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a b s t r a c t

TheMoran fractal considered in this paper is an extension of the self-similar sets satisfying
the open set condition. We consider those subsets of the Moran fractal that are the union
of an uncountable number of sets each of which consists of the points with their location
codes having prescribed mixed group frequencies. It is proved that the Hausdorff and
packing dimensions of each of these subsets coincide and are equal to the supremum of
the Hausdorff (or packing) dimensions of the sets in the union. An approach is given to
calculate their Hausdorff and packing dimensions. The main advantage of our approach is
that we treat these subsets in a unified manner. Another advantage of this approach is that
the values of the Hausdorff and packing dimensions do not need to be guessed a priori.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

DenoteΩ = {1, 2, . . . , r}, where r ≥ 2. LetΩ∗ =
⋃
∞

m=0Ω
m withΩm = {σ = (σ (1), σ (2), . . . , σ (m)) : σ(j) ∈ Ω} for

m ∈ N∪{0} (Ω0 consists of the empty word ∅) andΩN
= {σ = (σ (1), σ (2), . . .) : σ(j) ∈ Ω}. We denote by |σ | the length

of word σ ∈ Ω∗. For σ ∈ Ω∗ and τ ∈ Ω∗ ∪ΩN, σ ∗ τ denotes their concatenation. In particular, ∅ ∗ τ = τ . For σ ∈ Ωm,
let C(σ ) = {τ ∈ ΩN

: τ |m = σ }, called the cylinder set with base σ , where τ |m = (τ (1), τ (2), . . . , τ (m)).
Fix a constant 0 < c < 1 and positive real numbers 0 < ai < 1, i = 1, 2, . . . , r . Assume that a collection (Jσ )σ∈Ω∗ of

compact sets in Rd has the following features:
[A1] nested property: for σ ∈ Ω∗ and i ∈ Ω , Jσ∗i ⊆ Jσ ;
[A2] non-overlapping property: all Jσ s with σ ∈ Ωm are pairwise non-overlapping in the sense that Jσ ∩ Jτ is of zero

d-dimensional Lebesgue measure for any distinct σ , τ ∈ Ωm;
[A3] regular sizes for Jσ s: for σ ∈ Ω∗ and i ∈ Ω , |Jσ∗i| = ai|Jσ | > 0, where, if no confusion occurs, |Jσ | denotes the

diameter of Jσ ;
[A4] regular sizes for the interior of Jσ s: each Jσ , σ ∈ Ω∗ contains an open ball with diameter c|Jσ |.
TheMoran fractal associated with (Jσ )σ∈Ω∗ is defined as the nonempty compact set

F =
∞⋂
m=0

⋃
σ∈Ωm

Jσ . (1)

The definition of Moran fractals here is close to that in [6,16] with a bit variation, but simpler than that in [19] where a
more general structure is discussed. (Readers can refer to [19] and more references therein for related results on this kind
of structure.) Obviously, self-similar sets satisfying the open set condition are Moran fractals. The latter lose the property of
similitude, but keep some typical properties exhibited by the former, e.g., they can be encoded by elements fromΩN and

dimH F = dimBF = s, 0 < H s(F) ≤ P s(F) <∞,
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where s is determined by
∑r
j=1 a

s
j = 1. The compact sets Jσ , σ ∈ Ω

∗ are generally referred to as component sets of F . In
particular, Jσ is referred to as anmth level component set of F if σ ∈ Ωm. Define φ:ΩN

−→ Rd by

{φ(σ)}
def
=

∞⋂
m=0

Jσ |m. (2)

It is easy to see that φ(ΩN) = F and φ(C(σ )) = F
⋂
Jσ by (2). But φ may not be injective. Let ρ be the metric onΩN such

that for any σ , τ ∈ ΩN

ρ(σ , τ )
def
= 2−min{i:σ(i)6=τ(i)},

with the convention ρ(σ , σ ) = 0. Let F be equipped with the Euclidean metric. Then φ is continuous. Thus each x ∈ F can
be encoded via φ: a sequence σ ∈ ΩN is called a location code of x ∈ F if φ(σ) = x. Therefore, φ is also called the coding
map andΩN is called the code space (or symbolic space). As a result, F is a projection ofΩN on Rd via φ.
Let 0 < R < amin|J∅|where amin

def
= min1≤i≤r ai. A component set Jσ of F is termed as an R-size component set if

|Jσ | ≤ R and |Jσ |(|σ |−1)| > R.

It is easy to see that for any 0 < R < amin|J∅|, the collection of all R-size component sets of F is a non-overlapping finite
R-covering of F by [A1-3]. Hence, by means of Lemma 9.2 in [9], the requirement (see [A4]) that Jσ contains an open ball of
diameter c|Jσ | implies an important fact: there exists a positive integer ϑ , independent of R and x ∈ Rd, such that any ball
BR(x)with radius R and center at x intersects at most ϑ of the R-size component sets of F . Many analogues of this fact appear
in this paper. A direct sequel leads to an important property of φ:

sup
x∈F
#{φ−1(x)} < ϑ,

where and throughout this paper, by #A we denote the cardinality of a finite set A. Otherwise, suppose that for some
x ∈ F we have #{φ−1(x)} > ϑ . Take ϑ + 1 different elements σ1, σ2, . . . , σϑ+1 from this set. Let m ∈ N be such that
σ1|m, σ2|m, . . . , σϑ+1|m differ from each other. Taking R = min1≤i≤ϑ+1 |Jσi|m|, x lies in at least ϑ + 1R-size component sets
of F , which implies that the ball BR(x) intersects at least ϑ + 1 of the R-size component sets of F .
For Γ ⊆ Ω , σ ∈ ΩN and m ∈ N, we denote by f (σ ,Γ ,m) the ratio of the digits from Γ occurring in the first m entries

of σ , i.e.,

f (σ ,Γ ,m) def=
#{1 ≤ ` ≤ m : σ(`) ∈ Γ }

m
.

Whenever there exists the limit

f (σ ,Γ ) def= lim
m→∞

f (σ ,Γ ,m) = lim
m→∞

#{1 ≤ ` ≤ m : σ(`) ∈ Γ }
m

, (3)

it is called the group frequency of the σ passing through Γ . When we write the symbol f (σ ,Γ )we are already assuming the
existence of the limit in (3). Now let

Γi 6= ∅, i = 1, 2, . . . , kwith
k⋃
i=1

Γi = Ω.

We remark that some of Γis may have nonempty intersections. For A ⊆ [0, 1]k, let

MA = φ(M̂A)where M̂A
def
=
{
σ ∈ ΩN

: f (σ ,Γj) = cj, 1 ≤ j ≤ k, (c1, . . . , ck) ∈ A
}
. (4)

For n ∈ N letΞn be the set of (n-dimensional) probability vectors, i.e.,

Ξn =

{
(λ1, . . . , λn) ∈ [0, 1]n :

n∑
`=1

λ` = 1

}
. (5)

Throughout this paper, we denote by log the natural logarithm. In the present paper, we obtain

Theorem 1.1. Let MA be defined as in (4). Let Ξr be defined as in (5). Then dimH MA = dimP MA = t where

t = sup


r∑̀
=1
p` log p`

r∑̀
=1
p` log a`

: (p`)r`=1 ∈ Ξr and

(∑
`∈Γ1

p`, . . . ,
∑
`∈Γk

p`

)
∈ A

 , (6)

with the convention 0 log 0 = 0.
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When A is a singleton, say A = {Ec} with Ec = (c1, . . . , ck), M{Ec} is the set of points whose location codes have a prescribed
mixed group frequency cj passing through Γj, j = 1, . . . , k (here we use the word ‘‘mixed‘‘since some of Γis is allowed to
have nonempty intersections). By Theorem 1.1,

dimH M{Ec} = dimP M{Ec} = sup


r∑̀
=1
p` log p`

r∑̀
=1
p` log a`

: (p`)r`=1 ∈ Ξr with
∑
`∈Γi

p` = c`, 1 ≤ i ≤ k

 .
This was also obtained in [12] where it was dealt with under a more general setting. Obviously,

MA =
⋃
Ec∈A

M{Ec},

i.e., MA is a union of an uncountable number of sets each of which consists of the points with their location codes having
prescribed mixed group frequencies. Thus, Theorem 1.1 indicates

dimH MA = dimP MA = sup
Ec∈A
dimH M{Ec},

i.e., the Hausdorff and packing dimensions of MA coincide and are equal to the supremum of the Hausdorff (or packing)
dimensions of the sets in the union. Note that M{Ec} may be an empty set for some Ec ∈ A. Without loss of generality, we
always assume that A is properly chosen such that M̂A 6= ∅.
We consider some special cases as follows.

Case I: k = 1.
In this case, Γ1 = Ω , A ⊆ [0, 1] andMA = F when 1 ∈ A(⊆ [0, 1]),= ∅when 1 6∈ A. Thus, by Theorem 1.1

dimH F = dimP F = sup


r∑̀
=1
p` log p`

r∑̀
=1
p` log a`

: (p`)r`=1 ∈ Ξr

 = s,
where

∑r
j=1 a

s
j = 1. �

Case II: k = r = #Ω (recallΩ = {1, 2, . . . , r}).
In this case, Γj = {j} for 1 ≤ j ≤ r , A ⊆ [0, 1]r and

M̂A =
{
σ ∈ ΩN

: f (σ , {j}) = cj, (c1, . . . , cr) ∈ A
}

=

{
σ ∈ ΩN

: lim
m→∞

#{1 ≤ ` ≤ m : σ(`) = j}
m

= cj, (c1, . . . , cr) ∈ A ∩ Ξr

}
,

and by Theorem 1.1

dimH MA = dimP MA = sup


r∑̀
=1
p` log p`

r∑̀
=1
p` log a`

: (p`)r`=1 ∈ A ∩ Ξr

 .
In particular, for Ec = (c1, . . . , cr) ∈ Ξr

dimH M{Ec} = dimP M{Ec} =

r∑̀
=1
c` log c`

r∑̀
=1
c` log a`

. � (7)

Case III: Γj, 1 ≤ j ≤ k are pairwise disjoint, i.e., a partition ofΩ .
This is a more general case including the above two cases. Without loss of generality, we assume ∅ 6= A ⊆ Ξk since

M{Ec} = ∅ for Ec ∈ A \ Ξk. In this case, the dimension value t in (6) has an alternative expression by means of the method of
Lagrange multipliers (also refer to the proof of Theorem 1.1 in Section 3. We formulate this case as a corollary.

Corollary 1.2. Let Γj, 1 ≤ j ≤ k be a partition of Ω and A a nonempty subset of Ξk. Let MA be defined as in (4). Then
dimH MA = dimP MA = t = sup(c1,...,ck)∈A x(c1, . . . , ck), where x(c1, . . . , ck) is the unique non-negative real root of the following
equation in x,

k∑
j=1

cj log
∑
i∈Γj

axi −
k∑
j=1

cj log cj = 0.
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In particular, when ai = a, 1 ≤ i ≤ r

x(c1, . . . , ck) =

k∑
j=1
cj(log cj − log #Γj)

log a
.

In particular, when A is a singleton this was given by [11, Theorem 1]. �
For A ⊆ [0, 1]k let

ΞA =

{
(p1, . . . , pr) ∈ Ξr :

(∑
`∈Γ1

p`, . . . ,
∑
`∈Γk

p`

)
∈ A

}
⊆ Ξr .

It is easy to see that

MA ⊇
⋃
Ep∈ΞA

M{Ep}

with the right side being composed of (in general, an uncountable number of) nonempty pairwise disjoint sets. We
emphasize that the inclusion is proper in general since M̂A contains points for which not each digit frequency f (σ , {j}), j ∈
Ω is well-defined (this fact substantially complicates the problem of computing dimH MA and dimP MA). From (7) and
Theorem 1.1 it follows

dimH MA = dimP MA = sup
Ep∈ΞA

dimH M{Ep} = sup
Ep∈ΞA

dimP M{Ep}.

When A is compact (and thenΞA compact), the supremum can be reached. In this case, the dimension ofMA is carried by a
single subset for which all the digit frequencies are known.
One can use equations or inequalities to produce the set A, e.g., take A = {(c1, . . . , ck) ∈ [0, 1]k : c1 = 2c2, c2+c3 ≤ 0.5},

or more general A = {(c1, . . . , ck) ∈ [0, 1]k : gi(c1, . . . , ck) = di for i = 1, . . . , `; sj ≤ hj(c1, . . . , ck) ≤ tj forj = 1, . . . , n}.
The main advantage of our approach is that we treatMA in a unified manner (which could seem of different nature for each
choices of gis and hjs). Another advantage of this approach is that the values of the Hausdorff and packing dimensions do
not need to be guessed a priori. In some works this a priori guess is crucial in order to construct auxiliary measures sitting
on the set. These measures are then used to establish, rigorously, the values of the Hausdorff and packing dimensions.
As an application of Theorem 1.1, we consider two examples below. The first deals with a case where some frequencies

f (σ ,Γi) have a linear relations, the second with a nonlinear relations. To simplify the computation, we only consider the
case where Γis are pairwise disjoint.

Example 1. Let Γi, 1 ≤ i ≤ 4 be disjoint nonempty subsets ofΩ , α1, α2 positive numbers. Let G = φ(̂G)where

Ĝ =
{
σ ∈ ΩN

: f (σ ,Γj) = αjf (σ ,Γj+2), j = 1, 2
}
.

Let Γ5 = Ω \ ∪4i=1 Γi. When Γ5 6= ∅, Γi, 1 ≤ i ≤ 5 is a partition ofΩ . Let

A = {(c1, . . . , c5) ∈ Ξ5 : c1 = α1c3 and c2 = α2c4}.

Then Ĝ = M̂A and so G = MA. Hence, Theorem 1.1 shows that dimH G = dimP G = t with t determined by (6). By means of
the method of Lagrange multipliers, we have that t is uniquely determined by

2∑
j=1

(1+ αj)α
−

αj
1+αj

j

 ∑
`∈Γj+2

at`

 1
1+αj

∑
`∈Γj

at`


αj
1+αj

+

∑
`∈Γ5

at` = 1.

In addition, if Γ5 = ∅, t is then determined by

2∑
j=1

(1+ αj)α
−

αj
1+αj

j

 ∑
`∈Γj+2

at`

 1
1+αj

∑
`∈Γj

at`


αj
1+αj

= 1.

Remark. Wealso can consider an easier case. LetΓ1 andΓ2 be disjoint nonempty subsets ofΩ withΓ3 = Ω \(Γ1∪Γ2) 6= ∅.
For a positive number α let G = φ(̂G)where

Ĝ =
{
σ ∈ ΩN

: f (σ ,Γ1) = αf (σ ,Γ2)
}
.
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Then dimH G = dimP G = t with t determined by

(1+ α)α−
α
1+α

(∑
`∈Γ2

at`

) 1
1+α

(∑
`∈Γ1

at`

) α
1+α

+

∑
`∈Γ3

at` = 1. (8)

Also t is determined by

(1+ α)α−
α
1+α

(∑
`∈Γ2

at`

) 1
1+α

(∑
`∈Γ1

at`

) α
1+α

= 1,

if Γ3 = ∅.

Example 2. Let Γ1 and Γ2 be disjoint nonempty subsets ofΩ such thatΩ \ (Γ1∪Γ2) 6= ∅. Let all ai be equal, i.e., ai = a, i =
1, 2, . . . , r . Denote β = #Γ2

#Γ1
. For b > 1+ β , we consider the set G = φ(̂G)where

Ĝ =
{
σ ∈ ΩN

: bf (σ ,Γ1) = eβ−bf (σ ,Γ2)
}
.

Then

dimH G = dimP G = −
1+ β
b
loga #Γ1 − loga b+

b− 1− β
b

loga
b− 1− β

r − #Γ1 − #Γ2
.

Proof. Let Γ3 = Ω \ (Γ1 ∪ Γ2). Then Γi, 1 ≤ i ≤ 3 is a partition ofΩ . Let

A = {(c1, c2, c3) ∈ Ξ3 : bc1 = eβ−bc2}.

Then Ĝ = M̂A and so G = MA. Define h(x) = eβ−bx/b. It follows from Corollary 1.2 that

dimH G = dimP G = sup
(c1,c2,c3)∈A

3∑
j=1
cj(log cj − log #Γj)

log a

= sup
c2∈B

3∑
j=1
cj(log cj − log #Γj)

log a

where B = {c2 ∈ [0, 1] : c2 + h(c2) ≤ 1}, c1 = h(c2) and c3 = 1− h(c2)− c2. Let

H(c2) = h(c2)(log h(c2)− log #Γ1)+ c2(log c2 − log #Γ2)+ (1− h(c2)− c2)(log(1− h(c2)− c2)− log #Γ3).

It is thus enough to determine the infimum of the function H(c2) on B. Note that

H ′(c2) = h′(c2)(log h(c2)− log #Γ1)+ log c2 − log #Γ2 − (1+ h′(c2))(log(1− h(c2)− c2)− log #Γ3).

It is easy to check that H ′(c2) = 0 for c2 =
β

b ∈ int(B). Some elementary calculus shows that H(
β

b ) is indeed a global
minimum of H . Therefore,

dimH G = dimP G =
H
(
β

b

)
log a

= −
1+ β
b
loga #Γ1 − loga b+

b− 1− β
b

loga
b− 1− β

r − #Γ1 − #Γ2
,

as desired. �

Finally, we notice a series of works on this general topics, e.g., by Barreira et al. [2–5] and Olsen et al. [1,14,15] etc., which
are established in the framework of dynamical systems by using the thermodynamic formalism. Some of them concern the
similar structure to that we are considering in the present paper. For example, we can regard [0, 1] as a self-similar set (so a
Moran fractal) created by the IFS {r−1(x+ k), k = 0, 1, . . . , r−1}with 2 ≤ r ∈ N (accordingly all ai = 1/r in the definition
of Moran fractal). In this case, (7) then gives [2, Corollary 12], the classical result of Eggleston in [7]. In addition, by taking
bothΓ1 andΓ2 as singletons, the result, shown by (8), in the remark of the above example 1 then coincides with [2, Theorem
2]; the result in the above Example 2 coincides with [2, Corollary 16] (we also obtain the packing dimensions of the related
sets). Also some other results, such as Corollaries 13–15 in [2], can be deduced from Theorem 1.1 in the same way. Since
Moran fractals considered in the present paper, in general case, cannot be dynamically defined, one hardly studies these
kind of sets bymeans of thermodynamic formalism. This forces us to employ the initial definitions of Hausdorff and packing
dimensions to establish our results.
The rest of this paper is arranged as follows. In Section 2, we give two lemmas which appeared in the previous papers of

the authors and will be used for the proof of Theorem 1.1. The last section is mainly devoted to the proof of Theorem 1.1.
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2. Preliminaries

In this section, we give some preliminary observations. We first recall an equivalent definition of packing dimension for
subsets of Moran fractals which allows us to use the collection of component sets as packings instead of the collection of
balls centered at the subsets considered.
Let E be a subset of the Moran fractal F defined by (1). A collection {Jσ : σ ∈ A} withA ⊆ Ω∗ is said a J-type δ-packing

of E if |Jσ | ≤ δ for each σ ∈ A, Jσ ∩ E 6= ∅ and intJσ ∩ intJτ = ∅ for distinct σ , τ ∈ A. For s ≥ 0 we define a packing-type
premeasure P̃ s0 on subsets of the Moran fractal F by letting P̃ s0(E) = limδ↓0 P̃ sδ (E) for E ⊆ F , where for each δ > 0

P̃ sδ (E) = sup

{∑
σ∈A

|Jσ |s : {Jσ }σ∈A is a J-type δ-packing of E

}
.

Then a (outer) measure on subsets of F can be derived from P̃ s0 in a routine way:

P̃ s(E) = inf

{
∞∑
i=1

P̃ s0(Ei) : E ⊆
∞⋃
i=1

Ei, Ei ⊆ F

}

= inf

{
∞∑
i=1

P̃ s0(Ei) : E =
∞⋃
i=1

Ei, Ei ⊆ F

}
.

By P s we denote the s-dimensional packing measure (Readers can refer to [9,13] for its definition). It is easy to show that
there exists a positive number b such that P s(E) ≤ bP̃ s(E) for any E ⊆ F . But the (outer) measures P̃ s and P s may not be
equivalent (the equivalence means there are positive constants c1, c2 such that c1P̃ s(E) ≤ P s(E) ≤ c2P̃ s(E) for any E ⊆ F .)
However, they do determine the same critical index.

Lemma 2.1 ([10, Theorem 1.1]). Let E ⊂ F . Then

dimBE = inf
{
s : P̃ s0(E) = 0

}
= sup

{
s : P̃ s0(E) = +∞

}
,

and

dimP E = inf
{
s : P̃ s(E) = 0

}
= sup

{
s : P̃ s(E) = +∞

}
.

LetΛj, 1 ≤ j ≤ n be a partition ofΩ , i.e.,Ω = ∪nj=1Λj with disjoint union. For Eλ = (λ1, . . . , λn) ∈ Ξn (a probability vector),
m ∈ N and ε > 0 let

ΩEλ(m, ε)
def
= {σ ∈ ΩN

: λj − ε ≤ f (σ ,Λj,m) ≤ λj + ε, 1 ≤ j ≤ n}

= {σ ∈ ΩN
: (λj − ε)m ≤ #{1 ≤ ` ≤ m : σ(`) ∈ Λj} ≤ (λj + ε)m, 1 ≤ j ≤ n}. (9)

Then {Jσ |m : σ ∈ ΩEλ(m, ε)} is a sub-collection of allmth level component sets of F . The following lemma essentially comes
from [11, Theorem 1] which describes an important property of these sub-collections. For readers’ convenience, we give its
proof in detail.

Lemma 2.2. Let Eλ = (λ1, . . . , λn) ∈ Ξn be a probability vector. Suppose that the positive number s satisfies

n∏
j=1

λ
λj
j >

n∏
j=1

∑
i∈Λj

asi

λj

, (10)

where we adopt the convention 00 = 1. Then there exists an ε0 = ε0(s, Eλ) such that for any 0 < ε ≤ ε0

∞∑
m=m0

∑
σ∈ΩEλ(m,ε)

|Jσ |m|s → 0, as m0 →+∞,

whereΩEλ(m, ε) is defined by (9).

Proof. Since some of λjs may be zeros, for simplicity we, without loss of generality, assume that λj > 0 for 1 ≤ j ≤ n1 and
λj = 0 for j > n1, where n1 ≤ n. Let

K =
r + (r + 1) max

1≤j≤n1
λj

(r − 1) min
1≤j≤n1

λj
·max


∑
i∈Λj2

asi∑
i∈Λj1

asi
, 1 ≤ j1, j2 ≤ n

 . (11)
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For ε > 0 (more exactly, we require that ε satisfies the following (12), take

C∗(ε) =
(
1−

(n− n1)ε
λn1

)−λn1
(λn1 − (n− n1)ε)

(n−n1)ε,

and

C∗∗(ε) =

∑
i∈Λn1

asi

−(n−n1)ε .
Clearly, limε↓0 C∗(ε) = limε↓0 C∗∗(ε) = 1. Let ε0 = ε0(s, Eλ) be such that for 0 < ε ≤ ε0

0 < ε <
1
r
min
1≤j≤n1

λj (12)

and

C∗(ε)C∗∗(ε)
n1∏
j=1


∑
i∈Λj
asi

λj


λj

·

n∏
j=n1+1


∑
i∈Λj
asi

ε


ε

· K 2nε < K∗ < 1, (13)

where K∗ is a number satisfying (we remind the readers of (10).

n1∏
j=1


∑
i∈Λj
asi

λj


λj

< K∗ < 1.

In the following we fix an ε with 0 < ε ≤ ε0. Now we have

∑
σ∈ΩEλ(m,ε)

|Jσ |m|s = |J∅|s
∑ m!

n∏
j=1
dj!
·

n∏
j=1

∑
i∈Γj

asi

dj , (14)

where the summation is over sets of non-negative integers dj, 1 ≤ j ≤ n such that

n∑
j=1

dj = m and m(λj − ε) ≤ dj ≤ m(λj + ε), 1 ≤ j ≤ n. (15)

Let Q0 be the term of the sum (14) for which dj is the integer part of mλj for 1 ≤ j ≤ n1 − 1, the integer part of
mε for n1 + 1 ≤ j ≤ n. Therefore there are real numbers 0 ≤ δj < 1 with j 6= n1 such that dj = mλj − δj for
1 ≤ j ≤ n1 − 1, dj = mε − δj for n1 + 1 ≤ j ≤ n (In fact, all δjs are equal, so are all djs, for n1 + 1 ≤ j ≤ n), and
dn1 = m−

∑
j6=n1
dj = mλn1 − (n− n1)mε +

∑
j6=n1

δj = mλn1 − δn1 with δn1 = (n− n1)mε −
∑
j6=n1

δj. Note that whenm
is big enough, we have(

λj −
δj
m

)mλj−δj+1/2
λ
mλj
j

=

(
1−

δj

mλj

)mλj (
λj −

δj

m

)−δj+1/2
> constant > 0, 1 ≤ j < n1,

(
ε −

δj
m

)mε−δj+1/2
εmε

=

(
1−

δj

mε

)mε (
ε −

δj

m

)−δj+1/2
> constant > 0, n1 < j ≤ n,

and (
λn1 −

δn1
m

)mλn1−δn1+1/2
λ
mλn1
n1

=

(
1−

δn1

mλn1

)mλn1 (
λn1 −

δn1

m

)−δn1+1/2

=

1− (n− n1)mε −
∑
j6=n1

δj

mλn1


mλn1

λn1 − (n− n1)mε −
∑
j6=n1

δj

m


−(n−n1)mε+

∑
j6=n1

δj+1/2
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≥ constant

[(
1−

(n− n1)ε
λn1

)λn1
(λn1 − (n− n1)ε)

−(n−n1)ε

]m
= constant C∗(ε)−m > 0.

Then by means of Stirling formula n! =
√
2πn(n/e)ne

θ
12n (0 < θ < 1), we have that whenm is big enough

Q0 =
m!
n∏
j=1
dj!
·

n∏
j=1

∑
i∈Λj

asi

dj = √
2πmm+

1
2 e−me

θ
12m

n∏
j=1

√
2πd

dj+
1
2

j e−dje
θj
12dj

·

n∏
j=1

∑
i∈Λj

asi

dj

≤ K1
mm+

1
2

n∏
j=1
d
dj+

1
2

j

·

n∏
j=1

∑
i∈Λj

asi

dj

= K1
mm+

1
2

n1∏
j=1
(mλj − δj)dj+

1
2

n∏
j=n1+1

(mε − δj)dj+
1
2

·

n∏
j=1

∑
i∈Λj

asi

dj

= K1
m−

1
2 (n−1)

n1∏
j=1

(
λj −

δj
m

)mλj−δj+1/2 n∏
j=n1+1

(
ε −

δj
m

)mε−δj+1/2 · n∏
j=1

∑
i∈Λj

asi

dj

≤ K2
C∗(ε)mm−

1
2 (n−1)

n1∏
j=1
λ
mλj
j

n∏
j=n1+1

εmε
·

n∏
j=1

∑
i∈Λj

asi

dj

≤ K3 ·m−
1
2 (n−1) · C∗(ε)mC∗∗(ε)m

n1∏
j=1


∑
i∈Λj
asi

λj


mλj

·

n∏
j=n1+1


∑
i∈Λj
asi

ε


mε

, (16)

where K1, K2 and K3 are appropriate positive constants. Note that for 1 ≤ i ≤ n, 1 ≤ j ≤ n1,

di + 1
dj
≤
m(λi + ε)+ 1
m(λj − ε)

≤

r + (r + 1) max
1≤j≤n1

λj

(r − 1) min
1≤j≤n1

λj
, (17)

by (12) and (15). Let

Q1 =
m!
n∏
j=1
dj!
·

n∏
j=1

∑
i∈Λj

asi

dj (18)

and Q2 be the term of the sum (14) for which in (18) the dj1 and dj2 , for some j1 6= j2 with 1 ≤ j1 ≤ n, 1 ≤ j2 ≤ n1, are
replaced by dj1 + 1 and dj2 − 1 respectively and the other dj’s are kept fixed. Thus

Q1
Q2
=
dj1 + 1
dj2

·

∑
i∈Λj2

asi∑
i∈Λj1

asi
≤ K , (19)

by (11) and (17). Since (19) implies that for any term Q of the sum (14)

Q
Q0
< K 2nmε, (20)
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it follows that whenm is big enough

∑
σ∈ΩEλ(m,ε)

|Jσ |m|s = |J∅|s
∑ m!

n∏
j=1
dj!
·

n∏
j=1

∑
i∈Λj

asi

dj

< Q0 · K 2nmε · (2mε)n · |J∅|s

< K4 ·m
n+1
2 ·

C∗(ε)C∗∗(ε) n1∏
j=1


∑
i∈Λj
asi∑

i∈Λj
at0i


λj

·

n∏
j=n1+1


∑
i∈Λj
asi

ε


ε

· K 2nε


m

≤ K4 ·m
n+1
2 Km
∗

by (16), (20) and (13), where K4 is an appropriate positive constant. Therefore, for any fixed 0 < ε ≤ ε0 we
∞∑

m=m0

∑
σ∈ΩEλ(m,ε)

|Jσ |m|s ≤ K4
∞∑

m=m0

·m
n+1
2 Km
∗
→ 0, asm0 →+∞.

This completes the proof. �

3. Proofs

In this section, we give the proof of Theorem 1.1. We choose a partition, say Λj, j = 1, . . . , n, ofΩ such that each Λj is
contained in some Γi. For example, theΛis can be taken as the join of the partitions {Γi,Γ ci }, i = 1, 2, . . . , k, i.e.,

{Λ1,Λ2, . . . ,Λn} := {A1 ∩ A2 ∩ · · · ∩ Ak 6= ∅ : Ai ∈ {Γi,Γ ci }}.

Set Ii = {j : Λj ⊆ Γi, 1 ≤ j ≤ n}, 1 ≤ i ≤ k. Then Γi =
⋃
j∈Ii

Λj and {Λj : j ∈ Ii} is a partition of Γi. Let

H def=

{
Eλ = (λ1, . . . , λn) ∈ Ξn :

(∑
j∈I1

λj, . . . ,
∑
j∈Ik

λj

)
∈ A

}
. (21)

In (4), with A and Γjs replaced, respectively, by H and Λis we can define M̂H in the same way. Clearly, M̂H 6= ∅ if and only
if H 6= ∅ (just simply by Law of Large Number). We claim that M̂A 6= ∅ if and only if H 6= ∅. The sufficiency is clear since
M̂A ⊇ M̂H (in general, the inclusion is proper). On the other hand, take σ ∈ M̂A(6= ∅) and denote λ

(m)
j = f (σ ,Λj,m), j =

1, 2, . . . , n. Then

(λ
(m)
1 , . . . , λ(m)n ) ∈ Ξn and lim

m→∞

∑
j∈Ii

λ
(m)
j = lim

m→∞
f (σ ,Γi,m) = ci, i = 1, 2, . . . , k,

where (c1, . . . , ck) ∈ A. Thus, for any ε > 0 the compact set Lε := {(λ1, . . . , λn) ∈ Ξn : ci−ε ≤
∑
j∈Ii

λj ≤ ci+ε, 1 ≤ i ≤ k}
is not empty. Therefore, ∩ε>0 Lε = {(λ1, . . . , λn) ∈ Ξn :

∑
j∈Ii

λj = ci, 1 ≤ i ≤ k} is not empty. For each (λ1, . . . , λn) ∈ H ,
let

Z(x) =
n∑
j=1

λj log
∑
i∈Λj

axi −
n∑
j=1

λj log λj, (22)

with the convention 0 log 0 = 0, as before. It is easy to see that the function Z(x) has a unique zero, denoted by x(λ1, . . . , λn),
in [0, ξ ]where ξ is defined by

∑r
i=1 a

ξ

i = 1, since Z(x) is strictly decreasing with Z(0) ≥ 0 and Z(ξ) ≤ 0. This allows us to
define a continuous function x(λ1, . . . , λn) on H by the implicit function theorem. Denote

x∗ = sup
(λ1,...,λn)∈H

x(λ1, . . . , λn). (23)

The supremum can be reached when H is compact. Then, for s > x∗ we have

n∏
j=1

λ
λj
j >

n∏
j=1

∑
i∈Λj

asi

λj

for all (λ1, . . . , λn) ∈ H. (24)

Lemma 3.1. Let H and x∗ be defined as in (21) and (23), respectively. Let H be compact. Then for any s > x∗ there exist finite
probability vectors Eλi = (λ

(i)
1 , . . . , λ

(i)
n ) ∈ H, i = 1, 2, . . . , h̄ such that



Author's personal copy

W. Li, Y. Yao / Nonlinear Analysis: Real World Applications 10 (2009) 3240–3252 3249

M̂A ⊆
∞⋃
m0=1

∞⋂
m=m0

h̄⋃
i=1

ΩEλi(m, ε0(s,
Eλi)),

where ε0(s, Eλ) is given in Lemma 2.2 for Eλ ∈ H.

Proof. Since
{
×
n
j=1(λj − ε0(s, Eλ), λj + ε0(s, Eλ)) : Eλ ∈ H

}
is an open covering of H , we can choose finite probability vectors,

say Eλi = (λ
(i)
1 , . . . , λ

(i)
n ) ∈ H, i = 1, 2, . . . , h̄ such that

H∗ def=
h̄⋃
i=1

(
n
×
j=1
(λ
(i)
j − ε0(s, λ

(i)
j ), λ

(i)
j + ε0(s, λ

(i)
j ))

)
⊇ H.

For each p ∈ N and each Ec = (c1, . . . , ck) ∈ A, consider equations

λj ≥ 0
n∑
j=1

λj = 1

ci −
1
p
≤

∑
j∈Ii

λj ≤ ci +
1
p
, 1 ≤ i ≤ k.

(25)

By Tp,Ec we denote the set of solutions to (25). Then H ⊆
⋃
Ec∈A Tp,Ec . Note that the distance between H and (H

∗)c is positive.
Therefore, there exists a p0 such that for p ≥ p0

H ⊆
⋃
Ec∈A

Tp,Ec ⊆ H∗. (26)

In the following, we fix such a p. Now we need to prove that for each σ ∈ M̂A there exists anm0(σ ) such that

σ ∈

h̄⋃
i=1

ΩEλi(m, ε0(s,
Eλi)) form ≥ m0(σ ). (27)

For a given σ ∈ M̂A, there exists a Ec = (c1, . . . , ck) ∈ A such that

f (σ ,Γj) = cj, 1 ≤ j ≤ k.

Thus, there exists anm0(σ ) such that for allm ≥ m0(σ )

cj −
1
p
<
∑
i∈Ij

f (σ ,Λi,m) < cj +
1
p
, 1 ≤ j ≤ k. (28)

So (f (σ ,Λi,m))ni=1 ∈ Tp,Ec , leading to (27) by (25), (26), (28) and (9). �

Remark. In fact, a stronger result holds, i.e., M̂A ⊆
⋃
∞

m0=q
⋂
∞

m=m0

⋃h̄
i=1ΩEλi(m, ε0(s,

Eλi)) for any positive integer q. We only
need to choosem0(σ ) ≥ q for each σ ∈ M̂A in the above proof.

Lemma 3.2. Let x∗ be defined as in (23). If A is compact, then dimP MA ≤ x∗.
Proof. It suffices to show dimP MA ≤ s for any s > x∗. Note that H is compact by (21) and the compactness of A. Now for a
fixed s > x∗, by Lemma 3.1 there exist h̄ probability vectors Eλi = (λ

(i)
1 , . . . , λ

(i)
n ) ∈ H, 1 ≤ i ≤ h̄ such that

M̂A ⊆
∞⋃
m0=1

∞⋂
m=m0

h̄⋃
i=1

ΩEλi(m, ε0(s,
Eλi)).

Denote Gm0 =
⋂
∞

m=m0

⋃h̄
i=1
⋃
τ∈ΩEλi

(m,ε0(s,Eλi))
Jτ |m. Then for each x ∈ Gm0 there exists a σ ∈ Ω

N (one of its location codes)

satisfying: for eachm ≥ m0 there exists 1 ≤ i ≤ h̄ such that

λ
(i)
j − ε0(s, Eλi) ≤ f (σ ,Λj,m) ≤ λ

(i)
j + ε0(s, Eλi) for all 1 ≤ j ≤ n.

Therefore, Gm0 is increasing andMA ⊆
⋃
∞

m0=1
Gm0 . So we only need to prove dimP Gm0 ≤ s for eachm0. Let

Gm
def
= {Jτ |m : τ ∈ ΩEλi(m, ε0(s,

Eλi)), i = 1, . . . , h̄}, m ∈ N.

Then for any h ≥ m0, Gm0 ⊆
⋃
J∈Gh
J . Moreover, G≥h

def
= {J ∈ Gm : m ≥ h} is a Vitali covering of Gm0 .
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Now we fix m0 and consider the J-type packing of Gm0 . For h ∈ N, denote δh = ahmin|J∅|. Let J
def
= {Jσ : σ ∈ A} (recall

A ⊆ Ω∗) be a J-type δh-packing of Gm0 with h ≥ m0. Note that |σ | ≥ h for each σ ∈ A. We classify the elements of J into
two classes, denoted by J1 and J2. For a Jσ ∈ J, if Jσ ∈ G≥h then put it in J1, otherwise put it in J2. We extend the collection
G≥h so that it contains all elements of J2. For each Jτ |m ∈ G≥h, let J̃τ |m be the collection of component sets intersecting Jτ |m
with diameter lying in (|Jτ |m+1|, |Jτ |m|]. Then
(P1) Jτ |m ∈ J̃τ |m;
(P2) #J̃τ |m ≤ ξ ∗ where the positive number ξ ∗ is independent of the choice of Jτ |m. This can be seen by the discussion in

Section 1, or by means of [9, Lemma 9.2].
The extended collection, denoted by G̃≥h, of G≥h is defined as the union of all J̃τ |m. We claim that J2 ⊆ G̃≥h. For each

fixed Jσ ∈ J2, take an x ∈ Jσ ∩ Gm0 (this intersection is not empty from the definition of a packing). For this x, it has a
location code τ lying in

⋂
∞

m=m0

⋃h̄
i=1ΩEλi(m, ε0(s,

Eλi)). Since Jτ |m ∈ G≥h for allm ≥ h, there exists a unique n ≥ h such that
|Jσ | ∈ (|Jτ |n+1|, |Jτ |n|], leading to Jσ ∈ J̃τ |n (note that Jσ ∩ Jτ |n ⊇ {x} is not empty). Thus∑

σ∈A

|Jσ |s ≤
∑
J∈G̃≥h

|J|s ≤ ξ
∑
J∈G≥h

|J|s = ξ
h̄∑
i=1

∞∑
m=h

∑
σ∈ΩEλi

(m,ε0(s,Eλi))

∣∣Jσ |m∣∣s .
By Lemma 2.2 and (24), we have P̃ sδh(Gm0) ≤ 1 when h is big enough. Thus

P̃ s(Gm0) ≤ P̃ s0(Gm0) ≤ 1,

yielding dimP Gm0 ≤ s by Lemma 2.1. �

Proof of Theorem 1.1. We divide the proof into two cases.
Case 1. A is compact.
We first show dimH MA ≥ t . Without loss of generality, we suppose t > 0. Since A is compact, the supremum in (6)

can be reached at some probability vector, say at Ep = (p̄1, . . . , p̄r). Without loss of generality, we assume that p̄i > 0 for
1 ≤ i ≤ k1 and p̄i = 0 for k1 + 1 ≤ i ≤ r , where k1 ≤ r . DenoteΩ1 = {1, . . . , k1} ⊆ Ω . LetM = φ(M̂)where

M̂ = {σ ∈ ΩN
1 : f (σ , {i}) = p̄i, 1 ≤ i ≤ k1}. (29)

Then M̂ ⊆ M̂A and soM ⊆ MA. Construct a probability measure µ̂ onΩN
1 by defining for σ ∈ Ω

m
1

µ̂(C(σ )) =
m∏
i=1

p̄σ(i),

where, as before, C(σ ) = {τ ∈ ΩN
1 : τ |m = σ } is the cylinder set with the base σ . Let µ on F be the image measure of µ̂

under φ. By Birkhoff’s Ergodic theorem (cf. [18]) or Law of Large Number, we have for µ̂− a.e.σ ∈ ΩN
1

f (σ , {i}) = p̄i, 1 ≤ i ≤ k1.

Therefore, µ̂(M̂) = µ(M) = 1. Now for σ ∈ Ω∗1 , write a(σ ) =
∏|σ |
`=1 aσ(`) and p̄(σ ) =

∏|σ |
`=1 p̄σ(`). Then for any σ ∈ M̂ , it is

easy to verify that

lim
n→∞

log p̄(σ |n)
log a(σ |n)

=

k1∑̀
=1
p̄` log p̄`

k1∑̀
=1
p̄` log a`

=

r∑̀
=1
p̄` log p̄`

r∑̀
=1
p̄` log a`

= t.

Fix 0 < ε < t . LetM(m)
= φ(M̂(m))where

M̂(m)
=

{
σ ∈ M̂ :

log p̄(σ |n)
log a(σ |n)

> t − ε for all n ≥ m
}
. (30)

Then

1 = µ̂(M̂) = lim
m→∞

µ̂(M̂(m)) and 1 = µ(M) = lim
m→∞

µ(M(m)).

We fix an m such that µ(M(m)) > 0. Let µ̂m be the restriction of µ̂ to M(m) and let µm be the induced measure on M(m) of
µ̂m by φ, i.e., for any Borel set A ⊆ M(m)

µm(A) = µ̂m(φ−1(A)) = µ̂(φ−1(A) ∩ M̂(m)).



Author's personal copy

W. Li, Y. Yao / Nonlinear Analysis: Real World Applications 10 (2009) 3240–3252 3251

By BR(x)we denote the closed ball with center at x and radius R. Let 0 < R < ammin. For each σ ∈ M̂
(m) there exists a positive

integer h(σ , R) such that

aminR < a(σ |h(σ , R)) ≤ R. (31)

Note that h(σ , R) > m andwriteW = {σ |h(σ , R) : σ ∈ M̂(m)
}. For any fixed x ∈ M(m) letW ∗ = {τ ∈ W : Jτ∩BR(x)∩M(m)

6=

∅}. Then there exists a finite positive constant ξ1 independent of the R and x such that #W ∗ ≤ ξ1 by [9, Lemma 9.2]. So

µm(BR(x)) ≤ µ̂m

( ⋃
τ∈W∗

C(τ )

)
≤

∑
τ∈W∗

µ̂(C(τ )) =
∑
τ∈W∗

p̄(τ ) ≤ ξRt−ε,

by (30) and (31). So we get

lim inf
R→0

logµm(BR(x))
log R

≥ t − ε.

By [17, Theorem 1] or [8, Proposition 2.3(a)]

dimH MA ≥ dimH M ≥ dimH M(m)
≥ t − ε,

which implies dimH MA ≥ t if letting ε → 0.
Now we turn to show dimP MA ≤ t . By Lemma 3.2 we only need to check t = x∗. Suppose x∗ is reached at Eλ =

(λ∗1, . . . , λ
∗
n) ∈ H (note that H is compact in this case), i.e., x

∗
= x(λ∗1, . . . , λ

∗
n). By (22),

n∑
j=1

λ∗j log
∑
i∈Λj

ax
∗

i −

n∑
j=1

λ∗j log λ
∗

j = 0.

RecallΛj, j = 1, . . . , n is a partition ofΩ . For each ` ∈ Ω , take

p` = (ax
∗

` λ
∗

j )/
∑
m∈Λj

ax
∗

m if ` ∈ Λj.

Then (p1, . . . , pr) is a probability vector. Note that Γi =
⋃
j∈Ii

Λj, i = 1, 2, . . . , k. Thus∑
`∈Γi

p` =
∑
j∈Ii

∑
`∈Λj

p` =
∑
j∈Ii

λ∗j for i = 1, 2, . . . , k,

which gives that
(∑

`∈Γ1
p`, . . . ,

∑
`∈Γk
p`
)
=

(∑
j∈I1

λ∗j , . . . ,
∑
j∈Ik

λ∗j

)
∈ A by (21). However,

r∑
`=1

p` log p` = x∗
r∑
`=1

p` log a` +
n∑
j=1

∑
`∈Λj

p`

log λ∗j − log∑
m∈Λj

ax
∗

m


= x∗

r∑
`=1

p` log a` +
n∑
j=1

λ∗j

log λ∗j − log∑
m∈Λj

ax
∗

m


= x∗

r∑
`=1

p` log a`,

implying that x∗ ≤ t by (6). The opposite inequality is direct since we have proved t ≤ dimH MA ≤ dimP MA ≤ x∗.
Case 2. A is not compact.
By Awe denote the closure of A. The following fact is obvious:

t = sup


r∑̀
=1
p` log p`

r∑̀
=1
p` log a`

:

(∑
`∈Γ1

p`, . . . ,
∑
`∈Γk

p`

)
∈ A, p` ≥ 0 and

r∑
`=1

p` = 1


= sup


r∑̀
=1
p` log p`

r∑̀
=1
p` log a`

:

(∑
`∈Γ1

p`, . . . ,
∑
`∈Γk

p`

)
∈ A, p` ≥ 0 and

r∑
`=1

p` = 1

 .
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Thus, dimH MA ≤ dimP MA ≤ dimP MA = t by Case 1. On the other hand, for any 0 < ε < t (we disdain considering the
case t = 0), we take the probability vector (p1, . . . , pr) in the definition of t in (6) such that

r∑̀
=1
p` log p`

r∑̀
=1
p` log a`

≥ t − ε.

As done in (29), we can define a subsetM ⊆ MA such that dimH M ≥ t − ε. �
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