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Abstract

Given x ∈ (0, 1], let U(x) be the set of bases q ∈ (1, 2] for which there exists a unique sequence
(di ) of zeros and ones such that x =

∑
∞
i=1di /qi . Lü et al. (2014) proved that U(x) is a Lebesgue null

set of full Hausdorff dimension. In this paper, we show that the algebraic sum U(x) + λU(x) and product
U(x) · U(x)λ contain an interval for all x ∈ (0, 1] and λ ̸= 0. As an application we show that the same
phenomenon occurs for the set of non-matching parameters studied by the first author and Kalle (Dajani
and Kalle, 2017).
c⃝ 2018 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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1. Introduction

Non-integer base expansions, a natural extension of dyadic expansions, have got much
attention since the ground-breaking works of Rényi [18] and Parry [17]. Given a base q ∈ (1, 2],
an infinite sequence (di ) of zeros and ones is called a q-expansion of x if

x =

∞∑
i=1

di

q i
=: ((di ))q .
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A number x has a q-expansion if and only if x ∈ Iq := [0, 1
q−1 ]. Contrary to the dyadic

expansions, Lebesgue almost every x ∈ Iq has a continuum of q-expansions (see [19]). On
the other hand, for each k ∈ N := {1, 2, . . .} or k = ℵ0 there exist q ∈ (1, 2] and x ∈ Iq such
that x has precisely k different q-expansions (see [6]). For more information on the non-integer
base expansions we refer to the survey paper [7] and the book chapter [3].

On the other hand, algebraic differences of Cantor sets and their connections with dynamical
systems have been intensively investigated since the work of Newhouse [16], who introduced
the notion of thickness to study whether a given Cantor set C ⊂ R has a non-empty intersection
with its translations. Since C ∩ (C + t) ̸= ∅ if and only if t ∈ C − C , where the algebraic
difference of two sets A, B ⊂ R is defined by A − B := {a − b : a ∈ A, b ∈ B}, the thickness
(see Definition 3.1) can be used to study the algebraic difference of Cantor sets (cf. [1,13,14]).

In this paper, we consider the algebraic differences of sets of univoque bases for given real
numbers. To be more precise, for x ∈ (0, 1], let U (x) be the set of bases q ∈ (1, 2] such that x has
a unique q-expansion. Then each element of U (x) is called a univoque base of x . Lü et al. [15]
proved that U (x) is a Lebesgue null set of full Hausdorff dimension.

We will prove the following result for the algebraic sum and product of U (x) defined
respectively by

U (x) + λU (x) := {p + λq : p, q ∈ U (x)} and U (x) · U (x)λ :=
{

pqλ
: p, q ∈ U (x)

}
.

Theorem 1.1. For every x ∈ (0, 1] and every λ ̸= 0 both the sum U (x) + λU (x) and product
U (x) · U (x)λ contain an interval.

We mention that the product U (x) ·U (x)λ in Theorem 1.1 can be converted to a sum by taking
the logarithm and then repeating the construction (see Section 3 for more details). Hence, we
will focus more on the algebraic sum U (x) + λU (x).

Remarks 1.2.

• For λ = −1 Theorem 1.1 states that the algebraic difference U (x) − U (x) and quotient
U (x) · U (x)−1 contain an interval for each x ∈ (0, 1].

• For x = 1 the set U := U (1) is well-studied. For example, it has a smallest element
qK L ≈ 1.78723, called the Komornik–Loreti constant (see [8]), and its closure U is a
Cantor set (see [9]). Furthermore, the local Hausdorff dimension of U is positive (see [12]),
i.e., dimH (U ∩ (q − δ, q + δ)) > 0 for any q ∈ U and δ > 0. Theorem 1.1 for x = 1 and
λ = −1 states that the algebraic difference U−U and quotient U ·U−1 contain an interval.

• The algebraic sum U (x)+λU (x) containing an interval for all λ ̸= 0 can also be expressed
by saying that for each x ∈ (0, 1] and for each oblique straight line L passing through 0,
the projection of the product set U (x) × U (x) = {(p, q) : p, q ∈ U (x)} onto L contains an
interval for all x ∈ (0, 1].

We will also show that the same phenomenon occurs for the set of non-matching parameters,
recently studied by the first author and Kalle [2]. Let us introduce for each α ∈ [1, 2] the map
Sα : [−1, 1] → [−1, 1] by the formula

Sα(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2x + α, if −1 ≤ x <

1
2
,

2x, if −
1
2

≤ x ≤
1
2
,

2x − α, if
1
2

< x ≤ 1.
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The parameter α is called a matching parameter if there exists m ∈ N such that Sm
α (1) =

Sm
α (1 − α), and a non-matching parameter otherwise.

If α is a matching parameter, then the density hα of the invariant measure with respect to Sα

is simply a finite sum of indicator functions.
It was shown in [2] that the set N of all non-matching parameters is a Lebesgue null set of

full Hausdorff dimension. We prove the following result:

Theorem 1.3. For every λ ̸= 0 both the algebraic sum N + λN and product N · N λ contain
an interval.

The paper is organized as follows. In Section 2 we investigate the topological structure of U (x)
and we construct a Cantor subset of U (x) in a symbolic way. In Section 3, we prove Theorem 1.1
by using a theorem of Newhouse on the thickness, and its recent improvements by Astels [1]
(Lemmas 3.2 and 3.6). Section 4 is devoted to the proof of Theorem 1.3. In Section 5 we prove
that neither the algebraic sum U (1) + U (1), nor the product U (1) · U (1) is an interval, and we
conjecture that both the algebraic difference U (1)−U (1) and quotient U (1)·U (1)−1 are intervals.

2. Topological structure of U (x)

Given x ∈ (0, 1], let Φx be the coding map defined by

Φx : (1, 2] → {0, 1}
N
; q ↦→ (ai ), (2.1)

where (ai ) is the quasi-greedy q-expansion of x , i.e., the lexicographically largest q-expansion
of x not ending with 0∞. In this paper, we will use lexicographical order ≺,≼, ≻ and ≽
between sequences in {0, 1}

N defined in the natural way. The definitions imply that Φx is strictly
increasing with respect to this lexicographical order. Therefore, we may define intervals in terms
of their codings via Φx . For example, the symbolic interval [(ai ), (bi )] with (ai ), (bi ) ∈ {0, 1}

N

corresponds to the closed interval [p, q] ⊂ (1, 2], where p = Φ−1
x ((ai )) and q = Φ−1

x ((bi )). We
emphasize that not every sequence in [(ai ), (bi )] corresponds to a base in [p, q]. In other words,
Φx ([p, q]) is a proper subset of [(ai ), (bi )].

Set

U(x) := {Φx (q) : q ∈ U (x)} .

Then Φx is a bijection between U (x) and U(x). So, instead of looking at the set U (x) of univoque
bases we focus on the symbolic set U(x) of univoque sequences. In [15], Lü et al.proved that
U (x) has more weight at the right endpoint q = 2, i.e., limδ→0dimH (U (x) ∩ [2 − δ, 2]) = 1, and
for q ∈ (1, 2) we have limδ→0dimH (U (x) ∩ [q − δ, q + δ]) < 1. Accordingly, in the symbolic
space the cylinder set

Cn(x) = {(ai ) ∈ U(x) : a1 · · · an = x1 · · · xn}

has the same topological entropy as the whole set U(x) for any n ≥ 1, where (xi ) = Φx (2) is the
quasi-greedy dyadic expansion of x . Here for a set X ⊆ {0, 1}

N its topological entropy h(X ) is
defined by

h(X ) := lim inf
k→∞

log|Bn(X )|
k

,

where |Bn(X )| denotes the total number of length n blocks appearing in sequences of X .
Motivated by this observation, we will construct a symbolic Cantor subset Un(x) contained

in the cylinder set Cn(x) for all large integers n. In the next section we will show that the
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corresponding Cantor set Un(x) = Φ−1
x (Un(x)) has a thickness larger than one for all large

integers n, and implying that Un(x) + λUn(x) contains an interval for each λ ̸= 0. Since
Un(x) ⊂ U (x), this will prove Theorem 1.1.

The following result was implicitly given by Lü et al. [15, Section 4], and we refer to this
article for more details.

Lemma 2.1. Fix x ∈ (0, 1] arbitrarily and set (xi ) := Φx (2). There exist M ∈ N ∪ {0} and a
strictly increasing sequence (N j ) ⊂ {3, 4, . . .} such that the following conditions are satisfied
for each N j :

(i) we have

xM+N j = 1 and UN j (x) ⊆ U(x),

where UN j (x) is the set of sequences

x1 · · · xM+N j ε1ε2 · · ·

satisfying

ε1 = 0, and εn+1 · · · εn+N j ̸∈
{
0N j , 1N j

}
for all n ≥ 0;

(ii) we have (ci ) ≽ 0M 10∞ for all sequences (ci ) ∈ UN j (x)
(iii) we have ((1N j −10)∞)q ≤ 1 for all bases q ∈ Φ−1

x (UN j (x)).

Before proving the lemma we mention that although the sets UN j (x) also depend on M , we
omit this in the notation for simplicity, because in the rest of the paper x and hence M will be
fixed.

Proof. Note that (xi ) = Φx (2) is the dyadic expansion of x not ending with 0∞. We distinguish
four cases.

(a) If (xi ) = x1 · · · xm01∞ for some m ≥ 0, then by [15] we have

x1 · · · xm01 j+2 ε1ε2 · · · ∈ U(x)

for all j ≥ 1, where ε1 = 0, and for N j := j + 2 ≥ 3 we have εn+1 · · · εn+N j ̸∈
{
0N j , 1N j

}
for all n ≥ 0. This yields (i) and (ii) by taking M = m + 1. Furthermore, for each
q ∈ Φ−1

x (UN j (x)) the inequality

N j∑
i=1

1
q i

< 1

holds, and hence (iii) follows:

((1N j −10)∞)q =

⎛⎝N j −1∑
i=1

1
q i

⎞⎠( ∞∑
i=0

1
q i N j

)
<

(
1 −

1
q N j

)( ∞∑
i=0

1
q i N j

)
= 1.

(b) If (xi ) = 1∞, then x = 1. By a similar argument as in (a) it follows that

1 j+2ε1ε2 · · · ∈ U(x)

for any j ≥ 1, where ε1 = 0, and for N j := j + 2 ≥ 3 we have εn+1 · · · εn+N j ̸∈{
0N j , 1N j

}
for all n ≥ 0. This proves (i) and (ii) by taking M = 0. Furthermore, for any
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q ∈ Φ−1
x (UN j (x)) we have

N j∑
i=1

1
q i

< x = 1;

this yields (iii) as above.
(c) If (xi ) = 1r10s11r20s2 · · · 1rk 0sk · · · with rk, sk ≥ 1 for all k ≥ 1, then by [15] we deduce

that

1r1 0s1 · · · 1r j+20s j+201 ε1ε2 · · · ∈ U(x)

for all j ≥ 1, where ε1 = 0 and for N j := r1 + s1 + · · · + r j+2 + s j+2 − 2 ≥ 4 we have
εn+1 · · · εn+N j ̸∈

{
0N j , 1N j

}
for all n ≥ 0. Therefore, (i) and (ii) follow by taking M = 4.

Furthermore, (iii) holds as in the preceding cases because
N j∑

i=1

1
q i

< 1

for all q ∈ Φ−1
x (UN j (x)).

(d) If (xi ) = 0r11s10r2 1s2 · · · 0rk 1sk · · · with rk, sk ≥ 1 for all k ≥ 1, then by [15] we have

0r11s1 · · · 0r j+11s j+10r j+201ε1ε2 · · · ∈ U(x)

for all j ≥ 1, where ε1 = 0, and for N j := s1 +r2 +s2 +· · ·+r j+1 +s j+1 +r j+2 −1 ≥ 3 we
have εn+1 · · · εn+N j ̸∈

{
0N j , 1N j

}
for all n ≥ 0. This yields (i) and (ii) by taking M = r1+3.

Finally, (iii) holds again because
N j∑

i=1

1
q i

< 1

for all q ∈ Φ−1
x (UN j (x)). □

Remark 2.2. Lemma 2.1 does not hold for x > 1. Indeed, Lemma 2.1(i) states that the set U(x)
contains sequences with arbitrarily long blocks of consecutive zeros, and for this U(x) must
contain bases arbitrarily close to 2: this follows from the usual lexicographic characterization
of unique expansions. However, for x > 1 the largest base for which x has an expansion is
qx := 1 + 1/x < 2.

By Lemma 2.1 the tails of the sequences in UN j (x) contain neither N j consecutive zeros, nor
N j consecutive ones. Furthermore, UN j (x) ⊆ U(x) for all x ∈ (0, 1] and j ≥ 1. Setting

UN j (x) := Φ−1
x (UN j (x)) =

{
q ∈ (1, 2] : Φx (q) ∈ UN j (x)

}
we have

UN j (x) ⊆ U (x) (2.2)

for all x ∈ (0, 1] and j ≥ 1. Hence the algebraic sum U (x) + λU (x) containing an interval will
follow if we prove that the algebraic sum UN j (x) + λUN j (x) contains an interval for any fixed
λ ̸= 0, if j ≥ 1 is sufficiently large. For this we will apply the results of Newhouse [16] and
Astels [1]. Notice that UN j (x) is a Cantor set for any x ∈ (0, 1] and j ≥ 1. In order to estimate
the thickness of UN j (x) we need to describe its geometrical structure. For this we need to find an
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efficient way to construct UN j (x) by successively removing a sequence of open intervals from a
closed interval.

Fix x ∈ (0, 1] and j ≥ 1 arbitrarily. Since the coding map Φx defined in (2.1) is strictly
increasing, each q ∈ UN j (x) may be encoded by a unique sequence Φx (q) = (ai ) ∈ UN j (x).
Conversely, each sequence (ai ) ∈ UN j (x) can be decoded to a unique base q ∈ UN j (x). Let
(xi ) = Φx (2) be the dyadic expansion of x not ending with 0∞. Suppose that the integer M and
the sequence (N j ) depending on x are defined as in Lemma 2.1. Given j ≥ 1, let Ω j (x) be the
set of all finite initial words of length larger than M + N j occurring in UN j (x), i.e.,

Ω j (x) =
{
ω1 · · · ωn : n > M + N j and ω1 · · · ωnc1c2 · · · ∈ UN j (x) for some (ci )

}
.

Since the tails of the sequences in UN j (x) contain neither N j consecutive zeros, nor N j
consecutive ones, the words of Ω j (x) are divided into 2N j − 2 disjoint classes: the words ending
with 10k and those ending with 01k for some k ∈

{
1, 2, . . . , N j − 1

}
.

Recall that a symbolic interval [(ai ), (bi )] corresponds to the closed interval [p, q], if (ai ) =

Φx (p) and (bi ) = Φx (q). For each ω ∈ Ω j (x) we denote by Iω the smallest symbolic interval
containing all sequences of UN j (x) that begin with ω. The following explicit description of these
intervals follows directly from the definition of UN j (x).

Lemma 2.3. Let ω ∈ Ω j (x).

(i) If ω ends with 10k for some k ∈
{
1, . . . , N j − 1

}
, then

Iω =
[
ω0N j −1−k(10N j −1)∞, ω(1N j −10)∞

]
.

(ii) If ω ends with 01k for some k ∈
{
1, . . . , N j − 1

}
, then

Iω =
[
ω(0N j −11)∞, ω1N j −1−k(01N j −1)∞

]
.

By Lemma 2.1(i) all sequences in UN j (x) begin with x1 · · · xM+N j 0 = x1 · · · xM+N j −1 10.
Applying Lemma 2.3(i) it follows that the smallest symbolic interval which contains UN j (x) is

Ix1···xM+N j 0 =
[
x1 · · · xM+N j (0

N j −11)∞, x1 · · · xM+N j (01N j −1)∞
]
.

An immediate consequence of Lemma 2.3 is the following:

Lemma 2.4. Let ω ∈ Ω j (x).

(i) If ω ends with 10N j −1, then

ω0 ̸∈ Ω j (x) and Iω1 = Iω.

(ii) If ω ends with 01N j −1, then

ω1 ̸∈ Ω j (x) and Iω0 = Iω.

(iii) In the remaining cases, Iω is the disjoint union of the non-empty intervals

Iω0, Iω1 and Gω := Iω \ (Iω0 ∪ Iω1).

Now we may describe the geometrical structure of UN j (x). Given a symbolic interval I =

[(ai ), (bi )] with (ai ), (bi ) ∈ UN j (x), we denote by I = [p, q] the corresponding interval in R,
where p = Φ−1

x ((ai )) and q = Φ−1
x ((bi )). Then the symbolic intervals Iω, Gω are transferred to

the real intervals Iω, Gω, respectively. Set

Ω∗

j (x) :=
{
ω ∈ Ω j (x) : Gω ̸= ∅

}
.
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Fig. 1. The geometrical structure of the basic intervals Iω, Iω0, Iω1 and the gap interval Gω .

Lemma 2.5. The non-empty open intervals Gω, ω ∈ Ω∗

j (x) are pairwise disjoint, and

UN j (x) = Ix1···xM+N j 0 \

⋃
ω∈Ω∗

j (x)

Gω.

Proof. The map Φx : UN j (x) → UN j (x) is strictly increasing, hence bijective. Lemmas 2.1, 2.3
and 2.4 imply that

UN j (x) ⊆ Ix1···xM+N j 0 \

⋃
ω∈Ω∗

j (x)

Gω.

For the converse inclusion, first we remove from the closed interval Ix1···xM+N j 0 the non-
empty open interval Gx1···xM+N j 0 to obtain the union of two non-degenerate disjoint closed
intervals Ix1···xM+N j 00 and Ix1···xM+N j 01. We emphasize that the non-empty of Gx1...xM+N j 0 follows
by Lemma 2.4, since N j ≥ 3 and the word x1 . . . xM+N j 0 ends with 10 by Lemma 2.1. Then
we proceed by induction. Assume that after a finite number of steps we get a disjoint union of
non-degenerate closed intervals Iω, where ω runs over all length n(> M + N j ) words of Ω j (x).
We will construct all level n + 1 sub-intervals in the following way. If ω ∈ Ω∗

j (x), then we
remove the open interval Gω, and replace Iω by the two disjoint closed subintervals Iω0 and Iω1
(see Fig. 1). If ω ̸∈ Ω∗

j (x), then either ω0 ∈ Ω j (x) or ω1 ∈ Ω j (x). In this case we keep the
interval Iω with either Iω = Iω0 or Iω = Iω1.

Repeating this procedure indefinitely we construct the set UN j (x), and we obtain the converse
inclusion

Ix1···xM+N j 0 \

⋃
ω∈Ω∗

j (x)

Gω ⊆ UN j (x).

Furthermore, we obtain that the gap intervals Gω with ω ∈ Ω∗

j (x) are pairwise disjoint. □

3. Proof of Theorem 1.1

By Lemma 2.5 the Cantor set UN j (x) can be obtained by successively removing from the
closed interval Ix1···xM+N j 0 a sequence of open intervals. By using the notation from Lemma 2.5
we define the thickness of UN j (x).

Definition 3.1. The thickness of UN j (x) is defined by

τ (UN j (x)) := inf
ω∈Ω∗

j (x)

{
|Iω0|

|Gω|
,
|Iω1|

|Gω|

}
,

where |I | := q − p denotes the length of an interval I = [p, q].
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We point out that the thickness given in Definition 3.1 coincides with that defined by
Astels [1], and it is essentially the same as that defined by Newhouse [16]. Notice that the
thickness is stable under non-trivial scaling, i.e., τ (λUN j (x)) = τ (UN j (x)) for all λ ̸= 0. The
following result follows from [1, Theorem 2.4].

Lemma 3.2. If τ (UN j (x)) ≥ 1, then UN j (x) + λUN j (x) contains an interval for all λ ̸= 0.

In view of the relation (2.2) and Lemma 3.2, the algebraic sum U (x) + λU (x) containing an
interval will be proved if we find an index j ≥ 1 such that τ (UN j (x)) ≥ 1. For this we will
compare the length of each non-degenerate interval Gω with the lengths of its neighbors Iω0 and
Iω1. We need three further lemmas; for the first one see also [10].

Henceforth we denote by ϕ :=
1+

√
5

2 the Golden Ratio.

Lemma 3.3. We have U (x) ⊆ (ϕ, 2] for all x ∈ (0, 1].

Proof. For q ∈ (1, ϕ] only the endpoints of [0, 1/(q − 1)] have unique expansions, and they are
outside (0, 1]. □

Next we establish some elementary inequalities.

Lemma 3.4. If the integers m and n are sufficiently large, then(
1 +

1
ϕm

)2m

<
(110∞)2

((10n−1)∞)ϕ
and

(
1 +

1
ϕm

)2m

<
((1n−10)∞)2

((10n−310)∞)ϕ
.

Proof. The lemma follows from the following relations:

lim
m→∞

(
1 +

1
ϕm

)2m

= 1,

lim
n→∞

((10n−1)∞)ϕ =
1
ϕ

<
3
4

= (110∞)2

and

lim
n→∞

((10n−310)∞)ϕ =
1
ϕ

< 1 = lim
n→∞

((1n−10)∞)2. □

Lemma 3.5. Let j ≥ 1 be sufficiently large. Then

|Gω| ≤ |Iω0| and |Gω| ≤ |Iω1|

for all ω ∈ Ω∗

j (x).

Proof. Fix ω ∈ Ω∗

j (x) of length n(> M + N j ). Writing

Iω0 = [q1, q2] and Iω1 = [q3, q4]

we have to prove the inequalities

q3 − q2 ≤ q2 − q1 and q3 − q2 ≤ q4 − q3



K. Dajani et al. / Indagationes Mathematicae 29 (2018) 1087–1104 1095

for some large integer j . By Lemma 2.3 it follows that

ω(0N j −11)∞ ≼ Φx (q1) ≼ ω0(10N j −1)∞, Φx (q2) = ω0(1N j −10)∞;

ω1(01N j −1)∞ ≼ Φx (q4) ≼ ω(1N j −10)∞, Φx (q3) = ω1(0N j −11)∞.
(3.1)

We emphasize by Lemma 2.5 that qi ∈ UN j (x) for all 1 ≤ i ≤ 4.
Bounds on q2 − q1. First we give an upper bound of q2 − q1. It follows from (3.1) that

(ω(01N j −1)∞)q2 = x ≥ (ω(0N j −11)∞)q1 ,

whence

(0n(01N j −1)∞)q2 − (0n(0N j −11)∞)q1 ≥ (ω0∞)q1 − (ω0∞)q2 .

Since ω = ω1 · · · ωn contains a non-zero digit ωℓ = 1 for some 1 ≤ ℓ ≤ M+1 by Lemma 2.1(ii),
the right hand side may be bounded as follows:

(ω0∞)q1 − (ω0∞)q2 ≥
1
qℓ

1
−

1
qℓ

2
≥

1

q1qℓ−1
2

−
1
qℓ

2
=

q2 − q1

q1qℓ
2

≥
q2 − q1

q M+2
2

.

Combining the two estimates and using Lemma 2.1(iii) we conclude that

q2 − q1 ≤ q M+2
2

(
(0n(01N j −1)∞)q2 − (0n(0N j −11)∞)q1

)
≤ q M+2

2 (0n(01N j −1)∞)q2 ≤
q M+2

2

qn+1
2

=
1

qn−M−1
2

.
(3.2)

Now we focus on the lower bound of q2 − q1. We infer from (3.1) that

(ω0(1N j −10)∞)q2 = x ≤ (ω0(10N j −1)∞)q1 ,

and this implies the estimate

(0n+1(1N j −10)∞)q2 − (0n+1(10N j −1)∞)q1 ≤ (ω0∞)q1 − (ω0∞)q2

≤

∞∑
i=1

(
1
q i

1
−

1
q i

2

)
=

q2 − q1

(q1 − 1)(q2 − 1)
.

Choosing by Lemma 3.4 a large integer j0 ≥ 1 such that

N j ≥ 4 and
(

1 +
1

ϕn−M

)n+1

<
(110∞)2

((10N j −1)∞)ϕ
(3.3)

for all j ≥ j0 and n > M + N j , we deduce from the above estimate for all j ≥ j0 that

q2 − q1 ≥ (ϕ − 1)2 ((0n+1(1N j −10)∞)q2 − (0n+1(10N j −1)∞)q1

)
≥ (ϕ − 1)2 ((0n+1(1N j −10)∞)q2 − (0n+1110∞)q2

)
≥

(ϕ − 1)2

qn+4
2

.

(3.4)

Here the first inequality holds because q2 > q1 ≥ ϕ by Lemma 3.3 and the last inequality
holds because N j ≥ 4. The crucial second inequality follows by (3.2), (3.3) and the inequality
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q2 > q1 ≥ ϕ:

(0n+1(10N j −1)∞)q1 =

(
q2

q1

)n+1 ((10N j −1)∞)q1

qn+1
2

≤

(
1 +

q2 − q1

q1

)n+1 ((10N j −1)∞)ϕ
qn+1

2

≤

(
1 +

1

q1qn−M−1
2

)n+1
((10N j −1)∞)ϕ

qn+1
2

≤

(
1 +

1
ϕn−M

)n+1 ((10N j −1)∞)ϕ
qn+1

2

<
(110∞)2

qn+1
2

≤ (0n+1110∞)q2 .

Bounds on q4 − q3. We adapt the above arguments for q2 − q1. First we give an upper bound
of q4 − q3. We infer from (3.1) that

(ω1(0N j −11)∞)q3 = x ≤ (ω(1N j −10)∞)q4 .

Since there exists 1 ≤ ℓ ≤ M + 1 such that ωℓ = 1 by Lemma 2.1(ii), it follows that

(0n+1(1N j −201)∞)q4 − (0n+1(0N j −11)∞)q3 ≥ (ω10∞)q3 − (ω10∞)q4

≥
1
qℓ

3
−

1
qℓ

4
≥

q4 − q3

q M+2
4

.

This implies that

q4 − q3 ≤ q M+2
4

(
(0n+1(1N j −201)∞)q4 − (0n+1(0N j −11)∞)q3

)
≤ q M+2

4 (0n+1(1N j −201)∞)q4 ≤
q M+2

4

qn+1
4

=
1

qn−M−1
4

,
(3.5)

where the third inequality follows by Lemma 2.1(iii) because q4 ∈ UN j (x).
Now we seek a lower bound of q4 − q3. By Lemma 3.4 there exists j1 ≥ j0 (we use j0 chosen

in the first part of the proof) such that(
1 +

1
ϕn−M

)n+2

<
((1N j −10)∞)2

((10N j −310)∞)ϕ
(3.6)

for all j ≥ j1 and n > M + N j . By (3.1) we have

(ω1(0N j −11)∞)q3 = x ≥ (ω1(01N j −1)∞)q4 ,

whence

(0n+1(01N j −1)∞)q4 − (0n+1(0N j −11)∞)q3 ≤ (ω10∞)q3 − (ω10∞)q4

≤

∞∑
i=1

(
1
q i

3
−

1
q i

4

)
=

q4 − q3

(q4 − 1)(q3 − 1)
.
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Since q4 > q3 ≥ ϕ by Lemma 3.3, hence we deduce the following estimate of q4 − q3 for all
j ≥ j1:

q4 − q3 ≥ (ϕ − 1)2 ((0n+1(01N j −1)∞)q4 − (0n+1(0N j −11)∞)q3

)
≥ (ϕ − 1)2 ((0n+1(010N j −31)∞)q3 − (0n+1(0N j −11)∞)q3

)
≥

(ϕ − 1)2

qn+3
3

.

(3.7)

Here the crucial second inequality follows from (3.5) and (3.6):

(0n+1(010N j −31)∞)q3 =

(
q4

q3

)n+2 ((10N j −310)∞)q3

qn+2
4

≤

(
1 +

q4 − q3

q3

)n+2 ((10N j −310)∞)ϕ
qn+2

4

≤

(
1 +

1

q3qn−M−1
4

)n+2
((10N j −310)∞)ϕ

qn+2
4

≤

(
1 +

1
ϕn−M

)n+2 ((10N j −310)∞)ϕ
qn+2

4

<
((1N j −10)∞)2

qn+2
4

≤ (0n+1(01N j −1)∞)q4 .

Bounds on q3 − q2. Note that

(ω0(1N j −10)∞)q2 = x = (ω1(0N j −11)∞)q3

by (3.1). Since there exists 1 ≤ ℓ ≤ M + 1 such that ωℓ = 1 by Lemma 2.1(ii), it follows that

(0n1(0N j −11)∞)q3 − (0n0(1N j −10)∞)q2 = (ω0∞)q2 − (ω0∞)q3 ≥
1
qℓ

2
−

1
qℓ

3
≥

q3 − q2

q M+2
3

.

Using the inequalities q2 < q3 ≤ 2 hence we infer that

q3 − q2 ≤ 2M+2 ((0n1(0N j −11)∞)q3 − (0n0(1N j −10)∞)q2

)
≤ 2M+2 ((0n1(0N j −11)∞)q3 − (0n0(1N j −10)∞)q3

)
≤ 2M+2 ((0n01N j −140∞)q3 − (0n01N j −10∞)q3

)
=

2M+4

q
n+N j +1
3

.

(3.8)

Here the crucial third inequality follows by

(0n1(0N j −11)∞)q3 < (0n+1(1N j −12)∞)q3

and the estimate

((1N j −12)∞)q3 =
(1N j −120∞)q3

1 − q
−N j
3

≤
1 + q

−N j
3

1 − q
−N j
3

≤
1 + ϕ−N j

1 − ϕ−N j
≤ 2,

using that (1N j 0∞)q3 ≤ 1, q3 ≥ ϕ and N j ≥ 3.
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Since 1 < q2 < q3, we may choose j2 ≥ j1 such that

2M+4
≤ (ϕ − 1)2q

N j2 −3
2 ≤ (ϕ − 1)2q

N j2 −2
3 .

(The second inequality automatically follows from the first one.) Then, using also the relations
(3.4) and (3.8), the following estimate holds for all j ≥ j2:

q3 − q2 ≤
2M+4

q
n+N j +1
3

<
2M+4

q
n+N j +1
2

≤
(ϕ − 1)2

qn+4
2

≤ q2 − q1.

Similarly, using (3.7) and (3.8) we obtain that

q3 − q2 ≤
2M+4

q
n+N j +1
3

<
(ϕ − 1)2

qn+3
3

≤ q4 − q3

for all j ≥ j2. Since the word ω was taken arbitrarily from Ω∗

j (x), this completes the proof. □

Now we consider the algebraic product part of Theorem 1.1. By Lemma 3.3 we have
U (x) ⊂ (ϕ, 2] for each x ∈ (0, 1]. Then

U (x) · U (x)λ =
{

pqλ
: p, q ∈ U (x)

}
=
{
eln p+λ ln q

: p, q ∈ U (x)
}
.

So, the algebraic product U (x) · U (x)λ containing an interval is equivalent to that the algebraic
sum lnU (x) + λ lnU (x) contains an interval, where lnU (x) := {ln q : q ∈ U (x)}. Observe by
Lemma 2.5 that for any x ∈ (0, 1] and any j ≥ 1 the set UN j (x) is a Cantor subset of U (x). This
implies that lnUN j (x) is also a Cantor subset of lnU (x). Combining this with Lemma 3.2 on the
thickness we obtain the following

Lemma 3.6. For any given x ∈ (0, 1], if τ
(
lnUN j (x)

)
≥ 1 for some j ≥ 1, then UN j (x)·UN j (x)λ

contains an interval for each non-zero real number λ.

Proof of Theorem 1.1. Fix x ∈ (0, 1] and λ ̸= 0 arbitrarily. By Lemmas 3.2 and 3.5 it follows
that the algebraic sum U (x)+λU (x) contains an interval. As for the algebraic product U (x)·U (x)λ

it suffices to show that τ
(
lnUN j (x)

)
≥ 1 if j is sufficiently large. Indeed, then the theorem will

follow from Lemma 3.6 because of the inclusion (2.2).
Fix ω ∈ Ω∗

j (x) arbitrarily, of length n(> M + N j ), and consider the intervals

Iω0 = [q1, q2], Iω1 = [q3, q4] and Gω = (q2, q3)

as in the proof of Lemma 3.5. Then the corresponding basic intervals of level n +1 of ln(UN j (x))
are

ln(Iω0) := [ln q1, ln q2], ln(Iω1) := [ln q3, ln q4] and ln(Gω) := (ln q2, ln q3).

We have to prove that if j is sufficiently large, then

ln q3 − ln q2 ≤ ln q2 − ln q1 and ln q3 − ln q2 ≤ ln q4 − ln q3,

or equivalently
q3

q2
≤

q2

q1
and

q3

q2
≤

q4

q3
. (3.9)
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We use the estimates obtained in the proof of Lemma 3.5. If j ≥ j2, then we infer from (3.4)
and (3.8) the relations

q2

q1
≥ 1 +

(ϕ − 1)2

q1qn+4
2

≥ 1 +
(ϕ − 1)2

qn+5
2

,

q3

q2
≤ 1 +

2M+4

q2q
n+N j +1
3

≤ 1 +
2M+4

q
n+N j +2
2

.

Hence there exists j3 ≥ j2 such that

q3

q2
≤ 1 +

2M+4

q
n+N j +2
2

< 1 +
(ϕ − 1)2

qn+5
2

≤
q2

q1

for all j ≥ j3, establishing the first inequality in (3.9).
Similarly, we deduce from (3.7) and (3.8) that

q4

q3
≥ 1 +

(ϕ − 1)2

qn+4
3

and
q3

q2
≤ 1 +

2M+4

q2q
n+N j +1
3

for all j ≥ j2. Hence, there exists j4 ≥ j3 such that

q3

q2
≤ 1 +

2M+4

q2q
n+N j +1
3

< 1 +
(ϕ − 1)2

qn+4
3

≤
q4

q3

for all j ≥ j4. This proves the second inequality in (3.9). □

4. Proof of Theorem 1.3

In this section we apply the symbolic Cantor sets constructed in Section 2 to the set N of
non-matching parameters, and we prove Theorem 1.3. In order to describe the non-matching set
N we recall the doubling map D on the unit circle [0, 1) defined by

D : [0, 1) → [0, 1); x ↦→ 2x (mod 1).

The following characterization of N was implicitly given by [2].

Lemma 4.1. The following statements are equivalent:

(i) α ∈ N .
(ii) For all n ≥ 0 we have

Dn
(

1
α

)
̸∈

(
1

2α
, 1 −

1
2α

)
.

(iii) 1/α ∈ [1/2, 1] has a unique dyadic expansion (ai ) ∈ {0, 1}
N satisfying{

an+1an+2 · · · ≼ a1a2 · · · if an = 0,

an+1an+2 · · · ≽ (1 − a1)(1 − a2) · · · if an = 1 (4.1)

for all n ≥ 1.

Proof. The equivalence of (i) and (ii) follows from [2]. As for (iii) ⇒ (ii), let (ai ) be the unique
dyadic expansion of 1/α. Then (1 − ai ) is the unique dyadic expansion of 1 − 1/α. Hence, (ii)
follows from (4.1).
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To prove (ii) ⇒ (iii), we first observe that the greedy dyadic expansion (ai ) of 1/α cannot end
with 10∞, for otherwise there must exist n ≥ 0 such that

Dn
(

1
α

)
=

1
2

∈

(
1

2α
, 1 −

1
2α

)
.

Hence, 1/α has a unique dyadic expansion (ai ). Furthermore, (4.1) follows from the following
observation: for each n ≥ 1,

Dn−1
(

1
α

)
≤

1
2α

⇐⇒ an = 0 and an+1an+2 . . . ≼ a1a2 . . .

and

Dn−1
(

1
α

)
≥ 1 −

1
2α

⇐⇒ an = 1 and an+1an+2 . . . ≽ (1 − a1)(1 − a2) . . . . □

Let N be the set of all sequences (ai ) ∈ {0, 1}
N such that it is the unique dyadic expansion of

((ai ))2 ∈ [1/2, 1] and it satisfies the inequalities in (4.1). Then by Lemma 4.1 it follows that the
projection map

Ψ : N → N ; (ai ) ↦→
1

((ai ))2

is well-defined. Indeed, Ψ is bijective and strictly decreasing. Motivated by the symbolic Cantor
sets constructed in Section 2, we will construct the symbolic Cantor subsets Nm contained in N,
such that the thickness of Ψ (Nm) is larger than 1.

Given an integer m ≥ 3, let Nm be the set of sequences (ai ) ∈ {0, 1}
N satisfying

a1 · · · am = 1m and an+1 · · · an+m ̸∈
{
0m, 1m}

for all n ≥ m. Then each sequence (ai ) ∈ Nm satisfies (4.1) and ends with neither 01∞ nor 10∞.
Hence, by Lemma 4.1 it follows that

Nm ⊆ N for all m ≥ 3.

By an analogous argument as in Lemmas 2.3–2.5, the set Nm is indeed a symbolic Cantor set and
has a similar structure as UN j (x) as described in Section 2. Write Nm := Ψ (Nm). By Lemma 4.1
it follows that Nm ⊂ N for all m ≥ 3. Therefore it suffices to prove the thickness τ (Nm) ≥ 1
for some large integer m.

In contrast with the definitions of the set Ω j (x) of finite words and the symbolic intervals Iω in
Section 2, we introduce the following notation. For m ≥ 3, let Ω (Nm) be the set of all finite initial
words of length larger than m occurring in Nm . Given a word ω ∈ Ω (Nm), let Jω be the smallest
symbolic interval containing all sequences of Nm that begin with ω. Similarly to Lemma 2.3, one
can verify that the interval Jω has the form Jω = [(ai ), (bi )] with (ai ), (bi ) ∈ Nm . Notice that the
map Ψ is strictly decreasing on Nm . Then we denote by Jω = [p, q] the corresponding interval
in R, where p = Ψ ((bi )) and q = Ψ ((ai )).

Proof of Theorem 1.3. Fix a word ω ∈ Ω (Nm) of length n(> m) such that the open interval
Oω := Jω \ (Jω0 ∪ Jω1) ̸= ∅. Write

Jω = Jω1 ∪ Oω ∪ Jω0 =: [p1, p2] ∪ (p2, p3) ∪ [p3, p4].

Notice that the map Ψ is strictly decreasing. By Lemma 2.3 it follows that

Ψ (ω(1m−10)∞) ≤ p1 ≤ Ψ (ω1(01m−1)∞), p2 = Ψ (ω1(0m−11)∞);

Ψ (ω0(10m−1)∞) ≤ p4 ≤ Ψ (ω(0m−11)∞), p3 = Ψ (ω0(1m−10)∞).
(4.2)
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By the thickness as described in Lemma 3.2, in order to prove Theorem 1.3(i) it suffices to prove
the inequalities

p3 − p2 ≤ p2 − p1 and p3 − p2 ≤ p4 − p3 (4.3)

for some large integer m.
By (4.2) it follows that

p2 − p1 ≥ Ψ (ω1(0m−11)∞) − Ψ (ω1(01m−1)∞)

=
1

(ω1(0m−11)∞)2
−

1
(ω1(01m−1)∞)2

≥
(0n+210∞)2(
(ω110∞)2

)2 ,

p4 − p3 ≥ Ψ (ω0(10m−1)∞) − Ψ (ω0(1m−10)∞)

=
1

(ω0(10m−1)∞)2
−

1
(ω0(1m−10)∞)2

≥
(0n+210∞)2(
(ω110∞)2

)2

and

p3 − p2 = Ψ (ω0(1m−10)∞) − Ψ (ω1(0m−11)∞)

=
1

(ω0(1m−10)∞)2
−

1
(ω1(0m−11)∞)2

≤
(0n+m30∞)2(
(ω010∞)2

)2 .

Take m0 ≥ 3 such that

(0n+m30∞)2

(0n+210∞)2
<

1
2

(
(ω010∞)2

(ω110∞)2

)2

(4.4)

for all m ≥ m0. Here the existence of m0 follows from that the left term of (4.4) tends to zero
as m → ∞, while the right term is a positive constant independent of m. Then (4.4) and the
estimates of p2 − p1, p4 − p3, p3 − p2 imply (4.3) for all m ≥ m0:

p3 − p2 ≤
(0n+m30∞)2(
(ω010∞)2

)2 <
(0n+210∞)2(
(ω110∞)2

)2 ≤ min {p2 − p1, p4 − p3} .

Applying Lemma 3.2 we conclude that Nm + λNm contains an interval for all λ ̸= 0 and any
m ≥ m0.

Next, since 1 ≤ p1 < p2 < p3 ≤ 2, we also infer from (4.4) and the estimates of
p2 − p1, p4 − p3, p3 − p2 for all m ≥ m0 the relations

p3

p2
≤ 1 +

(0n+m30∞)2

p2
(
(ω010∞)2

)2 < 1 +
(0n+210∞)2

p1
(
(ω110∞)2

)2 ≤
p2

p1

and
p3

p2
≤ 1 +

(0n+m30∞)2

p2
(
(ω010∞)2

)2 < 1 +
(0n+210∞)2

p3
(
(ω110∞)2

)2 ≤
p4

p3
.

Applying Lemma 3.6 we conclude that the algebraic product Nm · N λ
m contains an interval for

all λ ̸= 0 and any m ≥ m0.
Since Nm ⊂ N for all m ≥ 3, this completes the proof. □
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5. Final remarks

The method used in the proofs of Theorems 1.1 and 1.3 can also be applied to many other
Cantor sets that come up in dynamics. In this section we continue the investigation of the
algebraic sum and product of U (x) for x = 1. Recall that U (1) is the set of univoque bases
q ∈ (1, 2] such that 1 has a unique q-expansion. As it is customary, let us simply write U instead
of U (1).

Since both U + U and U · U contain an interval by Theorem 1.1, it is natural to ask whether
U + U and U · U themselves are intervals. The answer is negative:

Proposition 5.1. Neither U + U , nor U · U is an interval. The same conclusion holds if we
replace U by its topological closure U .

Before proving Proposition 5.1 we recall some results from [4,5,8,9] on the topological
properties of U . First, U is a Cantor set and qK L ≈ 1.78723 is its smallest element. Next, we
have

U = [qK L , 2] \

⋃
(qL , qR),

where on the right-hand side we have a union of countably many pairwise disjoint open intervals:
the connected components of [qK L , 2] \ U .

Furthermore, for each of these intervals (qL , qR) there exists a word a1 · · · am with am = 0,
satisfying the lexicographic inequalities

(a1 · · · am)∞ ≺ σ i ((a1 · · · am)∞) ≼ (a1 · · · am)∞ for all i ≥ 0 (5.1)

and the equalities

Φ1(qL ) = (a1 · · · am)∞ and Φ1(qR) = a1 · · · a+

m a1 · · · ama1 · · · a+
m a1 · · · a+

m · · · . (5.2)

Here σ denotes the usual left-shift operator, and we use the notations

a1 · · · am := (1 − a1) · · · (1 − am), a1 · · · a+

m := a1 · · · am−1(am + 1).

We recall that the left endpoints qL are algebraic integers, while the right endpoints qR , called
de Vries–Komornik numbers in [11], are transcendental and their expansions Φ1(qR) are Thue–
Morse type sequences.

We also need an elementary lemma:

Lemma 5.2. Let A be a non-empty set of real numbers, and set

a := inf A, b := sup A.

If there exists a non-empty subinterval (c, d) of (a, b) such that

A ∩ (c, d) = ∅ and d − c > c − a,

then A + A is not an interval.

Proof. Since A + A meets a neighborhood of both 2a and 2b by the definition of the infimum
and supremum, it suffices to show that it does not meet the non-empty subinterval (2c, a + d).

Let x, y ∈ A. If x ≤ c and y ≤ c, then x + y ≤ 2c. Otherwise at least one of them is at least
d. Since the other one is at least a, then x + y ≥ a + d . □
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Proof of Proposition 5.1. In order to prove that U + U is not an interval, by the preceding
lemma it suffices to find a connected component (qL , qR) of [qK L , 2] \ U satisfying

qR − qL > qL − qK L . (5.3)

We claim that the interval (qL , qR) associated with the word a1 · · · a6 = 110100 satisfies this
inequality.

This word defines an interval (qL , qR) indeed, because it satisfies the inequalities in (5.1):

(001011)∞ ≺ σ i ((110100)∞) ≼ (110100)∞ for all i ≥ 0.

In view of (5.2) the endpoints of (qL , qR) satisfy the relations

Φ1(qL ) = (110100)∞ and Φ1(qR) = 110101 001011 001010 110101 · · · .

By a numerical calculation we have qL ≈ 1.78854 and qR ≈ 1.79656. Hence

qR − qL > 1.79654 − 1.78854 = 0.008

and

qL − qK L ≈ 1.78854 − 1.78723 = 0.00131,

so that the inequality (5.3) is satisfied. The above proof remains valid for U+U instead of U+U .
Next we consider the product U · U . Since it is homeomorphic to

lnU + lnU = {ln p + ln q : p, q ∈ U } ,

it suffices to find a connected component (qL , qR) of [qK L , 2] \ U satisfying

ln qR − ln qL > ln qL − ln qK L , i.e.,
qR

qL
>

qL

qK L
. (5.4)

This is satisfied with the same interval (qL , qR) ≈ (1.78854, 1.79656) as in the first part of the
proof because

qR

qL
≈ 1.00448 > 1.00073 ≈

qL

qK L

by a numerical computation. The proof remains valid for U · U instead of U · U . □

We end our paper with the following

Conjecture 5.3. Both the algebraic difference U − U and quotient U · U−1 are intervals. The
same conclusion holds if we replace U by its topological closure U .
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