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of an uncountable number of sets each of which consists of the points with their location
codes having prescribed mixed group frequencies. It is proved that the Hausdorff and
packing dimensions of each of these subsets coincide and are equal to the supremum of
. the Hausdorff (or packing) dimensions of the sets in the union. An approach is given to
Mixed group frequency . . . . . .
J-type packing calculate their Hausdorff aqd pack_mg dimensions. The main advantage Qf our apprqach is
Hausdorff and packing dimensions that we treat these subsets in a unified manner. Another advantage of this approach is that
the values of the Hausdorff and packing dimensions do not need to be guessed a priori.
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1. Introduction

Denote 2 = {1, 2, ...,r},wherer > 2.Let 2* = U?:o mwith Q2™ = {0 = (c(1),02),...,0(m)) : o(j) € 2} for
m € NU{0} (£2° consists of the empty word @) and 2~ = {0 = (6 (1), 6 (2), ...) : 6 (j) € £2}. We denote by |o| the length
ofwordo € 2*. Foro € 2*and t € 2* U 2%, o * T denotes their concatenation. In particular,  * T = 7. Foro € 2™,
letC(o) = {r € 2V : t|m = o}, called the cylinder set with base o, where t|m = (¢ (1), T(2), ..., T(m)).

Fix a constant 0 < ¢ < 1 and positive real numbers 0 < a; < 1,i = 1,2, ..., r. Assume that a collection (J,)yco* Of
compact sets in RY has the following features:

[A1] nested property: foro € 2*andi € 2, ]+ < Js;

[A2] non-overlapping property: all J,s with o € £2™ are pairwise non-overlapping in the sense that J, N J, is of zero
d-dimensional Lebesgue measure for any distinct o, T € 2™;

[A3] regular sizes for J,s: foro € 2" andi € £, |/, = ailJo| > 0, where, if no confusion occurs, |J,| denotes the
diameter of J,;;

[A4] regular sizes for the interior of J,s: each J,, o € £* contains an open ball with diameter c|J,, |.

The Moran fractal associated with (J, ), <o+ is defined as the nonempty compact set

o0
F=( U J- (1)
m=0oceNRm
The definition of Moran fractals here is close to that in [6,16] with a bit variation, but simpler than that in [19] where a
more general structure is discussed. (Readers can refer to [19] and more references therein for related results on this kind
of structure.) Obviously, self-similar sets satisfying the open set condition are Moran fractals. The latter lose the property of
similitude, but keep some typical properties exhibited by the former, e.g., they can be encoded by elements from £2" and

dimy F = dimgF =s, 0 < H5(F) < P°(F) < oo,
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where s is determined by 2;21 aj = 1. The compact sets J,, 0 € §2* are generally referred to as component sets of F. In
particular, J, is referred to as an mth level component set of F if 0 € 22™. Define ¢: 2% — RY by

(@)} Z [ )Joim- (2)
m=0

It is easy to see that ¢(£2") = F and ¢(C(0)) = F(J, by (2). But ¢» may not be injective. Let p be the metric on £2" such
that forany o, 7 € 2V

0(o, 1) def 2—min{i:a(i);ér(i)}’
with the convention p(o, o) = 0. Let F be equipped with the Euclidean metric. Then ¢ is continuous. Thus each x € F can
be encoded via ¢: a sequence o € 2V is called a location code of x € F if ¢ (o) = x. Therefore, ¢ is also called the coding
map and 2" is called the code space (or symbolic space). As a result, F is a projection of 2" on R via ¢.

def . . . .
Let 0 < R < aminlJy| Where amin = min;<j<, a;. A component set J, of F is termed as an R-size component set if
UsI <R and |Js@o)-1)| > R.

It is easy to see that for any 0 < R < anin|Jy|, the collection of all R-size component sets of F is a non-overlapping finite
R-covering of F by [A1-3]. Hence, by means of Lemma 9.2 in [9], the requirement (see [A4]) that J, contains an open ball of
diameter c|J,| implies an important fact: there exists a positive integer ¥, independent of R and x € R¢, such that any ball
Br(x) with radius R and center at x intersects at most ¥ of the R-size component sets of F. Many analogues of this fact appear
in this paper. A direct sequel leads to an important property of ¢:

sup#{¢p~' (0} < ¥,

xeF
where and throughout this paper, by #A we denote the cardinality of a finite set A. Otherwise, suppose that for some
x € F we have #{¢~'(x)} > ©.Take © + 1 different elements o1, 05, ..., 0y, from this set. Let m € N be such that
o1|lm, ox|m, ..., oy4q|m differ from each other. Taking R = mini<j<y+1 Us;m|, X lies in at least ¥ + 1R-size component sets
of F, which implies that the ball Bg(x) intersects at least ¢ + 1 of the R-size component sets of F.

ForI" € 2,0 € 2Yandm € N, we denote by f (¢, I", m) the ratio of the digits from I" occurring in the first m entries
ofo,ie.,

def #H{1<L€<m:0()eTl}

flo,I'ym) = .
m

Whenever there exists the limit

(3)

it is called the group frequency of the o passing through I". When we write the symbol f (o, I") we are already assuming the
existence of the limit in (3). Now let

e #Hl<l<m:o) el
fo, 1) lim fo, rm) = lim TO=tsmio® el
m—oo

m— 00 m

k
Li#¢, i=12,... kwith| 5=
i=1

We remark that some of I';s may have nonempty intersections. For A € [0, 1]%, let

Ma = ¢(Ma) where My & [0 € 2" i f(o, ) =, 1 <j <k (c1,...,c) € A} 4)
For n € N let &), be the set of (n-dimensional) probability vectors, i.e.,
n
g, = (,\1,...,)\n)e[o,1]":ZM=1}. (5)
=1

Throughout this paper, we denote by log the natural logarithm. In the present paper, we obtain

Theorem 1.1. Let My be defined as in (4). Let &, be defined as in (5). Then dimy My = dimp My = t where

.
> pelogpe

t = sup ZTl—:(pg)zzlea}and (Zpg,...,sz)EA , (6)
sz logal leln Lerly
=1

with the convention 0log 0 = 0.
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When A is a singleton, say A = {¢} with ¢ = (cy, ..., c), Mg is the set of points whose location codes have a prescribed
mixed group frequency ¢; passing through I5,j = 1, ..., k (here we use the word “mixed*“since some of ;s is allowed to
have nonempty intersections). By Theorem 1.1,
r
> pelogpe
dimy Mgy = dimp Mgy = sup { ———— : (p),_, € &y with D py=c, 1<i<k
> Dpelogag tel;
=1

This was also obtained in [12] where it was dealt with under a more general setting. Obviously,

My = U Mg,

ceA

i.e.,, M, is a union of an uncountable number of sets each of which consists of the points with their location codes having
prescribed mixed group frequencies. Thus, Theorem 1.1 indicates

dimy My = dimp My = sup dimy Mgz,

ceA
i.e., the Hausdorff and packing dimensions of M, coincide and are equal to the supremum of the Hausdorff (or packing)
dimensions of the sets in the union. Note that Mz may be an empty set for some ¢ € A. Without loss of generality, we
always assume that A is properly chosen such that M, # @.
We consider some special cases as follows.

Casel: k = 1.
In this case, I} = 2,A C [0, 1]and M4 = F when 1 € A(C [0, 1]), = ¥ when 1 &€ A. Thus, by Theorem 1.1

.
> belogp;
dimy F = dimp F = sup ZT]—I(pg);;:lGET =s,
> belogag
=1
where ) 7 @ =1. O
Casell: k =r = #£2 (recall 2 = {1, 2, ..., r}).
Inthiscase, [ = {j}jfor1 <j <r,AC [0, 1]" and
IWAZ{aeﬂN:f(cf,{i})zcj,(ﬁ,...,cr)EA}
#Hl1<l<m:o)=]j
={aeﬂNzlim U=t= o (©) ﬁ:q,(q,...,q)eAﬂEr},

m— 00 m

and by Theorem 1.1

.
> pelogpe
=1

~

dimy My = dimp My = sup t (P €EANE,

pelogay

M-~

1

1T

In particular, for ¢ = (¢, ..., ¢) € &,

;
> celogey
. . =1
dimy Mgy = dimp Mg = - O (7)

> cologa,
=1
Caselll: I3, 1 < j < k are pairwise disjoint, i.e., a partition of £2.
This is a more general case including the above two cases. Without loss of generality, we assume § = A C ZE since
M = W for¢ € A\ Ey. In this case, the dimension value t in (6) has an alternative expression by means of the method of
Lagrange multipliers (also refer to the proof of Theorem 1.1 in Section 3. We formulate this case as a corollary.

Corollary 1.2. Let [},1 < j < k be a partition of §2 and A a nonempty subset of Zy. Let M, be defined as in (4). Then
dimy My = dimp Mg =t = SUp(,, . ¢ )eaX(C1, - .., ), wherex(cy, .. ., cx) is the unique non-negative real root of the following
equation in x,

k K
chlogZaf - icjlogcj =0.
j=1 j=1

iel}

.....
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In particular, whena; = a, 1 <i<r

k

> cj(logc; — log #1I7)
j=1

X(C17 -"ack) = lOga

In particular, when A is a singleton this was given by [11, Theorem 1]. O
For A C [0, 1] let

EA: {(pla-"’pr)EET: (Zp[v-"’zpl) EA} gEr

teln lely

It is easy to see that

My 2 U Mz

PEE)

with the right side being composed of (in general, an uncountable number of) nonempty pairwise disjoint sets. We
emphasize that the inclusion is proper in general since M4 contains points for which not each digit frequency f (o, {j}),j €
£2 is well-defined (this fact substantially complicates the problem of computing dimy M, and dimp M,). From (7) and
Theorem 1.1 it follows

dimy My = dimp M, = sup dimy M, = sup dimp M.
PEE) pPEEp
When A is compact (and then &, compact), the supremum can be reached. In this case, the dimension of M, is carried by a
single subset for which all the digit frequencies are known.

One can use equations or inequalities to produce the set A, e.g., take A = {(cy, ..., cx) € [0, 1]¥: ¢; = 2¢3, 3 +¢5 < 0.5},
or more general A = {(cy, ..., c) € [0, 11¥ : gi(cq, ..., o) = dj fori = 1,...,4 s <hcr,...,q) <tforj=1,...,n}.
The main advantage of our approach is that we treat M4 in a unified manner (which could seem of different nature for each
choices of g;s and hjs). Another advantage of this approach is that the values of the Hausdorff and packing dimensions do
not need to be guessed a priori. In some works this a priori guess is crucial in order to construct auxiliary measures sitting
on the set. These measures are then used to establish, rigorously, the values of the Hausdorff and packing dimensions.

As an application of Theorem 1.1, we consider two examples below. The first deals with a case where some frequencies
f(o, I;) have a linear relations, the second with a nonlinear relations. To simplify the computation, we only consider the
case where [7}s are pairwise disjoint.

Example 1. Let I3, 1 < i < 4 be disjoint nonempty subsets of £2, a1, o, positive numbers. Let G = ¢>(6) where
GC={oe 2" :f(o,}) =af (0, [42),j=1,2}.

Let I's = 2 \ UL, I.When I's # @, I}, 1 < i < 5 is a partition of £2. Let
A=1{(c1,...,C5) € 85 :¢c1 = aqc3and ¢; = a»C4}.

Then G = 1\71A and so G = M,. Hence, Theorem 1.1 shows that dimy G = dimp G = t with t determined by (6). By means of
the method of Lagrange multipliers, we have that t is uniquely determined by

1 e I
2 oj 1+aj 1+aj

Yavaye Y d Y| +Yd=1

j=1 Lelfyo Lel; Lerls

In addition, if I = @, t is then determined by

1 e
2 o T+a; T+

Z(l +ocj)ozj_Taj Z a; ZafZ =1

j=1 Lelfyo Lel;

Remark. We also can consider an easier case. Let I'; and I'; be disjoint nonempty subsets of £2 with I3 = 2\ (I1UT3) # 0.
For a positive number « let G = ¢(G) where

62{O'G.QNif(O',F]):Olf(O',Fz)}.
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Then dimy G = dimp G = t with t determined by

(1+a)a" T (Z a;> v (Z a;> v +) d=1. (8)

[Grz ZGF] £€r3

Also t is determined by

T ==
14+ a)a™ T+ (Z a;) (Z a;) =1,

Lel; teln

ifr3=40.

Example 2. Let I and I3 be disjoint nonempty subsets of §2 such that £2 \ (17U I;) # (. Letall g; be equal,i.e.,a; = a,i =

1,2,...,r.Denote B = :—2. For b > 1+ B, we consider the set G = ¢(G) where

E: {0 e V- bf (o, I'Y) :eﬂ—bf(a,rz)}‘
Then
1+ 8 b—1-p b—1-p

log, #I'1 — log, b lo .
Ba#l1 108D+ S wr —#0;

dimH G= dllTlp G=—

Proof. Let I3 = 2\ (I3 U I3).Then I3, 1 < i < 3is a partition of £2. Let
A={(c1, 2, 3) € B3 : bc; = ef P2},
Then G = M, and so G = M,. Define h(x) = ef~*/b. It follows from Corollary 1.2 that
3

> cj(logc; — log #17;)
j=1

dimy G =dimpG =  sup
(Cl,Cz,C?,)EA loga

3

> ci(logc; — log #175)
j=1

= sup
0B loga

where B = {c; € [0, 1] : ¢ + h(cz) < 1},¢c1 = h(cy) andc3 = 1 — h(cy) — ¢y. Let

H(cz) = h(cz)(logh(cy) — log#17) + c2(logc; — log#13%) + (1 — h(cz) — ¢2)(log(1 — h(cz) — ¢2) — log #173).
It is thus enough to determine the infimum of the function H(c;) on B. Note that

H'(c;) = W' (c2)(logh(cy) — log #1I') + log c; — log #1 — (1 + h'(c2)) (log(1 — h(cz) — ¢2) — log#13).

It is easy to check that H'(c;) = O forc, = % € int(B). Some elementary calculus shows that H (%) is indeed a global

minimum of H. Therefore,

H(%) 1+ 8 b—1-8
= log, #I'y — log, b
loga b Oga 1 Oga +

b—1-p8
log

dimy G = dimp G = )
H : b S #I — #1

asdesired. 0O

Finally, we notice a series of works on this general topics, e.g., by Barreira et al. [2-5] and Olsen et al. [1,14,15] etc., which
are established in the framework of dynamical systems by using the thermodynamic formalism. Some of them concern the
similar structure to that we are considering in the present paper. For example, we can regard [0, 1] as a self-similar set (so a
Moran fractal) created by the IFS {r~!(x +k),k =0, 1,...,r — 1} with2 < r € N(accordingly all ¢; = 1/r in the definition
of Moran fractal). In this case, (7) then gives [2, Corollary 12], the classical result of Eggleston in [7]. In addition, by taking
both I'; and I as singletons, the result, shown by (8), in the remark of the above example 1 then coincides with [2, Theorem
2]; the result in the above Example 2 coincides with [2, Corollary 16] (we also obtain the packing dimensions of the related
sets). Also some other results, such as Corollaries 13-15 in [2], can be deduced from Theorem 1.1 in the same way. Since
Moran fractals considered in the present paper, in general case, cannot be dynamically defined, one hardly studies these
kind of sets by means of thermodynamic formalism. This forces us to employ the initial definitions of Hausdorff and packing
dimensions to establish our results.

The rest of this paper is arranged as follows. In Section 2, we give two lemmas which appeared in the previous papers of
the authors and will be used for the proof of Theorem 1.1. The last section is mainly devoted to the proof of Theorem 1.1.
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2. Preliminaries

In this section, we give some preliminary observations. We first recall an equivalent definition of packing dimension for
subsets of Moran fractals which allows us to use the collection of component sets as packings instead of the collection of
balls centered at the subsets considered.

Let E be a subset of the Moran fractal F defined by (1). A collection {J, : 0 € 4} with A C £2* is said a J-type §-packing
of Eif ;| < § foreacho € 4,J, NE # @ and int), N int), = ¢ for distinct o', T € . Fors > 0 we define a packing-type
premeasure :PS on subsets of the Moran fractal F by letting OS(E) = lim; o & OS(E) for E C F, where foreach § > 0

ocA

= sup {Z Us I’ : Usloen is a J-type 8-packing ofE}

Then a (outer) measure on subsets of F can be derived from £ in a routine way:

P(E) = mf:Z PyE)EC| JE.EC F}

i=1 i=1
o0 - oo

= inf:Z!Pg(E,-) E=|JE.EC F} :
i=1 i=1

By #° we denote the s-dimensional packing measure (Readers can refer to [9,13] for its definition). It is easy to show that
there exists a positive number b such that £°(E) < b!PS(E) for any E C F. But the (outer) measures £S5 and PS may not be
equivalent (the equivalence means there are positive constants cy, c; such that ¢, 4 Ps (E) < P*(E) < PS (E)foranyE C F.)
However, they do determine the same critical index.

Lemma 2.1 ([10, Theorem 1.1]). Let E C F. Then

dimgE = inf {s: $5(E) = 0} = sup {s: P§(E) = +o0},
and

dimp E = inf {s : PE) = 0} =sup{s: PE) = +o0}.

Let Aj, 1 <j < nbeapartitionof £2,i.e,, 2 = U}l:1 Aj with disjoint union. Forx = (A, ..., Ay) € &y (a probability vector),
m e Nand e > 0let

2:me) E{oe2V:n—e<flo,A,m) <A+e 1<j<n)
= {GEQN:(Xj—e)mS#{lstm:a(ﬁ)eAj}s(kj-i—e)m,l§j§n}. 9)

Then {J5m : 0 € £2;(m, €)} is a sub-collection of all mth level component sets of F. The following lemma essentially comes
from [11, Theorem 1] which describes an important property of these sub-collections. For readers’ convenience, we give its
proof in detail.

Lemma 2.2. Let » = (A1, ..., An) € E, be a probability vector. Suppose that the positive number s satisfies
Aj
n Iy n
[ =11{xe) - (10)
j=1 j=1 \iea;

where we adopt the convention 0° = 1. Then there exists an ey = €, (s, X) such that forany 0 < € < ¢
o0
Z Z Usiml® = 0, asmy — 400,
m=mg aeﬂx(m,e)
where §2; (m, €) is defined by (9).

Proof. Since some of A;s may be zeros, for simplicity we, without loss of generality, assume that A; > 0 for 1 <j < ny and
Aj = 0forj > ny, where ny < n. Let

S
r+(r+1) max A; Z g
= =M hax e 1<ji,j2=<n (11)
(r—1) min A; Yoa =/

15j=m ieAj]
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For € > 0 (more exactly, we require that € satisfies the following (12), take

(n—ny)e

—)\n]
> (Any — (= ny)e) e,
An

Ci(e) = (1 —

1

and

—(n—ny)e

Cix (6) = Z (1?

ieAn1

Clearly, lime o C.(€) = lim, o Cix(€) = 1. Let g = €q (s, X) be such that for 0 < € < ¢

1
0 <€ < — min kj (12)
T 1<j=m
and
A.
n g (1? ! n g a? ‘
i€/ icA;
cOCO[f=—| - Tl || " <k=<1 (13)
j=1 i j=ni+1 €

where K, is a number satisfying (we remind the readers of (10).
A.
> a\“

o iEAj
H <K, <1.
W

In the following we fix an € with 0 < € < €3. Now we have

dj
n

D0 Vol =1l nm! T . (14)

0 €825 (m,€) ]_[ dj! j=1 \iel}
j=1

where the summation is over sets of non-negative integers d;, 1 < j < n such that

n
Y di=m and m@j—e€) <d<m(+e), 1<j=<n (15)
j=1

Let Qg be the term of the sum (14) for which d; is the integer part of mA; for 1 < j < n; — 1, the integer part of
me for ny + 1 < j < n. Therefore there are real numbers 0 < §; < 1 withj # n; such that d; = mA; — §; for
1<j<mnm-1d = me—§forny+1 < j < n(Infact, all §;s are equal, so are all d;s, forn; + 1 < j < n), and
dp, =m— Zj#n] dj = mAp, — (n —ny)me + Z#n] 8;j = My, — 8p, With 8, = (n — ny)me — Z#nl 8. Note that when m
is big enough, we have

mii—§&i+1/2
S H\™Y /
] m

mAj

p— i J ; — J j
— (1 _> ()w —) > constant > 0, 1<j < ny,

Al mkj m
j
5.\ me—dj+1/2
(6 — E]) 5\ M€ S —8j+1/2
— = (1 — _J> <g — _J) > constant >0, ny <j<n,
€ me m
and
s min, —8n, +1/2
(An] - %> o 8ny \™ 8ny \ Y2
A =|1-— Ang = —
A”ml nq mkn] m
(n—npme — Y &\ ™ (n—npme — 3 ;) " B o2
j#ny i
= 1-— )“nl -

MAn, m
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A m

n—npe\™M

> constant |:<l - ()L—1)> (Apy, — (n — nl)e)_(n_nl)f]
n

= constant C,(¢)™™ > 0.

Then by means of Stirling formula n! = +/ 2nn(n/e)"e1% (0 < 6 < 1), we have that when m is big enough

dj d:
1 0 J
0 m! 11[ Z : V2rmMtze Metm = Z s
= . a: = l_[ a:
n . Y ! n d+l i N i !
de! j=1 \ie4; 1—[ /erd-j ze*dieudf j=1 \ie4;
j=1 j=1 !
d.
mmts J
S
SRS § § by
n d'+1 i
l‘[d,l 2 j=1 \ie4;
]
j=1
1 4
mm+7 n
J— . S
_Klm gl dit ] l_[ Zal
l_[(m)\.j—Sj) itz l_[ (me—(Sj) ity J=1 \ie4;
j=1 j=nq+1
dj
m—j(n—l) n
=K : > a
Tm S\MA—0+1/2 7 same—si+12 L1 £T
]_[<]_E}> 1_[ (E_E]> j=1 IEAj
j=1 j=n1+1
d.
lj
C*(G)mmf%(nfl) n
<K T
n i n 1
n;ﬁf [T eme =1 \ie4;
]
j=1 j=n1+1
Z a§ mAj Z a_? me
1 1
71(n7]) m m il i€A;j n ieAj
< K3-m 20V C ()" Cu(@™ [ ] 11 : (16)
=\ A j=m41\ €

where Ki, K, and K3 are appropriate positive constants. Note thatfor 1 <i<n, 1 <j <n;y,

r—+(r+1) max A;

di+1 - mi+e€)+1 < 1.§isn1 (17)
d; m(; —€) (r—1) min A;
1<j=m
by (12) and (15). Let
4
m! u
a=-— ][> 4 (18)
[1d! =1 \ie4;

=1

[

and Q, be the term of the sum (14) for which in (18) the d;, and dj,, for some j; # j, with 1 < j; < n,1 < j, < ny, are
replaced by d;, + 1and d;, — 1respectively and the other d;’s are kept fixed. Thus

> a
Q dfl +1 ' i€ Aj, -
Q d]z Z a? -

iEAj1

K, (19)

by (11) and (17). Since (19) implies that for any term Q of the sum (14)

g < KZﬂme, (20)
Qo
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it follows that when m is big enough

dj
> loml = > a
0 €Ly (m,€) de! j=1 \ie4;
< QO . I<2Tm’l€ . (Zme)n . UQ]|S
Aj € m
1 al ieZA a? J n ig a?
il j j
<ki-mz |GGl == | - [I . - K2
! a’? ) €
Jj=1 2: i Jj=n1+1
iEAj
gl
<Ky-m 7 K"

by (16), (20) and (13), where K, is an appropriate positive constant. Therefore, for any fixed 0 < € < €5 we

o0 o0
Z Z Usiml® < Ka Z -m%K;” — 0, asmy— +oo.

m=mg o €£2; (m,€) m=mq

This completes the proof. O

3. Proofs
In this section, we give the proof of Theorem 1.1. We choose a partition, say A;,j = 1, ..., n, of £2 such that each A; is
contained in some /7. For example, the A;s can be taken as the join of the partitions {I5, I}°},i=1,2,...,k,ie,

{A]7A21"-7An} = {AlmAzmmAk?éQ)Az € {I_'ls I—IC}}
Setdi={j: A4 CI,1<j<n},1<i<kThenl;= Ujeli Ajand {4; : j € J;} is a partition of I;. Let

HE A_(xl,...,xn)ezn:(ij,...,Zx])eA}. (21)

jedq Jj€dk

In (4), with A and Ijs replaced, respectively, by H and A;s we can define I\71H in the same way. Clearly, IVIH # ) if and only
1fH #* @ (just simply by Law of Large Number). We claim that MA #+ @ if and only if H = . The sufficiency is clear since

MA ) MH (in general, the inclusion is proper). On the other hand, take ¢ € MA(yé ) and denote A(m) = f(o, A, m),j =
1,2,...,n.Then

(k(lm),...,kﬁlm)) € 8, and lim Zk(m) = 11m f(a n,m=c, i=1,2,...,k,

m— 00
Jj€di

where (cq, ..., ¢cx) € A. Thus,forany e > 0thecompactsetL, := {(A1,...,Ay) € E : ci—€ < jct; Aj < c+e, 1 <i<k}
is not empty. Therefore, NewgLe = {(A1, ..., Ap) € B, : Zjeli Aj = ¢, 1 <i < k}is not empty. For each (A, ..., Ay) € H,
let

Z(x) = ZA logZa —ZA log A;, (22)

1ezh
with the convention 0log 0 = 0, as before Itis easy to see that the function Z (x) has a unique zero, denoted by x(A1, ..., A,),
in [0, &£] where & is defined by Zl 1 a; = 1, since Z(x) is strictly decreasing with Z(0) > 0 and Z(§) < 0. This allows us to
define a continuous function x(14, ..., A,) on H by the implicit function theorem. Denote
X=  sup  x(Aq,...,An). (23)

The supremum can be reached when H is compact. Then, for s > x* we have
Aj

n n
H)L;\j>l_[ Zaf forall (A1, ..., A;) € H. (24)
=1

j=1 i€A;j

Lemma 3.1. Let H and x* be defined as in (21) and (23), respectively. Let H be compact. Then for any s > x* there exist finite
probability vectors A; = (Aﬁ'), oAy el i=1,2,..., hsuchthat
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h
MA U (m9 60(59 Xi))’

HC8
%D%

where €, (s, A) is given in Lemma 2.2 for »eH.

Proof. Since { j’.l:] (Aj — €o(s, X), Aj + €o(s, X)) he H} is an open covering of H, we can choose finite probability vectors,
say ki = (A(') ooy e Hi=1,2,..., hsuch that

H* defuc A — €05, A7), A + eos, A}"))) D H.

Foreachp € Nand each ¢ = (cy, ..., ¢) € A, consider equations
)Lj >0
n

Y oa=1

=1 (25)
1 1 )

G—— =< A<cg+-, 1=<iZk
p Jj€d; p

By T,z we denote the set of solutions to (25). Then H C | Jz.4 Tp.z. Note that the distance between H and (H*)¢ is positive.
Therefore, there exists a pg such that for p > pg

H< | JTe S H" (26)
ceA

In the following, we fix such a p. Now we need to prove that for each o € MA there exists an my(o) such that

h
o€ U Q;i(m, €o(s, X,-)) form > mg(0). (27)
i=1

Foragiveno € MA, there existsa¢ = (cq, ..., ¢;) € Asuch that
Thus, there exists an mg(o) such that for all m > mg (o)
1 1 .
G—- <) flo.Aim<g+—. 1<j<k (28)
p iEJl]' p
So (f(o, Aj, m))I, € Ty, leading to (27) by (25), (26),(28)and (9). O
Remark. In fact, a stronger result holds, i.e., 1\7[/\ - U:;:q ﬂ;":mo UL 2 (m, €o(s, Xi)) for any positive integer q. We only
need to choose my(o) > qforeacho € MA in the above proof.

Lemma 3.2. Let x* be defined as in (23). If A is compact, then dimp My < x*.

Proof. It suffices to show dimp M4 < s for any s > x*. Note that H is compact by (21) and the compactness of A. Now for a
fixed s > x*, by Lemma 3.1 there exist /i probability vectors A; = (Xﬁl), e, kf:)) € H,1 <i < hsuch that

oo 00

n
c U m U.Q;\i(m, €o(s, Ai)).
mO: m=m, i:]

Denote Gy = (e, UL, Ure(zi (m.eo(s.iy Jrim- Then for each x € Gp, there exists a o € 22" (one of its location codes)
(m.eos.

satisfying: for each m > mg there exists 1 < i < h such that
i) —eols, %) < flo, Ajym) <A +eo(s, k) foralll <j<n.
Therefore, G, is increasing and My C U;’% _1 Gm,- So we only need to prove dimp G, < s for each my. Let

gmd_d{]ﬂm.reﬂ(m €o(s, hi),i=1,. ., h}, meN

Then for any h > myg, G, € U]egh]- Moreover, §> &ef {/ € Gm : m > h} is a Vitali covering of Gp,,.
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Now we fix mg and consider the J-type packing of G,,. For h € N, denote §; = afmn Uyl. Let 4 &t {s : 0 € A} (recall

A C £2%) be a J-type 8p-packing of Gy, with h > my. Note that |o| > h for each o € 4. We classify the elements of ¢ into
two classes, denoted by ¢ and g,.Fora], € g,ifJ, € §-x then putitin g;, otherwise putitin g,. We extend the collection
G- so that it contains all elements of ¢,. For each J;|;m € §>n, let $;m be the collection of component sets intersecting Jm
with diameter lying in (|Jzjm+1l, Uzjm|]. Then

(Pl)]rlﬂj € Jrims

(P2) #J.jm < &* where the positive number £* is independent of the choice of J;},,. This can be seen by the discussion in
Section 1, or by means of [9, Lemma 9.2]. _ ~ ~

The extended collection, denoted by 4, of - is defined as the union of all ;. We claim that §, € 4. For each
fixed |, € &», take an x € J, N Gy, (this intersection is not empty from the definition of a packing). For this x, it has a

location code t lying in ﬂ?:mo U?:] Q;\i(m, €o(s, X,-)). Since J;jm € §>h for all m > h, there exists a unique n > h such that
Us| € Wrpntil, Uzinll, leading to J, € §.jn (note that J, N Jr, 2 {x} is not empty). Thus

ZUGISSZUISSSZUIS=EZ§: > loml-

oEA J€G=h J€G=n i=1 m=h o, (m, €0 (,i))

By Lemma 2.2 and (24), we have ﬁgh (Gmy) < 1when h is big enough. Thus
P*(Gmy) < P5(Gmg) < 1,

yielding dimp G,y < sby Lemma2.1. O

Proof of Theorem 1.1. We divide the proof into two cases.

Case 1. A is compact.

We first show dimy My > t. Without loss of generality, we suppose t > 0. Since A is compact, the supremum in (6)
can be reached at some probability vector, say at p = (p1, ..., pr). Without loss of generality, we assume that p; > 0 for
1<i<kjandp;=0fork;+1<i<r,wherek; <r.Denote 2; ={1,...,k;} C 2.Let M = ¢(M) where

M=l{oe®:flo (i) =p,1<i<k) (29)
Then M - IVIA and so M C M. Construct a probability measure /i on £21' by defining for o € 227"
m
2(C@) =[[pow
i=1

where, as before, C(0) = {r € £2]' : |m = o} is the cylinder set with the base o. Let 1 on F be the image measure of /i
under ¢. By Birkhoff's Ergodic theorem (cf. [18]) or Law of Large Number, we have for ;i — a.e.oc € .QlN

flo,{i)=p, 1=<i<k.
Therefore, ,&(1\71) = (M) = 1.Now for o € £2], write a(o) = ]’['lel 4, and p(o) = ]’['[;'l Po(r)- Thenforany o € M, itis
easy to verify that

k] r
> belogp, Y pelogpe

logp(oln) = = _
n-co loga(o|n) ki _ L -
ga(e| S peloga,  D_belogag
=1 =1
Fix0 < € < t.Let M™ = ¢(M™) where

—~ ~ logp(oin

M™ = aeM:M>t—eforalanm . (30)
loga(o|n)

Then
1=aM)= lim A(M™) and 1=puM)= lim pM™).
m—o0

m—0o0

We fix an m such that u(M™) > 0. Let /i, be the restriction of &t to M™ and let u,, be the induced measure on M™ of
fim by ¢, i.e., for any Borel set A € M™

m(A) = fim(¢~'(A)) = (¢~ (A) NM™),
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By Br(x) we denote the closed ball with center at x and radius R. Let 0 < R < ap; . Foreacho € M(™ there exists a positive
integer h(o, R) such that

aminR < a(o|h(o,R)) <R. (31)

Note thath(o, R) > mand write W = {o'|h(c,R) : ¢ € M™}.Forany fixedx € M™ let W* = {t € W : J,NBg(x)NM™ £
@}. Then there exists a finite positive constant &; independent of the R and x such that #W* < &; by [9, Lemma 9.2]. So

1m(Br(X)) < fim < U C(r>> < Y AC() =) plr) <ERS,

TeW* TeW* TeW*
by (30) and (31). So we get
log t4m (Br(X)) _

lim inf
R—0 logR

t—e

By [17, Theorem 1] or [8, Proposition 2.3(a)]
dimH MA > dllTlHM > dimHM(m) >t —e€,

which implies dimy M, > t if letting e — O.
Now we turn to show dimp My < t. By Lemma 3.2 we only need to check t = x*. Suppose x* is reached at . =

(A7, ..., A}) € H (note that H is compact in this case), i.e, x* = x(A], ..., A}). By (22),
n n
> ijlog Y af = iloghi =0
j=1 ieA; j=1
Recall A;,j =1, ..., nis a partition of £2. For each £ € £2, take
pe= (@A) Y @, ifte a4
mEAj

Then (p1, ..., py) is a probability vector. Note that I; = Ujeli Aj,i=1,2,...,k Thus

sz=22pg=2kf fori=1,2,...,k,

Lel; jedi LeA; jedi

which gives that (Zmn Des e Z[Erk pe> = (Zjeh k;‘, e, Zjelk );‘) € Aby (21). However,

r r n
;Pz logp, = x* ;pe loga,+ Y Y p |loghs —log Y af

j=1 Le4; meA;j
r n
:x*Zpglogag-i-ZA]’-“ log)»;‘—logZa’,j1
=1 j=1 meAj

.
=x") pilogay,
=1

implying that x* < t by (6). The opposite inequality is direct since we have proved t < dimy My < dimp M, < x*.

Case 2. A is not compact.
By A we denote the closure of A. The following fact is obvious:

.
> pelogpe ,

t = sup e:r1— : (Zpg,...,ng) €A,p, > 0and Zpg =1
Zp[ logaZ teln Lely =1
=1
r
> pelogpe .
(=1 —

=supy————: (Zpg Zpg> €A, p, > 0and Zpg =1

pr ]ogaz Leln Lely, =1
=1
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Thus, dimy M4 < dimp M4 < dimp Mz = t by Case 1. On the other hand, for any 0 < € < t (we disdain considering the

case t = 0), we take the probability vector (p1, ..., p;) in the definition of t in (6) such that
r
> belogp;
zfl >t —e.
> pelogay
=1

As done in (29), we can define a subset M C M, suchthatdimyM >t —€. 0O

Acknowledgments

The authors would like to thank Prof. P. Mattila for his valuable comments.
The first author was supported by the National Natural Science Foundation of China #10571058 and Shanghai Leading
Academic Discipline Project #B407. The second author was supported by the Ph.D. Program Scholarship Fund of ECNU 2008.

References

[1] LS. Baek, L. Olsen, N. Snigireva, Divergence points of self-similar measures and packing dimension, Adv. Math. 214 (2007) 267-287.
[2] L. Barreira, B. Saussol, J. Schmeling, Distribution of frequencies of digits via multifractal analysis, ], Number Theory 97 (2002) 410-438.
[3] L.Barreira, B. Saussol, Variational principles and mixed multifractal spectra, Trans. Amer. Math. Soc. 353 (2001) 3919-3944.
[4] L.Barreira, B. Saussol, J. Schmeling, Higher-dimensional multifractal analysis, J. Math. Pures Appl. 81 (2002) 67-91.
[5] L. Barreira, J. Schmeling, Sets of “non-typical” points have full topological entropy and full Hausdorff dimension, Israel J. Math. 116 (2000) 29-70.
[6] R.Cawley, R.D. Mauldin, Multifractal decomposition of Moran fractals, Adv. Math. 92 (1992) 196-236.
[7] H.G. Eggleston, The fractional dimension of a set defined by decimal properties, Quart. Journ. of Math. (Oxford) 20 (March) (1949) 31-36.
[8] KJ.Falconer, Techniques in Fractal Geometry, John Wiley & Sons Ltd, 1997.
[9] KJ. Falconer, Fractal Geometry-Mathematical Foundations and Applications, John Wiley & Sons Ltd, Chichester, 1990.
[10] W.X. Li, An equivalent definition of packing dimension and its application, Nonlinear Anal. RWA, in press (doi:10.1016/j.nonrwa.2008.02.004).
[11] W.X. Li, F.M. Dekking, Hausdorff dimension of subsets of Moran fractals with prescribed group frequency of their codings, Nonlinearity 16 (2003)
187-199.
[12] W.X. Li, L. Olsen, Z.Y. Wen, Hausdorff and packing dimensions of subsets of Moran fractals with prescribed mixed group frequency of their codings,
Aequationes Math. (in press).
[13] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University press, 1995.
[14] L. Olsen, Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages. IV: Divergence points and packing dimension,
preprint..
[15] L. Olsen, S. Winter, Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages. II: Non-linearity, divergence points
and Banach space valued spectra, Bull. Sci. Math. 131 (2007) 518-558.
[16] D.W. Spear, Measure and self-similarity, Adv. Math. 91 (1992) 143-157.
[17] C.Tricot, Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982) 57-74.
[18] P. Walters, An Introduction to Ergodic Theory in: GTM, vol. 79, Springer-Verlag.
[19] Z.Y. Wen, Moran sets and Moran classes, Chinese Sci. Bull. 46 (22) (2001) 1849-1856.



