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Abstract

Let C be the homogeneous Cantor set invariant for x → ax and x → 1 − a + ax.
It has been shown by Darst that the Hausdorff dimension of the set of non-
differentiability points of the distribution function of uniform measure on C equals
(dimH C)2 = (log 2/ log a)2. In this paper we generalize the essential ingredient of
the proof of this result. Let Ω = {0, 1, . . . , r}. Let F be a Moran set associated with
{0 < ai < 1, i ∈ Ω} and Ωω = Ω × Ω × · · ·. Let φ be the associated coding map
from Ωω onto F . Fix a non-empty set Γ ⊆ Ω with Γc�6 and let z(σ, n) denote the
position of the nth occurrence of the elements of Γ in σ ∈ Ωω. For given 0 6 ξ 6 1, let

Λ =
{
σ ∈ Ωω: lim sup

n→∞

z(σ, n + 1)
z(σ, n)

= ξ−1

}
, Fξ = φ(Λ),

and

Λ∗ =
{
σ ∈ Ωω: lim sup

n→∞

z(σ, n + 1)
z(σ, n)

> ξ−1

}
, F ∗ξ = φ(Λ∗).

We show that dimP Fξ = dimP F
∗
ξ = dimB Fξ = dimB F

∗
ξ = s with

∑
j∈Ω ai

s = 1, and
dimH Fξ = dimH F

∗
ξ = η where η is such that

ξ log
∑
j∈Ω

aηj + (1− ξ) log
∑
j∈Γc

aηj = 0.

1. Introduction

Let hi(x) = ax + i(1− a), i = 0, 1 with x ∈ [0, 1] and 0 < a < 1
2 . Then there exists

a unique non-empty compact set C ⊂ [0, 1] such that

C = h0(C)
⋃
h1(C).

† Supported by the National Science Foundation of China 10071027.
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It is well known that the Hausdorff dimension of C equals dimH C = −(log 2/log a).
Let µ be the uniform probability measure on C. Consider the distribution function
which is often referred to as the Devil’s staircase (for a = 1

3 ):

F (x) = µ([0, x]), x ∈ [0, 1].

It is easy to check that the derivative of F (x) is zero for all x ∈ [0, 1]\C and the
upper derivative of F (x) is infinite on C. Let S be the set of points at which F (x) is
not differentiable, i.e., the set of points in C at which the lower derivative of F (x) is
finite. S can be decomposed into

S = N+
⋃
N−

⋃
{t: t is an endpoint of C}, (1)

where N+(N−) is the set of non-end points of C at which the lower right (left)
derivative of F (x) is finite. Each t ∈ C can be encoded in the usual way by a 0 − 1
sequence, denoted by {t}. Now let z(t, n) denote the position of the nth zero in {t}.
The set N+ (symmetrically for N−) is characterized by [1] as follows:
[a] if t ∈ N+, then lim supn→∞(z(t, n + 1))/z(t, n) > −(log a/log 2);
[b] if lim supn→∞(z(t, n + 1))/z(t, n) > −(log a/log 2), then t ∈ N+.

By means of the above [a] and [b] [1] proves that

dimH S = dimH N
+ =

[
log 2
log a

]2

= (dimH C)2.

One of the results of this paper is that S is not a regular set: we will prove that the
packing dimension of S, dimP S = dimH C.

For non-homogeneous Cantor setsC it is much more difficult to determine dimH S.
The most studied non-homogeneous Cantor set in R is the set C satisfying C =⋃r
j=0 hj(C) with a disjoint union, where the hjs are similitude mappings with ratios

0 < aj < 1. It is well known that dimH C = s with
∑r

j=0 a
s
j = 1. Consider the

self-similar probability measure µ on C corresponding to the probability vector
(as0, a

s
1, . . . , a

s
r). The direct motivation of this paper is trying to determine dimensions

of the set S of non-differentiability of points in C. The dimension formula given in
this paper can be employed to obtain the same results as for the homogeneous Cantor
set case, i.e. dimH S = (dimH C)2 = s2 and dimP S = dimB S = dimH C = s (see [5]).

On the other hand, one can also consider the problem of non-differentiability for
higher dimensional Cantor sets. For example, in the two-dimensional case let the non-
empty compact set C be defined by C =

⋃3
j=0 hj(C), where hj(x, y) = (x, y)A + bj

with the matrix A = diag(a, a), 0 < a < 1
2 , b0 = (0, 0), b1 = (1−a, 0), b2 = (1−a, 1−a)

and b3 = (0, 1−a). Let F (x, y) be the distribution function of the uniform probability
measure on C. Consider the set S of points in C which are not partially differentiable
in the x-direction. A similar decomposition as in (1) can be made for S. Here each
t ∈ C can be encoded by a sequence with symbols from {0, 1, 2, 3}. Now we let z(t, n)
denote the position of the nth occurrence of the elements of the set {0, 3}. One can
check that N+ can also be characterized by the above [a] and [b]. In this special
case our formula (8) yields dimP N

+ = dimB N
+ = −(log 4/log a) and dimH N

+ =
(log 2/log a)2− (log 2/log a). We remark that even although N+ is not a regular set,
Marstrand’s product theorem does apply, and so this result might also be obtained
in that way.
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The sets considered above are special cases of a class of subsets of general Moran

fractals. We will focus on calculating the Hausdorff, packing and box dimension of
subsets of these Moran fractals which are characterized by location codes like that
in [a] and [b] above.

Denote Ω = {0, 1, . . . , r}, where r is a positive integer. We use the following nota-
tion:

(i) Ωω = {σ = (σ(1), σ(2), . . .): 0 6 σ(j) 6 r};
(ii) Ωk = {σ = (σ(1), σ(2), . . . , σ(k)): 0 6 σ(j) 6 r} for k ∈ N and Ω∗ =

⋃∞
k=1Ω

k;
(iii) | · | is used to denote the length of word. For any σ, τ ∈ Ω∗ write

σ ∗ τ = (σ(1), . . . , σ(|σ|), τ (1), . . . , τ (|τ |)), and write τ ∗ σ = (τ (1), . . . , τ (|τ |),
σ(1), σ(2), . . .) for any τ ∈ Ω∗, σ ∈ Ωω;

(iv) σ|k = (σ(1), σ(2), . . . , σ(k)) for σ ∈ Ωω and k ∈ N;
(v) for σ ∈ Ωk, the cylinder set C(σ) with base σ is defined as C(σ) = {τ ∈

Ωω: τ |k = σ} for k ∈ N.
Fixing a non-empty compact set J ⊂ Rn with int J = J and positive real numbers

0 < ai < 1, i = 0, 1, . . . , r, the related Moran set (or Moran fractal) is defined in the
following way. Let also a number c > 0 be given.

Step 1. For each σ ∈ Ωk, k ∈ N, construct a compact set Jσ ⊂ Rn by induction:
(i) A family {Jj : j = 0, 1, . . . , r} of non-overlapping non-empty compact subsets of

J is chosen for k = 1 such that intJj=Jj , |Jj | = aj |J | where | · | denotes the
diameter of a set.

(ii) Suppose that Jσ is given for some σ ∈ Ωk. Take a family {Jσ∗i: i = 0, 1, . . . , r}
of non-overlapping non-empty compact subsets of Jσ such that int Jσ∗i = Jσ∗i,
|Jσ∗i| = ai|Jσ| and Jσ∗i contains an open ball of diameter c|Jσ∗i|.

Step 2. The Moran fractal F associated with {0 < ai < 1, i = 0, 1, . . . , r} and the
Jσ, σ ∈ Ω∗ is defined as the non-empty compact set

F =
∞⋂
k=1

⋃
σ∈Ωk

Jσ. (2)

It is well known that dimH F = dimP F = dimB F = s and F is an s-set, where∑
j∈Ω

asj = 1. (3)

Define φ: Ωω → Rn by

{φ(σ)} =
∞⋂
k=1

Jσ|k. (4)

It is easy to see that φ(Ωω) = F and φ(C(σ)) = F
⋂
Jσ by (2) and φ is a continuous

surjection. Each x ∈ F can be encoded via φ. An infinite sequence σ is called a
location code of x ∈ F if φ(σ) = x. Here we would like to point out that there may
be multiple location codes for some x ∈ F . However the number of location codes for
any x ∈ F is bounded by a positive constant independent of x ∈ F . For convenience
we often use x(k) to denote the kth component of a location code of x ∈ F .

Let hi: Rn → Rn, 0 6 i 6 r. Denote hσ(x) = hσ(1) ◦ · · · ◦ hσ(k)(x) for σ ∈ Ωk

and x ∈ Rn. A Moran fractal is termed as map-specified if there exist similitude
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contractions hi, i = 0, 1, . . . , r, such that Jσ = hσ(J) for any σ ∈ Ω∗. In this case
F is actually the self-similar set determined by {hi, 0 6 i 6 r}, which satisfies the
open set condition with respect to the open set O = int J (i.e.

⋃r
i=0 hi(O) ⊂ O with a

disjoint union on the left) and the coding map φ in (4) can be changed into

{φ(σ)} =
∞⋂
k=1

hσ|k(O).

Now let Γ ⊆ Ω = {0, 1, . . . , r} be non-empty such that Γc�6. Let z(σ, n) denote
the position of the nth occurrence of elements of Γ in σ ∈ Ωω:

z(σ, n) =
{

k, if σ(k) ∈ Γ and #{1 6 i < k:σ(i) ∈ Γ} = n− 1
+∞, if #{1 6 i < +∞:σ(i) ∈ Γ} < n.

(5)

For given 0 6 ξ 6 1, let

Λ =
{
σ ∈ Ωω: lim sup

n→∞

z(σ, n + 1)
z(σ, n)

= ξ−1

}
and Fξ = φ(Λ), (6)

and

Λ∗ =
{
σ ∈ Ωω: lim sup

n→∞

z(σ, n + 1)
z(σ, n)

> ξ−1

}
and F ∗ξ = φ(Λ∗), (7)

where we adopt the convention that 0−1 = +∞ and +∞/+∞ = +∞. It is easy to
check that if σ ∈ Λ (or Λ∗) then for any j ∈ Ω we have j ∗σ ∈ Λ (or Λ∗). This means
that Fξ and F ∗ξ are both dense in F . For any fixed 0 6 ξ 6 1, define the function

T (x) = ξ log
∑
j∈Ω

axj + (1− ξ) log
∑
j∈Γc

axj .

It is easy to verify that T (x) is strictly decreasing in [0, s]. Since T (0) > 0 and
T (s) 6 0, there exists a unique 0 < η 6 s such that T (η) = 0, i.e.

ξ log
∑
j∈Ω

aηj + (1− ξ) log
∑
j∈Γc

aηj = 0. (8)

η is a function η(ξ) of ξ in [0, 1]. It is easy to verify that η(ξ) is strictly increasing
and continuous and η(0) 6 η(ξ) 6 η(1) = s with

∑
j∈Γc a

η(0)
j = 1.

In the present paper, we shall prove:
dimH Fξ = dimH F

∗
ξ = η and dimP Fξ = dimP F

∗
ξ = dimB Fξ = dimB F

∗
ξ = s where

Fξ, F ∗ξ , η and s are defined in (6), (7), (8) and (3), respectively.
Obviously this result can be employed to obtain Darst’s result for dimH N

+. In
fact, for any ε > 0 and ξ = −(log 2/log a) we have F ∗ξ+ε ⊆ N+ ⊆ F ∗ξ if we take
r = 1, Γ = {0} and ai = a for i = 0, 1. Therefore from the continuity of η we
obtain letting ε ↓ 0 that dimH N

+ = dimH F
∗
ξ = (log 2/log a)2. In addition we have

dimB N
+ = dimP N

+ = −(log 2/log a).

2. Dimensions of Fξ and F ∗ξ
In this section the dimensions of Fξ and F ∗ξ are obtained. The following proposition

will be employed. Part (A) can be found in [2] for the more general Moran fractal
structure and a simplified proof is given for this special case in [4].
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Proposition 2·1. Let M = φ(

∏∞
i=1 Ωi) where Ωi ⊆ Ω, i ∈ N. Let d(k) be such that

k∏
i=1

(
∑
j∈Ωi

ad(k)
j ) = 1.

Then (A) dimHM = lim inf k→∞ d(k) (see [2]),
and (B) dimBM = dimP M = lim supk→∞ d(k) (see [3]).

Theorem 2·2. We have dimH Fξ = dimH F
∗
ξ = η and dimP Fξ = dimP F

∗
ξ =

dimB Fξ = dimB F
∗
ξ = s where Fξ, F ∗ξ , η and s are defined in (6), (7), (8) and (3),

respectively.

Proof. Let Hd(·) denote d-dimensional Hausdorff measure. The case ξ = 1 is sim-
ple, and left to the reader. We now consider the case 0 < ξ < 1. We shall first give
upper bounds for the Hausdorff dimension of F ∗ξ . This part of the proof is similar to
that in [1].

Note that 0 < η < s when 0 < ξ < 1. At first we will show dimH F
∗
ξ 6 η.

Fix an arbitrary d with s > d > η. Note that T (d) < 0, i.e.

ξ log
∑
j∈Ω

adj + (1− ξ) log
∑
j∈Γc

adj < 0. (9)

Note that from (9) and d 6 s it follows that

− log
∑
j∈Γc

adj > 0. (10)

Thus we get

log
∑

j∈Ω a
d
j

− log
∑

j∈Γc a
d
j

< ξ−1 − 1,

by (9) and (10). Let t > 0 be such that

log
∑

j∈Ω a
d
j

− log
∑

j∈Γc a
d
j

= ξ−1 − 1− t. (11)

We will define a positive integer n∗ (depending on d); for k > n∗, we will specify uk
so that
(I) the limsup of the sets

Ek = {x:x(i) ∈ Γc for k < i 6 uk}, k > n∗

satisfies the formula

F ∗ξ ⊆ lim sup
k→∞

Ek =
∞⋂

m=n∗

⋃
k>m

Ek
∆
= E∞, (12)

(II) the inequality (
∑

j∈Ω a
d
j )
k
(
∑

j∈Γc a
d
j )
uk−k 6 k−2 is satisfied.

Taking logs in (II) and using (10), we obtain the equivalent inequality:

log
∑

j∈Ω a
d
j

− log
∑

j∈Γc a
d
j

+
2 log k

−k log
∑

j∈Γc a
d
j

+ 1 6 uk
k
. (13)
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Choose n∗ large enough to assure that when k > n∗

2 log k
−k log

∑
j∈Γc a

d
j

<
t

2
and

1
k
<
t

8
. (14)

Now for each k > n∗ we can choose uk such that

ξ−1 − t

2
<
uk
k

and
uk − 1
k

6 ξ−1 − t

2
. (15)

By (15) and the second inequality of (14), we obtain

ξ−1 − t

2
<
uk
k
< ξ−1 − t

4
. (16)

According to (11), (14) and the first inequality in (16), for k > n∗

log
∑

j∈Ω a
d
j

− log
∑

j∈Γc a
d
j

+
2 log k

−k log
∑

j∈Γc a
d
j

+ 1 < ξ−1 − 1− t +
t

2
+ 1 <

uk
k
.

So (13), i.e. the inequality in (II), is satisfied for k > n∗.
To verify (12), we need to show that for each point x ∈ F ∗ξ with location code

σ there exists a strictly increasing sequence {ki: i ∈ N} of positive integers such
that x ∈ Eki . By the definitions (5) and (7) of z(σ, n) and F ∗ξ , for each x ∈ F ∗ξ with a
location code σ ∈ Λ∗ there are two different cases, i.e. #{1 6 i < +∞:σ(i) ∈ Γ} = +∞
or #{1 6 i < +∞:σ(i) ∈ Γ} < +∞. In the former case, there exists a strictly
increasing sequence {ni: i ∈ N} of positive integers such that z(σ, n1) > n∗ and

z(σ, ni + 1)
z(σ, ni)

> ξ−1 − t

4
. (17)

Taking ki = z(σ, ni) and using (17) as well as the second inequality in (16), we have
z(σ, ni + 1) > uki , which implies that x ∈ Eki . In the latter case, it is easy to see that
x ∈ Ek for all k > max{1 6 i < +∞:σ(i) ∈ Γ}.

On the other hand, since each Ek can be covered with {Jσ∗τ :σ ∈ Ωk and τ =
(τ (1), τ (2), . . . , τ (uk − k)) with τ (j) ∈ Γc for j = 1, . . . , uk − k}, for any m > n∗ we
have

Hd(E∞) 6Hd(
⋃
k>m

Ek) 6 |J |d
∑
k>m

[(
∑
j∈Ω

adj )
k
(
∑
j∈Γc

adj )
uk−k

] 6 |J |d
∑
k>m

k−2,

by (I) and (II). So we have Hd(E∞) = 0 by letting m→∞. Consequently, Hd(F ∗ξ ) =
0 which implies dimH F

∗
ξ 6 η.

We now turn to the second part of the proof of the case 0 < ξ < 1, where we
shall show dimH Fξ > η and dimP Fξ > s by proving that for any fixed 0 < d < η
and 0 < d∗ < s there exists a subset E = E(d, d∗) of Fξ such that dimH E > d and
dimP E > d∗. Let the constant c be defined by

c = max{log #Γ, log #Γc, | log
∑
j∈Γ

asj |, | log
∑
j∈Γc

asj |}. (18)

Note that both functions T (x) and G(x)
∆
= log

∑
j∈Ω a

x
j are strictly decreasing with

T (η) = 0 and G(s) = 0. Therefore we can choose a 0 < ε < 1 which satisfies:
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[ε1] the solutions x of the following inequality will be in [d,+∞)

T (x) = ξ log
∑
j∈Ω

axj + (1− ξ) log
∑
j∈Γc

axj 6
6cε

1− ε ; (19)

[ε2] the solutions x of the following inequality will be in [d∗,+∞)

log
∑
j∈Ω

axj 6
5cε

1− ε ; (20)

[ε3] with t being such that
∑

j∈Γc a
t
j = 1,

4cε
1− ε < log (1 +

∑
j∈Γ

atj). (21)

Given any sequence of integers 0 < k1 < u1 < u1,1 < · · · < u1,n1 < k2 < u2 <
· · · < ki < ui < ui,1 < ui,2 < · · · < ui,ni < ki+1 < ui+1 < · · ·, we construct a set E as
follows:

E = {x:x(ki), x(ui), x(ui,j) ∈ Γ and x(k) ∈ Γc for ki < k < ui, i > 1, 1 6 j 6 ni}.
The set E is a closed subset of F . In the definition of E, when ki < k < ui, x(k) is a
restricted Γc-choice; when k = ki, ui and ui,j , x(k) is a restricted Γ-choice; and the rest
of x(k) is a free choice, i.e. Ω-choice. In the following we specify ki, ui, ui,1, . . . , ui,ni
depending on ε to construct the set E = Eε.

By NΩ(k), NΓ(k) and NΓc(k) we denote the number of Ω-, Γ- and Γc-choices among
the first k entries in a location code of a point in E respectively. Thus we have
NΩ(k) +NΓ(k) +NΓc(k) = k for k ∈ N. Note that for ki− 1 6 j 6 ui, NΩ(j) = NΩ(ki).
Now define a sequence of positive integers bi, i ∈ N, by

bi+1 = biξ
−1 + θi, where i ∈ N and 0 6 θi < 1, (22)

with b1 = 6. Thus the bi increase strictly and tend to +∞. We take the sequence of
positive integers k1, u1, u1,1, . . . , u1,n1 , k2, u2, . . . , in the definition ofE as the sequence
b1, b2, . . .. From the definition of E and (22) it follows that E ⊆ Fξ since

ξ−1 = lim
i→∞

ui
ki
6 lim sup

n→∞

z(σ, n + 1)
z(σ, n)

6 lim sup
i→∞

bi+1

bi
= ξ−1.

We have not yet specified indices ni. Suppose that the nj are defined for j = 1, 2, . . . ,
i − 1, then also ki and ui are determined. Letting ni vary, we have (using Stolz’s
theorem in the second line)

lim
ni→∞

NΩ(ui,ni)
ui,ni

= lim
ni→∞

NΩ(ui) + ui,ni − ui − ni
ui,ni

= 1− lim
ni→∞

ni
ui,ni

= 1− lim
ni→∞

ni − (ni − 1)
ui,ni − ui,ni−1

= 1− lim
ni→∞

1
(ξ−1 − 1)ui,ni−1

= 1.

Therefore noting that we can identify ki+1 with ui,ni+1, we can choose ni such that

NΩ(ki+1) > (1− ε)ki+1. (23)
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Now take E

∆
= Eε corresponding to the choice of ni satisfying (23). According to

Proposition 2·1 we have dimH E = lim inf k→∞ d(k) where d(k) satisfies∑
j∈Ω

ad(k)
j

NΩ(k)(∑
j∈Γ

ad(k)
j

)NΓ(k)(∑
j∈Γc

ad(k)
j

)k−NΩ(k)−NΓ(k)

= 1. (24)

Taking logs in (24) we get after some algebra

ξ log
∑
j∈Ω

ad(k)
j + (1− ξ) log

∑
j∈Γc

ad(k)
j =

(
1− ξk

NΩ(k)

)
log

∑
j∈Γc

ad(k)
j

+
ξNΓ(k)
NΩ(k)

(
log

∑
j∈Γc

ad(k)
j − log

∑
j∈Γ

ad(k)
j

)
. (25)

We shall show that there exists an i∗ such that d(k) > dwhen i > i∗ and ki 6 k < ki+1.
Then dimH E > d by Proposition 2·1. At first note that since 0 6 d(k) 6 s, we have∑

j∈Ω a
d(k)
j > 1 and therefore by (24) we have d(ui,j) 6 d(k) when ui,j < k < ui,j+1,

0 6 j 6 ni, with ui,0
∆
= ui and ui,ni+1

∆
= ki+1. So we only need to consider d(k) for

ki 6 k 6 ui and k = ui,j . When ki 6 k 6 ui, then NΩ(k) = NΩ(ki) and hence the
equality (25) can be written as

T (d(k)) = ξ log
∑
j∈Ω

ad(k)
j + (1− ξ) log

∑
j∈Γc

ad(k)
j

=
(

1− ξk

NΩ(ki)

)
log

∑
j∈Γc

ad(k)
j

+
ξNΓ(k)
NΩ(ki)

(
log

∑
j∈Γc

ad(k)
j − log

∑
j∈Γ

ad(k)
j

)
. (26)

Note that by (22) and (23)

(1− ε)ki 6 NΩ(ki) 6 ki and ui = ξ−1ki + θ for some 0 6 θ < 1. (27)

So we have

NΓ(k)
NΩ(ki)

=
k −NΩ(ki)−NΓc(k)

NΩ(ki)
6 ki −NΩ(ki) + 1

NΩ(ki)
6 ε

1− ε +
1

NΩ(ki)
, (28)

and

1− kξ

NΩ(ki)
> 1− uiξ

NΩ(ki)
= 1− ki + ξθ

NΩ(ki)
> 1− 1

1− ε −
1

NΩ(ki)

= − ε

1− ε −
1

NΩ(ki)
, (29)

by (27). Now because ui →∞, also ki →∞ and by (23), we can take i∗ by requiring
that when i > i∗,
[i∗1] for NΩ(ki) we have

1
NΩ(ki)

6 ε

1− ε ; (30)
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[i∗2] for ui we have

(ξ−1 − 1)ui > 1 +
max{| log

∑
j∈Γ a

d
j |, log (#Γ)}

log
∑

j∈Ω a
d
j

. (31)

Note that when i > i∗ and ki 6 k 6 ui, we have log
∑

j∈Γc a
d(k)
j < 0. Otherwise

suppose that log
∑

j∈Γc a
d(k)
j > 0, i.e., d(k) 6 t with

∑
i∈Γc a

t
i = 1. Thus from (26),

(28), (18) and (30) it follows that

log

(
1 +

∑
j∈Γ

atj

)
= log

∑
j∈Ω

atj 6 log
∑
j∈Ω

ad(k)
j

=
(

1− k

NΩ(ki)

)
log

∑
j∈Γc

ad(k)
j +

NΓ(k)
NΩ(ki)

(
log

∑
j∈Γc

ad(k)
j − log

∑
j∈Γ

ad(k)
j

)

6 NΓ(k)
NΩ(ki)

(
log

∑
j∈Γc

ad(k)
j − log

∑
j∈Γ

ad(k)
j

)
6 4cε

1− ε ,

which contradicts (21). Therefore when i > i∗ and ki 6 k 6 ui, from (26), (29), (18),
(28) and (30) it follows that

T (d(k)) = ξ log
∑
j∈Ω

ad(k)
j + (1− ξ) log

∑
j∈Γc

ad(k)
j

=
(

1− ξk

NΩ(ki)

)
log

∑
j∈Γc

ad(k)
j +

ξNΓ(k)
NΩ(ki)

(
log

∑
j∈Γc

ad(k)
j − log

∑
j∈Γ

ad(k)
j

)

6
(
− ε

1− ε −
1

NΩ(ki)

)
log

∑
j∈Γc

ad(k)
j

+
ξNΓ(k)
NΩ(ki)

(
log

∑
j∈Γc

ad(k)
j − log

∑
j∈Γ

ad(k)
j

)
6 6cε

1− ε ,

i.e. d(k) > d by (19).

This takes care of k with ki 6 k 6 ui. But actually, when i > i∗, d(ui,j) > d also
holds for all j = 1, 2, . . . , ni. Otherwise, suppose d(ui,j∗) < d for some 1 6 j∗ 6 ni.
Taking k = ui and ui,j∗ in (24), we get∑

j∈Ω

ad(ui)
j

NΩ(ui)(∑
j∈Γ

ad(ui)
j

)NΓ(ui)(∑
j∈Γc

ad(ui)
j

)NΓc (ui)

= 1, (32)

and ∑
j∈Ω

a
d(ui,j∗ )
j

NΩ(ui,j∗ )(∑
j∈Γ

a
d(ui,j∗ )
j

)NΓ(ui,j∗ )(∑
j∈Γc

a
d(ui,j∗ )
j

)NΓc (ui,j∗ )

= 1. (33)
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Since d(ui) > d > d(ui,j∗), NΓc(ui,j∗) = NΓc(ui), NΓ(ui,j∗) = NΓ(ui)+j∗ andNΩ(ui,j∗) =

NΩ(ui) +
∑j∗−1

k=0 ((ξ−1 − 1)ui,k + θi,k − 1) with ui,0
∆
= ui, it follows from (32) and (33)

that ∑
j∈Ω

a
d(ui,j∗ )
j


∑j∗−1
k=0 ((ξ−1−1)ui,k+θi,k−1)(∑

j∈Γ

a
d(ui,j∗ )
j

)j∗
< 1, (34)

and also since d(ui,j∗) < d < s we have∑
j∈Ω

a
d(ui,j∗ )
j > 1. (35)

Therefore (34), (35) and the monotone increasing of ui,k, k = 0, . . . , j∗ − 1, imply

(ξ−1 − 1)ui − 1 6
∑j∗−1

k=0 ((ξ−1 − 1)ui,k + θi,k − 1)
j∗

<
− log

∑
j∈Γ a

d(ui,j∗ )
j

log
∑

j∈Ω a
d(ui,j∗ )
j

6
| log

∑
j∈Γ a

d(ui,j∗ )
j |

log
∑

j∈Ω a
d(ui,j∗ )
j

6
max{| log

∑
j∈Γ a

d
j |, log (#Γ)}

log
∑

j∈Ω a
d
j

,

which is impossible by (31). Thus we complete the proof of dimH E > d for the subset
E of Fξ. Since d < η was arbitrary, and since Fξ ⊆ F ∗ξ it now follows by combining
this result with the first part of the proof that dimH Fξ = dimH F

∗
ξ = η.

Finally taking k = ki in (25) and noting that −(ε/1− ε) 6 1 − (ki/NΩ(ki)) 6 0,
then when i > i∗ we have

log
∑
j∈Ω

ad(ki)
j =

(
1− ki

NΩ(ki)

)
log

∑
j∈Γc

ad(ki)
j

+
NΓ(ki)
NΩ(ki)

(
log

∑
j∈Γc

ad(ki)
j − log

∑
j∈Γ

ad(ki)
j

)
6 5cε

1− ε ,

by (28), (30) and (18). It follows from (20) that d(ki) > d∗ if i > i∗. By Proposition 2·1
it follows that dimP E = dimBE > d∗. Consequently we get dimP F

∗
ξ = dimBF

∗
ξ =

dimP Fξ = dimBFξ = s. The denseness of Λ and Λ∗ in Ωω implies that dimBF
∗
ξ =

dimBFξ = dimBF = s.

This ends the proof of the case 0 < ξ < 1. We now consider ξ = 0. In this case
F0 = F ∗0 . That dimH F0 > η, where η satisfies

∑
j∈Γc a

η
j = 1, follows again from

Proposition 2·1 by constructing an M contained in F0 of type M = φ(
∏∞
i=1 Ωi) that

has Hausdorff dimension η. In fact define M by requiring that Ωi = Γ if i = 2k
2

and Ωi = Γc for i � 2k
2
. That dimH F0 6 η follows from the case 0 < ξ < 1 by

using continuity of T and the fact that F0 ⊆ F ∗1/k for k = 1, 2, . . . . To prove that
dimP F0 = s one can proceed similarly to the case 0 < ξ < 1, but now constructing
E = Eε = {x:x(ki) ∈ Γ and x(k) ∈ Γc for ki < k 6 ui, i > 1}, which has ui = (i+1)ki
and NΩ(ki+1) > (1− ε)ki+1 for all i.
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