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Abstract
A well known result states that the set of numbers in base r in which the digits
i occur with relative frequency pi for i = 0, . . . , r − 1 is a set of Hausdorff
dimension −(1/ log r)

∑r−1
i=0 pi log pi. For instance, decimal numbers in which

only the digits 1 and 6 occur, both with relative frequencies 1
2 , have Hausdorff

dimension log 2/ log 10. In this paper we generalize this result to the situation
where one prescribes the relative frequencies of groups of digits in the
expansion. For example, suppose we require that in the decimal expansion
digits from {0, 1, 2} occur with relative frequency 1

2 , and also that digits from
{3, 4, . . . , 9} occur with this relative frequency. Our result shows that the
Hausdorff dimension of this set is (log 2 + 1

2 log 3 + 1
2 log 7)/ log 10. Actually,

we take a much more general geometric viewpoint, considering subsets of
Moran fractals specified by prescribing the relative frequencies of groups of
symbols in their codings. We determine the Hausdorff dimension of such sets,
and moreover give necessary and sufficient conditions for such a set to have
positive Hausdorff measure in its dimension.

Mathematics Subject Classification: 28A80, 28A78

1. Introduction

One of the first non-compact fractals sets to be studied is that of the numbers in the unit
interval having an anomalous distribution of their digits in a fixed base r . According to Borel’s
theorem, almost all numbers will have their digits distributed according to the probability
vector (1/r, 1/r, . . . , 1/r). So the set M(p0, . . . , pr−1) of numbers for which the digits
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0, 1, . . . , r − 1 are distributed according to the probability vector (p0, . . . , pr−1)—not equal
to uniform distribution—has measure zero, and it is interesting to obtain an idea of its size by
the value of its Hausdorff dimension. Eggleston [2] proved that

dimH M(p0, . . . , pr−1) = − 1

log r

r−1∑
i=0

pi log pi.

In this paper we will generalize Eggleston’s result by weakening the requirements on the
relative frequency of the digits: partition the set of digits in k groups �1, . . . , �k , i.e. the �j

are disjoint sets with union {0, . . . , r − 1}. Now prescribe the (overall) relative frequency cj

with which the digits from the j th group occur, and denote this set by M(�1, . . . , �k). As a
special case of our result it will appear that

dimH M(�1, . . . , �k) = 1

log r

k∑
j=1

cj (log #�j − log cj ).

Here, we recall that the Hausdorff dimension of a set E in d-dimensional Euclidean space is
obtained by considering the s-dimensional Hausdorff measure Hs(E) of E defined by

Hs(E) = lim
δ↓0

Hs
δ(E),

where Hs
δ(E) is obtained by covering E with sets Di of diameter at most δ:

Hs
δ(E) = inf

{ ∞∑
i=1

|Di |s : |Di | � δ and
∞⋃
i=1

Di ⊇ E

}
.

The Hausdorff dimension of E is now the unique number in [0, d], denoted by dimH E,
such that

Hs(E) = 0 if s > dimH E and Hs(E) = +∞ if s < dimH E.

Our goal is to generalize Eggleston’s result even further. The sets M(p0, . . . , pr−1) can be
considered as subsets of a one-dimensional self-similar set with constant scaling factor 1/r

(the set [0, 1] (!)). We will consider so-called Moran fractals in d-dimensional space which
admit different scalings a1, . . . , ar . Various properties of these sets have been studied, e.g.
in [1, 2, 4, 7, 8, 10, 12–14, 17]. Typically, the tool to describe and analyse Moran fractals is
their coding in sequence space: each point in the set is coded via a finite to one coding map.
For the examples above in the unit interval, e.g. the coding is just the expansion of a point
in digits in base r . One can, therefore, specify subsets E of the Moran fractal by prescribing
relative (group-)frequencies of their codings. Our main result (theorem 1) gives the Hausdorff
dimension of the sets thus obtained. Our second result concerns the Hausdorff measure Ht (E)

of E, when t = dimH E. This is called the Hausdorff measure of E in its dimension, and can
be 0, finite and positive, or infinite. The value of Ht (E) is a well known way to assess the
regularity of E. We shall give necessary and sufficient conditions for Ht (E) to be positive and
finite (theorem 2). This result permits us (at the end of the paper), to solve a problem posed
by Cawley and Mauldin in [1].

2. Notations and main results

A Moran fractal can be constructed as follows. Denote � = {1, 2, . . . , r}, where r � 2. The
following notations will be used in this paper.

(i) �∗ = ⋃∞
m=1�

m with �m = {σ = (σ (1), σ (2), . . . , σ (m)) : σ(j) ∈ �} for m ∈ N; while
�ω = {σ = (σ (1), σ (2), . . .) : σ(j) ∈ �}.
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(ii) |σ | is used to denote the length of word σ ∈ �∗. For any σ, τ ∈ �∗ write
σ ∗ τ = (σ (1), . . . , σ (|σ |), τ (1), . . . , τ (|τ |)); and, for any τ ∈ �∗, σ ∈ �ω write
τ ∗ σ = (τ (1), . . . , τ (|τ |), σ (1), σ (2), . . .).

(iii) σ |m = (σ (1), σ (2), . . . , σ (m)) for σ ∈ �ω and m ∈ N.
(iv) For σ ∈ �m, the cylinder set C(σ) is defined as C(σ) = {τ ∈ �ω : τ |m = σ }.
(v) When fi(x) : Rd → Rd , are maps for 1 � i � r , we denote fσ (x) = fσ(1) ◦ · · ·◦fσ(m)(x)

for σ ∈ �m and x ∈ Rd .

Fixing a nonempty compact set J ⊂ Rd with intJ = J , a constant 0 < c < 1 and positive
real numbers 0 < ai < 1, i = 1, 2, . . . , r , the related Moran fractal (or Moran set) is defined
according to the following two steps.

Step 1. For each σ ∈ �m, m ∈ N, construct a compact set Jσ in Rd by induction:

• A family {Jj : j = 1, 2, . . . , r} of non-overlapping nonempty compact subsets of J is
chosen for m = 1 such that intJj = Jj , |Jj | = aj |J |, where | · | denotes the diameter of
a set, and Jj contains an open ball of diameter c|Jj |.

• Suppose that Jσ is given for some σ ∈ �m. Choose a family {Jσ∗i : i = 1, 2, . . . , r} of
non-overlapping nonempty compact subsets of Jσ such that intJσ∗i = Jσ∗i , |Jσ∗i | = ai |Jσ |
and Jσ∗i contains an open ball of diameter c|Jσ∗i |.

Step 2. The Moran fractal F associated with {0 < ai < 1 : i = 1, 2, . . . , r} and (Jσ )σ∈�∗ is
defined as the nonempty compact set

F =
∞⋂

m=1

⋃
σ∈�m

Jσ . (1)

The compact sets Jσ , σ ∈ �∗ are generally referred to as component sets of F . In particular,
Jσ is referred to as an mth level component set of F if σ ∈ �m. Define φ : �ω → Rd by

{φ(σ)} =
∞⋂

m=1

Jσ |m. (2)

It is easy to see that φ(�ω) = F and φ(C(σ)) = F
⋂

Jσ by (1). But φ may not be injective.
Let ρ be the metric on �ω such that for any σ, τ ∈ �ω

ρ(σ, τ ) = 2− min{i:σ(i)	=τ(i)},

with the convention ρ(σ, σ ) = 0. Let F be equipped with the Euclidean metric. Then, φ is
continuous. Thus each x ∈ F can be encoded via φ: a sequence σ ∈ �ω is called a location
code of x ∈ F if φ(σ) = x. Therefore, φ is also called the coding map and �ω is called the
code space (or symbolic space). As a result, F is a projection of �ω on Rd via φ.

Some comments about Moran fractals are listed below.

(C1) Moran fractals are regular fractals in the sense that it has been proven that
0 < Hs(F ) < ∞, with s = dimH F , given by

∑r
i=1 ai

s = 1 (see [9, 11, 13, 14]).
(C2) A Moran fractal is termed as map-specified if there exist similitude contractions fi, i =

1, 2, . . . , r , such that Jσ = fσ (J ) for any σ ∈ �∗. In this case F is actually the self-
similar set determined by fi, 1 � i � r , which satisfy the open set condition with respect
to the open set O = intJ (i.e.

⋃r
i=1 fi(O) ⊆ O with a disjoint union on the left) and the

coding map φ in (2) can be changed into

{φ(σ)} =
∞⋂

m=1

fσ |m(Ō) = { lim
m→∞ fσ |m(0)}.
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(C3) Let 0 < R < |J | · min1�i�r ai . A component set Jσ of F is termed as an R-size
component set if

|Jσ | � R and |Jσ |(|σ |−1)| > R.

It is easy to see that for any 0 < R < |J |·min1�i�r ai , the set of all R-size component sets
of F is a non-overlapping finite R-covering of F . Hence, by means of lemma 9.2 in [3],
the requirement that Jσ contains an open ball of diameter c|Jσ | implies an important fact:
there exists a positive integer ϑ , independent of R and x ∈ Rd , such that any ball BR(x)

with radius R and centre at x intersects at most ϑ of the R-size component sets of F .
Many analogues of this fact appear in this paper. A direct sequel leads to an important
property of φ:

sup
x∈F

#{φ−1(x)} < ϑ. (3)

Otherwise, suppose that for some x ∈ F we have #{φ−1(x)} > ϑ . Take ϑ + 1 different
elements σ1, σ2, . . . , σϑ+1 from this set. Let m ∈ N be such that σ1|m, σ2|m, . . . , σϑ+1|m
differ from each other. Taking R = min1�i�ϑ+1 |Jσi |m|, x lies in at least ϑ + 1 R-size
component sets of F , which implies that the ball BR(x) intersects at least ϑ + 1 of the
R-size component sets of F .

(C4) A more general Moran fractal structure was proposed by Wen (see [17] for details), where
the code space �ω = ∏∞

n=1 �n and corresponding to different �n there are different
scaling coefficients {0 < an,j < 1, j = 1, 2, . . . , rn}. Some dimension results of these
generalized Moran sets can be found in [5–8, 11]. The class of generalized Moran sets
clearly contains the class of Moran sets discussed here, and in fact is far larger, since
a generalized Moran set often has different fractal dimensions, and has zero or infinite
Hausdorff measure in its dimension.

For any E ⊆ F there exists 
 ⊂ �ω such that E = φ(
). For certain 
, it should be possible
to determine the dimensions of the projections E = φ(
). Some solutions, which depend on
the structure of 
, can be found in [1, 2, 4, 7, 8, 10, 12–14], etc.

Let 2 � k � r . Fix real numbers cj , j = 1, 2, . . . , k, such that cj � 0 and
∑k

j=1 cj = 1.

Let �j , j = 1, . . . , k, be disjoint nonempty subsets of � with
⋃k

j=1 �j = �. In this paper we
will consider sets 
 specified by relative frequencies:


 = M̂(�1, . . . , �k) =
{
σ ∈ �ω : lim

n→∞
#{1 � i � n : σ(i) ∈ �j }

n
= cj , 1 � j � k

}
.

Let

M(�1, . . . , �k) = φ(
) = φ(M̂(�1, . . . , �k)),

i.e. the subset of the Moran fractal F whose elements have their codings lying in �j with
a prescribed relative frequency cj . We remark that M(�1, . . . , �k) is dense in F since
σ ∈ M̂(�1, . . . , �k) if and only if i ∗ σ ∈ M̂(�1, . . . , �k), i ∈ �; and that M(�1, . . . , �k) =⋃r

i=1 fi(M(�1, . . . , �k)) for the map-specified case (cf (C2)). Let

Z(t) =
k∑

j=1

cj log
∑
i∈�j

at
i −

k∑
j=1

cj log cj ,

where, here and throughout the whole paper, we adopt the convention 0 · log 0 = 0. It is easy
to see that the function Z(t) has a unique zero in [0, s] where s is defined by

∑r
i=1 as

i = 1,
since Z(t) is strictly decreasing with Z(0) � 0 and Z(s) � 0. In this paper, we obtain the
following results.
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Theorem 1. dimH M(�1, . . . , �k) = t where t is the unique non-negative real number
such that

k∑
j=1

cj log cj =
k∑

j=1

cj log
∑
i∈�j

at
i . (4)

Theorem 2. Suppose dimH M(�1, . . . , �k) = t . Then, the following four statements are
equivalent:

(i) 0 < Ht (M(�1, . . . , �k)) < ∞;
(ii)

∑r
i=1 at

i = 1, i.e. t = dimH F (cf (C1));
(iii) cj = ∑

i∈�j
at

i , 1 � j � k;
(iv) dimH M(�1, . . . , �k) = dimH (F \ M(�1, . . . , �k)).

As an application of these results we rewrite, for convenience, � = {0, 1, . . . , r − 1}. Take
J = [0, 1] and for each σ ∈ �ω let Jσ = fσ (J ) (cf (C2)), where fi : [0, 1] → [0, 1] is
defined by

fi(x) = 1

r
(x + i), i = 0, 1, . . . , r − 1.

Then by (1) we have that F = [0, 1] is a map-specified Moran set. In this case, we have
ai = 1/r for all i, and φ : �ω = {0, 1, . . . , r − 1}N → [0, 1] is given by

φ(σ) = lim
m→∞ fσ |m(0) =

∞∑
m=1

σ(m)

rm
.

Hence the r-ary expansion of φ(σ) is φ(σ) = (0.σ (1)σ (2) . . .)r . Thus, M(�1, . . . , �k)

consists of those x ∈ F = [0, 1] for which the occurrence of digits of �j in its base-r
expansion has fixed relative frequency cj . Theorems 1 and 2 yield that

dimH M(�1, . . . , �k) =
∑k

j=1 cj (log #�j − log cj )

log r
,

and M(�1, . . . , �k) has positive Hausdorff measure in its dimension if and only if cj = #�j/r ,
implying dimH M(�1, . . . , �k) = 1. In particular, taking �i = {i − 1} for 1 � i � r ,
M(�1, . . . , �r) just consists of those real numbers in [0, 1] in whose r-ary expansion the digit
i has density ci . So we recover Eggleston’s result ([12]), mentioned in the introduction.

3. Hausdorff dimension and measure property

In this section we will first determine the Hausdorff dimension of M(�1, . . . , �k). The usual
way is to find an appropriate probability measure µ supported on the set in order to obtain
a lower bound dimH µ for its Hausdorff dimension. The measure µ can be constructed as
the image measure under φ of a probability measure µ̂ supported on M̂(�1, . . . , �k). For µ̂

we take the infinite product probability measure on �ω corresponding to probability vectors
(p1, p2, . . . , pr) satisfying

∑
i∈�j

pi = cj for j = 1, . . . , k. The key is to choose concrete
pis such that dimH µ reaches a maximum. The estimation of the upper bound of its Hausdorff
dimension will be done by choosing an efficient sequence of coverings of the set.

Proof of theorem 1. We have to pay attention to the fact that some cj s may be zero. Without
loss of generality we assume that cj > 0 for 1 � j � k1 and cj = 0 for j > k1, where k1 � k.
Denote �1 = ⋃k1

j=1 �j .

(A) dimH M(�1, . . . , �k) � t . This bound is trivial when t = 0. Suppose t > 0. Let

bi = at
i cj∑

l∈�j
at

l

, i ∈ �j . (5)
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Thus, we have
∑

i∈�1
bi = 1 and bi = 0 for i ∈ �\�1. Construct a probability measure µ̂ on

�ω by defining for any σ ∈ �m

µ̂(C(σ)) =
m∏

i=1

bσ(i),

where C(σ) = {τ ∈ �ω : τ |m = σ } is the cylinder set determined by σ . Let µ on F be the
image measure of µ̂ under φ. Let

M̂ =
{
σ ∈ �ω : σ ∈ �ω

1 and lim
n→∞

#{1 � l � n : σ(l) = i}
n

= bi, 1 � i � r

}
. (6)

Then M̂ ⊆ M̂(�1, . . . , �k) and M = φ(M̂) ⊆ M(�1, . . . , �k). By Birkhoff’s Ergodic
theorem ([16]) we have for µ̂-a.e. σ

lim
n→∞

#{1 � l � n : σ(l) = i}
n

= bi, 1 � i � r.

Therefore, µ̂(M̂) = µ(M) = 1. Now for σ ∈ �∗ write a(σ ) = ∏|σ |
i=1 aσ(i) and

b(σ ) = ∏|σ |
i=1 bσ(i). Then, for any σ ∈ M̂ it is easy to verify that

lim
l→∞

log b(σ |l)
log a(σ |l) = lim

l→∞
log

∏l
i=1 bσ(i)

log
∏l

i=1 aσ(i)

=
∑

i∈�1
bi log bi∑

i∈�1
bi log ai

, (7)

using ([16]). Note that

∑
i∈�1

bi log bi =
k1∑

j=1

∑
i∈�j

bi log bi =
k1∑

j=1

∑
i∈�j

bi


t log ai + log cj − log

∑
l∈�j

at
l




= t

k1∑
j=1

∑
i∈�j

bi log ai +
k1∑

j=1




∑

i∈�j

bi




log cj − log

∑
l∈�j

at
l






= t

k1∑
j=1

∑
i∈�j

bi log ai +
k1∑

j=1

cj


log cj − log

∑
l∈�j

at
l


 = t

∑
i∈�1

bi log ai, (8)

by (5) and (4). From (7) and (8) it follows that for any σ ∈ M̂

lim
l→∞

log b(σ |l)
log a(σ |l) = t.

Fix 0 < ε < t . Let M(m) = φ(M̂(m)) where

M̂(m) =
{
σ ∈ M̂ :

log b(σ |l)
log a(σ |l) > t − ε for all l � m

}
. (9)

Then,

1 = µ̂(M̂) = lim
m→∞ µ̂(M̂(m)), 1 = µ(M) = lim

m→∞ µ(M(m)).

Now fix m such that µ̂(M̂(m)) > 0. Let µ̂m be the restriction of µ̂ to M̂(m) and let µm be the
induced measure on M(m) of µ̂m by φ, i.e. for any Borel set A ⊆ M(m)

µm(A) = µ̂m(φ−1(A)) = µ̂(φ−1(A) ∩ M̂(m)).

ByBR(x)we denote the closed ball with centre at x and radiusR. Let 0 < R < (min1�i�r ai)
m.

For each σ ∈ M̂(m) there exists a positive integer h(σ, R) such that

R · min
1�i�r

ai � a(σ |h(σ, R)) � R. (10)



Hausdorff dimension of subsets of Moran fractals 7

Note that h(σ, R) > m and write W = {σ |h(σ, R) : σ ∈ M̂(m)}. For any fixed x ∈ M(m)

let W ∗ = {τ ∈ W : Jτ

⋂
BR(x)

⋂
M(m) 	= ∅}. Then, there exists a finite positive constant ξ

independent of R and x such that #W ∗ � ξ by lemma 9.2 in [3]. So

µm(BR(x)) � µ̂m

( ⋃
τ∈W ∗

C(τ)

)
�
∑
τ∈W ∗

µ̂(C(τ)) =
∑
τ∈W ∗

b(τ) � ξ · Rt−ε,

by (9) and (10). So we get

lim inf
R→0

log µm(BR(x))

log R
� t − ε.

Theorem 1 in [15] tells us

dimH M(�1, . . . , �k) � dimHM � dimHM(m) � t − ε,

which implies, letting ε → 0, dimH M(�1, . . . , �k) � t .
(B) dimH M(�1, . . . , �k) � t . This part of the proof is similar to that in [2]. For ε > 0

and m ∈ N, let

�(m, ε) = {σ ∈ �m : (cj − ε)m � #{1 � i � m : σ(i) ∈ �j } � (cj + ε)m, 1 � j � k}.
Note that for any given ε > 0 and any given σ ∈ M̂(�1, . . . , �k) there exists an m0 ∈ N
such that ∣∣∣∣#{1 � i � m : σ(i) ∈ �j }

m
− cj

∣∣∣∣ < ε,

for all m � m0, i.e. σ ∈ �(m, ε) for all m � m0. Then, for any ε > 0, we have
∞⋃

m0=1

∞⋂
m=m0

⋃
σ∈�(m,ε)

Jσ ⊃ M(�1, . . . , �k).

Thus, in order to prove that dimH M(�1, . . . , �k) � t , it is sufficient to show that, for every
integer m0 and every η > 0, there is an ε > 0 (which is a function of η only) such that
dimH (

⋂∞
m=m0

⋃
σ∈�(m,ε) Jσ ) � t + η.

Since
⋂∞

m=m0

⋃
σ∈�(m,ε) Jσ is covered by {Jσ : σ ∈ �(m, ε)}, for m � m0, it is sufficient

to show that given η > 0, there is an ε > 0 such that∑
σ∈�(m,ε)

|Jσ |t+η → 0 m → ∞.

Let

K = 4
max1�j�k1 cj

min1�j�k1 cj

max

{∑
i∈�j2

a
t+η

i∑
i∈�j1

a
t+η

i

, 1 � j1, j2 � k

}
. (11)

Let ε satisfy

0 < ε <
1

r
min

1�j�k1

cj (12)

and
k1∏

j=1

(∑
i∈�j

a
t+η

i∑
i∈�j

at
i

)cj

·
k∏

j=k1+1

(∑
i∈�j

a
t+η

i

ε

)ε

· K2kε < 1. (13)

Now, we have

∑
σ∈�(m,ε)

|Jσ |t+η = |J |t+η
∑ m!∏k

j=1 dj !
·

k∏
j=1


∑

i∈�j

a
t+η

i




dj

, (14)
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where the summation is over sets of non-negative integers dj , 1 � j � k such that
k∑

j=1

dj = m and m(cj − ε) � dj � m(cj + ε), 1 � j � k. (15)

Hence, for i ∈ � and j ∈ �1, if mε > 1
di + 1

dj

� m(ci + ε) + 1

m(cj − ε)
� 4

max1�j�k1 cj

min1�j�k1 cj

, (16)

by (12) and (15). Let

Q1 = m!∏k
j=1 dj !

·
k∏

j=1


∑

i∈�j

a
t+η

i




dj

(17)

and Q2 be the term of the sum (14) for which in (17) the dj1 and dj2 , for some j1 	= j2 with
j1 ∈ � and j2 ∈ �1, are replaced by dj1 + 1 and dj2 − 1, respectively, and the other dj s are
kept fixed. Thus, when mε > 1

Q1

Q2
= dj1 + 1

dj2

·
∑

i∈�j2
a

t+η

i∑
i∈�j1

a
t+η

i

� 4
max1�j�k1 cj

min1�j�k1 cj

·
∑

i∈�j2
a

t+η

i∑
i∈�j1

a
t+η

i

� K, (18)

by (11) and (16). Let Q0 be the term of (14) for which dj is the integer part of mcj for
1 � j � k1 − 1, the integer part of mε for k1 + 1 � j � k. Therefore, there are real numbers
0 � δj < 1 with j 	= k1 such that dj = mcj − δj for 1 � j � k1 − 1, dj = mε − δj for
k1 + 1 � j � k, and dk1 = m −∑

j 	=k1
dj = mck1 − (k − k1)mε +

∑
j 	=k1

δj = mck1 − δk1 with

δk1 = (k−k1)mε−∑j 	=k1
δj . Then, by means of the Stirling formula n! = √

2πn(n/e)neθ/12n

(0 < θ < 1) and (4) we have

Q0 = m!∏k
j=1 dj !

·
k∏

j=1


∑

i∈�j

a
t+η

i




dj

=
√

2πmm+(1/2)e−meθ/12m∏k
j=1

√
2πd

dj +(1/2)

j e−dj eθj /12dj

·
k∏

j=1


∑

i∈�j

a
t+η

i




dj

� K1
mm+(1/2)∏k

j=1 d
dj +(1/2)

j

·
k∏

j=1


∑

i∈�j

a
t+η

i




dj

= K1
mm+(1/2)∏k1

j=1(mcj − δj )
mcj −δj +(1/2)

∏k
j=k1+1(mε − δj )

mε−δj +(1/2)
·

k∏
j=1


∑

i∈�j

a
t+η

i




dj

= K1
m−(1/2)(k−1)∏k1

j=1(cj − δj /m)mcj −δj +(1/2)
∏k

j=k1+1(ε − δj /m)mε−δj +(1/2)
·

k∏
j=1


∑

i∈�j

a
t+η

i




dj

� K2
m−(1/2)(k−1)∏k1

j=1 c
mcj

j

∏k
j=k1+1 εmε

·
k∏

j=1


∑

i∈�j

a
t+η

i




dj

� K3 · m−(1/2)(k−1) ·
k1∏

j=1

(∑
i∈�j

a
t+η

i∑
i∈�j

at
i

)mcj

·
k∏

j=k1+1

(∑
i∈�j

a
t+η

i

ε

)mε

, (19)

where K1, K2 and K3 are appropriate positive constants independent of m. Since (18) implies
that for any term Q of (14)

Q

Q0
< K2kmε, (20)
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it follows that

∑
σ∈�(m,ε)

|Jσ |t+η = |J |t+η
∑ m!∏k

j=1 dj !
·

k∏
j=1


∑

i∈�j

a
t+η

i




dj

< Q0 · K2kmε · (2mε)k · |J |t+η

< K4 · m(1/2)(k+1) ·

 k1∏

j=1

(∑
i∈�j

a
t+η

i∑
i∈�j

at
i

)cj

·
k∏

j=k1+1

(∑
i∈�j

a
t+η

i

ε

)ε

· K2kε




m

→ 0

as m → ∞, by (19), (20) and (13), where K4 is an appropriate positive constant independent
of m. This completes the proof. QED

In theorem 1 we show that dimH M(�1, . . . , �k) = t by proving that for any positive real
numbers ε and η dimH M(�1, . . . , �k) � t − ε and dimH M(�1, . . . , �k) � t + η. So we do
not get any information about the value of Ht (M(�1, . . . , �k)). In the following, we will get
the sufficient and necessary conditions for M(�1, . . . , �k) to have positive Hausdorff measure
in its dimension.

Let Q = {Jσ : σ ∈ �∗} and Qσ = {Jσ∗τ : τ ∈ �∗} for σ ∈ �∗. For any 0 � α < ∞ and
any subset E of Moran set F define

Hα
Q(E) = lim inf

δ→0

{ ∞∑
i=1

|Vi |α : {Vi} is a non-overlapping δ-covering of E, Vi ∈ Q

}
. (21)

Similarly, for 0 � α < ∞ and E ⊆ F
⋂

Jσ define

Hα
Qσ

(E) = lim inf
δ→0

{ ∞∑
i=1

|Vi |α : {Vi} is a non-overlapping δ-covering of E, Vi ∈ Qσ

}
.

Lemma 3. (I) If E ⊆ F
⋂

Jσ , then hHα
Qσ

(E) � Hα
Q(E) � Hα

Qσ
(E), where the positive real

number h is independent of σ and E.
(II) If E ⊆ F , then

4−d(c min
1�i�r

ai)
dHα

Q(E) � Hα(E) � Hα
Q(E), (22)

where the positive constant c can be found in the definition of the Moran set F . In particular,
the covering {Vi} of E in (21) can be taken finite when E is compact.

Proof. (I) It is clear that Hα
Q(E) � Hα

Qσ
(E). Let δ < a(σ)|J |. For any non-overlapping

δ-covering {Vi} of E with Vi ∈ Q, write Bi = {Vi} if Vi ⊆ Jσ and

Bi =
{
Jσ∗τ : |Jσ∗τ | � |Vi | < |Jσ∗τ |(|σ∗τ |−1)| and Jσ∗τ

⋂
Vi

⋂
E 	= ∅

}
,

if Vi ⊆ Jσ does not hold. Then, there exists a finite positive constant h−1 independent of σ

such that #Bi � h−1 by the lemma 9.2 in [3]. Hence, B = ⋃
i Bi ⊆ Qσ is a δ-covering of E.

So we have ∑
U∈B

|U |α � h−1
∑

i

|Vi |α.

Since for any a, b ∈ �∗ either Ja and Jb are non-overlapping or Ja ⊆ Jb (or Jb ⊆ Ja), we
can assume that B is a non-overlapping covering (we can delete some elements from B if
necessary). Therefore, we get Hα

Q(E) � hHα
Qσ

(E).
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(II) The right inequality is clear. We only need to prove the left inequality. Let
{Wi : 1 � i < p � ∞} be an open δ-covering of E (where p < ∞ if E is compact).
For any 1 � i < p let

Ai = {Jσ : |Jσ | � |Wi | < |Jσ |(|σ |−1)| and Jσ ∩ Wi ∩ E 	= ∅}.
Hence

⋃
1�i<p Ai is a δ-covering of E with each of its elements in Q. Similarly as in (I), we

can assume the
⋃

1�i<p Ai is a non-overlapping covering of E (we can delete some Jσ from
some Ai if necessary).

Again #Ai is bounded by a constant by lemma 9.2 in [3]. But, this time, we would like to
give an argument. In fact, let Bi be an open ball with centre in Wi and radius 2|Wi | and recall
that for each σ ∈ �∗, Jσ contains an open ball with diameter c|Jσ |. Then,

Hd(Bi) = (4|Wi |)d � Hd


 ⋃

Jσ ∈Ai

Jσ


 �

∑
Jσ ∈Ai

(c|Jσ |)d �
(

c|Wi | min
1�i�r

ai

)d

· #Ai ,

which implies

#Ai � 4d(c min
1�i�r

ai)
−d . (23)

Consequently, for any open δ-covering {Wi : 1 � i < p � ∞} of E we can get a δ-covering⋃
1�i<p Ai of E, with each of its elements in Q (this covering is finite if p < ∞), such that∑

Jσ ∈⋃1�i<p Ai

|Jσ |α =
∑

1�i<p

∑
Jσ ∈Ai

|Jσ |α �
∑

1�i<p

(|Wi |α · #Ai )

� 4d(c min
1�i�r

ai)
−d

∑
1�i<p

|Wi |α (24)

by (23). Thus our result (22) is obtained by (24) and (21), taking the limit as δ → 0. QED

Proof of theorem 2. (iii) ⇒ (ii). This is clear. (ii) ⇒ (iii). Let M(�j , �\�j ) =
φ(M̂(�j , �\�j )), where M̂(�j , �\�j ) is defined corresponding to the relative group-
frequencies cj and 1 − cj . For any fixed 1 � j � k, since M(�1, . . . , �k) ⊆ M(�j , �\�j ) ⊆
F , by the definition of M(�1, . . . , �k) and M(�j , �\�j ), we have dimH M(�j , �\�j ) = t .
Hence, t is also such that

cj log cj + (1 − cj ) log(1 − cj ) = cj log


∑

i∈�j

at
i


 + (1 − cj ) log


1 −

∑
i∈�j

at
i


 (25)

by (4) in theorem 1 and (ii). Note that at this moment it must be true that 0 < cj < 1. It is
easy to check that the function g(x) = cj (log cj − log x) + (1 − cj )(log(1 − cj )− log(1 − x))

has a unique zero in (0, 1). Consequently, we get cj = ∑
i∈�j

at
i from (25).

(ii) ⇒ (i). Construct a probability measure µ̂ on �ω by requiring that for any σ ∈ �m

µ̂(C(σ)) =
m∏

i=1

at
σ(i),

where C(σ) is the cylinder determined by σ . Let µ on F be the image measure of µ̂ under
φ. Let

M̂ =
{
σ ∈ �ω : lim

n→∞
#{1 � l � n : σ(l) = i}

n
= at

i , 1 � i � r

}
.
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Note that by the above we know (iii) also holds. Then, M̂ ⊆ M̂(�1, . . . , �k), M = φ(M̂) ⊆
M(�1, . . . , �k) and µ(M) = µ̂(M̂) = 1 by Birkhoff’s Ergodic theorem. By BR(x) we denote
the closed ball with centre at x and radius R. Let R small enough be given. Then, for each
σ ∈ M̂ there exists a positive integer h(σ, R) such that

R · min
1�i�r

ai � a(σ |h(σ, R)) � R. (26)

Let W = {σ |h(σ, R) : σ ∈ M̂}. For any fixed x ∈ M let W ∗ =
{τ ∈ W : Jτ

⋂
BR(x)

⋂
M 	= ∅}. Then, there exists a finite positive constant ξ independent

of R and x such that #W ∗ � ξ by lemma 9.2 in [3]. Hence,

µ(BR(x)) � µ̂

( ⋃
τ∈W ∗

C(τ)

)
�
∑
τ∈W ∗

µ̂(C(τ)) =
∑
τ∈W ∗

(a(τ ))t � ξRt

by (26). So we get

Ht (M(�1, . . . , �k)) � Ht (M) � µ(M) = 1

by proposition 4.9(a) in [3]. On the other hand, we have

Ht (M(�1, . . . , �k)) � Ht (F ) < ∞.

(i) ⇒ (ii). It is easy to check, that for any m ∈ N

M̂(�1, . . . , �k) =
⋃

σ∈�m

σ ∗ M̂(�1, . . . , �k),

where σ∗M̂(�1, . . . , �k) = {σ∗τ : τ ∈ M̂(�1, . . . , �k)}. Denote M̂(σ ) = σ∗M̂(�1, . . . , �k)

and M(σ) = φ(M̂(σ )). Then, M(�1, . . . , �k) = ⋃
σ∈�m M(σ). Note that {Jσ∗τ : τ ∈ A ⊆

�∗} is a non-overlapping covering of M(σ) if and only if {Jτ : τ ∈ A ⊆ �∗} is a non-
overlapping covering of M(�1, . . . , �k) and |Jσ∗τ | = a(σ )|Jτ |. Thus,

Ht
Qσ

(M(σ)) = (a(σ ))tHt
Q(M(�1, . . . , �k)). (27)

Then, we have

Ht
Q(M(�1, . . . , �k)) = Ht

Q

( ⋃
σ∈�m

M(σ)

)
�
∑

σ∈�m

Ht
Q(M(σ))

�
∑

σ∈�m

Ht
Qσ

(M(σ)) =
∑

σ∈�m

(a(σ ))tHt
Q(M(�1, . . . , �k))

=
(

r∑
i=1

at
i

)m

Ht
Q(M(�1, . . . , �k)), (28)

by lemma 3(I) and (27). In addition, for any x ∈ M(�1, . . . , �k), x must lie in at least one,
but in at most ϑ of the M(σ), σ ∈ �m by (3). We claim that∑

σ∈�m

Ht
Q(M(σ)) � ϑHt

Q(M(�1, . . . , �k)). (29)

This is not obvious, and needs some demonstration. Let {Vi} be a non-overlapping δ-covering
of M(�1, . . . , �k), with Vi ∈ Q and δ < minσ∈�m |Jσ |. For each σ ∈ �m, choose the covering
Bσ of M(σ) from {Vi} by taking Bσ = {Vi : Vi ∩M(σ) 	= ∅}. In this way, each Vi is chosen at
most ϑ times. Otherwise, without loss of generality, suppose V1 ∈ Bσi

for i = 1, 2, . . . , ϑ + 1.
Then, there exist τi ∈ C(σi), i = 1, 2, . . . , ϑ + 1 such that φ(τi) ∈ V1 ∩ M(σi). Take
R = |V1| and consider the R-size component sets of F . Consequently, corresponding to each
σi, i = 1, 2, . . . , ϑ + 1, there exists an R-size component set Jωi

such that Jωi
⊆ Jσi

and
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φ(τi) ∈ Jωi
. Therefore, taking x ∈ V1, we have that the ball BR(x) intersects at least ϑ + 1 of

the R-size component sets of F , which contradicts (C3). Thus,∑
σ∈�m

∑
V ∈Bσ

|V |t � ϑ
∑

i

|Vi |t ,

which leads to (29). From lemma 3(I) it follows that∑
σ∈�m

Ht
Q(M(σ)) � h

∑
σ∈�m

Ht
Qσ

(M(σ)). (30)

Thus, by (27)–(30) we have for any m ∈ N

Ht
Q(M(�1, . . . , �k)) �

(
r∑

i=1

at
i

)m

Ht
Q(M(�1, . . . , �k)) � h−1ϑHt

Q(M(�1, . . . , �k)). (31)

Note that 0 < Ht (M(�1, . . . , �k)) < ∞ if and only if 0 < Ht
Q(M(�1, . . . , �k)) < ∞ by

lemma 3(II). Hence, we obtain
∑r

i=1 at
i = 1 by (31).

(iv) ⇒ (ii). If dimH M(�1, . . . , �k) = dimH (F\M(�1, . . . , �k)), then

dimH F = max{dimH M(�1, . . . , �k), dimH (F\M(�1, . . . , �k))} = t.

Thus (ii) holds.
(ii)⇒(iv). On the other hand, since there exists at least one j , 1 � j � k, such that cj > 0,

without loss of generality we can assume c1 > 0. Fix 0 < ε < c1 and take non-negative real
numbers ei , 1 � i � k, such that

e1 = c1 − ε, e2 = c2 + ε, and ej = cj , 2 < j � k.

By M∗(�1, . . . , �k) we denote the corresponding set with ej in place of cj , 1 � j � k. Write
t (ε) = dimH M∗(�1, . . . , �k) where t (ε) is such that

(c1 − ε) · log(c1 − ε) + (c2 + ε) · log(c2 + ε) +
k∑

j=3

cj log cj

= (c1 − ε) · log
∑
i∈�1

a
t(ε)
i + (c2 + ε) · log

∑
i∈�2

a
t(ε)
i +

k∑
j=3

cj log
∑
i∈�j

a
t(ε)
i , (32)

by theorem 1. Since M∗(�1, . . . , �k) ⊆ F\M(�1, . . . , �k) ⊆ F , we get

t (ε) = dimH M∗(�1, . . . , �k) � dimH (F\M(�1, . . . , �k)) � dimH F = t, (33)

by (ii). Note that t (0) = t and t (ε) depends on ε continuously by (32). Then, limε→0 t (ε) = t .
So, dimH (F\M(�1, . . . , �k)) = dimH M(�1, . . . , �k) = t by (33). QED

Finally, we discuss question 2.18 in [1] by Cawley and Mauldin. When k = r the sets
�j , 1 � j � r , are all singletons. In this case formula (4) reduces to

t =
∑r

i=1 ci · log ci∑r
i=1 ci · log ai

. (34)

Thus theorem 1 yields

dimH M(�1, . . . , �r) =
∑r

i=1 ci · log ci∑r
i=1 ci · log ai

. (35)

Now take positive real numbers pi, 1 � i � r such that
∑r

i=1 pi = 1. For any q ∈ R let β(q)

be the unique real number such that
r∑

i=1

p
q

i a
β(q)

i = 1.
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Let α(q) = −β ′(q) = [
∑r

i=1 p
q

i a
β(q)

i log pi]/[
∑r

i=1 p
q

i a
β(q)

i log ai] and f (q) = qα(q)+β(q).
Taking ci = p

q

i a
β(q)

i , 1 � i � r , it is easy to check t = f (q) by (34). Thus, denoting—with
this choice of (cj )—Mq = M(�1, . . . , �r), (35) shows dimH Mq = f (q), which was given by
Cawley and Mauldin ([1]) for the multifractal decomposition of Moran fractals. Assume that
log p1/log a1 = · · · = log pr/log ar does not hold. In this case f (q) = s with

∑r
i=1 as

i = 1 if
and only if q = 0 ([1]). Question 2.18 in [1] is: ‘If q 	= 0, is it true that 0 < Hf (q)(Mq) < ∞?’.
Here, our theorem 2 shows that 0 < Hf (q)(Mq) < ∞ if and only if q = 0.
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