Γ is finite, then Π
(
ΓN) is a self-similar

set generated by the IFS { fi : i ∈ Γ }. This IFS satisfies the OSC since K ⊇
⋃

i∈Γ fi(K ) with
disjoint union. Thus dimH Π

(
ΓN)

= s.
In the following we assume that Γ is infinite. Denote Γk = {i ∈ Γ : |i| ≤ k}, k ∈ N. Then

Γk is finite (we assume k is big enough such that Γk ̸= ∅). Thus

dimH Π
(
ΓN

k

)
= sk where

∑
i∈Γk

r sk
i = 1.

Therefore, dimH Π
(
ΓN)

≥ supk sk = limk→∞ sk = s where the last equality can be obtained
by the equation

∑
i∈Γ r s

i = 1 and Γ =
⋃

k≥1 Γk .
Arbitrarily fix a t > s. For any δ > 0 one can take a big integer n such that each set in

{ fi(K ) : i ∈ Γ n
} has diameter less than δ. Note that∑

i∈Γn

| fi(K )|t = |K |
t

(∑
i∈Γ

r t
i

)n

≤ |K |
t ,

which implies that dimH Π
(
ΓN)

≤ t . □

Proof of Theorem 1.1. Note that

ΩN
= V ∪ V c

= V ∪ ΓN
∪ {ui : u ∈ Γ ∗, i ∈ V }.
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Thus

Π −1(U ) = ΓN
∪ (V ∩ Π −1(U )) ∪ {uj : u ∈ Γ ∗, j ∈ V ∩ Π −1(U )},

which implies the desired result. □

Now we turn to proving Theorem 1.3. We need following

Lemma 2.2 ([28, Theorem 2.1]). An IFS { fi }
m
i=1 satisfies the open set condition if and only if

it is of general finite type and has no exact overlaps.

Proof of Theorem 1.3. The necessity follows from (6). We now prove the sufficiency. Note
that { fi }

m
i=1 is of general finite type. Thus by Lemma 2.2 it suffices to show that the IFS

{ fi }
m
i=1 has no exact overlaps. Otherwise, there exist distinct i, j ∈ Ω∗ such that fi = fj.

Let K1 be the self-similar set generated by the IFS { fk : k ∈ Ω |i| and k ̸= i}. Then
dimH K1 ≤ dimH K < dimS K . On the other hand, for any x ∈ U its unique coding cannot
contain the block i and so x ∈ K1. Thus, dimH U ≤ dimH K1 ≤ dimH K < dimS K , a
contradiction! □

3. Examples

The result in the following example was obtained in [27] by giving a lexicographical
characterization of the unique codings. Now we reprove it by applying Theorem 1.1, which
provides a quite different way from that in [27].

Example 3.1 (see [27]). Let K be the self-similar set generated by the IFS

{ f1(x) = ρx, f2(x) = ρx + ρ, f3(x) = ρx + 1} where 0 < ρ < (3 −
√

5)/2.

Then dimH U =
log λ

− log ρ
, where λ ≈ 2.3247 is the appropriate solution of

x3
− 3x2

+ 2x − 1 = 0.

Proof. First one can check that f1 ◦ f3 = f2 ◦ f1. Take M = [0, (1 − ρ)−1]. Then

f1(M) ∩ f2(M) = [0, ρ/(1 − ρ)] ∩ [ρ, (2ρ − ρ2)/(1 − ρ)] = [ρ, ρ/(1 − ρ)]

and

f1(M) ∩ f3(M) = f2(M) ∩ f3(M) = ∅.

(see Fig. 1).
By the definitions of Si and Ti , it is easy to check that

S1 = {3},S2 = {23},S3 = {123, 223},

and

T1 = {1, 2}, T2 = {11, 12, 13, 21, 22},

T3 = {111, 112, 113, 121, 122, 131, 132, 133, 211, 212, 213, 221, 222}.

For k ≥ 3 the set Sk becomes a bit complicated. However, it is not so difficult to find out that
|Sk | = k − 1 by noting that f1 ◦ f3 = f2 ◦ f1, where |A| denotes the cardinality of set A. Let
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Fig. 1. The location of fi (M), i = 1, 2, 3.

Γ =
⋃

k≥1 Sk . Thus by Lemma 2.1

dimH Π
(
ΓN)

= s, where ρs
+ ρ2s

+

∞∑
k=3

(k − 1)ρks
= 1.

It is an easy exercise to check that s =
log λ

− log ρ
where λ ≈ 2.3247 is the appropriate solution of

x3
− 3x2

+ 2x − 1 = 0.
Now we show that dimH Π (V ) ≤ s, where V = {i ∈ ΩN

: i does not begin with Γ } is as
that in Theorem 1.1. By the geometric structure of K one can see that for each positive integer
k, the set Π (V ) can be covered by 2k many number of intervals of length ρk(ρ − 1)−1. Thus

Hs
ρk (ρ−1)−1 (Π (V )) ≤ (1 − ρ)−s(2ρs)k

→ 0 as k → ∞

since 2ρs < 1. Thus, dimH U =
log λ

− log ρ
by Theorem 1.1. □

Example 3.2. Take 0 < λ < (3 −
√

5)/2. Let K be the self-similar set generated by the IFS
{ f1, . . . , f5} where

fi (x, y) = (λx, λy) + (ai , bi )

with (a1, b1) = (0, 0), (a2, b2) = (1 − λ, 0), (a3, b3) = (1 − λ, 1 − λ), (a4, b4) = (0, 1 − λ) and

(a5, b5) = (λ(1−λ), (1−λ)2). Then dimH U = s ≈
log 4.61347

− log λ
where λ3s

−2λ2s
+5λs

−1 = 0.

Proof. First one can check that f4 ◦ f2 = f5 ◦ f4. Among the squares fi ([0, 1]2), 1 ≤ i ≤ 5,
only f4([0, 1]2)∩ f5([0, 1]2) ̸= ∅ (see Fig. 2). Thus S1 = {1, 2, 3} and S2 = {41, 43, 51, 52, 53}.
As in above example, for k ≥ 3 the set Sk becomes a bit complicated. However, it is not so
difficult to find out that |Sk | = 3k −1 by noting that f4 ◦ f2 = f5 ◦ f4. Let Γ =

⋃
k≥1 Sk . Thus

by Lemma 2.1 we have dimH Π
(
ΓN)

= s ≈
log 4.61347

− log λ
where

3λs
+ 5λ2s

+

∞∑
k=3

(3k − 1)λks
= 1,

which is equivalent to λ3s
− 2λ2s

+ 5λs
− 1 = 0.

Now we show that dimH (Π (V ∩ Π −1(U ))) ≤ s, where

V = {i ∈ ΩN
: i does not begin with Γ }
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Fig. 2. The locations of squares fi ([0, 1]2), i = 1, 2, 3, 4, 5.

is as that in Theorem 1.1. By the geometric structure of K one can see that for each positive
integer k, the set (Π (V ∩Π −1(U ))) can be covered by 2k many number of squares with diameter√

2λk . Thus

Hs
√

2λk (Kα) ≤ 2k
√

2
s
λsk

→ 0 as k → ∞

since 2λs < 1. Thus, dimH U = s by Theorem 1.1. □

In the above we change the map f5 by letting

(a5, b5) = (λ − λu+1, 1 − 2λ + λu+1) with u ∈ N,

where we require that λu+1
−3λ+1 > 0. Then dimH U can be also obtained by the same way

as in Example 3.2 and so dimH Uk, k ≥ 2 can be obtained as well. In fact, we have

Example 3.3. Suppose that λ ∈ (0, 1), u ∈ N satisfy λu+1
− 3λ + 1 > 0. Let K be the

self-similar set generated by the IFS { f1, . . . , f5} where

fi (x, y) = (λx, λy) + (ai , bi )

with (a1, b1) = (0, 0), (a2, b2) = (1 − λ, 0), (a3, b3) = (1 − λ, 1 − λ), (a4, b4) = (0, 1 − λ) and
(a5, b5) = (λ − λu+1, 1 − 2λ + λu+1). Then

dimH Uk+1 = dimH U for any k ∈ N.

Proof. By (2) we only need to show that dimH Uk+1 ≥ dimH U . This will be done by showing

f42uk 1(U ) ⊆ Uk+1 for each k ≥ 1.

Now arbitrarily fix a point c ∈ U with the unique coding (ci ). We prove that f42uk 1(c) ∈

Uk+1, k ≥ 1 by induction.
Let k = 1. Note that x1 = f42u 1(c) = f54u 1(c) ∈ f42u ([0, 1]2) = f54u ([0, 1]2) and

fi([0, 1]2) ∩ f42u ([0, 1]2) = ∅ for all i ∈ {1, 2, 3, 4, 5}
u+1

\ {42u, 54u, 54u−15}.

Hence any coding (di ) of x1 has to begin with 42u , 54u or 54u−15. We claim that (di ) cannot
begin with 54u−15. Otherwise, we have f41(c) = f51(c) ∈ f41([0, 1]2) ∩ f51([0, 1]2) = ∅. On
the other hand, we have π (σ u+1(di )) = π (1(ci )) = f1(c) ∈ U where σ is the left shift on ΩN.
Thus, (di ) has to be 42u1(ci ) or 54u1(ci ), i.e., x1 ∈ U2.
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Suppose that xk = f42uk 1(c) = π (42uk1(ci )) ∈ Uk+1. Let (di ) be a coding of xk+1 :=

f42u(k+1)1(c). As before we know that (di ) has to begin with 42u , 54u or 54u−15, and so (di ) has
to begin with 42u−1 or 54u−1. Note that

xk+1 = f42u (π (2uk1(ci ))) = f54u (π (2uk1(ci ))) = f54u−1 (π (42uk1(ci ))) = f54u−1 (xk).

For the case that (di ) begins with 42u−1 we have that (di ) = 42uk1(ci ) since π (σ u(di )) =

π (2uk+11(ci )) ∈ U . For the case that (di ) begins with 54u−1 we have that (di ) has exactly k +1
many choices since

π ((di )i>u) = π (σ u(di )) = π (42uk(ci )) = xk ∈ Uk+1.

Hence we complete the proof. □

In the last example we try to describe Γ by a way which was developed in [15,17].

Example 3.4. Let K be the self-similar set generated by the IFS{
f1(x) =

x
4
, f2(x) =

x
4

+
9

17
, f3(x) =

x + 3
4

}
Then dimH U = s, where s is the unique solution of the following equation:

1
4s

+
1

42s
+

∞∑
n=2

(an + cn)
1

4(n+1)s = 1,

where an, cn for n ≥ 2 are determined by⎛⎜⎜⎜⎜⎝
an

bn

cn

dn

en

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0 1 0 0 1
0 1 0 1 1
1 0 1 0 0
1 0 1 0 0
0 1 0 1 0

⎞⎟⎟⎟⎟⎠
n−2⎛⎜⎜⎜⎜⎝

1
1
1
1
1

⎞⎟⎟⎟⎟⎠ (7)

Proof. We take M = [0, 1] (one can check that fi (M) ⊆ M for i ∈ Ω := {1, 2, 3}) and label
it by T1. Its offspring are

f1(M) = [0, 1/4], f2(M) = [9/17, 53/68] and f3(M) = [3/4, 1].

Then (see Fig. 3)

S1 = {1} and T1 = {2, 3}.

Note that the offspring of f1(M) have the same geometric location as the offspring of M .
So f1(M) is labeled by T1 as well. We label f2(M) and f3(M) by T2 and T3, respectively. Thus
one can simply denote M and its offspring as follows:

(M, T1) → ( f1(M), T1) + ( f2(M), T2) + ( f3(M), T3).

Now let us calculate fi(M) : i ∈ T1 × Ω :

f21(M) =

[
9

17
,

9
17

+
1

16

]
, f22(M) =

[
45
68

,
45
68

+
1

16

]
,

f23(M) =

[
195
272

,
195
272

+
1
16

]
f31(M) =

[
3
4
,

3
4

+
1
16

]
, f32(M) =

[
60
68

,
60
68

+
1

16

]
, f33(M) =

[
15
16

, 1
]

.
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Fig. 3. The location of fi (M), i = 1, 2, 3.

Fig. 4. The location of fi(M), i ∈ T1 × Ω .

Thus we have (see Fig. 4)

S2 = {21} and T2 = (T1 × Ω ) \ S2 = {22, 23, 31, 32, 33}.

By the same argument as above the offspring f21(M) of f2(M) has label T1, while the other
two offspring f22(M), f23(M) of f2(M) will obtain new labels T4, T5, respectively. This can
be simply denoted by

( f2(M), T2) → ( f21(M), T1) + ( f22(M), T4) + ( f23(M), T5). (8)

Similarly, for the f3(M) and its offspring we have

( f3(M), T3) → ( f31(M), T6) + ( f32(M), T2) + ( f33(M), T3). (9)

Since one knows what will happen for the offspring of f32(M) and f33(M), let us continue to
calculate the offspring of fi(M) : i ∈ T2 \ {32, 33} = {22, 23, 31}:

f221(M) =

[
45
68

,
45
68

+
1
64

]
, f222(M) =

[
189
272

,
189
272

+
1
64

]
,

f223(M) =

[
771
1088

771
1088

+
1

64

]
f231(M) =

[
195
272

,
195
272

+
1

64

]
, f232(M) =

[
51
68

,
51
68

+
1

64

]
,

f233(M) =

[
831
1088

,
831

1088
+

1
64

]
f311(M) =

[
3
4
,

3
4

+
1

64

]
, f312(M) =

[
213
272

,
213
272

+
1
64

]
,

f313(M) =

[
51
64

,
52
64

]
.
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Fig. 5. The location of fi(M), i ∈ (T2 \ {32, 33}) × Ω .

Thus we have (see Fig. 5)

( f22(M), T4) → ( f221(M), T1) + ( f222(M), T4) + ( f223(M), T5)
( f23(M), T5) → ( f231(M), T6) + ( f232(M), T2) + ( f233(M), T3)
( f31(M), T6) → ( f311(M), T2) + ( f312(M), T2) + ( f313(M), T3)

(10)

It is important to notice that no more labels occur in the above expression. Note that we have
f232 = f311. Thus f232(M) and f311(M) contribute nothing to Γ . Therefore, we replace (10)
by

( f22(M), T4) → ( f221(M), T1) + ( f222(M), T4) + ( f223(M), T5)
( f23(M), T5) → ( f231(M), T6) + ( f233(M), T3)
( f31(M), T6) → ( f312(M), T2) + ( f313(M), T3)

(11)

It follows from (8), (9) and (11) that only T2 and T4 have contribution to Γ . Together with
(3) one knows that the cardinality of Sn+1 (n ≥ 2) equals the number of T2 and T4 occurring
in the nth generation offspring. By an, bn, cn, dn and en we denote the number of T2, T3, T4, T5
and T6 occurring in the nth generation offspring. By (8), (9) and (11) we have⎛⎜⎜⎜⎜⎝

an+1
bn+1
cn+1
dn+1
en+1

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0 1 0 0 1
0 1 0 1 1
1 0 1 0 0
1 0 1 0 0
0 1 0 1 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

an

bn

cn

dn

en

⎞⎟⎟⎟⎟⎠ := A

⎛⎜⎜⎜⎜⎝
an

bn

cn

dn

en

⎞⎟⎟⎟⎟⎠ , n ≥ 2.

By (8) and (9) we have

a2 = b2 = c2 = d2 = e2 = 1,

and so (7) is obtained. Therefore, we have dimH Π
(
ΓN)

= s, where s is the unique solution
of the following equation:

1 =
1
4s

+
1

42s
+

∞∑
n=2

|Sn+1|
1

4(n+1)s =
1
4s

+
1

42s
+

∞∑
n=2

(an + cn)
1

4(n+1)s .

In what follows we will show that dimH Π (V ∩Π −1(U )) ≤ s. One can check that the spectral
radius of A is about λ ≈ 2.2775. We claim that λ < 4s . In fact, we have 4s > 4t

≈ 2.4693
where t is determined by

1
4t

+
1

42t
+

5∑
n=2

(an + cn)
1

4(n+1)t =
1
4t

+
1

42t
+

2
43t

+
4

44t
+

9
45t

+
21
46t

= 1.
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Note that

lim
n→∞

Hs
4−n−2 (Π (V ∩ Π −1(U ))) ≤ lim

n→∞
(an+1 + bn+1 + cn+1 + dn+1 + en+1)4(−n−2)s < ∞,

where the last inequality holds since all the an+1, bn+1, cn+1, dn+1, en+1 are bounded by cλn

for some c > 0, and the fact λ < 4s . □
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