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Moreover, for M = 2 we show that q2(2) is also the smallest 
base of Bk(2) for all k ≥ 3.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Fix a positive integer M . For q ∈ (1, M + 1] the sequence (di) = d1d2 . . . with each 
di ∈ {0, 1, . . . , M} is called a q-expansion of x if

x =
∞∑
i=1

di
qi
.

Here the alphabet {0, 1, . . . ,M} will be fixed throughout the paper. Clearly, x has a 
q-expansion if and only if x ∈ Iq,M := [0, M/(q − 1)].

Since the pioneering work of Rényi [19] and Parry [18], representations of real numbers 
in non-integer bases have been widely studied in the past thirty years. Different from 
integer base expansions it is well known that almost every x ∈ Iq,M has a continuum 
of q-expansions (cf. [20,5]). Moreover, for each k ∈ N ∪ {ℵ0} there exist q ∈ (1, M + 1]
and x ∈ Iq,M such that x has precisely k different q-expansions (see, e.g., [9]). For k = 1
the unique q-expansions were extensively investigated. For example, Glendinning and 
Sidorov showed in [11] that for M = 1 when the base q is close to M + 1 the set of 
x ∈ Iq,M with a unique q-expansion has positive Hausdorff dimension (for M > 1, see 
e.g., [16]). De Vries and Komornik [7] investigated the topological properties of the unique 
q-expansions. Recently, Komornik et al. [13] studied the measure theoretical aspects of 
the unique q-expansions. For more information on the unique q-expansions we refer the 
readers to [14,8,15], and the surveys [12,20].

Inspired by the papers of Sidorov [21] and Baker [3] we consider the following sets. 
For k ∈ N ∪ {ℵ0}, let

Bk(M) := {q ∈ (1,M + 1] : there exists x ∈ Iq,M having precisely

k different q-expansions} .

For M = 1 Sidorov [21] determined the smallest base q2(1) ≈ 1.71064 of B2(1), and 
proved that the set B2(1) contains an interval. Later in [4] Baker and Sidorov considered 
the smallest base of Bk(1) for k ≥ 3 and showed that they are all equal to qf (1) ≈
1.75488. Note that the golden ratio qG = (1 +

√
5 )/2 is the smallest base of Bℵ0(1) (see 

Lemma 2.2 below). Recently, Baker [3] showed that the second smallest base of Bℵ0(1) is 
qℵ0(1) ≈ 1.64541. Hence, he concluded that for any q ∈ (qG, qℵ0(1)) each point x ∈ Iq,1
either has a unique q-expansion or has a continuum of q-expansions. Based on the ideas 
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of [3] the first and the third authors showed in [22] that q2(1) does not belong to Bℵ0(1), 
and deduced that Bℵ0(1) is not a closed set. Therefore

q2(1) ∈ B1(1) ∩ B2(1) ∩ B2ℵ0 (1) and q2(1) /∈ Bℵ0(1) ∪
∞⋃
k=3

Bk(1). (1.1)

Then it is natural to ask “what can we say about the smallest base q2(M) of B2(M)
for a general integer M ≥ 1?” In the following theorem we determine the smallest base 
q2(M) for any M ≥ 1.

Theorem 1.1.

(a) If M = 2m, then the smallest base q2(M) of B2(M) is given by

q2(M) = m + 1 +
√
m2 + 2m + 5
2 ;

(b) If M = 2m − 1, then the smallest base q2(M) of B2(M) is the largest positive root 
of

x4 = (m− 1)x3 + 2mx2 + mx + 1.

(c) For any m ∈ N the smallest base q2(2m) is a Pisot number, and q2(2m − 1) is a 
Perron number. Moreover, q2(M) = M/2 + r(M) with

lim
m→∞

r(2m) = 1 and lim
m→∞

r(2m− 1) = 3
2 .

By Theorem 1.1 we give the numerical calculations of q2 = q2(M) for M = 1, 2, . . . , 7.

M 1 2 3 4 5 6 7
q2 ≈ 1.71064 2.41421 2.75965 3.30278 3.80320 4.23607 4.83469

When M = 1 by (1.1) it follows that each x ∈ Iq2(1),1 has a unique q2(1)-expansion, 
precisely two different q2(1)-expansions, or a continuum of q2(1)-expansions. One may 
expect that this will also happen for the base q2(M) for M > 1. However, our next result 
shows that this is not true for all M ≥ 1. In the following theorem we show that for 
M = 2 and for any k = 1, 2, . . . , ℵ0 or 2ℵ0 there exists x having precisely k different 
q2(2)-expansions.

Theorem 1.2. Let M = 2. Then

q2(2) = 1 +
√

2 ∈ B2ℵ0 (2) ∩ Bℵ0(2) ∩
∞⋂
k=1

Bk(2).

Furthermore, q2(2) is the smallest element of Bk(2) for any k = 2, 3, . . . .
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The paper is arranged in the following way. In Section 2 we will explicitly describe the 
set of unique q-expansions for small bases q with alphabet {0, 1, . . . ,M}. This is helpful 
to find the smallest base q2(M) which admits two expansions. The proof of Theorem 1.1
will be given in Section 3 for even M and in Section 4 for odd M . In the final section we 
will prove Theorem 1.2 and end the paper with some questions.

2. Unique expansions

In this section we recall some basic properties of the unique expansions. For q ∈
(1, M + 1] let Uq be the univoque set of x ∈ Iq,M having a unique q-expansion, and let 
U ′
q be the set of corresponding expansions. In order to characterize the univoque set Uq

we need some notation from symbolic dynamics (see, e.g., [17]).
Let {0, 1, . . . ,M}∞ be the set of sequences (di) = d1d2 . . . with each element di ∈

{0, 1, . . . ,M}. For two words c = c1 . . . cm and d = d1 . . . dn we denote their concatena-
tion by cd = c1 . . . cmd1 . . . dn. Accordingly, for k ∈ N we denote by ck the concatenation 
of c with itself k times, and denote by c∞ the concatenation of c with itself infinitely many 
times. In this paper we will use lexicographical order “≺, �, 
” or “�” between sequences 
in {0, 1, . . . ,M}∞. For example, for two sequences (ci), (di) ∈ {0, 1, . . . ,M}∞ we say 
(ci) ≺ (di) if there exists n ∈ N such that c1 . . . cn−1 = d1 . . . dn−1 and cn < dn. Moreover, 
we write (ci) � (di) if (ci) ≺ (di) or (ci) = (di). For a sequence (di) ∈ {0, 1, . . . ,M}∞

we denote by

(di) = (M − d1)(M − d2) . . .

the reflection of (di).
For q ∈ (1, M + 1] let α(q) = (αi(q)) be the quasi-greedy q-expansion of 1 (cf. [6]), 

i.e., the lexicographically largest infinite q-expansion of 1. Here an expansion (di) is 
called infinite if (di) does not end with a string of zeros. The following lexicographical 
characterization of U ′

q was essentially due to Parry [18] (see also, [1]).

Lemma 2.1. Let q ∈ (1, M + 1]. Then an expansion (di) ∈ U ′
q if and only if

{
dn+1dn+2 . . . ≺ α(q) whenever dn < M,

dn+1dn+2 . . . 
 α(q) whenever dn > 0.

Moreover, the map q → α(q) is strictly increasing from (1, M +1] onto the set of infinite 
expansions (γi) satisfying

γi+1γi+2 . . . � γ1γ2 · · · for all i ≥ 0.

For M ≥ 1 we recall from [2] that the generalized golden ratio p1 = p1(M) admits the 
quasi-greedy expansion
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α(p1(M)) =
{

m∞ if M = 2m,

(m (m− 1))∞ if M = 2m− 1.
(2.1)

The following lemma for the q-expansions of x ∈ Iq,M with q ∈ (1, p1] was established 
in [2,10].

Lemma 2.2. If q ∈ (1, p1), then any x ∈ (0, M/(q− 1)) has a continuum of q-expansions. 
If q = p1, then any x ∈ (0, M/(q − 1)) either has a continuum of q-expansions, or has 
countably many q-expansions.

Recall that B2(M) is the set of bases q ∈ (1, M + 1] for which there exists x ∈ Iq,M
having precisely two q-expansions. Observe that for each q ∈ (1, M + 1] the endpoints of 
the interval Iq,M always have a unique q-expansion. Then by Lemma 2.2 it follows that 
the smallest base q2(M) is strictly larger than p1. In the next two sections we will show 
that q2(M) ≤ p2, where p2 = p2(M) admits the quasi-greedy expansion

α(p2(M)) =
{

((m + 1)(m− 1))∞ if M = 2m,

(mm(m− 1)(m− 1))∞ if M = 2m− 1.
(2.2)

Note that if a point x ∈ Iq,M has two q-expansions, then the tail of each expansion of 
x must belong to U ′

q. So, it is necessary to give a detailed description of the set U ′
q for 

p1 < q ≤ p2.
First we consider M = 2m. The following proposition for U ′

q was implicitly shown in 
[16, Lemma 4.12].

Proposition 2.3. If M = 2m, then for p1 < q ≤ p2 we have

U ′
q =

{
0∞, 0∞

}
∪

∞⋃
k=0

m⋃
u=0

{
0kum∞, 0kum∞

}
.

Proof. First we consider the “⊇” part. Note that q > p1. Then by (2.1) and Lemma 2.1
it follows that

α(q) 
 α(p1) = m∞.

Therefore, the “⊇” part can be verified by using Lemma 2.1.
Now we consider the “⊆” part. Take (di) ∈ U ′

q with q ∈ (p1, p2]. By symmetry we 
may assume that d1 ≤ m. Apart from the trivial case that (di) = 0∞ let n ≥ 1 be the 
smallest integer such that dn > 0. Now we split the proof into the following two cases: 
(I) n = 1; (II) n > 1.

Case (I). n = 1. Then 0 < dn ≤ m. Note by (2.2) and Lemma 2.1 that

α(q) � α(p2) = ((m + 1)(m− 1))∞. (2.3)
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Then by Lemma 2.1 it follows that

dn+1 ∈ {m− 1,m,m + 1} .

We claim that dn+1dn+2 . . . = m∞. This can be verified by the following observations.

• If dn+1 = m − 1, then by using dn > 0 and (2.3) in Lemma 2.1 it follows that

dn+1dn+2 . . . 
 α(q) � α(p2) = ((m− 1)(m + 1))∞,

which implies dn+2 ≥ m + 1.
On the other hand, by using dn+1 = m − 1 < M and (2.3) in Lemma 2.1 we obtain

dn+2dn+3 . . . ≺ α(q) � α(p2) = ((m + 1)(m− 1))∞.

Therefore, dn+2 = m + 1.
• If dn+1 = m + 1, then by using dn < M and (2.3) in Lemma 2.1 it follows that

dn+1dn+2 · · · ≺ α(q) � α(p2) = ((m + 1)(m− 1))∞,

which implies dn+2 ≤ m − 1.
On the other hand, by using dn+1 = m + 1 > 0 and (2.3) in Lemma 2.1 it follows 
that

dn+2dn+3 . . . 
 α(q) � α(p2) = ((m− 1)(m + 1))∞.

Therefore, dn+2 = m − 1.

By the above arguments we conclude that if dn+1 = m −1 then (di) = d1((m −1)(m +
1))∞, and if dn+1 = m +1 then (di) = d1((m +1)(m −1))∞. This leads to a contradiction 
with Lemma 2.1 and (2.3). Therefore,

(di) = d1m
∞ with 0 < d1 ≤ m. (2.4)

Case (II). n > 1. Since dn−1 = 0, we have by using (2.3) in Lemma 2.1 that dn ∈
{1, · · · ,m + 1}. If dn = m + 1, then by the same arguments as in Case I it follows that

(di) = 0n−1((m + 1)(m− 1))∞,

leading to a contradiction with Lemma 2.1 and (2.3). Then 0 < dn ≤ m < M . In a 
similar way as in Case I we conclude that

(di) = 0n−1dnm
∞ with 0 < dn ≤ m. (2.5)

Therefore, by (2.4) and (2.5) we establish the “⊆” part. �
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Now we turn to the case M = 2m − 1. The following characterization of the set U ′
q

was implicitly given in [11, Proposition 13].

Proposition 2.4. If M = 2m − 1, then for p1 < q ≤ p2 we have

U ′
q = {0∞, 0∞} ∪

∞⋃
k=0

m−1⋃
u=0

{
0ku(m(m− 1))∞, 0ku((m− 1)m)∞

}

∪
∞⋃
k=0

m−1⋃
u=0

{
0ku(m(m− 1))∞, 0ku((m− 1)m)∞

}
.

Proof. For m = 1 the proposition was established by Glendinning and Sidorov [11]. In 
the following we assume m ≥ 2.

The “⊇” part can be easily verified by using Lemma 2.1 and (2.1). Then it suffices to 
prove the “⊆” part.

Take (di) ∈ U ′
q with q ∈ (p1, p2]. By symmetry we assume d1 ≤ m − 1. Excluding the 

trivial case that (di) = 0∞ let n ≥ 1 be the smallest integer such that dn > 0. We split 
the proof into the following two cases: (I) n = 1; (II) n > 1.

Case (I). n = 1. Then 0 < dn ≤ m − 1. Note by (2.2) and Lemma 2.1 that

α(q) � α(p2) = (mm(m− 1)(m− 1))∞. (2.6)

By Lemma 2.1 it follows that dn+1 ∈ {m− 1,m}. We claim that dn+1dn+2 . . . equals 
(m(m − 1))∞ or its reflection ((m − 1)m)∞.

• If dn+1dn+2 = (m − 1)(m − 1), then by using dn > 0 and (2.6) in Lemma 2.1 it 
follows that

dn+1dn+2 . . . 
 α(q) � α(p2) = ((m− 1)(m− 1)mm)∞,

which implies dn+3dn+4 � mm.
On the other hand, by using dn+2 = m − 1 < M and (2.6) in Lemma 2.1 we have

dn+3dn+4 . . . ≺ α(q) � α(p2) = (mm(m− 1)(m− 1))∞.

Therefore, dn+3dn+4 = mm.
• If dn+1dn+2 = mm, then by using dn < M and (2.6) in Lemma 2.1 it follows that

dn+1dn+2 . . . ≺ α(q) � α(p2) = (mm(m− 1)(m− 1))∞,

which implies dn+3dn+4 � (m − 1)(m − 1).
On the other hand, by using dn+2 = m > 0 and (2.6) in Lemma 2.1 it gives that

dn+3dn+4 . . . 
 α(q) � α(p2) = ((m− 1)(m− 1)mm)∞.

Therefore, dn+3dn+4 = (m − 1)(m − 1).
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Hence, by the above arguments it follows that if dn+1dn+2 = mm then (di) =
d1(mm(m − 1)(m − 1))∞, and if dn+1dn+2 = (m − 1)(m − 1) then (di) = d1((m −
1)(m − 1)mm)∞. This leads to a contradiction with Lemma 2.1 and (2.6). Therefore,

(di) = d1(m(m− 1))∞ or d1((m− 1)m)∞, (2.7)

where 0 < d1 ≤ m − 1.
Case (II). n > 1. Then by using dn−1 = 0 < M in Lemma 2.1 it follows that

dn, dn+1 ∈ {1, · · · ,m} .

If dn = m, then dn > 0, and by using (2.6) in Lemma 2.1 it follows that dn+1 ≥ m − 1. 
By the same arguments as in Case I it follows that

(di) = 0n−1(m(m− 1))∞. (2.8)

If 0 < dn < m ≤ M , then by a similar way as in Case (I) we conclude that

(di) = 0n−1dn(m(m− 1))∞ or 0n−1dn((m− 1)m)∞, (2.9)

where 0 < dn < m.
Therefore, by (2.7)–(2.9) we prove the “⊆” part. �
To find the smallest base of B2(M) we still need the following geometrical explanation 

of expansions in non-integer bases. For k ∈ {0, 1, . . . ,M} and q ∈ (1, M + 1] let

fk(x) = x + k

q
.

Then the interval Iq,M = [0, M/(q − 1)] can be written as

Iq,M =
M⋃
k=0

fk(Iq,M ) =
M⋃
k=0

[
k

q
,

M

q(q − 1) + k

q

]
. (2.10)

Note that q ≤ M + 1. This implies that the subintervals fk(Iq,M ) and fk+1(Iq,M ) are 
overlapped for each k ∈ {0, 1, . . . ,M − 1}.

Take a point x ∈ Iq,M with a q-expansion (xi(q)), i.e., x =
∑∞

i=1 xi(q)/qi. If ∑∞
i=1 xj+i(q)/qi ∈ fk1(Iq,M ) ∩ fk2(Iq,M ) for some j ≥ 0 and k1 < k2, then x has at 

least two q-expansions: one begins with x1(q) · · ·xj(q)k1, and the other begins with 
x1(q) · · ·xj(q)k2. Therefore, a point x ∈ Iq,M has a unique q-expansion (xi(q)) if and 
only if

∞∑ xj+i(q)
qi

/∈
⋃

fk1(Iq,M ) ∩ fk2(Iq,M ) for any j ≥ 0.

i=1 k1<k2
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Observe that the fundamental intervals f0(Iq,M ), f1(Iq,M ), . . . , fM (Iq,M ) are located 
from the left to right. f0(Iq,M ) is the most left one, and fM (Iq,M ) is the most right one. 
Then by (2.10) and the definition of p1 in (2.1) one can easily verify the following lemma.

Lemma 2.5. Let q > p1. Then fk1(Iq,M ) ∩fk2(Iq,M ) ∩fk3(Iq,M ) = ∅ for any k1 < k2 < k3.

Clearly, by Lemma 2.5 it follows that for q > p1 each x ∈ Iq,M belongs to at most two 
fundamental intervals of {fk(Iq,M ) : k = 0, . . . ,M}. This is a very useful property which 
is helpful to find the smallest base of B2(M) in the remaining part of the paper.

3. Smallest base of B2(M) with M = 2m

In this section we will determine the smallest base q2(M) of B2(M) for M = 2m
and will prove the first statement of Theorem 1.1. For q > 1 and an expansion (di) ∈
{0, 1, . . . ,M}∞ we set

((di))q :=
∞∑
i=1

di
qi
.

By (2.1) and (2.2) it follows that

p1 = m + 1 and p2 = m + 1 +
√
m2 + 6m + 1
2 . (3.1)

By Proposition 2.3 and Lemma 2.5 it follows that

x = (100m∞)p2 = (0(m− 1)m∞)p2

has exactly two p2-expansions, i.e., p2 ∈ B2(M). This implies

q2(M) ∈ B2(M) ∩ (p1, p2].

In the following lemma we give a characterization of the set B2(M) ∩ (p1, p2].

Lemma 3.1. Let M = 2m and q ∈ (p1, p2]. Then q ∈ B2(M) if and only if q is a root of

(10kum∞)q = (00jvm∞)q, (3.2)

for some k, j = 0, 1, · · · and u, v ∈ {0, · · · , m}.

Proof. First we prove the sufficiency. Take q ∈ (p1, p2]. Suppose that (10kum∞)q =
(00jvm∞)q for some k, j = 0, 1, . . . and u, v ∈ {0, . . . , m}. Then

x := (10kum∞)q = (00jvm∞)q
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has at least two different q-expansions. Let (xi) be a q-expansion of x. Then x1 ∈ {0, 1}
by Lemma 2.5. When x1 = 1, by Proposition 2.3 it yields that qx − 1 = (0kum∞)q has a 
unique q-expansion. When x1 = 0, by Proposition 2.3 we also have that qx = (0jvm∞)q
has a unique q-expansion. Thus x has exactly two different q-expansions, and so q ∈
B2(M).

Now we consider the necessity. Take q ∈ (p1, p2] ∩B2(M). Then there exists x ∈ Iq,M
having exactly two different q-expansions (ai) and (bi), i.e.,

((ai))q = x = ((bi))q. (3.3)

Let n ≥ 1 be the least integer such that an �= bn. Without loss of generality we assume 
an > bn. Then by (3.3) it follows that

(anan+1 · · · )q = (bnbn+1 · · · )q and (an+i), (bn+i) ∈ U ′
q.

By Lemma 2.5 we have an = bn + 1, and therefore

1
q

= 1
q

∞∑
k=1

bn+k − an+k

qk
≤ bn+1 − an+1

q2 +
∞∑
k=3

2m
qk

.

This, together with q > p1 = m + 1, implies that an+1 < bn+1. Hence,

(1an+1an+2 . . .)q = (0bn+1bn+2 . . .)q, (3.4)

where an+1 < bn+1 and (an+i), (bn+i) ∈ U ′
q.

Now we claim that (an+i) can not be of the form 0jvm∞, and (bn+i) can not be of 
the form 0kum∞ for any k, j = 0, 1, . . . , ∞ and u, v ∈ {0, 1, . . . ,m}.

• If (an+i) is of the form 0jvm∞, then by (3.4) it follows that

(Man+1an+2 . . .)q = ((M − 1)bn+1bn+2 . . .)q

has at least two q-expansions. However, by Proposition 2.3 we know that
(Man+1an+2 . . .)q has a unique q-expansion, leading to a contradiction.

• If (bn+i) is of the form 0kum∞, then by (3.4) it gives that

(1an+1an+2 . . .)q = (0bn+1bn+2 . . .)q

has at least two q-expansions. This also leads to a contradiction, since by Proposi-
tion 2.3 we know that (0bn+1bn+2 · · · )q should have a unique q-expansion.

Therefore, by (3.4) and Proposition 2.3 it follows that q ∈ (p1, p2] satisfies

(10kum∞)q = (00jvm∞)q
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for some k, j = 0, 1, . . . , ∞ and u, v ∈ {0, 1, . . . ,m}. So, we will finish the proof by 
showing that k, j �= ∞. Since the proof for j �= ∞ is similar, here we only prove k �= ∞.

Suppose on the contrary that k = ∞. Then 1 = ((2m)j(2m − v)m∞)q for some 
j = 0, 1, . . . , ∞ and v ∈ {0, 1, . . . ,m}. By Lemma 2.1 it follows that

α(q) = (2m)j(2m− v)m∞.

Then for j = 0 and v = m we have α(q) = m∞ = α(p1), and for any other parameters j
and v we have α(q) 
 ((m + 1)(m − 1))∞ = α(p2). By Lemma 2.1 it follows that q = p1
or q > p2, leading to a contradiction with our hypothesis that q ∈ (p1, p2]. �

Observe that the smallest base q2(M) belongs to the interval (p1, p2]. Furthermore, 
by Lemma 3.1 to find the smallest base q2(M) it suffices to investigate the solutions 
of countably many equations as in (3.2). If the parameters k, j, u and v satisfy (3.7)
(see below), then by Lemma 3.3 it follows that Equation (3.2) has a unique root in 
(p1, ∞), say qk,j,u,v. Moreover, we will show in Lemma 3.4 that these bases (qk,j,u,v) are 
monotonic w.r.t. the parameters k, j, u and v. This implies that we are able to determine 
the smallest base q2(M) among them.

First we need to show that these bases qk,j,u,v are well-defined. Note that qk,j,u,v ∈
(p1, ∞) is a zero of the following function

fk,j,u,v(q) = (q3 − q2)
(
(10kum∞)q − (00jvm∞)q

)
= −q − 2mq + q2 + q−k(m− u + uq) + q−j(m− v + vq).

(3.5)

Then the uniqueness of qk,j,u,v follows by the following lemma which says that the 
function fk,j,u,v is monotonic in (p1, ∞).

Lemma 3.2. Given k, j ≥ 0 and u, v ∈ {0, 1, . . . , m}, the function fk,j,u,v is strictly 
increasing in (p1, ∞).

Proof. Differentiating fk,j,u,v in (3.5) it gives

f ′
k,j,u,v(q) = −1 − 2m + 2q + q−k

(
u− ku + ku− km

q

)

+ q−j

(
v − jv + jv − jm

q

)
.

Since q > p1 = m + 1, we have −1 − 2m + 2q > 1. In order to guarantee the positivity 
of f ′

k,j,u,v(q), by symmetry it suffices to prove

q−k

(
u− ku + ku− km

q

)
≥ −1

2 (3.6)

for any k ≥ 0 and u ∈ {0, . . . ,m}.



D. Kong et al. / Journal of Number Theory 173 (2017) 100–128 111
Clearly, the inequality (3.6) holds for k = 0 or 1. For k ≥ 2 we deduce by using 
q > p1 = m + 1 that

1 − k + k

q
≤ 1 − k + k

m + 1 ≤ 1 − k

2 ≤ 0,

and therefore

q−k

(
u− ku + ku− km

q

)
= − km

qk+1 + u

qk

(
1 − k + k

q

)

≥ − km

qk+1 + m

qk

(
1 − k + k

q

)

= m(1 − k)
qk

>
1 − k

qk−1 ≥ −1
2 ,

where the last inequality follows by 2(k − 1) ≤ 2k−1 ≤ qk−1 for any k ≥ 2. This estab-
lishes (3.6). �

By Lemma 3.2 it follows that the function fk,j,u,v has at most one zero in (p1, ∞). In 
the following lemma we characterize the parameters k, j, u and v such that the function 
fk,j,u,v indeed has a unique zero in (p1, ∞).

Lemma 3.3. The equation fk,j,u,v(q) = 0 has a unique root in (p1, ∞) if and only if the 
parameters k, j, u and v satisfy

k, j ≥ 0, u, v ∈ {0, 1, . . . ,m} , and u + 1
(m + 1)k+1 + v + 1

(m + 1)j+1 < 1. (3.7)

Proof. By Lemma 3.2 and the continuity of fk,j,u,v it follows that the equation 
fk,j,u,v(q) = 0 has a unique root in (p1, ∞) if and only if

fk,j,u,v(p1) < 0.

Observe by using (3.1) in (3.5) that

fk,j,u,v(p1) = m(m + 1)
(

u + 1
(m + 1)k+1 + v + 1

(m + 1)j+1 − 1
)
.

This prove the lemma. �
Lemma 3.3 implies that if the parameters k, j, u and v satisfy (3.7) then the root 

qk,j,u,v ∈ (p1, ∞) is well-defined. In the following lemma we will investigate the mono-
tonicity of the bases (qk,j,u,v) w.r.t. these parameters k, j, u and v.
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Lemma 3.4.

(1). The sequence (qk,j,u,v) is strictly increasing w.r.t. the parameters k and j;
(2). The sequence (qk,j,u,v) is strictly decreasing w.r.t. the parameters u and v.

Proof. First we prove (1). Since the proof for j is analogous, we only give the proof for 
the parameter k.

Fix j ≥ 0 and u, v ∈ {0, 1, · · · ,m}. We write qk = qk,j,u,v. Then by (3.5) we have

fk+1,j,u,v(qk+1) = −qk+1 − 2mqk+1 + q2
k+1 + q−k−1

k+1 (m− u + qk+1u)

+ q−j
k+1(m− v + qk+1v)

< −qk+1 − 2mqk+1 + q2
k+1 + q−k

k+1(m− u + qk+1u)

+ q−j
k+1(m− v + qk+1v)

= fk,j,u,v(qk+1),

where the strict inequality holds since m − u + qk+1u > 0. This, together with 
fk+1,j,u,v(qk+1) = 0 = fk,j,u,v(qk), implies that

fk,j,u,v(qk) < fk,j,u,v(qk+1).

Therefore, by Lemma 3.2 it follows that qk < qk+1.
Now we turn to prove (2). The proof for v is similar. Here we only give the proof 

for the parameter u. Fix k, j ≥ 0 and v ∈ {0, 1, . . . ,m}. For simplicity we denote by 
qu = qk,j,u,v. Then by (3.5) it follows that

fk,j,u+1,v(qu+1) = −qu+1 − 2mqu+1 + q2
u+1 + q−k

u+1
(
m− (u + 1) + qu+1(u + 1)

)
+ q−j

u+1(m− v + qu+1v)

> −qu+1 − 2mqu+1 + q2
u+1 + q−k

u+1(m− u + qu+1u)

+ q−j
u+1(m− v + qu+1v)

= fk,j,u,v(qu+1).

Observe that fk,j,u+1,v(qu+1) = 0 = fk,j,u,v(qu). This implies that fk,j,u,v(qu) >
fk,j,u,v(qu+1). By Lemma 3.2 we conclude that qu > qu+1. �

Now we investigate the set B2(M) ∩ (p1, p2], and determine the smallest base q2(M)
for M = 2m.

Proposition 3.5. Let M = 2m. Then

B2(M) ∩ (p1, p2] = {q1,0,u,m−1 : u = 0, 1, · · · ,m− 1} .
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Furthermore, the smallest base of B2(M) is

q2(M) = q1,0,m−1,m−1 = m + 1 +
√
m2 + 2m + 5
2

.

Proof. By Lemma 3.1 it suffices to investigate the parameters k, j, u and v such that

p1 < qk,j,u,v ≤ p2.

By Lemmas 3.2, 3.3 and by (3.5) it follows that qk,j,u,v ∈ B2(M) ∩ (p1, p2] if and only if 
the parameters k, j, u and v satisfy

fk,j,u,v(p1) < 0, fk,j,u,v(p2) ≥ 0,

which is equivalent to that the parameters k, j, u and v satisfy (3.7) and

m(1 − p2) + m− u + up2

pk2
+ m− v + vp2

pj2
≥ 0. (3.8)

Note by (3.5) that fk,j,u,v(q) = fj,k,v,u(q). Then we may assume k ≥ j.
If m = 1, then by (3.5) and Lemma 3.4 one can verify that qk,j,u,v ∈ (p1, p2] if and 

only if

(k, j, u, v) ∈ {(2, 1, 1, 1), (2, 0, 1, 0), (1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 0, 0)} .

Note that q2,1,1,1 = q2,0,1,0 = q1,1,1,0 = q1,1,0,1 = q1,0,0,0 = 1 +
√

2. Therefore,

B2 ∩ (p1, p2] =
{

1 +
√

2
}
.

In the following we will assume m ≥ 2. First we show that j = 0. Note by (3.5) that

q1,1,m,m = 2m > p2.

Then by Lemma 3.4 we have j = 0 as required. So, by (3.7) we have v ≤ m −1. Moreover, 
one can check that q2,0,m,m−1 = p2. By Lemma 3.4 this implies that q2,0,u,m−1 > p2 for 
u < m, and that qk,0,u,m−1 > p2 for k ≥ 3. Note that q1,0,0,m−1 = p2. Hence, it suffices 
to consider k ≤ 1.

If k = j = 0, then by (3.5) we have

q0,0,u,v = 2m− u− v,

which can not fall into the interval (p1, p2], since by (3.1) we have

m + 1 = p1 < p2 =
m + 1 +

√
(m + 1)2 + 4m

< m + 2.
2
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If k = 1, j = 0, then by (3.5) we have

q1,0,u,v =
2m− v +

√
(2m− v)2 + 4(m− u)

2 .

Furthermore, one can check that q1,0,u,v ∈ (p1, p2] if and only if v = m − 1 and 0 ≤ u ≤
m − 1.

Hence, by Lemma 3.4 it follows that

q2(2m) = q1,0,m−1,m−1 = m + 1 +
√
m2 + 2m + 5
2 . �

4. Smallest base of B2(M) with M = 2m − 1

In this section we are going to investigate the smallest base q2(M) of B2(M) for 
M = 2m − 1, and prove the second statement of Theorem 1.1. The idea is similar to the 
case for M = 2m as in Section 3. But here we need more effort for the reason that the 
unique expansions described in Proposition 2.4 for M = 2m − 1 are more complicated 
than those in Proposition 2.3 for M = 2m.

Let M = 2m − 1. Recall from (2.1) and (2.2) that

p1 = m +
√
m2 + 4m
2 , (4.1)

and p2 ∈ (p1, ∞) satisfies

p3
2 = (m + 1)p2

2 − p2 + m. (4.2)

By Proposition 2.4 and Lemma 2.5 it follows that the number

(104((m− 1)m)∞)p2 = (0(m− 1)((m− 1)m)∞)p2

has exactly two p2-expansions, i.e., p2 ∈ B2(M). This implies that q2(M) ∈ B2(M) ∩
(p1, p2].

Similar to Lemma 3.1 we characterize the set B2(M) ∩ (p1, p2] for M = 2m − 1.

Lemma 4.1. Let M = 2m − 1 and q ∈ (p1, p2]. Then q ∈ B2(M) if and only if q satisfies 
one of the following equations:

(10k1u1(m(m− 1))∞)q = (00j1v1(m(m− 1))∞)q (4.3)

(10k2u2((m− 1)m)∞)q = (00j2v2((m− 1)m)∞)q (4.4)

(10k3u3(m(m− 1))∞)q = (00j3v3((m− 1)m)∞)q (4.5)

(10k4u4((m− 1)m)∞)q = (00j4v4(m(m− 1))∞)q (4.6)

for some parameters ki, ji = 0, 1, · · · , and ui, vi ∈ {0, 1, · · · ,m− 1}, where i = 1, 2, 3, 4.
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Proof. The sufficiency follows by Proposition 2.4 and Lemma 2.5. In the following we 
prove the necessity.

Take q ∈ (p1, p2] ∩ B2(M). Then there exists x ∈ Iq,M having exactly two different 
q-expansions (ai) and (bi), i.e.,

((ai))q = x = ((bi))q. (4.7)

Let n ≥ 1 be the least integer such that an �= bn. Without loss of generality we assume 
an > bn. Then by (4.7) it follows that

(anan+1 · · · )q = (bnbn+1 · · · )q and (an+i), (bn+i) ∈ U ′
q

By Lemma 2.5 we have an = bn + 1, and therefore

1 = (bn+1bn+2 · · · )q − (an+1an+2 · · · )q (4.8)

where (an+i), (bn+i) ∈ U ′
q.

Now we claim that (an+i) can be neither of the form 0jv(m(m− 1))∞ nor of the form 
0jv((m− 1)m)∞, and (bn+i) can be neither of the form 0ku(m(m −1))∞ nor of the form 
0ku((m − 1)m)∞, where k, j = 0, 1, 2, · · · , ∞ and u, v ∈ {0, 1, · · · , m − 1}.

• If (an+i) is of the form 0jv(m(m− 1))∞ or 0jv((m− 1)m)∞ with j = 0, 1, · · · , ∞
and v ∈ {0, 1, · · · , m − 1}, then by (4.8) and (2.1) it follows that

1 = (bn+1bn+2 · · · )q − (an+1an+2 · · · )q ≤ ((2m− 1)∞)q − ((m(m− 1))∞)q

< ((m(m− 1))∞)p1 = 1,

leading to a contradiction.
• If (bn+i) is of the form 0ku(m(m − 1))∞ or 0ku((m − 1)m)∞ with k = 0, 1, · · · , ∞

and u ∈ {0, 1, · · · , m − 1}, then by (4.8) and (2.1) it follows that

1 = (bn+1bn+2 · · · )q − (an+1an+2 · · · )q ≤ ((m(m− 1))∞)q

< ((m(m− 1))∞)p1 = 1,

again leading to a contradiction.

Therefore, by Proposition 2.4 it follows that (an+i) is of the form

0ku(m(m− 1))∞ or 0ku((m− 1)m)∞,

and (bn+i) is of the form 0jv(m(m− 1))∞ or 0jv((m− 1)m)∞, where k, j = 0, 1, · · · , ∞
and u, v ∈ {0, 1, · · · , m − 1}. Hence, to finish the proof it suffices to prove k, j �= ∞. 
Since the proof for j �= ∞ is similar, we only prove k �= ∞.
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Suppose on the contrary that k = ∞. Then (an+i) = 0∞. Note that (bn+i) is of 
the form 0jv(m(m− 1))∞ or 0jv((m− 1)m)∞ with j = 0, 1, · · · , ∞ and v ∈ {0, 1,
· · · , m − 1}. Then by (4.8) and Lemma 2.1 it follows that

α(q) = bn+1bn+2 · · · .

This implies that

α(q) � (m(m− 1))∞ = α(p1) or α(q) 
 (mm(m− 1)(m− 1))∞ = α(p2).

Then by Lemma 2.1 we have q /∈ (p1, p2], leading to a contradiction with the hypothesis 
that q ∈ (p1, p2]. �
Remark 4.2. We point out that (4.5) and (4.6) are equivalent. In fact, if q is a root of 
(4.5) for some k3, j3 ≥ 0 and u3, v3 ∈ {0, 1, · · · ,m− 1}, then by reflection we have

(10j3v3((m− 1)m)∞)q = (00k3u3(m(m− 1))∞)q.

This corresponds to (4.6) with (k4, j4, u4, v4) = (j3, k3, v3, u3).

By Lemma 4.1 and Remark 4.2 to find the smallest base q2(M) for M = 2m − 1 it 
suffices to investigate the appropriate roots of Equations (4.3)–(4.5). In a similar way as 
in Section 3 we will show that these roots also have the monotonicity. This allows us to 
determine the smallest base q2(M). In this direction we split the proof into the following 
three subsections according to Equations (4.3)–(4.5).

4.1. Solutions of Equation (4.3)

Given k, j ≥ 0 and 0 ≤ u, v ≤ m −1, in terms of Equation (4.3) we define the function

g
(1)
k,j,u,v(q) = (q3 − q)

(
(10ku(m(m− 1))∞)q − (00jv(m(m− 1))∞)q

)
= (q + 1)(q − 2m) + q−k−1(m− 1 − u + mq + uq2)

+ q−j−1(m− 1 − v + mq + vq2).

(4.9)

By Lemma 4.1 we only need to consider the zeros of g(1)
k,j,u,v in (p1, ∞). In the following 

lemma we show that the function g(1)
k,j,u,v is monotonic.

Lemma 4.3. For any k, j ≥ 0 and u, v ∈ {0, 1, · · · ,m− 1} the function g(1)
k,j,u,v is strictly 

increasing in (p1, ∞).
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Proof. In terms of (4.9) and by symmetry it suffices to prove that

hk,u(q) = (q + 1)(q − 2m)
2 + q−k−1(m− 1 − u + mq + uq2)

has a positive derivative in (p1, ∞) for any k ≥ 0 and u ∈ {0, 1, · · · ,m− 1}. Differenti-
ating hk,u it yields that

h′
k,u(q) = q −m + 1

2 + uq−k

(
k + 1
q2 + 1 − k

)

+ q−k

(
−(k + 1)m− 1

q2 − km

q

)
.

(4.10)

Then by using q > p1 and p2
1 = mp1 + m in (4.10) one can show that h′

k,u(q) > 0 for 
k = 0, 1 and 2.

If k ≥ 3, then by using q > p1 we have (k + 1)/q2 + 1 − k ≤ 0. Moreover, one can 
show that the function

φ(k) = q−k

(
km

q
+ (m− 1)(k − 1)

)

satisfies φ(k + 1) < φ(k) for any k ≥ 2. Therefore, by using q > p1 and p2
1 = mp1 +m in 

(4.10) it follows that

h′
k,u(q) ≥ q −m + 1

2 − q−k

(
km

q
+ (m− 1)(k − 1)

)

≥ q −m + 1
2 − q−2

(
2m
q

+ (m− 1)
)

≥ p1 −m + 1
2 − m− 1

p2
1

− 2m
p3
1

= p−3
1

(
1
2p

3
1 + p1 −m

)
> 0. �

Lemma 4.3 implies that the function g(1)
k,j,u,v has at most one zero in (p1, ∞). In the 

following lemma we characterize those parameters k, j, u and v such that g(1)
k,j,u,v has a 

(unique) zero in (p1, ∞).

Lemma 4.4. The equation g(1)
k,j,u,v(q) = 0 has a unique root in (p1, ∞) if and only if the 

parameters k, j, u and v satisfy

k, j ≥ 0, u, v ∈ {0, 1, . . . ,m− 1} and u + 1
mpk1

+ v + 1
mpj1

< 1. (4.11)



118 D. Kong et al. / Journal of Number Theory 173 (2017) 100–128
Proof. By Lemma 4.3 and the continuity of g(1)
k,j,u,v it follows that the equation 

g
(1)
k,j,u,v(q) = 0 has a unique root in (p1, ∞) if and only if

g
(1)
k,j,u,v(p1) < 0.

Note by using p2
1 = mp1 + m in (4.9) that

g
(1)
k,j,u,v(p1) = p1 − 1

p1

(
−1 + u + 1

mpk1
+ v + 1

mpj1

)
.

This establishes the lemma. �
By Lemma 4.4 it follows that if the parameters k, j, u and v satisfy (4.11) then the 

Equation (4.3) has a unique root in (p1, ∞), say q(1)
k,j,u,v. In a similar way as in Lemma 3.4

one can verify the following monotonicity of the sequence (q(1)
k,j,u,v).

Lemma 4.5.

(1). The sequence (q(1)
k,j,u,v) is strictly increasing w.r.t. the parameters k and j;

(2). The sequence (q(1)
k,j,u,v) is strictly decreasing w.r.t. the parameters u and v.

In the following lemma we show that no bases in (p1, p2] ∩B2(M) satisfy Equation (4.3).

Lemma 4.6. Let M = 2m − 1. Then Equation (4.3) has no solutions in (p1, p2].

Proof. By Lemmas 4.3 and 4.4 it suffices to prove that no parameters (k, j, u, v) satisfy 
both (4.11) and g(1)

k,j,u,v(p2) ≥ 0. Note by (4.9) that g(1)
k,j,u,v(q) = g

(1)
j,k,v,u(q). Then we may 

assume that k ≥ j. Therefore, the lemma follows by observing the following three cases.
Case I. k ≥ j ≥ 1. Then by Lemma 4.5 it suffices to prove

q
(1)
1,1,m−1,m−1 > p2,

or equivalently, g(1)
1,1,m−1,m−1(p2) < 0. This follows by using (4.2) in (4.9) that

g
(1)
1,1,m−1,m−1(p2) = p2

−1(p2
3 − (2m− 1)p2

2 − 2p2 + 2m
)

≤ p2
−1((2 −m)p2

2 − 2(p2 −m)
)
< 0.

Case II. k > j = 0. Then by Lemma 4.5 it suffices to prove that q(1)
k,0,m−1,m−1 ≤ p1 for 

all k ≥ 1, and q(1)
1,0,m−2,m−1 = q

(1)
1,0,m−1,m−2 > p2. By (4.9) and (4.1) one can show that



D. Kong et al. / Journal of Number Theory 173 (2017) 100–128 119
g
(1)
k,0,m−1,m−1(p1) = m

pk1
+ m− 1

pk−1
1

> 0.

By Lemma 4.3 this implies q(1)
k,0,m−1,m−1 < p1.

Moreover, by using (4.2) in (4.9) it follows that

g
(1)
1,0,m−1,m−2(p2) = g

(1)
1,0,m−2,m−1(p2) = − (1 + m− p2)(p2

2 − 1)
p2

< 0.

Therefore, q(1)
1,0,m−2,m−1 > p2.

Case III. k = j = 0. Then by (4.9) it follows that

q
(1)
0,0,u,v = 2m− u− v − 2

2 +
√

(2m− u− v)2 − 4
2 .

By using (4.1) and (4.2) one can show that q(1)
0,0,u,v /∈ (p1, p2] for any u, v ∈ {0, 1,

· · · , m − 1}. �
4.2. Solutions of Equation (4.4)

In this subsection we consider possible roots in (p1, ∞) of Equation (4.4). Clearly, 
these roots are also the zeros of the function

g
(2)
k,j,u,v(q) = (q3 − q)

(
(10ku((m− 1)m)∞)q − (00jv((m− 1)m)∞)q

)
= (q + 1)(q − 2m) + q−k−1(m− q − u + mq + uq2)

+ q−j−1(m− q − v + mq + vq2).

(4.12)

Similar to Lemmas 4.3–4.5 we can show analogous results for g(2)
k,j,u,v. Hence the func-

tion g(2)
k,j,u,v has a unique zero q(2)

k,j,u,v ∈ (p1, ∞) if the parameters k, j, u and v satisfy

k, j ≥ 0, u, v ∈ {0, 1, . . . ,m− 1} and up1 + u + p1

pk+2
1

+ vp1 + v + p1

pj+2
1

< 1.

In the following lemma we describe those bases q(2)
k,j,u,v in B2(M) ∩ (p1, p2].

Lemma 4.7. Let M = 2m − 1. Then q(2)
k,j,u,v ∈ (p1, p2] ∩ B2(M) if and only if

k ∈ {2, 3} , j = 0, u ∈ {0, 1, · · · ,m− 1} and v = m− 1,

or symmetrically,

k = 0, j ∈ {2, 3} , u = m− 1 and v ∈ {0, 1, . . . ,m− 1} .
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Proof. The proof is similar to Lemma 4.6. Note that g(2)
k,j,u,v = g

(2)
j,k,v,u. Then q(2)

k,j,u,v =
q
(2)
j,k,v,u. By symmetry we may assume k ≥ j.

First we show that j = 0. By the monotonicity it suffices to prove q(2)
1,1,m−1,m−1 > p2. 

This can be verified by using (4.2) in (4.12) that

g
(2)
1,1,m−1,m−1(p2) = p2

−2((2 −m)p2
3 − 3p2(p2 −m) − 2(p2 − 1)

)
< 0.

Then q(2)
1,1,m−1,m−1 > p2. Hence, j = 0 as required.

Now we claim that k ≤ 3. Then it suffices to prove q(2)
4,0,m−1,m−1 > p2. By using (4.2)

in (4.12) it follows that

g
(2)
4,0,m−1,m−1(p2) = 1 − p2

p5
2

< 0.

Then q(2)
4,0,m−1,m−1 > p2, and therefore k ≤ 3.

Moreover, we claim that k /∈ {0, 1}. By (4.12) it follows that

q
(2)
0,0,u,v = 2m− u− v − 2

2 +
√

(2m− u− v − 2)2 + 4(2m− u− v)
2 ,

and

q
(2)
1,0,u,v = 2m− v − 1

2 +
√

(2m− v − 1)2 + 4(m− u)
2 .

By (4.1) and (4.2) one can verify that

q
(2)
0,0,u,v /∈ (p1, p2], q

(2)
1,0,u,v /∈ (p1, p2]

for any u, v ∈ {0, 1, · · · ,m− 1}.
Therefore, k ∈ {2, 3} and j = 0. By (4.1), (4.2) and (4.12) it follows that q(2)

2,0,u,v ∈
(p1, p2] if and only if v = m − 1. Furthermore, one can show that q(2)

3,0,u,v ∈ (p1, p2] if and 
only if v = m − 1. �
4.3. Solutions of Equation (4.5)

In this subsection we consider the possible roots in (p1, ∞) of Equation (4.5). Given 
k, j ≥ 1 and 0 ≤ u, v < m, by Lemma 4.1 it suffices to consider the zeros of the function

g
(3)
k,j,u,v(q) = (q3 − q)

(
(10ku(m(m− 1))∞)q − (00jv((m− 1)m)∞)q

)
= (q + 1)(q − 2m) + q−k−1(m− 1 − u + mq + uq2)

−j−1 2

(4.13)
+ q (m− q − v + mq + vq ).
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Similar to Lemmas 4.3–4.5, one can prove analogous results for g(3)
k,j,u,v. Hence, the func-

tion g(3)
k,j,u,v has a unique zero q(3)

k,j,u,v in (p1, ∞), if the parameters k, j, u and v satisfy

k, j ≥ 0, u, v ∈ {0, 1, . . . ,m− 1} and u + 1
mpk1

+ vp1 + p1 + v

pj+2
1

< 1.

By using the monotonicity we determine the bases (q(3)
k,j,u,v) in B2(M) ∩ (p1, p2].

Lemma 4.8. Let M = 2m − 1. Then q(3)
k,j,u,v ∈ (p1, p2] ∩ B2(M) if and only if

k = 2, j = 0, u ∈ {0, 1, · · · ,m− 2} , v = m− 1,

or

k = 3, j = 0, u ∈ {0, 1, · · · ,m− 1} , v = m− 1,

or (k, j, u, v) = (4, 0, m − 1, m − 1).

Proof. First we show that either k = 0 or j = 0. Then it suffices to prove 
q
(3)
1,1,m−1,m−1 > p2. By using (4.2) in (4.13) it follows that

g
(3)
1,1,m−1,m−1(p2) = p−2

2
(
(2 −m)p3

2 − 3(p2
2 −mp2) − (p2 − 1)

)
< 0.

Hence, we have either k = 0 or j = 0.
Now we claim k �= 0. Suppose on the contrary that k = 0. Then q(3)

0,j,u,v ∈ (p1, p2] if 
and only if

g
(3)
0,j,u,v(p1) < 0, g

(3)
0,j,u,v(p2) ≥ 0. (4.14)

By using (4.1) and (4.2) in (4.13) one can verify that no parameters j, u, v satisfy (4.14). 
Therefore, k > j = 0.

Finally, by using (4.1) and (4.2) in (4.13) it follows that q(3)
k,0,u,v ∈ (p1, p2] if and only 

if

k = 2, j = 0, u ∈ {0, 1, · · · ,m− 2} , v = m− 1,

or

k = 3, j = 0, u ∈ {0, 1, · · · ,m− 1} , v = m− 1,

or

(k, j, u, v) = (4, 0,m− 1,m− 1). �
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Now by Lemmas 4.6–4.8 we give a complete description of the set B2(M) ∩ (p1, p2] for 
M = 2m − 1, and determine the smallest base q2(M) of B2(M).

Proposition 4.9. Let M = 2m − 1. Then

(p1, p2] ∩ B2(M) =
3⋃

k=2

(
m−1⋃
u=0

{
q
(2)
k,0,u,m−1

}
∪

m−2⋃
u=0

{
q
(3)
k,0,u,m−1

})
.

Furthermore, the smallest base q2(M) of B2(M) is

q2(M) = q
(2)
2,0,m−1,m−1,

the unique root in (p1, p2] of x4 = (m − 1)x3 + 2mx2 + mx + 1.

Proof. Note by (4.12) and (4.13) that g(3)
k+1,0,m−1,m−1 = g

(2)
k,0,0,m−1 for any k ≥ 0. Then

q
(3)
k+1,0,m−1,m−1 = q

(2)
k,0,0,m−1.

Hence, by Lemmas 4.6–4.8 it follows that

(p1, p2] ∩ B2(M) =
3⋃

k=2

(
m−1⋃
u=0

{
q
(2)
k,0,u,m−1

}
∪

m−2⋃
u=0

{
q
(3)
k,0,u,m−1

})
.

Now we consider the smallest base q2(M). By the monotonicity it suffices to compare

s := q
(2)
2,0,m−1,m−1 and t := q

(3)
2,0,m−2,m−1.

Note by (4.12) and (4.13) that

g
(3)
2,0,m−2,m−1(t) = (t + 1)(t− 2m) + t−3(1 + mt + (m− 2)t2

)
+ t−1(1 + (m− 1)(t2 + t)

)
< (t + 1)(t− 2m) + t−3(1 + (m− 1)(t2 + t)

)
+ t−1(1 + (m− 1)(t2 + t)

)
= g

(2)
2,0,m−1,m−1(t).

This, together with g(3)
2,0,m−2,m−1(t) = 0 = g

(2)
2,0,m−1,m−1(s), implies that

g
(2)
2,0,m−1,m−1(s) < g

(2)
2,0,m−1,m−1(t).

By the monotonicity of the function g(2)
2,0,m−1,m−1 it yields that q(2)

2,0,m−1,m−1 <

q
(3)
2,0,m−2,m−1.
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Hence, q2(M) = q
(2)
2,0,m−1,m−1 is the unique root in (p1, p2] of the equation

x4 = (m− 1)x3 + 2mx2 + mx + 1. �
Recall from [17] that an algebraical integer greater than one is called a Pisot number

if all of its Galois conjugates are strictly less than 1 in modulus. Accordingly, a Salem 
number is an algebraic integer larger than one such that all of its Galois conjugates in 
modulus do not exceed one, and at least one of its Galois conjugates indeed has modulus 
one. Moreover, a Perron number is an algebraic integer greater than one such that all of 
its Galois conjugates are strictly less than itself.

In the following proposition we investigate the asymptotic and algebraic properties of 
q2(M).

Proposition 4.10.

• q2(M) = M
2 + r(M) with

lim
m→∞

r(2m) = 1 and lim
m→∞

r(2m− 1) = 3
2 .

• q2(2m) is a Pisot number for any m ∈ N.
• q2(2m − 1) is a Perron number for any m ∈ N. Furthermore, q2(2m − 1) is neither 

a Pisot nor a Salem number.

Proof. When M = 2m, by Proposition 3.5 it follows that

q2(2m) = m + 1 +
√
m2 + 2m + 5
2 .

Therefore, limm→∞
(
q2(2m) − m

)
= 1. Moreover, it is easy to check that q2(2m) is a 

Pisot number.
Now we consider M = 2m − 1. First we prove the asymptotic result. By Theorem 4.9

it follows that q2 = q2(2m − 1) satisfies the following equation

q2 = m− 1 + 2m
q2

+ m

q2
2

+ 1
q3
2
. (4.15)

Observe that q2 < 2m. Then by (4.15) it follows that

q2 > m− 1 + 2m
2m + m

4m2 = m + 1
4m. (4.16)

On the other hand, note that q2 > p1 > m. Then by (4.15) we have

q2 < m− 1 + 2m + m + 1 ≤ m + 1 + 2
.

m m2 m3 m
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This together with (4.16) implies that

lim
m→∞

q2(2m− 1)
2m− 1 = 1

2 .

Hence, by (4.15) we obtain

lim
m→∞

(
q2(2m− 1) − 2m− 1

2

)
= 3

2 .

In the following we will prove that q2(2m − 1) is a Perron number. Observe that 
q2 = q2(2m − 1) is a zero in (p1, p2] of the function

f(x) := x4 − (m− 1)x3 − 2mx2 −mx− 1.

Moreover, one could verify that f is strictly increasing in (p1, ∞). This implies that q2
is the largest positive zero of the function f .

On the other hand, observe that f is the characteristic polynomial of the matrix

A =

⎛
⎜⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 m 2m− 1 m− 1

⎞
⎟⎟⎟⎠ .

Clearly, A is a nonnegative integral matrix. Moreover, the matrix A is irreducible. Note 
that q2 is the largest positive zero of the characteristic polynomial f of A. By Perron–
Frobenius Theorem it follows that all of its Galois conjugates having modulus strictly 
smaller than q2 (cf. [17, Theorem 4.2.3]). This implies that q2 is a Perron number.

Finally, we show that q2 is neither a Pisot nor a Salem number. Observe that f is 
the minimal polynomial for q2. Moreover, one could verify that f(−1) = −1 < 0 and 
f(−2) = 2m + 7 > 0. This implies that f has a zero in (−2, −1), i.e., q2 has a Galois 
conjugate strictly larger than one in modulus. Therefore, q2(2m − 1) is neither a Pisot 
nor a Salem number. �
Proof of Theorem 1.1. The theorem immediately follows by Propositions 3.5, 4.9
and 4.10. �
5. Proof of Theorem 1.2 and final remarks

In this section we will prove Theorem 1.2, and show that for M = 2 the smallest base 
q2 = q2(2) of B2(2) is also the smallest base of Bk(2) for any k ∈ N.

Recall from Section 2 that Iq2,2 = [0, 2/(q2 − 1)] and the fundamental intervals

fk(Iq2,2) =
[
k
,
k + 2

]
, k = 0, 1, 2.
q2 q2 q2(q2 − 1)
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Then the switch region Sq2 is defined by

Sq2 :=
2⋃

k=1

fk−1(Iq2,2) ∩ fk(Iq2,2)

=
[

1
q2

,
2

q2(q2 − 1)

]
∪
[

2
q2

,
1
q2

+ 2
q2(q2 − 1)

]
.

(5.1)

Proof of Theorem 1.2. Let M = 2. Note that q2 = q2(2) = 1 +
√

2 ∈ (2, 3). Then almost 
every x ∈ Iq2,2 has a continuum of different q2-expansions w.r.t. the alphabet {0, 1, 2}
(cf. [20,5]). This yields that q2 ∈ B2ℵ0 (2).

Now we prove q2 ∈ Bℵ0(2). By Theorem 1.1 it gives that q2 satisfies q2
2 = 2q2 + 1. 

This implies that α(q2) = (20)∞. Then

α(q2) � αi+1(q2)αi+2(q2) · · · � α(q2) for all i ≥ 0.

By [14, Theorem 2.6] it follows that x = 1 ∈ Iq2,2 has countably many q2-expansions:

(20)∞, and (20)k210∞, (20)k12∞ for all k ≥ 0.

This establishes q2 ∈ Bℵ0(2).
Finally, we will prove q2 ∈ Bk(2) for all k ≥ 1. This can be verified inductively by 

showing that the number

xk = (1(00)k−11∞)q2

has exactly k different q2-expansions. If k = 1, then by Proposition 2.3 it follows that 
x1 = (1∞)q2 has a unique q2-expansion.

Now suppose that xk has exactly k different q2-expansions. Note that q2
2 = 2q2 + 1, 

i.e., (10∞)q2 = (0210∞)q2 . This implies

xk+1 = (1(00)k1∞)q2 = (021(00)k−11∞)q2 . (5.2)

By Proposition 2.3 it follows that (00)k1∞ ∈ U ′
q2 . Moreover, note that

(21(00)k−11∞)q2 = 2
q2

+ 1
q2
2

+ 1
q2k
2 (q2 − 1)

>
2
q2

+ 1
q2
2

= 1
q2

+ 2
q2(q2 − 1) .

Then by (5.1) this implies (21(00)k−11∞)q2 /∈ Sq2 . By induction it follows that 
(21(00)k−11∞)q2 has exactly k different q2-expansions. Hence, by (5.2) and Lemma 2.5 it 
follows that xk+1 has exactly k+ 1 different q2-expansions. This implies that q2 ∈ Bk(2)
for any k ≥ 1. Therefore, inf Bk(2) ≤ q2 for any k ≥ 1.

On the other hand, take q ∈ Bk(2) with k ≥ 2. Then there exists x ∈ Iq,2 having 
exactly k different q-expansions. By Lemma 2.5 and an affine transformation of x it 
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follows that there exists y ∈ Iq having precisely two different q-expansions. Thus, q ≥ q2
for any k ≥ 2. This implies infk≥2 Bk(2) ≥ q2.

Hence, we conclude that q2 = minBk(2) for any k ≥ 2. �
We mention that the proof of Theorem 1.2 does not work for M = 2m with m > 1, 

since for large M we have more subintervals in the switch region as in (5.1) which makes 
the problem more involved.

At the end of this section we consider some questions on multiple expansions with 
multiple digits. The following theorem summarizes some results for Bk(M) with M = 1
obtained in [21,4,3,22].

Theorem 5.1.

(a) The smallest element of B2(1) is q2(1) ≈ 1.71064, the largest positive root of x4 =
2x2 + x + 1.

(b) The smallest element of Bk(1) for k ≥ 3 is qk(1) ≈ 1.75488, the largest positive root 
of x3 = 2x2 − x + 1.

(c) The second smallest element of Bℵ0(1) is qℵ0(1) ≈ 1.64541, the largest positive root 
of x6 = x4 + x3 + 2x2 + x + 1.

(d) q2(1) ∈ B1(1) ∩ B2(1) ∩ B2ℵ0 (1) and q2(1) /∈ Bℵ0(1) ∪
⋃∞

k=3 Bk(1).

In terms of Theorem 5.1 (d) it seems that the result holds true for any M = 2m − 1. 
Moreover, by Theorem 1.2 one may expect that the result holds true for any M = 2m. 
However, our method does not work for larger M = 2m. Thus we list the following 
questions:

Q1. Does Theorem 5.1 (d) holds for all M = 2m − 1?
Q2. Does Theorem 1.2 holds for all M = 2m?

In terms of Theorem 5.1 (a)–(b) and Theorem 1.2 we have accurate formulae for 
the smallest bases qk(1), qk(2) for k = 2, 3, . . . . Moreover, by Theorem 1.1 we have an 
accurate formula for the smallest base q2(M) for all M ≥ 1. For k ≥ 3 we denote by

qk(M) = inf Bk(M).

Q3. What is qk(M) for k ≥ 3 and M ≥ 3?
Q4. Is it true that qk(M) ∈ Bk(M) for any k ≥ 3 and M ≥ 3?

By Lemma 2.2 we know that the smallest base of Bℵ0(M) is the generalized golden 
ratio p1(M). Moreover, for M = 1 the second smallest base of Bℵ0(1) was determined in 
Theorem 5.1 (c). Denote by

qℵ0(M) = inf(Bℵ0(M) \ {p1(M)}).
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Q5. What is qℵ0(M) for any M ≥ 2?
Q6. Does qℵ0(M) belong to Bℵ0(M) for any M ≥ 2?

Let Bℵ0,1(M) be the set of bases q ∈ (1, M + 1] such that 1 has countably many 
q-expansions w.r.t. the alphabet {0, 1, . . . ,M}. Note from [10] that the generalized golden 
ratio p1(M) is the smallest base of Bℵ0,1(M). Recently, the third author and her coau-
thors [23] considered M = 1 and determined the second smallest base qℵ0,1(1) ≈ 1.68042
of Bℵ0,1(1). For M ≥ 2 set

qℵ0,1(M) = inf(Bℵ0,1(M) \ {p1(M)}).

Q7. What is qℵ0,1(M) for M ≥ 2?
Q8. Is it true that qℵ0,1(M) ∈ Bℵ0,1(M) for all M ≥ 2?
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