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Let C be the middle-third Cantor set. In this paper, we show 
that for every x ∈ [0, 4], there exist x1, x2, x3, x4 ∈ C such 
that x = x2

1 +x2
2 +x2

3 +x2
4, which was conjectured in Athreya 

et al. (2019) [1].
© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The middle-third Cantor set

C =
{ ∞∑

i=1

εi
3i : εi ∈ {0, 2}

}
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is a classical object in fractal geometry. The arithmetic on the middle-third Cantor set 
has been studied in [1,2,4,3,5,6,8]. The first classical result is that the set

C − C := {x− y : x, y ∈ C} (1.1)

equals to the interval [−1, 1]. The proof of (1.1) was first given by H. Steinhaus in 1917. 
The result was rediscovered by J. F. Randolph in 1940 [7]. Using the symmetry of C, we 
can deduce that

C + C = C + (1 − C) = 1 + (C − C) = [0, 2],

where C + C := {x + y : x, y ∈ C}. The multiplication and division on middle-third 
Cantor set were discussed in [1]. Athreya, Reznick and Tyson [1] proved that

L(C · C) ≥ 17
21 and C

C
=

∞⋃
n=−∞

[
2
3 · 3n, 3

2 · 3n
]
∪ {0},

where C · C := {xy : x, y ∈ C}, CC :=
{

x
y : x, y ∈ C, y �= 0

}
and L denotes the Lebesgue 

measure on R. Gu, Jiang, Xi and Zhao [3] gave the complete topological structure of 
C ·C. Moreover, they also proved that the Lebesgue measure of C ·C is about 0.80955.

The main motivation of this paper is due to a conjecture posed by Athreya, Reznick 
and Tyson [1]. They conjectured {x2

1 + x2
2 + x2

3 + x2
4 : xi ∈ C} = [0, 4] and claimed 

that there is strong numerical evidence supporting it. In this paper, we will prove this 
conjecture.

Fixing α > 1, let Cα (the middle- 1
α Cantor set) be generated by the iterated function 

system Φ = {f1(x) = rx, f2(x) = rx + 1 − r} with r = 1
2
(
1 − 1

α

)
. Thus the classical 

middle-third Cantor set C = C3. In the present paper we prove

Theorem 1.1. Let Cα be the middle- 1
α Cantor set for α > 1. Then

{x2
1 + x2

2 + x2
3 + x2

4 : xi ∈ Cα} = [0, 4] if and only if α ≥ 3.

The proof of the above theorem is similar to the case α = 3. We only give an outline 
of the proof of Theorem 1.1 for the middle-third Cantor set. Using the similarity of C, 
it suffices to prove that

(4/9, 4] ⊆ f(C4)

where the function f is defined by (2.2). This is shown in Lemma 3.1 and 3.2. The basic 
idea to find intervals contained in f(C4) is due to [1, Lemma 3]. Notice that for the sum 
of four squares, the calculation is complicated. We divide the sum of four squares into 
two parts as
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f(C4) = g(C3) + {x2 : x ∈ C},

where the function g is defined by (2.1). We find some intervals contained in g(C3) and 
use the fourth number to translate these intervals so that they can cover the interval 
(4/9, 4]. With similar discussions as Lemma 2.3 and 2.4, in Corollary 2.5 we give a 
concrete condition to find the following intervals contained in g(C3), i.e.

[44/81, 67/81] ∪ [8/9, 3] ⊆ g(C3). (1.2)

By the above inclusion, if we take 0, 1 ∈ C, then

f(C4) ⊃ g(C3) ∪ (g(C3) + 1) ⊃ [8/9, 4].

It remains to prove that f(C4) can cover the points around 4/9. We divide the interval 
(4/9, 4/3] into the intervals of form

(
4
9 + 8

32n+2 ,
4
9 + 8

32n

]
(1.3)

for every positive integer n. By the similarity of C and (1.2), we have that

[
8

32n+2 ,
27

32n+2

]
∪
[

44
32n+2 ,

67
32n+2

]
⊆ g(C3).

It remains to choose special points in C as translations such that the translations of the 
above two intervals cover the intervals of form (1.3) for any n ≥ 1. More precisely, we 
can choose the points 2/3, 2/3 + 3−2n ∈ C for the interval [44 · 3−2n−2, 67 · 3−2n−2], and 
the points 2/3, 2/3 + 3−2n, 2/3 + 2 · 3−2n ∈ C for the interval [8 · 3−2n−2, 27 · 3−2n−2]. 
These points motivate the choices of some special points for the general case Cα.

This paper is organized as follows. In section 2, we discuss the set {x2
1 + x2

2 + x2
3 :

xi ∈ Cα}. The proof of Theorem 1.1 is arranged in the section 3.

2. Sum of three squares

As stated in the previous section, Cα is the unique nonempty compact set satisfying

Cα = f1(Cα) ∪ f2(Cα) = rCα ∪ (rCα + 1 − r)

where r = 1
2
(
1 − 1

α

)
. It follows that if x ∈ Cα, then rx ∈ Cα. We will use this simple 

observation in Lemma 3.1. For each positive integer n let

Fn = {fσ([0, 1]) : σ ∈ {1, 2}n} and Fn =
⋃

A,

A∈Fn
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where fσ(x) = fσ1 ◦ fσ2 ◦ · · · ◦ fσn
(x) for σ = σ1σ2 · · ·σn ∈ {1, 2}n. Then the sequence 

Fn, n = 1, 2, · · · , of nonempty compact sets is decreasing and

Cα =
∞⋂

n=1
Fn =

∞⋂
n=1

⋃
σ∈{1,2}n

fσ([0, 1]).

It is easy to see that for σ = σ1σ2 · · ·σn ∈ {1, 2}n

fσ(0) = 1 − r

r

n∑
k=1

(σk − 1)rk

and so

fσ([0, 1]) = [fσ(0), fσ(1)] =
[

1 − r

r

n∑
k=1

(σk − 1)rk, 1 − r

r

n∑
k=1

(σk − 1)rk + rn

]
.

Each element of Fn, called an n-level basic interval, has length rn. For an n-level basic 
interval fσ([0, 1]), it contains two (n + 1)-level basic intervals fσ1([0, 1]) and fσ2([0, 1]). 
The interval fσ([0, 1]) shares the same left endpoint with fσ1([0, 1]), and shares the same 
right endpoint with fσ2([0, 1]). The length of the open interval fσ([0, 1]) \ (fσ1([0, 1]) ∪
fσ2([0, 1])) is 1

α times that of fσ([0, 1]).
Denote by Ln the collection of left endpoints of all n-level basic intervals. For u ∈ Ln, 

we associate u with an n-level basic interval

Iu = [u, u + rn]

and two (n + 1)-level basic intervals denoted by

Iu,0 = [u, u + rn+1], Iu,1 = [u + (1 − r)rn, u + rn].

The key to discuss the sum of squares of Cantor set is the following lemma, which is 
an easy exercise in real analysis and also appears as Lemma 2 in [1].

Lemma 2.1. Let ϕ : Rd → R be continuous. If {Kj}j∈N is a decreasing sequence of 
nonempty compact subsets of Rd, then

ϕ

⎛
⎝ ∞⋂

j=1
Kj

⎞
⎠ =

∞⋂
j=1

ϕ(Kj).

Proof. Since 
⋂∞

j=1 Kj ⊆ Kn for every n ∈ N, we have

ϕ

⎛
⎝ ∞⋂

j=1
Kj

⎞
⎠ ⊆

∞⋂
j=1

ϕ(Kj).
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Conversely, assume that y ∈
⋂∞

j=1 ϕ(Kj). For every j, we can find xj ∈ Kj such that 
ϕ(xj) = y. Since K1 is compact, by Bolzano–Weierstrass Theorem, there is a convergent 
subsequence xnj

→ x. Since ϕ is continuous, we have ϕ(x) = y. Note that the sequence 
{xnj

}j≥m is in Km for every m ∈ N. It follows from compactness that x ∈ Km for every 

m ∈ N. Therefore, y = ϕ(x) ∈ ϕ 
(⋂∞

j=1 Kj

)
, which completes the proof. �

Define functions g : R3 → R and f : R4 → R by letting

g(x1, x2, x3) = x2
1 + x2

2 + x2
3 (2.1)

and

f(x1, x2, x3, x4) = g(x1, x2, x3) + x2
4 = x2

1 + x2
2 + x2

3 + x2
4. (2.2)

For a positive integer k and a nonempty set A ⊆ R, denote

Ak = {(x1, · · · , xk) : xi ∈ A}.

In order to show f(C4
α) = [0, 4], we need to discuss the set g(C3

α) and find some intervals 
in g(C3

α). Note that C3
α =

⋂∞
n=1 F

3
n . Applying Lemma 2.1 for the continuous function g, 

we obtain the following corollary.

Corollary 2.2. g(C3
α) =

⋂∞
n=1 g(F 3

n).

If an interval I ⊆ g(F 3
n) for every n ∈ N, then I ⊆ g(C3

α). The following two lemmas 
give a sufficient condition to find intervals in g(C3

α).

Lemma 2.3. Let α ≥ 3. For any u, v, w ∈ Ln, if

max{u, v, w} > 0 (2.3)

and

4(1 − r) max{u, v, w} ≤ 2(u + v + w) + (1 + 2r)rn, (2.4)

then

g(Iu × Iv × Iw) = g((Iu,0 ∪ Iu,1) × (Iv,0 ∪ Iv,1) × (Iw,0 ∪ Iw,1)).

Proof. At first we have r = 1
2
(
1 − 1

α

)
∈ [1/3, 1/2) since α ≥ 3. Write t = u2 + v2 + w2. 

Without loss of generality, we can assume that u ≥ v ≥ w. By (2.3) we have u > 0 and 
so u ≥ f1n−12(0) = (1 − r)rn−1 > rn. In addition, (2.4) reduces to

2v + 2w + (1 + 2r)rn ≥ 2(1 − 2r)u. (2.5)
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It is routine to verify that

g(Iu,1 × Iv,0 × Iw,0) =[t + 2u(1 − r)rn + (1 − r)2r2n,

t + 2(u + rv + rw)rn + (1 + 2r2)r2n],

g(Iu,1 × Iv,0 × Iw,1) =[t + 2(u + w)(1 − r)rn + 2(1 − r)2r2n,

t + 2(u + rv + w)rn + (2 + r2)r2n],

g(Iu,1 × Iv,1 × Iw,0) =[t + 2(u + v)(1 − r)rn + 2(1 − r)2r2n,

t + 2(u + v + rw)rn + (2 + r2)r2n],

and

g(Iu,1 × Iv,1 × Iw,1) =[t + 2(u + v + w)(1 − r)rn + 3(1 − r)2r2n,

t + 2(u + v + w)rn + 3r2n].

Note that

t + 2(u + rv + rw)rn + (1 + 2r2)r2n

− (t + 2(u + w)(1 − r)rn + 2(1 − r)2r2n)

=2(ru + rv + 2rw − w)rn + (4r − 1)r2n

≥2(4r − 1)wrn + (4r − 1)r2n > 0,

and

t + 2(u + rv + w)rn + (2 + r2)r2n

− (t + 2(u + v)(1 − r)rn + 2(1 − r)2r2n)

=2(ru + 2rv − v + w)rn + (4 − r)r2n+1

≥2(3r − 1)vrn + (4 − r)r2n+1 > 0,

and

t + 2(u + v + rw)rn + (2 + r2)r2n

− (t + 2(u + v + w)(1 − r)rn + 3(1 − r)2r2n)

=2(ru + rv + 2rw − w)rn + (6r − 2r2 − 1)r2n

≥2(4r − 1)wrn + (6r − 2r2 − 1)r2n > 0.

Therefore, we have

g(Iu,1 × (Iv,0 ∪ Iv,1) × (Iw,0 ∪ Iw,1))

=
[
t + 2u(1 − r)rn + (1 − r)2r2n, t + 2(u + v + w)rn + 3r2n] . (2.6)
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It is also routine to verify that

g(Iu,0 × Iv,0 × Iw,0) =[t, t + 2(u + v + w)rn+1 + 3r2n+2],

g(Iu,0 × Iv,0 × Iw,1) =[t + 2w(1 − r)rn + (1 − r)2r2n,

t + 2(ru + rv + w)rn + (1 + 2r2)r2n],

g(Iu,0 × Iv,1 × Iw,0) =[t + 2v(1 − r)rn + (1 − r)2r2n,

t + 2(ru + v + rw)rn + (1 + 2r2)r2n],

and

g(Iu,0 × Iv,1 × Iw,1) =[t + 2(v + w)(1 − r)rn + 2(1 − r)2r2n,

t + 2(ru + v + w)rn + (2 + r2)r2n].

Since u > rn, we have

t + 2(u + v + w)rn+1 + 3r2n+2 − (t + 2w(1 − r)rn + (1 − r)2r2n)

=2(ru + rv + 2rw − w)rn + (2r2 + 2r − 1)r2n

≥2(3r − 1)wrn + 2urn+1 + (2r − 1)r2n

>2(3r − 1)wrn + (4r − 1)r2n > 0,

and

t + 2(ru + rv + w)rn + (1 + 2r2)r2n − (t + 2v(1 − r)rn + (1 − r)2r2n)

=2(ru + 2rv − v + w)rn + (r + 2)r2n+1

≥2(3r − 1)vrn + (r + 2)r2n+1 > 0,

and

t + 2(ru + v + rw)rn + (1 + 2r2)r2n

− (t + 2(v + w)(1 − r)rn + 2(1 − r)2r2n)

=2(ru + rv + 2rw − w)rn + (4r − 1)r2n

≥2(4r − 1)wrn + (4r − 1)r2n > 0.

Therefore, we have

g(Iu,0 × (Iv,0 ∪ Iv,1) × (Iw,0 ∪ Iw,1))

=
[
t, t + 2(ru + v + w)rn + (2 + r2)r2n] . (2.7)

It follows from condition (2.5) that

t + 2(ru + v + w)rn + (2 + r2)r2n ≥ t + 2u(1 − r)rn + (1 − r)2r2n.
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Thus, the intervals in (2.6) and (2.7) overlap and so

g((Iu,0 ∪ Iu,1) × (Iv,0 ∪ Iv,1) × (Iw,0 ∪ Iw,1)) =
[
t, t + 2(u + v + w)rn + 3r2n] .

Note that

g(Iu × Iv × Iw) =
[
t, t + 2(u + v + w)rn + 3r2n] .

Therefore, we conclude that

g(Iu × Iv × Iw) = g((Iu,0 ∪ Iu,1) × (Iv,0 ∪ Iv,1) × (Iw,0 ∪ Iw,1)),

as desired. �
Lemma 2.4. Let α ≥ 3. For any u, v, w ∈ Ln, if

2(1 − r) max{u, v, w} + (1 − 2r)rn ≤ u + v + w, (2.8)

then

g(Iu × Iv × Iw) ⊆ g(C3
α).

Proof. Note that the condition (2.8) implies (2.3) and (2.4).
For k ≥ n, we define

F1,k = {I ∈ Fk : I ⊆ Iu}, F2,k = {I ∈ Fk : I ⊆ Iv}, F3,k = {I ∈ Fk : I ⊆ Iw},

and

F1,k =
⋃

A∈F1,k

A, F2,k =
⋃

A∈F2,k

A, F3,k =
⋃

A∈F3,k

A.

By Corollary 2.2, it suffices to show that for k ≥ n,

g(Iu × Iv × Iw) ⊆ g(F1,k × F1,k × F1,k). (2.9)

We now prove it by induction on k.
When k = n, we have F1,n = Iu, F2,n = Iv, F3,n = Iw, and thus

g(Iu × Iv × Iw) ⊆ g(F1,n × F2,n × F3,n).

Next, assume that (2.9) is true for some m ≥ n, i.e.,

g(Iu × Iv × Iw) ⊆ g(F1,m × F2,m × F3,m). (2.10)
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Then, taking x ∈ g(Iu × Iv × Iw), it follows from (2.10) that there exist u′, v′, w′ ∈ Lm

such that

Iu′ ⊆ Iu, Iv′ ⊆ Iv, Iw′ ⊆ Iw and x ∈ g(Iu′ × Iv′ × Iw′).

Now condition (2.8) implies that max{u, v, w} > 0, and thus

max{u′, v′, w′} > 0.

Moreover, it follows from (2.8) that

(1 − 2r) max{u′, v′, w′} ≤ (1 − 2r) max{u, v, w} + (1 − 2r)rn

≤ u + v + w − max{u, v, w}
≤ u′ + v′ + w′ − max{u′, v′, w′},

where the last inequality holds because the function

ψ(x, y, z) = x + y + z − max{x, y, z},

i.e. the sum of two smallest elements among x, y, z, is increasing in its components. 
Therefore,

2(1 − r) max{u′, v′, w′} ≤ u′ + v′ + w′.

Thus, applying Lemma 2.3, there exist i, j, � ∈ {0, 1} such that

x ∈ g(Iu′,i × Iv′,j × Iw′,�).

Obviously, we have Iu′,i ∈ F1,m+1, Iv′,j ∈ F1,m+1 and Iw′,� ∈ F1,m+1. Therefore,

x ∈ g(F1,m+1 × F2,m+1 × F3,m+1).

This shows that (2.9) is true for k = m + 1. �
Corollary 2.5. For α ≥ 3,

[a, b] ∪ [2(1 − r)2, 3] ⊆ g(C3
α),

where a = 2r4 − 4r3 + 3r2 − 2r + 1 and b = r4 − 2r3 + 5r2 − 2r + 1.

Proof. Note that

g ([0, r] × [1 − r, 1] × [1 − r, 1]) ∪ g ([1 − r, 1] × [1 − r, 1] × [1 − r, 1])

=
[
2(1 − r)2, 2 + r2] ∪ [

3(1 − r)2, 3
]

= [2(1 − r)2, 3]
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and

g
([
r − r2, r

]
×

[
r − r2, r

]
×

[
1 − r, 1 − r + r2]) = [a, b].

We claim that the intervals

g ([0, r] × [1 − r, 1] × [1 − r, 1]) , g ([1 − r, 1] × [1 − r, 1] × [1 − r, 1]) ,

and

g
([
r − r2, r

]
×
[
r − r2, r

]
×

[
1 − r, 1 − r + r2])

are all included in g(C3
α). Note that the intervals [0, r], [1 −r, 1] are 1-level basic intervals 

and [r− r2, r], [1 − r, 1 − r + r2] are 2-level basic intervals. By Lemma 2.4 these just are 
done by checking condition (2.8) respectively for n = 1 and n = 2. In fact, we have

2(1 − r) · (1 − r) + (1 − 2r)r − 2(1 − r) = −r < 0,

2(1 − r) · (1 − r) + (1 − 2r)r − 3(1 − r) = −1 < 0,

and

2(1 − r) · (1 − r) + (1 − 2r)r2 − (2(r − r2) + (1 − r))

= − 2r3 + 5r2 − 5r + 1 = −r(2r − 1)(r − 2) − (3r − 1) < 0. �
3. The proof of Theorem 1.1

For E ⊆ R and t ∈ R, we define t ·E = {tx : x ∈ E}.

Lemma 3.1. If E ⊆ f(C4
α), then r2 · E ⊆ f(C4

α). Similarly, if E ⊆ g(C3
α), then r2 · E ⊆

g(C3
α).

Proof. Assume that E ⊆ f(C4
α). For x ∈ E, there are x1, x2, x3, x4 ∈ Cα such that 

x = x2
1 + x2

2 + x2
3 + x2

4. Then r2x = (rx1)2 + (rx2)2 + (rx3)2 + (rx4)2 ∈ f(C4
α). It follows 

that r2 · E ⊆ f(C4
α).

Similarly, the result for g(C3
α) can be proved. �

Lemma 3.2. f(C4
α) = [0, 4] if and only if (4r2, 4] ⊆ f(C4

α).

Proof. Note that

0 ∈ f(C4
α) and (0, 4] =

∞⋃
n=0

r2n ·
(
4r2, 4

]
.

The sufficiency follows from Lemma 3.1. �
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Now we are ready to prove Theorem 1.1.

The proof of Theorem 1.1. For 1 < α < 3, we have 0 < r < 1
3 , which implies 4r2 <

(1 −r)2. Note that Cα is contained in [0, r] ∪ [1 −r, r]. Assume that x = x2
1 +x2

2 +x2
3 +x2

4
with xj ∈ Cα. If all xj are contained in the interval [0, r], then x ≤ 4r2; otherwise 
x ≥ (1 − r)2. Thus,

(4r2, (1 − r)2) ∩ f(C4
α) = ∅.

Therefore, it suffices to show f(C4
α) = [0, 4] when α ≥ 3.

Assume that α ≥ 3. Note that 13 ≤ r < 1
2 . Then we have (1 −r)2 ≤ 4r2. By Lemma 3.2, 

it suffices to prove that

((1 − r)2, 4] ⊆ f(C4
α). (3.1)

In Corollary 2.5, we have [2(1 − r)2, 3] ⊆ g(C3
α). Thus

f(C4
α) ⊇ f(C3

α × {0, 1}) = (g(C3
α) + 02) ∪ (g(C3

α) + 12) ⊇
[
2(1 − r)2, 4

]
(3.2)

Applying Corollary 2.5 and Lemma 3.1, we have

g(C3
α) ⊇ [ar2n, br2n] ∪ [2(1 − r)2r2n, 3 · r2n] for n = 0, 1, 2, · · · , (3.3)

where a, b are given in Corollary 2.5. For each positive integer n, since 1 −r, 1 −r+r2n ∈
Cα, it follows that

f(C4
α) ⊇ f

(
C3

α ×
{
1 − r, 1 − r + r2n})

=
(
g(C3

α) + (1 − r)2
)
∪
(
g(C3

α) + (1 − r + r2n)2
)
.

Using (3.3), we have that

f(C4
α) ⊇ [ar2n−2 + (1 − r)2, br2n−2 + (1 − r)2]

∪ [ar2n−2 + (1 − r + r2n)2, br2n−2 + (1 − r + r2n)2]

= [ar2n−2 + (1 − r)2, br2n−2 + (1 − r + r2n)2]

⊇ [ar2n−2 + (1 − r)2, (b + 2r2 − 2r3)r2n−2 + (1 − r)2]

(3.4)

where the last equality and the last inclusion hold because

br2n−2 + (1 − r)2 − (ar2n−2 + (1 − r + r2n)2)

=(b− a)r2n−2 − 2(1 − r)r2n − r4n

=(4r − r2 − r2n)r2n ≥ (4r − 2r2)r2n > 0,

and
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br2n−2 + (1 − r + r2n)2 − ((b + 2r2 − 2r3)r2n−2 + (1 − r)2) = r4n > 0.

For each positive integer n, by virtue of the fact

1 − r, 1 − r + r2n, 1 − r + r2n−1 − r2n ∈ Cα,

it follows that

f(C4
α) ⊇ f

(
C3

α ×
{
1 − r, 1 − r + r2n, 1 − r + r2n−1 − r2n})

=
(
g(C3

α) + (1 − r)2
)
∪
(
g(C3

α) + (1 − r + r2n)2
)

∪
(
g(C3

α) + (1 − r + r2n−1 − r2n)2
)
.

In terms of (3.3), we have that

f(C4
α) ⊇ [2(1 − r)2r2n + (1 − r)2, 3r2n + (1 − r)2]

∪ [2(1 − r)2r2n + (1 − r + r2n)2, 3r2n + (1 − r + r2n)2]

∪ [2(1 − r)2r2n + (1 − r + r2n−1 − r2n)2,

3r2n + (1 − r + r2n−1 − r2n)2]

= [2(1 − r)2r2n + (1 − r)2, 3r2n + (1 − r + r2n−1 − r2n)2]

⊇ [2(1 − r)2r2n + (1 − r)2, (2 − r + 2r2)r2n−1 + (1 − r)2]

(3.5)

where the last equality and inclusion hold because

3r2n + (1 − r)2 − (2(1 − r)2r2n + (1 − r + r2n)2)

=(6r − 2r2 − 1 − r2n)r2n

≥(6r − 3r2 − 1)r2n = [3(1 − r)r + 3r − 1]r2n > 0,

3r2n + (1 − r + r2n)2 − (2(1 − r)2r2n + (1 − r + r2n−1 − r2n)2)

= − 2r2n−1 + 7r2n − 2r2n+2 − r4n−2 + 2r4n−1

=2(3r − 1)r2n−1 + (1 − 2r2)r2n − r4n−2 + 2r4n−1

>2(3r − 1)r2n−1 + r2n+1 − r4n−2 + 2r4n−1

≥2(3r − 1)r2n−1 − r4n−2 + 3r4n−1

=2(3r − 1)r2n−1 + (3r − 1)r4n−2 ≥ 0,

and

3r2n + (1 − r + r2n−1 − r2n)2 − ((2 − r + 2r2)r2n−1 + (1 − r)2) = (r2n−1 − r2n)2 > 0.
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Note that

a− (2 − r + 2r2)r = 2r4 − 6r3 + 4r2 − 4r + 1

= (2r − 1)r3 − (5r2 − 4r + 1)r − (3r − 1) < 0,

which implies that the intervals in (3.4) and (3.5) overlap. It follows that for each positive 
integer n,

f(C4
α) ⊇ [2(1 − r)2r2n + (1 − r)2, (b + 2r2 − 2r3)r2n−2 + (1 − r)2]

⊇ [2(1 − r)2r2n + (1 − r)2, 2(1 − r)2r2n−2 + (1 − r)2],

where the last inclusion holds because

(b + 2r2 − 2r3) − 2(1 − r)2 = r4 − 4r3 + 5r2 + 2r − 1

= r4 + 2r2(1 − 2r) + (3r − 1)(r + 1) > 0.

Therefore,

f(C4
α) ⊇

∞⋃
n=1

[(1 − r)2(1 + 2r2n), (1 − r)2(1 + 2r2n−2)]

= ((1 − r)2, 3(1 − r)2].

(3.6)

By (3.2) and (3.6), we have

f(C4
α) ⊇ ((1 − r)2, 3(1 − r)2] ∪ [2(1 − r)2, 4] = ((1 − r)2, 4],

obtaining (3.1). �
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