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Given a positive integer M and a real number x > 0, let 
U (x) be the set of all bases q ∈ (1, M + 1] for which there 
exists a unique sequence (di) = d1d2 . . . with each digit di ∈
{0, 1, . . . ,M} satisfying

x =
∞∑
i=1

di

qi
.

The sequence (di) is called a q-expansion of x. In this paper we 
investigate the local dimension of U (x) and prove a ‘variation 
principle’ for unique non-integer base expansions. We also 
determine the critical values of U (x) such that when x passes 
the first critical value the set U (x) changes from a set with 
positive Hausdorff dimension to a countable set, and when x
passes the second critical value the set U (x) changes from 
an infinite set to a singleton. Denote by U(x) the set of all 
unique q-expansions of x for q ∈ U (x). We give the Hausdorff 
dimension of U(x) and show that the dimensional function 
x �→ dimH U(x) is a non-increasing Devil’s staircase. Finally, 
we investigate the topological structure of U (x). Although 
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the set U (1) has no isolated points, we prove that for typical 
x > 0 the set U (x) contains isolated points.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Given a positive integer M and a real number q ∈ (1, M+1], each point x ∈ [0, M/(q−
1)] can be written as

x = πq((di)) :=
∞∑
i=1

di
qi
, di ∈ {0, 1, . . . ,M} ∀i ≥ 1. (1.1)

The infinite sequence (di) = d1d2 · · · is called a q-expansion of x with respect to the 
alphabet {0, 1, · · · , M}.

Expansions in non-integer bases were pioneered by Rényi [35] and Parry [34]. Different 
from the integer base expansions Sidorov [36] (see also [10]) showed that for any q ∈
(1, M + 1) Lebesgue almost every x ∈ [0, M/(q − 1)] has a continuum of q-expansions. 
Furthermore, Erdős et al. [19,17,18] showed that for any k ∈ N ∪ {ℵ0} there exist 
q ∈ (1, M+1) and x ∈ [0, M/(q−1)] such that x has precisely k different q-expansions (see 
also cf. [38]). In particular, there is a great interest in unique q-expansions due to their 
close connections with open dynamical systems (cf. [13,22,25]). For more information on 
expansions in non-integer bases we refer to the surveys [24,37] and the survey chapter 
[15].

For q > 1 let Uq be the univoque set of x ∈ Iq := [0, M/(q − 1)] having a unique q-
expansion, and let Uq := π−1

q (Uq) be the set of corresponding q-expansions. Dual to the 
univoque set Uq we consider in this paper the set of univoque bases of real numbers. For 
x ≥ 0 let U (x) be the set of bases q ∈ (1, M + 1] such that x has a unique q-expansion, 
i.e.,

U (x) = {q ∈ (1,M + 1] : x ∈ Uq} .

Clearly, for x = 0 the set U (0) = (1, M + 1], because for each q ∈ (1, M + 1] the point 0
always has a unique q-expansion 0∞ = 00 · · · . So, it is interesting to investigate the set 
U (x) for x > 0.

When x = 1, the set U = U (1) is well understood. Erdős et al. [19] showed that U
is a Lebesgue null set of first category but it is uncountable. Later Daróczy and Kátai 
[12] showed that U has full Hausdorff dimension. Clearly, the largest element of U is 
M + 1 since 1 has the unique expansion M∞ = MM · · · in base M + 1. Komornik and 
Loreti [26,27] found the smallest element qKL = qKL(M) of U , which was called the 
Komornik-Loreti constant by Glendinning and Sidorov [22]. Furthermore, they showed 
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in [28] that its topological closure U is a Cantor set: a non-empty compact set with 
neither isolated nor interior points. Hence,

(1,M + 1] \ U =
⋃

(q0, q∗0), (1.2)

where the left endpoints q0 run through 1 and the set U \U , and the right endpoints q∗0
run through a subset U ∗ of U (cf. [13]). In particular, each left endpoint q0 is algebraic, 
while each right endpoint q∗0 , called a de Vries-Komornik number, is transcendental 
(cf. [30]). Recently, Kalle et al. [23] showed that the set U has more weight close to 
M + 1. For the detailed description of the local structure of U we refer to the recent 
paper [5].

However, for a general x > 0 we know very little about U (x). Lü, Tan and Wu [33]
showed that for M = 1 and x ∈ (0, 1) the set U (x) is a Lebesgue null set but has full 
Hausdorff dimension. Recently, Dajani et al. [11] showed that the algebraic difference 
U (x) − U (x) contains an interval for any x ∈ (0, 1]. The smallest element of U (x) was 
investigated in [29,6]. In this paper we will investigate the set U (x) from the following 
perspectives. (i) We will determine the local dimension of U (x) and establish a so-
called ‘variation principle’ in unique non-integer base expansions; (ii) We will determine 
the Hausdorff dimension of the symbolic set U(x) consisting of all expansions of x in 
base q ∈ U (x), and show that the function x �→ dimH U(x) is a non-increasing Devil’s 
staircase (see Fig. 2); (iii) We will determine the critical values of U (x) such that when 
x passes the first critical value the set U (x) changes from positive Hausdorff dimension 
to a countable set, and when x passes the second critical value the set U (x) changes 
from an infinite set to a singleton; (iv) In contrast with U = U (1) we will show that 
typically the set U (x) contains isolated points.

For x > 0 let

qx := min
{

1 + M, 1 + M

x

}
. (1.3)

Then qx is the largest base in (1, M + 1] such that the given x has an expansion with 
respect to the alphabet {0, 1, . . . ,M}.

Our first result focuses on the local dimension of U (x).

Theorem 1.1. For any x > 0 and for any q ∈ (1, qx] \ U we have

lim
δ→0

dimH(U (x) ∩ (q − δ, q + δ)) = lim
δ→0

dimH(Uq ∩ (x− δ, x + δ)).

Theorem 1.1 can be viewed as a ‘variation principle’ in unique non-integer base ex-
pansions. Recall from [14] the two dimensional univoque set

U = {(z, p) : z has a unique p-expansion} .
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Fig. 1. The graph of ψ : q �→ dimH Uq with M = 1. ψ(q) is positive if and only if q > qKL ≈ 1.78723, and 
ψ(q) = 1 if and only if q = 2.

Then the left hand side in Theorem 1.1 is the local dimension of the vertical slice U ∩
{z = x} = U (x) at the point (x, q), and the right hand side gives the local dimension 
of the horizontal slice U ∩ {p = q} = Uq at the same point (x, q). So Theorem 1.1 states 
that for any x > 0 and any q ∈ (1, qx] \ U the local dimension of U at the point (x, q)
through the vertical slice is the same as that through the horizontal slice.

Let {0, 1, . . . ,M}N be the set of all sequences (di) = d1d2 . . . over the alphabet 
{0, 1, . . . ,M}. Equipped with the order topology on {0, 1, . . . ,M}N induced by the met-
ric

ρ((ci), (di)) = (M + 1)− inf{i≥1:ci �=di} (1.4)

we can define the Hausdorff dimension of any subset of {0, 1, . . . ,M}N .
Note that Uq = π−1

q (Uq) ⊂ {0, 1, . . . ,M}N is the symbolic horizontal slice of the 
two-dimensional univoque set U . The following result for the Hausdorff dimension of Uq

was established in [25] and [4] (see Fig. 1).

Proposition 1.2 ([25,4]). The dimensional function ψ : q �→ dimH Uq is a non-decreasing 
Devil’s staircase on (1, M + 1]. In particular,

• ψ is non-decreasing and continuous on (1, M + 1];
• ψ is locally constant almost everywhere on (1, M + 1];
• ψ(q) ∈ (0, 1] if and only if q > qKL. Furthermore, ψ(q) = 1 only when q = M + 1.

The detailed study of the plateaus of ψ, i.e., the largest intervals for which ψ is 
constant, can be found in [1]. For the bifurcation set of ψ, which is the set of points 
where ψ is not locally constant, we refer to [3].

For x > 0 let Φx(q) = x1(q)x2(q) . . . be the quasi-greedy q-expansion of x (see Sec-
tion 2 for its definition). Now we define the symbolic set of univoque bases by
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Fig. 2. The graph of φ : x �→ dimH U(x) with M = 1. φ(x) is positive if and only if x < xKL ≈ 1.27028, 
and φ(x) = 1 if and only if x ≤ 1.

U(x) := {Φx(q) : q ∈ U (x)} .

Observe that for each q ∈ U (x) the sequence Φx(q) ∈ U(x) is the unique q-expansion of 
x. So, the map q �→ Φx(q) is bijective from U (x) to U(x). We will show in Proposition 3.1
that the map q �→ Φx(q) is locally bi-Hölder continuous on U (x).

Observe that U(x) = Φx(U (x)) is the symbolic vertical slice of the two dimensional 
univoque set U . Comparing with Proposition 1.2 our second main result gives the Haus-
dorff dimension of U(x), and shows that the dimensional function x �→ dimH U(x) is a 
non-increasing Devil’s staircase (see Fig. 2).

Theorem 1.3. For any x > 0 the Hausdorff dimension of U(x) is given by

dimH U(x) = dimH Uqx ,

where qx is defined in (1.3). Consequently, the dimensional function φ : x �→ dimH U(x)
is a non-increasing Devil’s staircase on (0, ∞). In particular,

(i) φ is non-increasing and continuous on (0, ∞);
(ii) φ is locally constant almost everywhere;
(iii) φ(x) ∈ (0, 1] if and only if x < M

qKL−1 . Furthermore, φ(x) = 1 if and only if x ≤ 1.

Recall from [9] that the generalized golden ratio is defined by

qG = qG(M) :=
{

k + 1 if M = 2k;
k+1+

√
k2+6k+5
2 if M = 2k + 1.

(1.5)

Note that qKL = qKL(M) is the smallest element of U = U (1) and 1 < qG < qKL <

M + 1. The following result on the critical values of Uq = πq(Uq) was first proven 
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by Glendinning and Sidorov [22] for M = 1 and then proven in [31] for all M ≥ 2. 
Furthermore, the Hausdorff dimension of Uq was given in [25]. For a set A we denote by 
|A| its cardinality.

Proposition 1.4 ([22,31,25]). For any q ∈ (1, M + 1] the Hausdorff dimension of Uq is 
given by

dimH Uq = dimH Uq

log q .

Furthermore, we have the following properties.

• If q ∈ (1, qG], then Uq =
{

0, M
q−1

}
;

• If q ∈ (qG, qKL), then |Uq| = ℵ0;
• If q = qKL, then |Uq| = 2ℵ0 and dimH Uq = 0;
• If q ∈ (qKL, M + 1], then dimH Uq ∈ (0, 1]. Furthermore, dimH Uq = 1 if and only if 

q = M + 1.

Here in Proposition 1.4 and throughout the paper we keep using base M+1 logarithms. 
By Theorem 1.3 and Proposition 1.4 we are able to determine the critical values of U (x)
for x > 0 and M ≥ 1. Set

xG := M

qG − 1 and xKL := M

qKL − 1 .

Since 1 < qG < qKL < M + 1, it follows that 1 < xKL < xG. Furthermore, by (1.3) it 
follows that qxG

= qG and qxKL
= qKL.

Theorem 1.5. Let M ≥ 1. The set U (x) has zero Lebesgue measure for any x > 0. 
Furthermore,

(i) if x ∈ (0, 1], then dimH U (x) = 1;
(ii) if x ∈ (1, xKL), then 0 < dimH U (x) < 1;
(iii) if x ∈ [xKL, xG), then |U (x)| = ℵ0;
(iv) if x ≥ xG, then U (x) = {qx}.

Remark 1.6.

• Theorem 1.5 (i) was first established in [33] for M = 1.
• In Lemma 4.6 we present a stronger result than Theorem 1.5 (ii): for x ∈ (1, xKL)

we have

0 < dimH Uqx ≤ dimH U (x) ≤ max dimH Uq < 1.

q∈U (x)
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• In contrast with Proposition 1.4 for the univoque set Uq, Theorem 1.5 shows that 
there is no x > 0 such that the set U (x) is uncountable but has zero Hausdorff 
dimension.

Recall that U = U (1) has no isolated points and its closure U is a Cantor set. Then 
it is natural to ask whether this is true for U (x)? Our forth main result shows that 
typically this is not the case. Let

Xiso := {x ∈ (0,∞) : U (x) contains isolated points} .

We show that for M = 1 the set Xiso is dense in (0, ∞).

Theorem 1.7. Let M ≥ 1. The set Xiso is dense in [0, 1]. If M = 1, the set Xiso is dense 
in (0, ∞).

Remark 1.8.

• For M ≥ 1 we show in Lemma 5.2 a slightly stronger property: for any x ∈ [0, 1] any 
neighborhood of x in Xiso contains an interval.

• For M = 1 we show in Proposition 5.3 that Xiso ⊃ (1, ∞). This means for any x > 1
the set U (x) contains isolated points.

The rest of the paper is arranged in the following way. In the next section we in-
troduce the greedy and quasi-greedy expansions, and present some useful properties of 
unique expansions. In Section 3 we investigate the local dimension of U (x) and prove 
Theorem 1.1. Based on this we are able to calculate in Section 4 the Hausdorff dimen-
sion of the symbolic set U(x) and prove the irregularity of the dimensional function 
x �→ dimH U(x) (see Theorem 1.3). Furthermore, we determine the critical values of 
U (x) such that when x crosses the first critical value the Hausdorff dimension of U (x)
vanishes, and when x crosses the second critical value the set U (x) degenerates to a sin-
gleton (see Theorem 1.5). The proof of Theorem 1.7 is presented in Section 5. Although 
the set U (1) has no isolated points, we show that typically U (x) contains isolated points. 
In the final section we pose some remarks and questions on U (x).

2. Preliminaries

In this section we recall some well-known properties from unique non-integer 
base expansions. First we need some terminology from symbolic dynamics (cf. [32]). 
Let {0, 1, . . . ,M}N be the set of infinite sequences with digits from the alphabet 
{0, 1, . . . ,M}. Denote by σ the left shift on {0, 1, . . . ,M}N such that σ((ci)) = (ci+1). By 
a word c = c1 . . . cn we mean a finite string of digits with each digit ci from {0, 1, . . . ,M}. 
Let {0, 1, . . . ,M}∗ be the set of all words including the empty word ε. For two words 
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c, d ∈ {0, 1, . . . ,M}∗ we write cd as a new word which is the concatenation of them. 
We denote by c∞ = cc . . . ∈ {0, 1, . . . ,M}N the periodic sequence which is the infinite 
concatenation of c with itself. Throughout the paper we will use the lexicographical 
ordering “≺, �, �” or “�” between sequences and words in the usual way. For example, 
for two sequences (ci), (di) ∈ {0, 1, . . . ,M}N we write (ci) ≺ (di) if c1 < d1, or there 
exists n > 1 such that c1 . . . cn−1 = d1 . . . dn−1 and cn < dn. Furthermore, for two 
words c, d we say c ≺ d if c0∞ ≺ d0∞. For a sequence (ci) we denote its reflection by 
(ci) = (M−c1)(M−c2) . . . ∈ {0, 1, . . . ,M}N . Similarly, for a word c = c1 . . . cn we denote 
its reflection by c := (M−c1) . . . (M−cn). If cn < M , we write c+ := c1 . . . cn−1(cn+1); 
and if cn > 0, we write c− := c1 . . . cn−1(cn − 1). So, c, c+ and c− are all words in 
{0, 1, . . . ,M}∗.

2.1. Quasi-greedy and greedy expansions

Let M ≥ 1 and x > 0. Recall from (1.3) that qx = min {1 + M, 1 + M/x} =
max U (x). For q ∈ (1, qx] let

Φx(q) = x1(q)x2(q) . . . ∈ {0, 1, . . . ,M}N

be the quasi-greedy q-expansion of x, which is the lexicographically largest q-expansion of 
x not ending with 0∞. In other words, Φx(q) = (xi(q)) is the q-expansion of x satisfying

n∑
i=1

xi(q)
qi

< x for all n ≥ 1.

In particular, for x = 1 and q ∈ (1, q1] = (1, M + 1] we reserve the notation α(q) =
(αi(q)) = Φ1(q) for the quasi-greedy q-expansion of 1.

Similarly, for q ∈ (1, qx] let

Ψx(q) = x̃1(q)x̃2(q) . . . ∈ {0, 1, . . . ,M}N

be the greedy q-expansion of x, which is the lexicographically largest q-expansion of x. 
Then Ψx(q) = (x̃i(q)) is the q-expansion of x satisfying

n∑
i=1

x̃i(q)
qi

+ 1
qn

> x whenever x̃n(q) < M.

If x has a unique q-expansion, i.e., q ∈ U (x), then Φx(q) = Ψx(q).
The following lemma for the quasi-greedy expansion Φx(q) and greedy expansion 

Ψx(q) was essentially proven in [14].
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Lemma 2.1.

(i) Let x > 0. Then the map q �→ Φx(q) is left continuous and strictly increasing in 
(1, qx]. Moreover, the sequence Φx(q) = (xi(q)) satisfies

xn+1(q)xn+2(q) · · · � α(q) whenever xn(q) < M.

(ii) For x > 0 the map q �→ Ψx(q) is right continuous and strictly increasing in (1, qx]. 
Moreover, the sequence Ψx(q) = (x̃i(q)) satisfies

x̃n+1(q)x̃n+2(q) · · · ≺ α(q) whenever x̃n(q) < M.

Proof. The monotonicity statements in (i) and (ii) are obvious by the definitions of Φx

and Ψx respectively. The continuity statements follow from [14, Lemmas 2.3 and 2.5]. 
Finally, the lexicographical characterizations of Φx(q) and Ψx(q) can be found in [8].

Remark 2.2. Taking x = 1 in Lemma 2.1 (i) it follows that the map q �→ Φ1(q) = α(q)
is left-continuous and strictly increasing in (1, M + 1]. In particular, the quasi-greedy 
expansion α(q) = (αi(q)) satisfies αn+1(q)αn+2(q) . . . � α(q) whenever αn(q) < M . 
Indeed, one can verify (see also [16, Proposition 2.3]) that the map q �→ α(q) is bijective 
from (1, M + 1] to the set of sequences (ai) ∈ {0, 1, . . . ,M}N not ending with 0∞ and 
satisfying

an+1an+2 . . . � a1a2 . . . for all n ≥ 0.

2.2. Unique expansions

For q ∈ (1, M + 1] we recall the symbolic univoque set

Uq =
{

(di) ∈ {0, 1, . . . ,M}N : πq((di)) ∈ Uq

}
,

where πq is the projection map define in (1.1). Then each sequence (di) ∈ Uq is the 
unique q-expansion of πq((di)). So πq is a bijective map from Uq to Uq. The following 
lexicographical characterization of Uq was given by Erdős et al. [19] (see also [13]).

Lemma 2.3. Let q ∈ (1, M + 1]. Then Uq consists of all sequences (di) ∈ {0, 1, . . . ,M}N

satisfying {
dn+1dn+2 . . . ≺ α(q) if dn < M,

dn+1dn+2 . . . ≺ α(q) if dn > 0.

Observe that for any x > 0 and q ∈ (1, M + 1] we have q ∈ U (x) if and only 
if Φx(q) ∈ Uq. Recall that U = U (1) is the set of bases for which 1 has a unique 



10 D. Kong et al. / Advances in Applied Mathematics 121 (2020) 102103
expansion. Komornik and Loreti [28] showed that its topological closure U is a Cantor 
set as described in (1.2). Motivated by the work of de Vries and Komornik [13] we 
introduce the bifurcation set V of the set-valued map q �→ Uq defined by

V := {q ∈ (1,M + 1] : Ur �= Uq ∀r > q} . (2.1)

They showed in [13] that U ⊂ V , and V \ U is countably infinite.
The following intimate connection between Uq, U and V was established by de Vries 

and Komornik [13] (see also [16]).

Lemma 2.4. Let M ≥ 1. The following statements hold true.

(i) The set-valued map q �→ Uq is non-decreasing with respect to the set-inclusion. 
Furthermore, for any connected component (q0, q∗0) of (1, M + 1] \ U and for any 
p, q ∈ (q0, q∗0) the difference between Up and Uq is at most countable.

(ii) For each connected component (qL, qR) of (1, M + 1] \V the set-valued map q �→ Uq

is constant in (qL, qR].

3. Local dimension of U (x)

In this section we will investigate the local dimension of U (x) by showing that 
the map Φx is locally bi-Hölder continuous from U (x) onto U(x). This provides a 
good estimation for the local dimension of U (x) via its symbolic set U(x). Based 
on this estimation we are able to prove the ‘variation principle’ as described in The-
orem 1.1.

Recall that the symbolic set U(x) = {Φx(q) : q ∈ U (x)} and the metric ρ is defined 
in (1.4). First we show that the map Φx : U (x) �→ U(x) is locally bi-Hölder continuous.

Proposition 3.1. Let x > 0 and 1 < a < b < M + 1. Then for any p1, p2 ∈ U (x)∩(a, b),

C1|p1 − p2|
1

log a ≤ ρ(Φx(p1),Φx(p2)) ≤ C2|p1 − p2|
1

log b , (3.1)

where C1, C2> 0 are constants independent of p1 and p2.

Proof. Take p1, p2 ∈ U (x) ∩ (a, b) with p1 < p2. By Lemma 2.1 (i) we have (xi(p1)) =
Φx(p1) ≺ Φx(p2) = (xi(p2)). Then there exists an integer n ≥ 1 such that

x1(p1) · · ·xn−1(p1) = x1(p2) · · ·xn−1(p2) and xn(p1) < xn(p2). (3.2)

Note that
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n−1∑
i=1

xi(p1)
pi1

<
∞∑
i=1

xi(p1)
pi1

= x =
∞∑
i=1

xi(p2)
pi2

≤
n−1∑
i=1

xi(p2)
pi2

+ M

pn−1
2 (p2 − 1)

.

Then by (3.2) it follows that

x(p2 − p1) <
n−1∑
i=1

xi(p2)
pi−1
2

−
n−1∑
i=1

xi(p1)
pi−1
1

+ M

pn−2
2 (p2 − 1)

≤ M

pn−2
2 (p2 − 1)

,

which implies

p2 − p1 <
M

pn−2
2 (p2 − 1)x

. (3.3)

Therefore, by (3.2) and (3.3) it follows that

ρ(Φx(p1),Φx(p2))log a = (M + 1)−n log a = 1
an

>
1
pn2

>
(p2 − 1)x
Mp2

2
|p2 − p1|

≥ (a− 1)x
Mb2

|p2 − p1|.

This proves the first inequality of (3.1) by taking C1 := ( (a−1)x
Mb2 )1/ log a.

For the second inequality of (3.1) we note that b < M+1. So, α(b) ≺ α(M+1) = M∞

by Lemma 2.1 (i). Then there exists i0 ≥ 1 such that

α1(b) · · ·αi0(b) ≺ M i0 . (3.4)

Since p2 ∈ U (x), we have Φx(p2) ∈ Up2 . Then by (3.2), (3.4) and Lemma 2.3 it follows 
that

n∑
i=1

xi(p2)
pi1

≥
∞∑
i=1

xi(p1)
pi1

= x =
∞∑
i=1

xi(p2)
pi2

>
n∑

i=1

xi(p2)
pi2

+ 1
pn+i0
2

.

This implies

1
pn+i0
2

<
n∑

i=1

(
xi(p2)
pi1

− xi(p2)
pi2

)
≤

∞∑
i=1

(
M

pi1
− M

pi2

)
= M |p2 − p1|

(p1 − 1)(p2 − 1) . (3.5)

Hence, by (3.2) and (3.5) it follows that
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ρ(Φx(p1),Φx(p2))log b = (M + 1)−n log b = 1
bn

<
1
pn2

<
Mpi02

(p1 − 1)(p2 − 1) |p2 − p1|

≤ Mbi0

(a− 1)2 |p1 − p2|.

This establishes the second inequality in (3.1) by taking C2 := ( Mbi0

(a−1)2 )1/ log b. �
The following lemma for the Hausdorff dimension under Hölder continuous maps is 

well-known (cf. [20]).

Lemma 3.2. Let (X, d1) and (Y, d2) be two metric spaces, and let f : X → Y . If there 
exist positive constants δ, C and λ such that

d2(f(x), f(y)) ≤ Cd1(x, y)λ

for any x, y ∈ X with d1(x, y) ≤ δ, then dimH f(X) ≤ 1
λ dimH X.

By Proposition 3.1 and Lemma 3.2 we have the following estimation for the local 
dimension of U (x), which states that the local dimension of U (x) at any point q ∈
(1, M + 1) can be roughly estimated by the local dimension of the symbolic set U(x) at 
Φx(q).

Proposition 3.3. Let x > 0 and 1 < a < b < M + 1. Then

dimH Φx

(
U (x) ∩ (a, b)

)
log b ≤ dimH

(
U (x) ∩ (a, b)

)
≤

dimH Φx

(
U (x) ∩ (a, b)

)
log a .

Proof. Excluding the trivial case we assume that U (x) ∩ (a, b) contains infinitely many 
elements. Note that the map

Φx : U (x) ∩ (a, b) −→ Φx(U (x) ∩ (a, b)); p �→ Φx(p)

is bijective. Then its inverse map Φ−1
x is well-defined. Hence, the proposition follows by 

Proposition 3.1 and Lemma 3.2. �
To prove Theorem 1.1 we still need the following lemma.

Lemma 3.4. Fix q ∈ (1, M + 1). There exist constants C1, C2 > 0 such that for any 
c = (ci), d = (di) ∈ Uq we have

C1 · ρ(c,d)log q ≤ |πq(c) − πq(d)| ≤ C2 · ρ(c,d)log q. (3.6)
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Proof. Define a metric ρq on Uq by

ρq(c,d) = q− inf{i≥1:ci �=di}

for any c, d ∈ Uq. Then the map πq : (Uq, ρq) → (Uq, | · |) is bi-Lipschitz (cf. [2, Lemma 
2.2]). Since ρq(c, d) = ρ(c, d)log q, this proves (3.6). �
Proof of Theorem 1.1. Let x > 0 and q ∈ (1, qx] \ U . Note by (2.1) that U ⊂ V

and the difference V \ U is countable. Then there exists a δ > 0 such that q − δ > 1
and (q − δ, q) ∩ V = ∅. So, by Lemma 2.1 (i) and Lemma 2.4 it follows that each 
p ∈ U (x) ∩ (q− δ, q) determines a unique y = πq(Φx(p)) ∈ Uq ∩ (x − η, x) for some η > 0
depending on δ. This defines a bijection

φ : U (x) ∩ (q − δ, q) → Uq ∩ (x− η, x); p �→ πq(Φx(p)).

If the set U (x) ∩ (q − δ, q) is empty, then so is Uq ∩ (x − η, x). In this case, it is trivial 
that

lim
δ→0

dimH(U (x) ∩ (q − δ, q)) = lim
η→0

dimH(Uq ∩ (x− η, x)), (3.7)

and the limit is equal to zero. In the following we assume U (x) ∩ (q − δ, q) �= ∅. Then 
by (3.1) and (3.6) it follows that there exist constants D1, D2 > 0 such that

D1|p1 − p2|
log q

log(q−δ) ≤ |φ(p1) − φ(p2)| ≤ D2|p1 − p2|

for all p1, p2 ∈ U (x) ∩ (q− δ, q). In other words, φ is ‘nearly bi-Lipschitz’ on U (x) ∩ (q−
δ, q). By Lemma 3.2 this implies

dimH(Uq ∩ (x− η, x)) ≤ dimH(U (x) ∩ (q − δ, q)) ≤ log q
log(q − δ) dimH(Uq ∩ (x− η, x)).

Letting δ → 0, which implies η → 0, we then establish (3.7) for any x > 0 and q ∈
(1, qx] \ U .

The proof for the right local dimension similar to (3.7) is more involved. The main 
obstacle in this case is that for a base r ∈ U (x) ∩ (q, q + δ) the expansion Φx(r) may 
not belong to Uq, and then we have problems to build a bijective map similar to φ. 
Fortunately, if (q, q + δ) ∩ U = ∅ then the set of all such bases is at most countable. 
So, in the proof for the right local dimension we can throw away all of these bases 
r ∈ U (x) ∩ (q, q + δ) satisfying Φx(r) /∈ Uq.

Take q ∈ (1, qx] \U . If q = qx /∈ U , then qx = 1 +M/x < M + 1. So, Ψx(qx) = M∞, 
and thus x is the largest element of Uqx . Note that qx = max U (x). Then it is clear that

U (x) ∩ (qx, qx + δ) = Uqx ∩ (x, x + ζ) = ∅ for any δ, ζ > 0. (3.8)
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In the following we assume q ∈ (1, qx) \ U . Choose δ > 0 such that q + δ < qx and 
(q, q + δ) ∩ U = ∅. Let

Γx,q,δ := {r ∈ U (x) ∩ (q, q + δ) : Ψx(r) ∈ Uq} .

By Lemma 2.1 (ii) and Lemma 2.4 (i) it follows that the difference between Γx,q,δ and 
U (x) ∩ (q, q + δ) is at most countable. So they have the same Hausdorff dimension. 
Observe that each r ∈ Γx,q,δ determines a unique z = πq(Ψx(r)) ∈ Uq ∩ (x, x + ζ) for 
some ζ > 0 depending on δ. This defines a bijection

ψ : Γx,q,δ → Uq ∩ (x, x + ζ); r �→ πq(Ψx(r)).

Hence, by (3.1) and (3.6) we can prove that ψ is nearly bi-Lipschitz, and then by the 
same argument as in the proof of (3.7) we conclude that

lim
δ→0

dimH(U (x) ∩ (q, q + δ)) = lim
δ→0

dimH Γx,q,δ = lim
ζ→0

dimH(Uq ∩ (x, x + ζ)).

This, together with (3.7) and (3.8), completes the proof. �
4. Hausdorff dimension and critical values of U(x)

Given x > 0, recall that the symbolic set U(x) = {Φx(q) : q ∈ U (x)} consists of all 
unique expansions of x with bases in U (x). Clearly, Φx is a bijective map from U (x)
to U(x). Instead of looking at the set U (x) directly we focus on the symbolic set U(x). 
In this section we will investigate the Hausdorff dimension of U(x) with respect to the 
metric ρ defined in (1.4), and prove Theorem 1.3. Furthermore, by using Theorem 1.3 and 
Proposition 1.4 we determine the critical values of U (x), and then prove Theorem 1.5.

4.1. Hausdorff dimension of U(x)

Our first result states that the set-valued map x �→ U(x) is non-increasing on (1, ∞)
with respect to the set inclusion.

Lemma 4.1. The set-valued map x �→ U(x) is non-increasing on (1, ∞).

Proof. Let x ∈ (1, ∞) and (di) ∈ U(x). Then there exists a unique base q ∈ U (x) ⊆
(1, M + 1) such that

(di) = Φx(q) ∈ Uq. (4.1)

Take y ∈ (1, x). Then the equation
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y =
∞∑
i=1

di
βi

(4.2)

determines a unique base β ∈ (q, M + 1), since πM+1((di)) ≤ 1. Observe by Lemma 2.4
(i) that the set-valued map q �→ Uq is non-decreasing. Then by (4.1) it follows that 
(di) ∈ Uq ⊂ Uβ . In view of (4.2) this implies that

Φy(β) = (di) ∈ Uβ .

So, (di) ∈ U(y), and thus U(x) ⊆ U(y). This completes the proof. �
Now we turn to the Hausdorff dimension of U(x). This is based on the following 

lemma.

Lemma 4.2. Given x ∈ (0, 1), let (εi) = Φx(M + 1) be the quasi-greedy expansion of x
in base M + 1. Then there exist a word w, a positive integer N and a strictly increasing 
sequence (Nj) ⊂ N such that

UNj
(x) ⊂ U(x) for all j ≥ 1,

where

UNj
(x) :=

{
ε1 . . . εN+Nj

wd1d2 . . . : dn+1 . . . dn+Nj
/∈
{
0Nj ,MNj

}
∀n ≥ 0

}
.

Proof. The proof of this lemma is similar to [33, Section 4]. Let (εi) ∈ {0, 1, . . . ,M}N

be the quasi-greedy expansion of x in base M + 1. We distinguish two cases.
(I). (εi) ends with M∞. Then we can write

(εi) = ε1 . . . εm M∞ for some m ≥ 1 with εm < M. (4.3)

Let w = ε be the empty word, N = m and Nj = m + j for j ≥ 1. Take a sequence 
(yi) ∈ UNj

(x). Then it can be written as

(yi) = ε1 . . . εN+Nj
d1d2 . . . = ε1 . . . εmMNjd1d2 . . . , (4.4)

where (di) ∈ {0, 1, . . . ,M}N contains neither Nj consecutive 0’s nor Nj consecutive M ’s. 
Let qj be the unique root in (1, M + 1) of the equation

x =
∞∑
i=1

yi
qij
.

Here we emphasize that qj < M + 1 because 
∑∞

i=1 yi/(M + 1)i < x. We claim that (yi)
is the unique qj-expansion of x.
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Observe that the tail sequence

ym+1ym+2 . . . = MNjd1d2 . . . =: (δi)

satisfies σn((δi)) � (δi) for all n ≥ 0. Then by Remark 2.2 it follows that (δi) is the 
quasi-greedy expansion of 1 for some base q ∈ (1, M + 1], i.e., α(q) = (δi). Note that 
Nj > N = m and εm < M . Then by (4.4) it follows that the initial word y1 . . . yN+Nj−1 =
ε1 . . . εmMNj−1 contains neither Nj consecutive 0’s nor Nj consecutive M ’s. So, by the 
definition of (di) in (4.4) it follows that

0Nj ≺ yi+1 . . . yi+Nj
� MNj ∀i ≥ 0,

and the equality yi+1 . . . yi+Nj
= MNj holds if and only if i = m. This implies that (δi) =

MNjd1d2 . . . is the lexicographically largest tail sequence of (yi). Hence, by Lemma 2.3
it suffices to prove that α(qj) � α(q) = (δi). In other words, it suffices to prove

∞∑
i=1

δi
qij

< 1. (4.5)

This follows from the following calculation: By (4.3) and (4.4) we obtain

m∑
i=1

εi
(M + 1)i + 1

(M + 1)m =
∞∑
i=1

εi
(M + 1)i = x =

∞∑
i=1

yi
qij

=
m∑
i=1

εi
qij

+ 1
qmj

∞∑
i=1

δi
qij
,

which gives

∞∑
i=1

δi
qij

= qmj

(
1

(M + 1)m +
m∑
i=1

( εi
(M + 1)i −

εi
qij

))
≤

qmj
(M + 1)m < 1,

where the inequalities follow since qj < M + 1. This proves (4.5).
Therefore, by Lemma 2.3 it follows that (yi) is the unique qj-expansion of x, i.e., 

(yi) ∈ U(x). Hence, UNj
(x) ⊂ U(x).

(II). (εi) does not end with M∞. Since (εi) is the quasi-greedy expansion of x in 
base M + 1, (εi) does not end with 0∞. Then there exists an integer N ≥ 3 such that 
εN−2 > 0. Choose N1 > N such that εN+N1+1 > 0 and

|{1 ≤ i ≤ N1 : εi > 0}| ≥ N + 1, |{1 ≤ i ≤ N1 : εi < M}| ≥ N + 1. (4.6)

In fact, we can choose a strictly increasing sequence (Nj) such that εN+Nj+1 > 0 for any 
j ≥ 1. Set w = 0M . Fix j ≥ 1, and take a sequence

(yi) = ε1 . . . εN+Nj
0Md1d2 . . . ∈ UNj

(x), (4.7)
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where the tail sequence (di) contains neither Nj consecutive 0’s nor Nj consecutive M ’s. 
It follows from (4.6) that the initial word ε1 . . . εN+Nj

contains neither Nj consecutive 
0’s nor Nj consecutive M ’s. Hence, by (4.7) it gives that (yi) contains neither (Nj + 1)
consecutive 0’s nor (Nj + 1) consecutive M ’s. Note that the equation

x = πqj ((yi)) =
∞∑
i=1

yi
qij

determines a unique qj ∈ (1, M+1). Here we emphasize that qj < M+1, since εN+Nj+1 >

0 = yN+Nj+1 which implies that 
∑∞

i=1 yi/(M + 1)i < x. Then by Lemma 2.3, to show 
that (yi) is the unique qj-expansion of x it suffices to show that α(qj) � MNj+10∞, or 
equivalently, to prove

Nj+1∑
i=1

M

qij
< 1. (4.8)

Observe by (4.7) that

N+Nj∑
i=1

εi
qij

<
∞∑
i=1

yi
qij

= x =
∞∑
i=1

εi
(M + 1)i <

N+Nj∑
i=1

εi
(M + 1)i + 1

(M + 1)N+Nj
.

This, combined with εN−2 > 0 and qj < M + 1, implies that

M + 1 − qj
qj(M + 1)N−2 ≤ 1

qN−2
j

− 1
(M + 1)N−2 ≤

N+Nj∑
i=1

(
εi
qij

− εi
(M + 1)i

)
<

1
(M + 1)N+Nj

.

Rearranging the above inequality yields

M + 1 − qj <
qj

(M + 1)Nj+2 <
M

q
Nj+1
j

,

which gives M(1 − q
−Nj−1
j ) < qj − 1. Thus,

Nj+1∑
i=1

M

qij
=

M(1 − q
−Nj−1
j )

qj − 1 < 1,

proving (4.8).
Therefore, (yi) is the unique qj-expansion of x, i.e., (yi) ∈ U(x). Hence, UNj

(x) ⊂
U(x) for all j ≥ 1, completing the proof. �

The following lemma can be deduced from [4, Theorem 3.1].
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Lemma 4.3. For any q ∈ (1, M + 1] and n ∈ N let

Uq,n :=
{

(di) : α1(q) . . . αn(q) ≺ di+1 . . . di+n ≺ α1(q) . . . αn(q) ∀i ≥ 0
}
. (4.9)

Then

lim
n→∞

dimH Uq,n = dimH Uq.

Proof. Take q ∈ (1, M + 1], and set Ũq :=
{

(di) : α(q) ≺ di+1di+2 . . . ≺ α(q) ∀i ≥ 0
}

. 

Then by Lemma 2.3 we have Ũq ⊆ Uq. Furthermore, by [25, Lemma 2.5] it follows that

dimH Ũq = dimH Uq. (4.10)

Define a sequence of subsets

Vq,n :=
{

(di) : α1(q) . . . αn(q) � di+1 . . . di+n � α1(q) . . . αn(q) ∀i ≥ 0
}
, n ≥ 1.

Then Uq,n ⊆ Ũq ⊆ Vq,n for all n ≥ 1. So by (4.10) it suffices to prove

lim
n→∞

dimH Uq,n = lim
n→∞

dimH Vq,n. (4.11)

Note that for any n ≥ 1 the sets Uq,n and Vq,n are both subshifts of finite type, and 
then by [21, Proposition 3.1] it follows that

dimH Uq,n = htop(Uq,n)
log(M + 1) and dimH Vq,n = htop(Vq,n)

log(M + 1) ,

where htop(X) denotes the topological entropy of a subset X ⊆ {0, 1, . . . ,M}N . So, (4.11)
follows directly from [4, Theorem 3.1] that limn→∞ htop(Uq,n) = limn→∞ htop(Vq,n). 
This completes the proof. �
Proof of Theorem 1.3. Note by Proposition 1.2 that the function q �→ dimH Uq is a 
non-decreasing Devil’s staircase on (1, M + 1]. Then by the definition of qx it suffices to 
prove

dimH U(x) = dimH Uqx for all x > 0. (4.12)

First we consider x ∈ (0, 1). Let (εi) = Φx(M + 1) be the quasi-greedy expansion of 
x in base M + 1. Then by Lemma 4.2 there exist a word w, a positive integer N and a 
strictly increasing sequence (Nj) ⊂ N such that

UNj
(x) =

{
ε1 . . . εN+Nj

wd1d2 . . . : (di) ∈ Λj

}
⊂ U(x) for all j ≥ 1, (4.13)
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where

Λj :=
{

(di) ∈ {0, 1, . . . ,M}N : dn+1 . . . dn+Nj
/∈
{
0Nj ,MNj

}
∀n ≥ 0

}
.

By (4.13) it follows that for any j ≥ 1,

dimH U(x) ≥ dimH UNj
(x) = dimH Λj = dimH Upj

(4.14)

where pj ∈ (1, M + 1] satisfies

1 =
Nj∑
i=1

M

pij
.

Note that the function q �→ dimH Uq is continuous. Letting j → ∞ in (4.14), so that 
Nj → ∞ and hence pj → M + 1, it follows by Proposition 1.2 that

dimH U(x) ≥ dimH UM+1 = 1.

Note that qx = M + 1 for all x ∈ (0, 1). Hence, dimH U(x) = 1 = dimH Uqx for all 
x ∈ (0, 1). This proves (4.12) for x ∈ (0, 1).

Now we prove (4.12) for x ≥ 1. Then qx = 1 +M/x, and the quasi-greedy qx-expansion 
of x is M∞. We claim that for any N ∈ N there exists an integer J = J(N) > 0 such 
that

ΓN,J :=
{
MJd1d2 . . . : (di) ∈ Uqx,N

}
⊂ U(x), (4.15)

where Uqx,N is defined as in (4.9).
This can be verified by the following observation. Take N ∈ N. Since Φx(qx) = M∞, 

by Lemma 2.1 we can choose J sufficiently large such that

α1(qN,J) . . . αN (qN,J) = α1(qx) . . . αN (qx), (4.16)

where qN,J is the positive root of the equation 
∑J

i=1 Mq−i = x. Note that each sequence 
(yi) ∈ ΓN,J determines a unique base p ∈ (1, qx) via the equation

∞∑
i=1

yi
pi

= x.

Since MJ0∞ ≺ (yi) ≺ M∞, we must have qN,J < p < qx. Then by Lemma 2.1 and
(4.16) it follows that α1(p) . . . αN (p) = α1(qx) . . . αN (qx). So by Lemma 2.3 we conclude 
that each (yi) ∈ ΓN,J is the unique expansion of x in some base p ∈ (qN,J , qx). In other 
words, ΓN,J ⊂ U(x), proving (4.15).
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By (4.15) it follows that

dimH U(x) ≥ dimH ΓN,J = dimH Uqx,N ∀ N ∈ N. (4.17)

By Lemma 4.3 it follows that limN→∞ dimH Uqx,N = dimH Uqx . Letting N → ∞ in 
(4.17) we conclude that

dimH U(x) ≥ dimH Uqx .

The reverse inequality is obvious since U(x) ⊂ Uqx by Lemma 2.4 (i). This proves (4.12)
for all x ≥ 1. �
4.2. Critical values of U (x)

Observe by Proposition 3.1 that the map Φx : U (x) → U(x) is bijective and locally bi-
Hölder continuous. So, to determine the critical values of U (x) is equivalent to determine 
the critical values of U(x). We do this by using Theorem 1.3 and Proposition 1.4.

Recall from (1.5) that qG = qG(M) ∈ (1, M +1) is the generalized golden ratio. Then 
xG = M/(qG − 1) > 1. First we show that U (x) is a singleton for any x ≥ xG.

Lemma 4.4. If x ≥ xG, then U (x) = {qx}.

Proof. Note by Proposition 1.4 (i) that for q ≤ qG the symbolic univoque set Uq =
{0∞,M∞}. Since for x ≥ xG we have by (1.3) that qx ≤ qG, so

U(x) ⊆ {0∞,M∞} ∀ x ≥ xG.

If 0∞ ∈ U(x), then x = πq(0∞) = 0, leading to a contradiction with our assumption 
that x ≥ xG > 0. So U(x) = {M∞}, which implies U (x) = {qx} for any x ≥ xG. �

In the following lemma we show that xG is indeed a critical value for U (x). Recall that 
qKL ∈ (qG, M+1) is the Komornik-Loreti constant. Then xKL = M/(qKL−1) ∈ (1, xG).

Lemma 4.5. For any x < xG the set U (x) contains infinitely many elements. In partic-
ular, for x ∈ [xKL, xG) we have |U (x)| = ℵ0.

Proof. Let x < xG. Then qx > qG. Note by Theorem 1.3 that dimH U(x) =
dimH UM+1 = 1 for x ∈ (0, 1]. So it suffices to prove that U(x) contains infinitely 
many elements for x ∈ (1, xG). Take x ∈ (1, xG). Then by (1.3) it follows that 
qx= 1 + M/x ∈ (qG, M + 1) and the quasi-greedy expansion Φx(qx) = M∞. By 
Lemma 2.1 (i) it follows that for k ∈ N sufficiently large the equation

πpk
(Mkα(qG)) = x (4.18)
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determines a unique base pk ∈ (qG, qx), and pk ↗ qx as k → ∞. So, there exists 
K = K(x) ∈ N such that pk ∈ (qG, qx) for any k ≥ K. Take k ≥ K. Then α(pk) � α(qG). 
By Lemma 2.3 it follows that Mkα(qG) ∈ Upk

. Therefore, by (4.18) we conclude that

Mkα(qG) ∈ U(x) ∀k ≥ K.

This implies that U (x) is an infinite set for any x < xG.
On the other hand, observe by Lemma 2.4 (i) that U(x) ⊆ Uqx for any x > 0. 

Furthermore, qx ∈ (qG, qKL) if and only if x ∈ (xKL, xG). By using Proposition 1.4
(ii) it follows that U(x) is at most countable for any x ∈ (xKL, xG). If x = xKL, then 
qx = qKL and Φx(qx) = M∞. Observe that

U(x) = {M∞} ∪ {Φx(p) : p ∈ U (x) ∩ (1, qKL)}

= {M∞} ∪
∞⋃

n=1

{
Φx(p) : p ∈ U (x) ∩ (1, qKL − 1

2n )
}

⊆ {M∞} ∪
∞⋃

n=1
UqKL− 1

2n
.

Then by Proposition 1.4 (ii) we can deduce from the above equation that U(x) is also a 
countable set for x = xKL. Therefore, |U (x)| = ℵ0 for any x ∈ [xKL, xG). �

In the next lemma we demonstrate that xKL is also a critical value of U (x).

Lemma 4.6.

(i) If x ∈ (0, 1], then dimH U (x) = 1;
(ii) If x ∈ (1, xKL), then

0 < dimH Uqx ≤ dimH U (x) ≤ max
q∈U (x)

dimH Uq < 1.

Proof. (i) was first proven by Lü, Tan and Wu [33] for M = 1. For M > 1 the proof was 
given by Xu [39] in his thesis. For completeness we prove this by using Theorem 1.3 and 
Proposition 3.3.

For x > 0 note that U (x) ⊂ (1, qx]. Then by using the countable stability of Hausdorff 
dimension (cf. [20]) and Proposition 3.3 it follows that

dimH U (x) = dimH

(⋃
n

U (x) ∩ (1 + n−1, qx − n−1)
)

= sup
n

dimH

(
U (x) ∩ (1 + n−1, qx − n−1)

)
≥ sup 1

−1 dimH Φx

(
U (x) ∩ (1 + n−1, qx − n−1)

)

n log(qx − n )
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≥ 1
log qx

sup
n

dimH Φx

(
U (x) ∩ (1 + n−1, qx − n−1)

)
= 1

log qx
dimH

(⋃
n

Φx

(
U (x) ∩ (1 + n−1, qx − n−1)

))
= dimH U(x)

log qx
= dimH Uqx

log qx
,

where the last equality follows by Theorem 1.3. Therefore, by Proposition 1.4 we obtain 
that

dimH U (x) ≥ dimH Uqx ∀ x > 0. (4.19)

Note by (1.3) that qx = M + 1 for all x ∈ (0, 1]. Then by (4.19) and Proposition 1.4 we 
conclude that dimH U (x) = dimH UM+1 = 1 for all x ∈ (0, 1].

Now we prove (ii). Let x ∈ (1, xKL). Then qx ∈ (qKL, M+1). The first two inequalities 
of (ii) follow from (4.19). For the remaining inequalities in (ii) we set

ξ := max
q∈U (x)

dimH Uq.

Since U (x) ⊂ (1, qx] and qx ∈ U (x) ∩ (qKL, M + 1), by Proposition 1.2 it follows that 
0 < ξ < 1. Take ε > 0. By Proposition 3.3, Lemma 2.4 (i) and Proposition 1.2 it follows 
that for each q ∈ U (x) there exists δ > 0 such that

dimH(U (x) ∩ (q − δ, q + δ)) ≤ dimH Φx(U (x) ∩ (q − δ, q + δ))
log(q − δ)

≤ log(q + δ)
log(q − δ) · dimH Uq+δ

log(q + δ)

= log(q + δ)
log(q − δ) dimH Uq+δ

≤ dimH Uq + ε ≤ ξ + ε.

(4.20)

For each q ∈ U (x) we choose a δq ∈ (0, M +1 −qx) satisfying (4.20). Then the collection {
(q − δq, q + δq) : q ∈ U (x)

}
forms an open cover of U (x). Since U (x) is compact, there 

exists a finite cover {(qi − δi, qi + δi)}Ni=1 of U (x), where δi := δqi . By (4.20) this implies

dimHU (x) = dimH

(
U (x) ∩

N⋃
i=1

(qi − δi, qi + δi)
)

= max
1≤i≤N

dimH(U (x) ∩ (qi − δi, qi + δi))

≤ ξ + ε.

Since ε > 0 was arbitrary, this completes the proof. �
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Proof of Theorem 1.5. By Lemmas 4.4–4.6 it suffices to prove that U (x) has zero 
Lebesgue measure. This result was first proven in [33] for M = 1 by using the Lebesgue 
density theorem. Here we present an alternate proof by using Proposition 3.3. By the 
same argument as in the proof of Lemma 4.6 (ii) one can easily verify that for x > 0,

dimH

(
U (x) ∩ (1,M + 1 − 1

2n )
)

< 1 for any n ≥ 1.

This implies that U (x) ∩ (1, M +1 − 1
2n ) has zero Lebesgue measure for all n ≥ 1. Then 

we conclude that U (x) is a Lebesgue null set by observing

U (x) ⊆ {M + 1} ∪
∞⋃

n=1

(
U (x) ∩ (1,M + 1 − 1

2n )
)
. �

5. Isolated points of U (x)

In this section we will consider the topological structure of U (x) when x varies in 
(0, ∞). In particular, we will investigate the isolated points of U (x), and prove Theo-
rem 1.7. Recall from (1.2) that (1, M +1] \U =

⋃
(q0, q∗0), and recall V from (2.1). Then 

for each connected component (q0, q∗0) of (1, M + 1] \ U we can write the elements of 
V ∩ (q0, q∗0) = {qn}∞n=1 in an increasing order as

q0 < q1 < q2 < · · · < qn < qn+1 < · · · , and qn ↗ q∗0 as n → ∞.

By Lemma 2.4 (ii) it follows that Up = Uqn+1 for any p ∈ (qn, qn+1]. For n ≥ 1 set

U∗
qn+1

:= Uqn+1 \ Uqn =
{

(di) ∈ Uqn+1 : (di) ends with α(qn) or α(qn)
}
.

It was shown in [13] that U∗
qn+1

is dense in Uqn+1 for any n ≥ 1.
First we give a sufficient condition for the set U (x) to include isolated points.

Proposition 5.1. Let (q0, q∗0) be a connected component of (1, M + 1] \ U , and let 
{qn}∞n=1 = V ∩ (q0, q∗0). Then for any

x ∈
∞⋃

n=1

⋃
p∈(qn,qn+1)

πp(U∗
qn+1

)

the set U (x) contains at least one isolated point.

Proof. For n ≥ 1 let x ∈ πp(U∗
qn+1

) for some p ∈ (qn, qn+1). In the following we will show 
that p is an isolated point of U (x). Note by the definition of V that Φx(p) ∈ U∗

qn+1
⊂

Uqn+1 = Up. Then Φx(p) = (xi(p)) ∈ Up. Furthermore, by the definition of U∗
q it 

n+1
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follows that Φx(p) ends with α(qn) = (a1 . . . ama1 . . . am)∞ for some m ≥ 1. So there 
exists N ∈ N such that

Φx(p) = x1(p) . . . xN (p)(a1 . . . ama1 . . . am)∞.

Now suppose p ∈ (qn, qn+1) is not an isolated point of U (x). Then by Lemma 2.1 (i) 
there exists a p′ ∈ U (x) ∩ (qn, qn+1) such that p′ �= p and Φx(p′) = (xi(p′)) coincides 
with Φx(p) for the first N + 2m digits, i.e.,

x1(p′) . . . xN+2m(p′) = x1(p) . . . xN (p)a1 . . . ama1 . . . am. (5.1)

Observe that Φx(p′) ∈ Up′ = Uqn+1 and α(qn+1) = (a1 . . . ama1 . . . am
+ a1 . . . ama1 . . .

a−m)∞. Then by (5.1) and Lemma 2.3 it follows that

Φx(p′) = x1(p) . . . xN1(p)(a1 . . . ama1 . . . am)∞ = Φx(p).

This implies p′ = p by Lemma 2.1 (i), leading to a contradiction with our hypothesis. 
So, p is an isolated point of U (x). �

Recall from Section 1 that Xiso = {x > 0 : U (x) contains isolated points}. By 
Lemma 4.4 we see that U (x) = {qx} is a singleton for any x ≥ xG = M/(qG − 1). 
This implies that [xG, ∞) ⊂ Xiso. In the following result we show that the set Xiso is 
dense in [0, 1].

Lemma 5.2. For any x ∈ [0, 1] and any δ > 0 the intersection Xiso∩(x −δ, x +δ) contains 
an interval.

Proof. Take x ∈ [0, 1] and δ > 0. Then there exist y ∈ (x − δ
3 , x + δ

3 ) and an integer 
N1 = N1(x, δ) > 0 such that the quasi-greedy expansion Φy(M + 1) = y1y2 . . . contains 
neither N1 consecutive 0’s nor N1 consecutive M ’s. By Lemmas 2.3 and 2.4 (i) this 
implies

(yi) ∈ Uq ∀q > pN1 , (5.2)

where pn is the root of 
∑n

i=1
M
pi
n

= 1 in (1, M +1). Clearly, pn ↗ M +1 as n → ∞. Note 
that the map

g : [pN1 ,M + 1] → R; q �→ πq((yi))

is continuous, and g(M + 1) = y. So there exists an integer N2 > N1 such that

g(q) ∈
(
y − δ

, y + δ
)

⊆
(
x− 2δ

, x + 2δ
)

∀q ∈ [pN2 ,M + 1]. (5.3)
3 3 3 3
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Let (q0, q∗0) ⊂ [pN2 , M + 1] be a connected component of (1, M + 1] \ U , and write 
(q0, q∗0) \ V =

⋃∞
n=0(qn, qn+1). Take n ≥ 1. Recall from [13, Theorem 1.4] that the set 

U∗
qn+1

is dense in Uqn+1 with respect to the metric ρ defined in (1.4), and note by (5.2)
that (yi) ∈ Uqn+1 . Then there exists a sequence (zi) ∈ U∗

qn+1
such that

|πq((zi)) − g(q)| = |πq((zi)) − πq((yi))| <
δ

3 ∀q ∈ (qn, qn+1). (5.4)

Since (qn, qn+1) ⊂ [pN2 , M + 1], by (5.3) and (5.4) it follows that

zq := πq((zi)) ∈ (x− δ, x + δ) ∀q ∈ (qn, qn+1).

Furthermore, by using Proposition 5.1 we obtain that U (zq) contains isolated points 
for any q ∈ (qn, qn+1). In other words, Xiso ∩ (x − δ, x + δ) contains the sub-interval 
(zqn+1 , zqn). �

In the following we consider isolated points of U (x) for x > 1. When M = 1 we show 
that Xiso ⊃ (1, ∞).

Proposition 5.3. Let M = 1. Then for any x > 1 the set U (x) contains isolated points.

Note by Lemma 4.4 that Xiso ⊃ [xG, ∞). Thus it suffices to prove that Xiso covers 
(1, xG). In the following we fix M = 1, and we will prove Proposition 5.3 in several 
steps. Let (q0, q∗0) = (1, qKL) be the first connected component of (1, 2] \ U . Then 
V ∩ (q0, q∗0) = {q1, q2, q3, . . .} satisfying

1 = q0 < q1 < q2 < q3 < · · · < q∗0 = qKL, and qn ↗ qKL as n → ∞.

Furthermore, for each n ≥ 1 the base qn ∈ (1, qKL) admits the quasi-greedy expansion

α(qn) = (τ1 . . . τ−2n)∞, (5.5)

where (τi)∞i=0 = 01101001 . . . is the classical Thue-Morse sequence (cf. [7]).
The following properties of the sequence (τi) are well known (see, for example, [27]).

Lemma 5.4. For any integer n ≥ 0 we have

(i) τ2n+1 . . . τ2n+1 = τ1 . . . τ2n
+.

(ii) τ1 . . . τ2n−i ≺ τi+1 . . . τ2n � τ1 . . . τ2n−i ∀ 0 ≤ i < 2n.

Now we construct sequences in U∗
q .

n+1



26 D. Kong et al. / Advances in Applied Mathematics 121 (2020) 102103
Lemma 5.5. For n ≥ 1 and k ≥ 1 let

cn,k := τ1 . . . τ2n−1(τ1 . . . τ2n−1
+)k(τ1 . . . τ2n

+)∞.

Then cn,k ∈ U∗
qn+1

for all k ≥ 1.

Proof. Note by (5.5) that cn,k ends with (τ1 . . . τ−2n)∞ = α(qn). Then by Lemma 2.3 it 
suffices to prove

α(qn+1) ≺ σj(cn,k) ≺ α(qn+1) ∀j ≥ 1, (5.6)

where σ is the left-shift map. Since α(qn+1) begins with τ1 . . . τ2n , we prove (5.6) by 
considering the following three cases.

(I). 1 ≤ j < 2n−1. Then (5.6) follows by Lemma 5.4 (ii), which implies that

τ1 . . . τ2n−1−j ≺ τj+1 . . . τ2n−1 � τ1 . . . τ2n−1−j and τ1 . . . τj ≺ τ2n−1−j+1 . . . τ2n−1 .

(II). 2n−1 ≤ j < (k + 1)2n−1. Note that σ2n−1(cn,k) = (τ1 . . . τ2n−1
+)k(τ1 . . . τ2n

+)∞. 
Then (5.6) again follows by Lemma 5.4 (ii), which implies that

τ1 . . . τ2n−1−i ≺ τi+1 . . . τ2n−1
+ � τ1 . . . τ2n−1−i and τ1 . . . τi ≺ τ2n−1−i+1 . . . τ2n−1

(5.7)
for any 0 ≤ i < 2n−1.

(III). j ≥ (k + 1)2n−1. Then (5.6) follows from (5.7) with n − 1 replaced by n. �
By the definition of cn,k it is easy to see that

cn,k ↗ cn,∞ := τ1 . . . τ2n−1(τ1 . . . τ2n−1
+)∞ as k → ∞.

In the following lemma we construct sequences in U∗
qn+1

that decrease to cn,∞.

Lemma 5.6. For n ≥ 2 and k ≥ 1 let

dn,k := τ1 . . . τ2n−1(τ1 . . . τ2n−1
+)k τ1 . . . τ2n−2

+ (τ1 . . . τ2n
+)∞.

Then dn,k ∈ U∗
qn+1

for all k ≥ 1.

Proof. It is clear that dn,k ends with α(qn). Then by Lemma 2.3 it suffices to prove

α(qn+1) ≺ σj(dn,k) ≺ α(qn+1) ∀j ≥ 1. (5.8)

Since α(qn+1) begins with τ1 . . . τ2n , by Cases (I) and (II) in the proof of Lemma 5.5 we 
only need to verify (5.8) for j ≥ k2n−1 + 2n−2. Observe by Lemma 5.4 (i) that
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σk2n−1+2n−2
(dn,k) = τ1 . . . τ2n−2τ1 . . . τ2n−2

+(τ1 . . . τ2n−1τ1 . . . τ2n−1)∞

= (τ1 . . . τ2n−1τ1 . . . τ2n−1)∞= α(qn).

Then by the same argument as in the proof of Case III in Lemma 5.5 it follows that 
(5.8) holds for all j ≥ k2n−1 + 2n−2. This completes the proof. �

Clearly,

dn,k ↘ dn,∞ := τ1 . . . τ2n−1(τ1 . . . τ2n−1
+)∞ = cn,∞ as k → ∞.

Now we are ready to prove Proposition 5.3.

Proof of Proposition 5.3. Let M = 1. By Lemma 5.5 and Proposition 5.1 it follows that

Xiso ⊃
∞⋃

n=1

∞⋃
k=1

⋃
p∈(qn,qn+1)

πp(cn,k) =
∞⋃

n=1

∞⋃
k=1

(πqn+1(cn,k), πqn(cn,k)), (5.9)

where the bases qn ∈ V are defined as in (5.5). Similarly, by Lemma 5.6 and Proposi-
tion 5.1 it follows that

Xiso ⊃
∞⋃

n=2

∞⋃
k=1

⋃
p∈(qn,qn+1)

πp(dn,k) =
∞⋃

n=2

∞⋃
k=1

(πqn+1(dn,k), πqn(dn,k)). (5.10)

In the following we will show that the unions in (5.9) and (5.10) are sufficient to cover 
(1, xG).

First we prove that the union in (5.9) covers (1, xG) up to a countable set. By (5.5)
and Lemma 5.4 (i) it follows that

πqn+1(cn,k+1) = πqn+1(τ1 . . . τ2n−1(τ1 . . . τ2n−1
+)k+1τ1 . . . τ2n−1(τ1 . . . τ2n−1τ1 . . . τ2n−1)∞)

< πqn+1(τ1 . . . τ2n−1(τ1 . . . τ2n−1
+)k+20∞)

= πqn+1(τ1 . . . τ2n02n−1k τ1 . . . τ2n−1
+0∞) + πqn+1(02n

(τ1 . . . τ2n−1
+)k0∞).

(5.11)

On the other hand, by (5.5) we obtain

πqn(cn,k) = πqn(τ1 . . . τ2n−1τ1 . . . τ2n−1
+0∞) + πqn(02n

(τ1 . . . τ2n−1
+)k0∞)

= 1 + πqn(02n

(τ1 . . . τ2n−1
+)k0∞).

(5.12)

Since πqn+1(τ1 . . . τ2n02n−1kτ1 . . . τ2n−1
+0∞) < 1 for any n ≥ 1, k ≥ 1, by (5.11)

and (5.12) it follows that πqn+1(cn,k+1) < πqn(cn,k). Therefore, the intervals Jk :=
(πqn+1(cn,k), πqn(cn,k)) with k ≥ 1 are pairwise overlapping. So,



28 D. Kong et al. / Advances in Applied Mathematics 121 (2020) 102103
∞⋃
k=1

(πqn+1(cn,k), πqn(cn,k)) = (πqn+1(cn,1), πqn(cn,∞)), (5.13)

where we recall that cn,∞ = τ1 . . . τ2n−1(τ1 . . . τ2n−1
+)∞. Note by Lemma 5.4 (i) that

cn,1 = τ1 . . . τ2n−1τ1 . . . τ2n−1
+(τ1 . . . τ2n

+)∞ = τ1 . . . τ2n(τ1 . . . τ2n
+)∞ = cn+1,∞.

(5.14)
Write zn := πqn(cn,∞). Then by (5.9), (5.13) and (5.14) it follows that

Xiso ⊃
∞⋃

n=1
(zn+1, zn).

Observe that z1 = πq1(c1,∞) = πq1(1∞) = xG. Furthermore, since qn ↗ qKL and 
cn,∞ ↘ τ1τ2 . . . as n → ∞, we have

zn = πqn(cn,∞) ↘ πqKL
(τ1τ2 . . .) = 1 as n → ∞.

Therefore,

Xiso ⊃ (1, xG) \ {zn : n ≥ 2} .

To complete the proof it remains to prove zn ∈ Xiso for all n ≥ 2. We will show that 
all of these points zn belong to the union in (5.10). Recall that for n ≥ 2 the sequence 
dn,k decreases to dn,∞ = cn,∞ as k → ∞. Since dn,k and cn,∞ are both quasi-greedy 
qn-expansions, by Lemma 2.1 (i) it follows that

πqn(dn,k) > πqn(cn,∞) = zn ∀k ≥ 1. (5.15)

On the other hand, since

lim
k→∞

πqn+1(dn,k) = πqn+1(cn,∞) < πqn(cn,∞) = zn,

by (5.15) there exists K ∈ N such that for all k ≥ K we have

zn ∈ (πqn+1(dn,k), πqn(dn,k)) ⊂ Xiso ∀n ≥ 2. (5.16)

This completes the proof. �
Remark 5.7. By Proposition 5.1 and (5.16) it follows that for any zn = πqn(cn,∞) with 
n ≥ 2 and for any k ≥ K the equation

πpk
(dn,k) = zn
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determines a unique pk ∈ (qn, qn+1). Note by Lemma 5.6 that dn,k ∈ U∗
qn+1

. Then 
zn ∈ πpk

(U∗
qn+1

). So, by the proof of Proposition 5.1 it follows that pk is an isolated 
point of U (zn). Observe that for any k �= j we have dn,k �= dn,j , and thus pk �= pj . This 
means that for each n ≥ 2 the set U (zn) contains infinitely many isolated points.

Proof of Theorem 1.7. The theorem follows by Lemma 5.2 and Proposition 5.3. �
6. Final remarks and questions

At the end of this paper we pose some questions. In view of Theorem 1.1 it is natural 
to ask the following question.

Question 1. Does Theorem 1.1 hold for any x > 0 and any q ∈ U ?

By Theorem 1.3 and Theorem 1.2 it follows that the bifurcation set of φ : x �→
dimH U(x) can be easily obtained from the bifurcation set of ψ : q �→ dimH Uq. More 
precisely, x is a bifurcation point of φ if and only if qx is a bifurcation point of ψ. The 
same correspondence holds for the plateaus of φ and ψ. Motivated by Lemma 4.1 and 
the works studied in [13,3] we ask the following question.

Question 2. Can we describe the bifurcation sets of the set-valued map x �→ U(x)? In 
other words, can we describe the following sets

E1 = {x : U(y) �= U(x) ∀y > x} and E2 = {x : dimH(U(x) \ U(y)) > 0 ∀y > x}?

Although we can calculate the Hausdorff dimension of U(x) as in Theorem 1.5, we 
are not able to determine the Hausdorff dimension of U (x) for x ∈ (1, xKL).

Question 3. What is the Hausdorff dimension of U (x) for x ∈ (1, xKL)?

Finally, for the isolated points of U (x) we have shown in Theorem 1.7 that Xiso is 
dense in (0, ∞) for M = 1. Our proof does not work for M ≥ 2 in the interval (1, xG).

Question 4. Is it true that Xiso is dense in (0, ∞) for any M ≥ 2? We conjecture that

U (x) contains isolated points ⇐⇒ x ∈ (0, 1) ∪ (1,∞).

Up to now we know very little about the topological structure of U (x). Clearly, for 
x ≥ xG the set U (x) = {qx} is a singleton.

Question 5. When is U (x) a closed set for x ∈ (0, xG)?



30 D. Kong et al. / Advances in Applied Mathematics 121 (2020) 102103
Acknowledgments

The authors thank the anonymous referee for many useful suggestions, especially 
for the simplification of the proof of Theorem 1.1. D. Kong thanks Pieter Allaart for 
providing the Maple codes of Fig. 1. He was supported by NSFC No. 11971079 and the 
Fundamental and Frontier Research Project of Chongqing No. cstc2019jcyj-msxmX0338 
and No. cx2019067. W. Li was supported by NSFC No. 11671147, 11571144 and Science 
and Technology Commission of Shanghai Municipality (STCSM) No. 13dz2260400. F. Lü 
was supported by NSFC No. 11601358.

References

[1] R. Alcaraz Barrera, S. Baker, D. Kong, Entropy, topological transitivity, and dimensional properties 
of unique q-expansions, Trans. Am. Math. Soc. 371 (5) (2019) 3209–3258.

[2] P.C. Allaart, On univoque and strongly univoque sets, Adv. Math. 308 (2017) 575–598.
[3] P.C. Allaart, S. Baker, D. Kong, Bifurcation sets arising from non-integer base expansions, J. Fractal 

Geom. 6 (4) (2019) 301–341.
[4] P.C. Allaart, D. Kong, On the continuity of the Hausdorff dimension of the univoque set, Adv. 

Math. 354 (2019) 106729.
[5] P.C. Allaart, D. Kong, Relative bifurcation sets and the local dimension of univoque bases, Ergod. 

Theory Dyn. Syst. (2020), https://doi .org /10 .1017 /etds .2020 .38.
[6] P.C. Allaart, D. Kong, On the smallest base in which a number has a unique expansion, arXiv :

2006 .07927, 2020.
[7] J.-P. Allouche, J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, in: Sequences and Their 

Applications, Singapore, 1998, in: Springer Ser. Discrete Math. Theor. Comput. Sci., Springer, 
London, 1999, pp. 1–16.

[8] C. Baiocchi, V. Komornik, Greedy and quasi-greedy expansions in non-integer bases, arXiv :0710 .
3001v1, 2007.

[9] S. Baker, Generalized golden ratios over integer alphabets, Integers 14 (A15) (2014) 28.
[10] K. Dajani, M. de Vries, Invariant densities for random β-expansions, J. Eur. Math. Soc. 9 (1) (2007) 

157–176.
[11] K. Dajani, V. Komornik, D. Kong, W. Li, Algebraic sums and products of univoque bases, Indag. 

Math. 29 (4) (2018) 1087–1104.
[12] Z. Daróczy, I. Kátai, On the structure of univoque numbers, Publ. Math. (Debr.) 46 (3–4) (1995) 

385–408.
[13] M. de Vries, V. Komornik, Unique expansions of real numbers, Adv. Math. 221 (2) (2009) 390–427.
[14] M. de Vries, V. Komornik, A two-dimensional univoque set, Fundam. Math. 212 (2) (2011) 175–189.
[15] M. de Vries, V. Komornik, Expansions in non-integer bases, in: Combinatorics, Words and Sym-

bolic Dynamics, in: Encyclopedia Math. Appl., vol. 159, Cambridge Univ. Press, Cambridge, 2016, 
pp. 18–58.

[16] M. de Vries, V. Komornik, P. Loreti, Topology of the set of univoque bases, Topol. Appl. 205 (2016) 
117–137.

[17] P. Erdős, M. Horváth, I. Joó, On the uniqueness of the expansions 1 =
∑

q−ni , Acta Math. Hung. 
58 (3–4) (1991) 333–342.

[18] P. Erdős, I. Joó, On the number of expansions 1 =
∑

q−ni , Ann. Univ. Sci. Bp. Rolando Eötvös 
Nomin., Sect. Math. 35 (1992) 129–132.

[19] P. Erdős, I. Joó, V. Komornik, Characterization of the unique expansions 1 =
∑∞

i=1 q
−ni and related 

problems, Bull. Soc. Math. Fr. 118 (1990) 377–390.
[20] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, third edition, John 

Wiley & Sons, Ltd., Chichester, 2014.
[21] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approx-

imation, Math. Syst. Theory 1 (1) (1967) 1–49.
[22] P. Glendinning, N. Sidorov, Unique representations of real numbers in non-integer bases, Math. 

Res. Lett. 8 (2001) 535–543.

http://refhub.elsevier.com/S0196-8858(20)30106-8/bib2DBF4F99913DB0C72DE03A989C71E564s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib2DBF4F99913DB0C72DE03A989C71E564s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib11354F7AEFF8C82DB2BE9165508806A6s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib8F0D1405208A73AD814AC6DE3B825991s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib8F0D1405208A73AD814AC6DE3B825991s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bibE7C09CCA056FBB063CE247B7133083EFs1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bibE7C09CCA056FBB063CE247B7133083EFs1
https://doi.org/10.1017/etds.2020.38
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib4D6135A1C454AE5E69F30EDCCF34F891s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib4D6135A1C454AE5E69F30EDCCF34F891s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bibEDC26CD7FF455752646A39B70F16B908s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bibEDC26CD7FF455752646A39B70F16B908s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bibEDC26CD7FF455752646A39B70F16B908s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bibBA520C50455DA39EC223DC84B3737ED9s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bibBA520C50455DA39EC223DC84B3737ED9s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib803DDA3140B51DE034311FF7DBFF856As1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib3C8A8DA10E1404C9269F4A87B642C916s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib3C8A8DA10E1404C9269F4A87B642C916s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib3C9065F0038D95A433CD61A425A98A50s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib3C9065F0038D95A433CD61A425A98A50s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib52A8885223D8004D4E879D210F7D3546s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib52A8885223D8004D4E879D210F7D3546s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib13191695F6A7273DE4722A1069657EC1s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib9943582F165325A73C3EA65F4D0D0E82s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bibE13AA8CD1652F26755D924AECF117968s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bibE13AA8CD1652F26755D924AECF117968s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bibE13AA8CD1652F26755D924AECF117968s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib78F88ACEECF6F8A903C426AC05865F1Fs1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib78F88ACEECF6F8A903C426AC05865F1Fs1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bibF399FD866CDC031EB8656E295F69AA4Ds1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bibF399FD866CDC031EB8656E295F69AA4Ds1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib9506362858AF34986BEBD35678551CF5s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib9506362858AF34986BEBD35678551CF5s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib3CE60A9ADF527C2A2BF4BA424D906FA7s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib3CE60A9ADF527C2A2BF4BA424D906FA7s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib69EBF4670DBD97F123612BA082A77990s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib69EBF4670DBD97F123612BA082A77990s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib39799EEEDD585F6895CF0A0669B858ADs1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib39799EEEDD585F6895CF0A0669B858ADs1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib28B6A6B58728CAA0706CFAEECA9E66A0s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib28B6A6B58728CAA0706CFAEECA9E66A0s1


D. Kong et al. / Advances in Applied Mathematics 121 (2020) 102103 31
[23] C. Kalle, D. Kong, W. Li, F. Lü, On the bifurcation set of unique expansions, Acta Arith. 188 (4) 
(2019) 367–399.

[24] V. Komornik, Expansions in noninteger bases, Integers 11B (A9) (2011) 30.
[25] V. Komornik, D. Kong, W. Li, Hausdorff dimension of univoque sets and devil’s staircase, Adv. 

Math. 305 (2017) 165–196.
[26] V. Komornik, P. Loreti, Unique developments in non-integer bases, Am. Math. Mon. 105 (7) (1998) 

636–639.
[27] V. Komornik, P. Loreti, Subexpansions, superexpansions and uniqueness properties in non-integer 

bases, Period. Math. Hung. 44 (2) (2002) 197–218.
[28] V. Komornik, P. Loreti, On the topological structure of univoque sets, J. Number Theory 122 (1) 

(2007) 157–183.
[29] D. Kong, On small univoque bases of real numbers, Acta Math. Hung. 150 (1) (2016) 194–208.
[30] D. Kong, W. Li, Hausdorff dimension of unique beta expansions, Nonlinearity 28 (1) (2015) 187–209.
[31] D. Kong, W. Li, F.M. Dekking, Intersections of homogeneous Cantor sets and beta-expansions, 

Nonlinearity 23 (11) (2010) 2815–2834.
[32] D. Lind, B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University 

Press, Cambridge, 1995.
[33] F. Lü, B. Tan, J. Wu, Univoque sets for real numbers, Fundam. Math. 227 (1) (2014) 69–83.
[34] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hung. 11 (1960) 401–416.
[35] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. 

Hung. 8 (1957) 477–493.
[36] N. Sidorov, Almost every number has a continuum of β-expansions, Am. Math. Mon. 110 (9) (2003) 

838–842.
[37] N. Sidorov, Arithmetic dynamics, in: Topics in Dynamics and Ergodic Theory, in: London Math. 

Soc. Lecture Note Ser., vol. 310, Cambridge Univ. Press, Cambridge, 2003, pp. 145–189.
[38] N. Sidorov, Expansions in non-integer bases: lower, middle and top orders, J. Number Theory 129 (4) 

(2009) 741–754.
[39] J. Xu, Lebesgue measure and Hausdorff dimension of univoque sets for β > 1, Thesis (M.Sc.), East 

China Normal University, Shanghai, 2019.

http://refhub.elsevier.com/S0196-8858(20)30106-8/bibA30D2FCE7981BFB763F52518D915DEA4s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bibA30D2FCE7981BFB763F52518D915DEA4s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib03C629D6184FB2DD7FF17A28291F50CEs1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bibFB7D6AFE3EE673425A2A7E02654909E5s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bibFB7D6AFE3EE673425A2A7E02654909E5s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bibEED6DA9F69F075C01F53E54537A38FF2s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bibEED6DA9F69F075C01F53E54537A38FF2s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib9C7A320CF148E83AA156D24723BCB24Es1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib9C7A320CF148E83AA156D24723BCB24Es1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bibD704583CDF8FCD2A9C5BD3867FAC20BEs1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bibD704583CDF8FCD2A9C5BD3867FAC20BEs1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bibB6C99B80337419341D97AD6B7E9482EFs1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bibDB154A7740D74DE4FD5F7EFF5F839CD4s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bibA68ACCFFEE52D7C1ED181E20AAF72B55s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bibA68ACCFFEE52D7C1ED181E20AAF72B55s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bibD0E7C50ED050261F5AEA22862A42DFCBs1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bibD0E7C50ED050261F5AEA22862A42DFCBs1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib5FF25D29AC7A9F90A1F708FEE369F23Ds1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib8C2E64C8EFC7F53FC9DC318A02264928s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib208FEDEB63EC7C7E6854AF9583273B80s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib208FEDEB63EC7C7E6854AF9583273B80s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib2303F9878E9F4563B02E519FD48FEDC2s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib2303F9878E9F4563B02E519FD48FEDC2s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib5DACD95159394EA49ACBECC5071F48D0s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib5DACD95159394EA49ACBECC5071F48D0s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib5D69B57741F83C98AE5E4E2285703332s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib5D69B57741F83C98AE5E4E2285703332s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib81E7E9AA1BBD66DFBE21AFC11462BFE1s1
http://refhub.elsevier.com/S0196-8858(20)30106-8/bib81E7E9AA1BBD66DFBE21AFC11462BFE1s1

	Univoque bases of real numbers: Local dimension, Devil’s staircase and isolated points
	1 Introduction
	2 Preliminaries
	2.1 Quasi-greedy and greedy expansions
	2.2 Unique expansions

	3 Local dimension of U(x)
	4 Hausdorff dimension and critical values of U(x)
	4.1 Hausdorff dimension of U(x)
	4.2 Critical values of U(x)

	5 Isolated points of U(x)
	6 Final remarks and questions
	Acknowledgments
	References


