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Preface

In this book we will look at the interaction between two fields of math-
ematics: number theory and ergodic theory (as part of dynamical sys-
tems) The subject under study is thus part of what is known in France

s Théorie Ergodique des Nombres, and consists of a family of series
expansions of numbers in the unit m[ervai [0, 1] with their ‘metrical

properties.” So the questions we want to study are number theoretical
in nature, and the answers will be obtained with the help of ergodic
theory. That i1s, we will view these expansions as iterations of an ap-
propriate measure-preserving transformation on [0,1], which will then
be shown to be ergodic. The number-theoretical questions will be refor-
mulated in the language of ergodic theory. What it means to be ergodic,
or—in general—what the basic ideas behind ergodic theory entail, will
be explained along the way.

This book grew out of a course given in 1996 at George Wash-
ington University, Washington, DC, during the Summer Program for
Women in Mathematics, sponsored by NSA. Our aim was not to write
yet another book on ergodic theory (there are already several outstand-
ing books, most of them mentioned in these pages), but to introduce
first-year graduate students to a dynamical way of thinking. Conse-
quently, many classical concepts from ergodic theory are either briefly
mentioned, or even left out. In this book we focus our attention on easy
concepts like ergodicity and the ergodic theorem, and then apply these

ix



X Preface

concepts to familiar expansions to obtain old and new results in an ele-
gant and straightforward manner.

Clearly this means that a number of concepts from probability and
measure theory will be used. In our set-up we first introduce these, in—
we hope and think—an informal and gentle way.

We thank the directors Murli M. Glmta Robbie Robinson an
the Summer Program for Women in Mat
the participants Alissa Andreichuk, Christine Collier, Amy Cottrell
Lisa Darlington, Christy Dorman, Julie Frohlich, Molly Kovaka, Renee
Yong, Ran Liu, Susan Matthews, Gail Persons, Jakayla Robbins, Beth
Samuels, Elizabeth Trageser, Sharon Tyree, Meta Voeiker and Joyce
Williams of this summer program, who were faced with a preliminary
version of this book. Their remarks, comments, improvements and en-
thusiasm helped us tremendously to improve the original notes.

We also thank Ken Ross and Harold Boas of the MAA, whose con-

structive criticism, Qham observations and nanence c‘hanged the origoi-

L ILEL D11 UaLI Vatliuiloy Al liv 5t

nal manuscript into a readable text.

Karma Dajani
Utrecht, The Netherlands

Cor Kraaikamp
Delft, The Netherlands



CHAPTER 1
Introduction

Let x be a real number from the unit interval [0,1). As is well known,
x can be written as

o0
™ ak()C)

IOk ’ (l°l)

X =
k=1

where ax = ax(x) € {0,1,...,9} for k > 1. We will denote (1.1)
by x = .ajay...ak.... This expansion of x, the so-called decimal
expansion, 1s unigue 1f we do not allow infinite expansions withay =9
from some ko on, or conversely, if we allow only infinite expansions
So for example we can write the (rational) number x = 1072 in the
following two ways, as either .01 or .0099999...99999....

Decimal expansions have become such an integral part of our
daily Iife that it takes some thought to realize that these expansions are
mysterious objects. One quickly stumbles upon easy questions like:
Why is the decimal expansion of % infinite, while the expansion of %
is finite? and Why is a number rational if and only if its decimal ex-
pansion is eventually-periodic? Harder questions are: In an arbitrary
number why are 10% of the digits equal to 7? and What percentage of
the digits of m are equal to 7? A third hard question could be: Is there
another/better way to represent numbers?

In this book we will look at the first and third hard questions (this
does not imply, however, that we will ignore easy questions; in fact,

often easy questions turn out to be pretty hard!). Essential in dealing
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2 Introduction

with these questions will be (the interplay of) techniques from num-
ber theory and ergodic theory. It should be noted that the second hard
question is beyond the current state of affairs in mathematics; even if
we replace 7 by +/2 nothing is known!

1.1 Decimal expansions of rational numbers

In this section we will see that the decimal expansion of a ra-
tional number x can easily be characterized: it is either finite or
eventually-periodic. Conversely, if the decimal expansion of x is finite
or eventually-periodic, then x is a rational number.

Some examples of finite expansions are

.»)

17

10451
— = .65 and ———— = .005502432 .
20 31250000
while
1 _ ] _
3= 333...= 3 and 3= 076923076923 . - - = .076923

are examples of purely-periodic expansions (the bar indicates the pe-
riod); see below for a formal definition. Examples of eventually-
periodic expansions are

I
[S55Y
o))

N -
S

Exercise 1.1.1. Recall how these expansions can be obtained, and try
a few for yourself. Do you see a pattern? ]

Now assume that x € [0, 1), with finite decimal exnan_cmn X =

.ayaz ---ag, with a; € {0, 1, ,9} and a; # 0. Clearly

ay - 1067 ap - 1052 oo apy - 10 4
10k

€ Q,

=
[

where Q is the set of rationals.



Decimal expansions of rational numbers 3

Next suppose x has an eventually-periodic decimal expansion

X =.41---Qgag41 - A4n,;
in case both £ and n are chosen minimal we call a; - - - a4 the pre-period
of xandas.1---as., the period of x. In case ¢ = Q we call x purelv-
of x and a; |- - agi, the period of x. In case £ e call x purely

periodic, otherwise x is called eventually-periodic.
Setting

y=.ay---a¢ and 2 = .ap41 - Qgyn,

one has that y, z € Q.

Exercise 1.1.2. Using the above notations, and setting w =
.a¢+1 - - - A¢+n, Show that

_ 10"
Tl 1°
Use this to find that
100—¢
X =y+ — Z [ ]

Now suppose that x = p/q, with p € Z and ¢ € N. We moreover
assume (just for convenience) that x € (0, 1) and that (p, g) = 1, i.e,,
p and ¢ are relatively prime. From our ﬁrst two examples one sees that,
if g = kgm ,, L and 1

hara o
—_—k J s VYWIIVIV A AllGu 11t A

has a finite decimal expansion, i.e.,

3 13 13-5 65
20 22.5  22.52 7 102

171951 171951 171951 -2°

31250000  24.59 100

5502432
10°

= .005502432.



4 Introduction

Exercise 1.1.3. Let x = p/q, with p € Z,q € N and (p,q) = 1.
Show that x has a finite decimal expansion if and only if g = 2¥5™,
where k and m are non-negative integers. (]

t n 7
[ 8

' r~) Q 23 97~
LGl US 114Vl

of fractions like TSZ and
algorithm from our pre-high school days, which we now discuss. We
will see that the remainder terms (not the digits in the expansion) play
a key role.

Obviously each remainder term has only g possibilities. Now if we
denote the remainder term after the ith division by r;, where ro = p,
then there exist positive integers k and m such that ry = ry4+m, from

which it follows that

N—

But then one has that

Ak+1 = Qk4+m+1s Qk+2 = Qk+m+2s - -+ s Ak+m+1 = Ck+4+2m+15

since ax+1 = ay+m+1 it follows that the expansion is periodic.
For example, if we apply the division algorithm to 1—54, we find that

2, r4 =06, rs=4, re =12,

ro=5, r1=8, rn=10, r3
and
ai=3,a0=5 a3=7,a4=1, as =4, ag =2, aj = 8.

The seventh remainder term r7 is again 8, and from now on the pattern
starts to repeat itself. We see that k = 2 and m = 6.

The last four examples seem to suggest that x € Q N [0, 1) is
purely-periodic if and only if (g, 10) = 1. For example, note that
(g, 10) = (14, 10) = 2 # 1; indeed, the expansion of 15—4 is not purely-

[P R
peliouic,



Another look at the decimal expansion 5

|

Now suppose that (g, 10) = 1, and let kK and m be as before, i.e.,
rk = rx+m- By the division algorithm one has

10-ri—y=ax-q+rx and 10 rgpem—1 = ksm - 4 + Tk4m
and therefore
10(rk—1 — re+m—1) = q(ak — Akym) - (1.2)
Exercise 1.1.4. Show that (1.2) implies that rx_y = ris+m—1. (Hint:
Recalithat 0 < r; < g orthat 0 < a; < 10). [ ]

Repeating the above argument yields that ro = ry,, i.e., x has
a purely-periodic decimal expansion. Conversely, if the expansion of
p/q is purely-periodic, then all r; > 0. In particular we have 0 < r; <
g, and since ro = p, 10-rg = a)q + ry, it follows from the assumption

(p,q) = 1 that (g, 10) =

1.2 Another look at the decimal expansion

In this section we will show how the decimal digits a, can be obtained
in a dynamical way. This leads us in a natural way to measure theory.
We then take the opportunity to review some basic concepts and results
from measure theory which will be used throughout this book. Also
some terminology from ergodic theory will be discussed.

1.2.1 How are the digits a, obtained?

The idea is to make a partition of [0,1) into intervals of the form
[IO’ 140 ), wherei = 0, 1, ... ,9. Label the interval []'0, "+0') with the
digit ; and write aj(x) = i fo rany x [10, ’+l) To find a; we par-
tition each of the 10 mtervals [’—0 ’—1——-) into 10 pieces of equal length.
This yields intervals [ Tina T{)—, ﬁ + %), 0<i<9and0<j <09.
For x € [{5+ th, 5+ 43) we write ay (x) = i, ap(x) = j. To deter-



mine the third digit, you must subdivide each of [l’—O

Introduction

o141
i 10 T o)

into 10 pieces of equal length, etc.

So, the digits are determined by repeated application of the same
operation, which is subdividing intervals into 10 pieces of the same
length. Let us have another look at this mechanism. Consider the map

T :[0,1) — [0, 1) given by

Tx =10x(mod 1) = {

1
10x , 0< —,
X x<10
1 2
10x — 1 —<x < —,
10 (1.3)
10x -9, —<x<l

(ST

—
- —
Sl ———
Slw F—

e ________ 1 2

rogure 1.1

ol ———

Sl f—

Slo P—oo
3~ —_—
Slee oo
o f—o

ey
1

T 1 __° __ 1 ______ T
ne aecimal map 1



Another look at the decimal expansion 7
In other words, T is given by

= 10x —1i f—
Tx X — I 110 <lO

This process is illustrated in Figure 1.1.
. o0 0 a
Thus, if x = D /7 {or = -@1az---, then Tx = } /7, 5%
.ay---ag---, so that a;(Tx) = az(x) and in general a;(T"x)
an+1(x), where T"x denotes the n-fold application of T to x. Notice
that we mixed here two ways of representing x: as an infinite series,
an 5 on curmblale Can alcA Euvasn~icas 1 14 A
auu as an lllllllllC DCL]UC[ILC Ul b_ylllUUlb SCC aiSO LXErcise l .10 all
the remarks preceding it.
If we denote the greatest integer not exceeding £ by | £ ], then we
clearly have that Tx = 10x — |[10x] = 10x — a)(x), from which it

follows that

(=R

a|(4) 11X
*=~0 "o
aj(x) ayx) T?x

10 102 + 102

aj(x) ag(x) T*x

0 T T ok

Notice that if x = £/10%, then T*x = 0, and

ai{x ar\x
1( )+... k(k).
10 10

If T*x # O for any k > 0, taking limits gives

aj(x) ai(x)
10 + 10X

Thus we see that under iteration of T no infinite string of 9’s can occur
in the expansion of any point. In this respect, all points in [0, 1) have
unique expansions.



8 Introduction

Intuitively, it is clear that for a generic x € [0, 1) one must have
that a| (x) attains any of the values from {0, 1,...,9} with the same

eg s . 1
probability, i.e., 10°

Since the concept of probability measure is one of the basic concepts
of this book, we will give a heuristic introduction to it. Let §2 be the set
of all possible outcomes of an experiment, and let A be any subset of
2 (such a subset is called an event). Assume for the moment that €2 is
at most countable, e.g., 2 = {1, 2, ... ,6} and A = {1}; then we define
P (A), the probability of A, as

dently performed identical experiments. Clearly one should show that
the limit in (1.4) exists, which follows from the Law of Large Numbers
from probability theory; see also Chapter 3, [Bil95] and [Fel71]. Let
2% be the collection of all subsets of §2, also known as the power set of
2. Now P is a set-function from the power set 2% to the interval [0, 1],
satisfying

(i) P(2) =1,
(i) if AN B = @, then P(AU B) = P(A) + P(B).

Exercise 1.2.1. Show that (1) and (i1) follow at once from our heuristic
approach. (]

Exercise 1.2.2. In the above heuristic approach we chose £2
2 6} and A = {1}. Which classical

vV i1iwil

(o)
£
v
2

a

5

a
ll,h,ooo ,\Jl CLLIINE (3 YW 1A Y

mind? If no data are available, how would you choose P(A in that
case? ]

In general one cannot use the above heuristic approach. Obviously
it is impossible to do infinitely many experiments to determine P (A),
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so P(A) has to be chosen, possibly using available data, or from as-
sumptions underlying your experiment. For example, let 2 = [0, 1],
and let 0 < a < b < 1. Then the probability that an arbitrary x € [0, 1]
lies in the interval [a, b] equals

A({a, b]) :== b — a = the length of [a, b], (1.5)

and one has that X satisfies (i) and (ii) for any two intervals A and B in
[0, 1]. In fact A also satisfies

f::\%k TF A A~ nra intasruale Ar AAarnlanante AF tnataruale 1a N 1]
\ll} i1 M1}, ﬂz, « oo €l 11IlC 1 vald Ul LUl lPlC LICIILWD Ul 11l vald 11l l_U, 1]
such that Ay N Ay = ) whenever k # ¢, then
o0 (e,0]
MU An) =2 man
n=l n=l
Exercise 1.2.3. Let A = [0, 1] N Q. Show that A(A) = 0. =

Exercise 1.2.4. Let C) := [0, 1], C2 := [0, 1] \ (%, %), and let C3 :=
C2\ (3, $) U (4, 8)), i.e., C1 is obtained from C, by removing the
middle third interval of C}, and Cj3 is obtained from C, by removing
the middle third interval from each of its two intervals. In general Cp,
is obtained from C,, by removing from each of the 2" ! intervals of Cj,
the middle third interval.

Determine for each n > 1 the length A(C,,) of C,,.

)
(b) Let Coo = [ney Cn; show that A(Co) = 0. m

In general, if X is a set, a family of subsets F of X is said to be a
o -algebra if the following conditions hold

1) X e F;
(1) if A € F, then A€ € F;
(iii) if A1, Ay, ... € F,then A =2, Ap € F.

mL 7 TN\ B S
1

he pair (X, F) is referred to as a measure space.
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Exercise 1.2.5. Let F; for j € J be a family of o -algebras on X, and
let F = (;c; Fj- Show that F is a o -algebra on X. n

Now let A be some collection of subsets of X. We say that the o -
algebra F is generated by A if F is the smallest o -algebra containing
A, and we write ¥ = o (A). In particular, if X = [0, 1], and A is
the collection of intervals (a, b) in [0, 1], then the so-called Borel o-
algebra B is the o-algebra generated by A. An element of B is called
a Borel set. We call A a semi-algebra if (i) A is closed under finite
intersections and (i1) the complement of any set in A is a finite disjoint

union of elements in A.

Exercise 1.2.6. Consider [0, 1) with the Borel o -algebra . Show that
the family A of all half open—half closed intervals [a, b) in [0, 1) is a
generating semi-aigebra for B. [

In the language of measure theory, the concept of probability as
introduced above is called a (normalized) measure. In general, a mea-
sure on (X, F) is a set-function u : F — [0, 0o) satisfying u(¥) =0
and

u (U An) = (A,
n=1 n=1

whenever Ay, Aj, ... is a pairwise disjoint collection from F. We call
the triplet (X, F, u) a finite measure space. We call u a probability
measure if w(X) = 1. In this book all measures under consideration
will be probability measures. A finite measure space (X, F, u) is com-
plete if for every B € F with u(B) = 0 one has C € F for every
C C B.

One can show that A from (1.5) can be extended to a measure on
the Borel o-algebra B on [0, 1], using the well-known Carathéodory
Theorem on extending a measure on a generating semi-algebra to the
whole o -algebra; see [Roy88]. If we also denote this measure by A
then we get what is usually known as the Borel measure (on [0, 1]).

However, the Borel o -algebra is not complete. One can show that the
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cardinality of B is that of the continuum, while the coliection of ali
subsets of the Cantor set C has cardinality equal to the cardinality of
the power set of the continuum. But then there exists a subset of the
Cantor set that is not Borel measurable, and hence B is not complete,
see [KT66] and [Hal50].

One can extend A on a complete o -algebra containing B, known
as the Lebesgue o-algebra L. In fact, £ consists of all sets of the form
BUN, where B € Band N is a subset of a set in B with Borel measure
zero. We extend A to elements of £ as follows:

A*(BUN) = A(B).

To simplify notation, we denote A* again by A, and we call A the
Lebesgue measure on [0, 1]. In the same way any probability space
(X, F, u) can be extended to a complete space (X, C, u*); as above
we also denote u* by . The o -algebra C is called the completion of F

under .

We remark now that every subset of the Cantor set is Lebesgue
measurable. As a result of this one sees that £ and the power set of the

~cnntiniinim ha tha camaoe rardinal THAwuavar Ana ~an ~anctsri~t sann

continuum have the same cardinality. However, one can construct non
Lebesgue measurable subsets of [0, 1], see again [KT66] and [Hal50].

The concept of Borel and Lebesgue o -algebra can be extended in a
natural way to [0, 1]%. One then speaks of the product Borel o -algebra
B x B generated by the open (or semi-open, or closed) rectangles of the
form (a, b) x (c, d) (or the appropriate modification). The correspond-
ing product Borel measure A x A is defined on rectangles (a, b) x (c, d)

by
(A x 1) [(a,b) x (c,d)] = (b —a)(d — ¢).

The completion of B x B under A x A is the product Lebesgue o -algebra
L x L. The extension of A x A on £ x L is also denoted by A x A, and
is called product Lebesgue measure.

The following approximation theorem plays an important role in

g oV Q!

this DOOK for a pI'OOI see [Kl 00|, p. 84.
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Theorem 1.2.7. Let (X, F, i) be a probability space, and let A be a
semi-algebra such that F = o (A). Furthermore, let C be the collection
of all sets that are finite disjoint unions of elements from A. Then for
every B € F = o (A) and for every ¢ > 0 there exists C € C such that
W(BAC) < &. Here BAC denotes the symmetric difference of B and
C, defined by (BUC) \ (BN C).

Let (X, ) and (Y, G) be measure spaces. A function f : X — Y
is said to be measurable if

f~YB):={xeX; f(x) e B}e F,

for any B € G. In particular, if (Y, G) is the the real line with the Borel
o -algebra B, then f is called Borel measurable, or B-measurable.

Remark 1.2.8. It is a well-known theorem in measure theory that f :
X — Y is measurable if and only if f~1(B) € F for every B €
A, where A is a generating semi-algebra of G; see e.g. [Rud87]. In
particular, f : X — R is B-measurable if f~!(a, b) € F for every
interval (a, b). [ |

Exercise 1.2.9. Let (X, F) and (Y, G) be measure spaces and let f :
X — Y be a measurable function. If u is a measure on (X, F), show
that v defined by v(C) = wu (f_l(C)), where C € G, is a measure
on (Y, G). We denote v by f * u and we call it the pull-back or lifted
measure of u. n

Exercise 1.2.10. Let (X, ) be a measure space, and f, : X — R be
a sequence of B-measurable functions. Define g on X by

f(x) = limsup f,(x).

n—>00

Show that f is B-measurable. Show that the same holds for f =
Iiminf,_, o0 fn. =
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Exercise 1.2.11. Let (X, O) be a topological space, where O is the
collection of all open sets of X, and let 7 = o (O). Then F is again
called a Borel o-algebra. Show that every function f : X — R that is
O-continuous is also F-measurable. m

In case (X, F, P) is a probability space (i.e., P is a probability
measure on (X, F)), we usually write 2 instead of X, and measurable
functions are usually called random variables and denoted by capital
letters X, Y, Z, ....

Let us look at [0,]) as a measure sp:
so the Lebesgue measure A[a, b) of any interval [a, b) (or (a, b), (a, b],
etc.) is just the length of the interval, namely b — a. We once more
consider the decimal map 7. Now let [a,b) C [0, 1); we know that
Ma,b) = b —a. Whatis A(T " ![a, b)) = A({x : Tx € [a, b)})? (See
also Figure 1.1.)

To answer this question, consider

9
k a k b
(T a. b)) Ul " 10 10+10,/

270 T10°10 " 10
=b—a=k[a b)

In fact T is measure preserving, which is defined as follows.

Definition 1.2.12. Let (X, F, u) be a probability space. A measurable
transformation T : X — X is measure preserving with respect to |

. . . . . . . .
(onnn)nlontl\v- 11 1€ , ~1VArIiaAnt Ny 11 1€ A 1NVArizant MmosiIC1Iro fnr , \ lf
\Vyyurwevisivise y. po 0 1 LILVRAT LT, UT A 0 T sIAVAT LRI TR AL W A 17

u(T~'A) = u(A) forall A € F.

Remark 1.2.13. In case T is invertible the above definition 1s equiva-
lent to u(TA) = w(A) forall A € F.
=
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The notions of measurability and measure-preservingness of a
transformation 7" on a probability space (X, F, u) are preserved when
one passes to the completion C of F under u.

Lemma 1.2.14. Let (X, F, u) be a probability space, and let the o -
algebra C be the completion of F under u. Then any transformation
T : X — X that is measurable and measure preserving on (X, F, u)
has the same property on (X, C, w).

Proof. Let C € C. We need to show that T-1(C) € C and
w(T~1(C)) = pu(C).

Since C is the completion of F, C has the foorm C = B U D,
with B € F, and D is a subset of a set N € F of u-measure zero.
Since T is measurable and measure preserving on (X, F, u), it follows
that T-1(B), T~ 1(N) € F, and u(T~Y(N)) = 0. Thus T~1(C) =
T-Y(B)UT~ (D) ecC.

By definition of the (extended) measure i on C, one has u(C) =
u(B), and w(T~1(C)) = w(T~'(B)) = wu(B), thus u(C)
u(T=1(C)). =

Remark 1.2.15. Using Theorem 1.2.7 one can show that any map T
on a probability space (X, F, u) is measurable and measure preserving
if u (T~1(A)) = u(A) for any A in a semi-algebra A generating F.
By Lemma 1.2.14, the same holds true if we replace F by its comple-
tion under . In particular any map 7 : [0, 1) — [0, 1) is measurable
and measure preserving on (X, £, u) if u(T~'A) = u(A) for every
interval A C [0, 1); see [Wal82], Theorem 1.1. The above is true if
intervals are replaced by elements of a generating semi-algebra. For in-
stance, the decimal map T is a measure preserving transformation with

respect to Lebesgue measure. L

Let us now consider the so-called cylinder sets (this is the termi-
nology used by ergodic theorists) of rank (or order) n, also known (by
number theorists) as fundamental intervals A, = A(i}, i3, ... ,in) of
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rank n, defined by

A(lhlz’ ... ,in)

= {X € [0’ I)Ial(X) = ilva2(x) = iza"' van(x) = in}s

where 0 <ij <9foreach | < j <n.

Exercise 1.2.16. Show that the above defined cylinders A, form a
]

semi-algebra generating the Borel o -algebra B

For the decimal map T, it is very easy to describe explicitly these

intervals A, and obtain their Lebesgue measure.

Order I:

MAM) = Mlx: () = ip = A (] &, 1] ‘
= X x)=1i}) = —, = —,
' a ([10 10 )) 10
so the first digit a; = a)(x) 1s a random variable that is distributed
according to the discrete uniform distribution on {0, 1 , 9}
Order 2:
MA@, J) = A({x @ ai(x) =1, aa(x) = j})
L ; Lo ST
BRA\RCRRTARTONNT .
1 1
= — = — = AMAW))AA()).
5 = To0 = MADMAG)
In general, we have
Order n:
AMAC, 12, ... 4 1n))
. . : ) I
A([’—'_ lh T I ))
\L 0* 10" " 10 10" J)

1
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1
i

T MAGE))A(A(R)) - - - A(A(R)).

From the above it is now easy to conclude that the digit functions a) (x),
az(x), ..., which are random variables on [0, 1), are independent iden-
tically distributed (we abbreviate this by 1.1.d.) with the same discrete

saw<saa ~—ad KA a Aensnes Sl

uniform distribution on {0, 1, ... , 9}

Definition 1.2.17. A dynamical system is a quadruple (X, F,p,T),
where X is a non-empty set, F is a o-algebra on X, p is a probability
measure on (X, F)and T : X — X is a surjective p-measure preserv-
ing transformation. Further, if T is injective, then we call (X, F, p, T)
an invertible dynamical system.

1frY T
11 \n, J

{ N
\ 1, y Mo
Sequence

T
1

N
e o
W
<)

x,Tx,..., T"x, ...
the T-orbit of x. In case T is invertible, the two-sided T-orbit of x is
e, T_zx, T"x, x, Tx, sz, e
Given two dynamical systems (X, F, p, T) and (Y, C, v, S), what

should we mean by: these systems are the same? On each space there

s  aad S 4

are two important structures:

(1) The measure structure given by the o-algebra and the probability
measure. Note, that in this context, sets of measure zero can be

ignored.
(')\ T fa] A\Iﬂﬂm;f‘ﬂl ctriirtfnire orvuean k\l na MaAaclIra nracarving trang mr_
\l-, 4 11v Uyllidllllvdl Jlluviul v, 61 yuwil U A l111vaoul v tJl\-rO\-fl Vllls L1 All1o1V1l
.
mation

So our notion of being the same must mean that we have a map

1 A ¥4 _T

vi(X,F

17

0, T)— (Y,C,v,8)
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T
N > N
v v
Y S Y
N/ > N/

Figure 1.2. ¢ and T commute

(1) ¢ is one-to-one and onto a.e. By this we mean, that if we remove
a (suitable) set Ny of measure O in X, and a (suitable) set Ny of
measure O in Y, the map ¢ : X \ Nx — Y \ Ny is a bijection.

(ii) ¥ is measurable, i.e., v ~1(C) € F, forall C € C.

(iii) ¥ preserves the measures: v = poy~!,i.e, v(C) = p (1/f_l(C))
forall C € C.

Finally, we should have that

(iv) ¢ preserves the dynamics of T and S, i.e., ¥ o T = S o ¢, which
is the same as saying that the diagram in Figure 1.2 commutes.

This means that T-orbits are mapped to S-orbits:

X Tx T2x T'x
! ! ! ! ! !
v(x) SWx) S2Wx) --- S"(Yx))

Definition 1.2.18. Two dynamical systems (X, F, p,T) and (X', F,
p’, T') are isomorphic if there exist measurable sets N C X and N' C
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X' with p(X\N) = p'(X’\N') = 0and T(N) Cc N, T"(N") C N,
and finally if there exists a measurable map v : N — N’ such that
(1)—(iv) are satisfied.

Example 1.2.19. Let X = [0, 1) and Y := {0, 1,...,9}Y, the set of
all sequences (yn)n>1, With y, € {0,1,...,9} forn > 1. We now
construct an isomorphism between ([0, 1), B, A, T) and (Y, B/, )/, T'),
where B’ is the o -algebra generated by the cylinders, where A’ is de-
fined on cylinders by

1

M{dizreY i yr=ai,y2=a2, ... ,yn=ap}) = 107

and where T’ is the left shift, given by

T'((ay,az,a3,...)) = (az,a3,...),

for any (aj, az,a3,...) € Y. Notice that in everyday life we usually
write .ajazas . .. instead of (ay, as, a3, ...). [

Exercise 1.2.20. Show that the shift 7’ is A’-measure preserving. ®

Define v : [0,1) > ¥ ={0,1,...,9}N by

o0 ak

v XZZW = (Ak)k>1»
K=1

where Y 72 | ax/10* is the decimal expansion of x, and let

Clr,oo.sin) ={(y)iz1 €Y y1=1i1,...,yn =in}.

In order to see that ¥ is an isomorphism one needs to verify measura-
bility and measure preservingness on cylinders:

Yy H(Cy, - -+ 4 in))
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and

A(x/f_l(C(il,...,i,,)))= = A(AGL ... . 0n) .

107

Note that
N = {(yi)i>1 € Y:there exists ak > 1| such that y; = 9 for all i > k}

is a subset of Y of measure 0. Setting Y=Y \N,theny :[0,1) > ¥

t
is a bijection, since every x € [0, |) has a unique decimal expansion
(generated by T'; see Section 1.2.1). Finally, it is easy to see that ¢ o
T = T' o . The dynamical system (Y, B’, A", T') is known as the
Bernoulli shift on the symbols 0, 1, ...,9, where each symbol comes
with probability (weight) %.

In general a Bernoulii shift is defined as foliows. Consider any
probability space (Y, F, u). Let (X,C, ') = ]—[,O,C:l(Y, F, 1), so that
X = YN is the space of all one-sided sequences of elements of ¥, and
C is the o -algebra generated by cylinders of the form

{x = (k=1 : xi € AL, ..., Xign—1 € Ap}

where A),...,A, € F and i,n € N. Furthermore, u’ is the product
measure defined on cylinders by

/
uwllxy = (x
g St r

In case Y = {a),az,...} is a finite or countable discrete space, we
refer to i’ as the product measure with weights u(Cy), u(C3), ...,
where C; = {x = (x¢)k>1 : x; = a;}. Finally, define T’ : X — X
by T'((yn)n>1) = (Xp)n>1, Where x, = y,4| for n € N. Of course,
by the above notation we mean that X has the product structure. Any
system isomorphic to the system (X, C, u’, T') is measure preserving
and 1s referred to as a one-sided Bernoulli shift. This definition can be
naturally extended to a two-sided Bernoulli shift by replacing N by Z.
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Remark 1.2.21. In case T is defined on a complete probability space,
which is isomorphic to the completion of a Bernoulli shift, then T is
also called Bernoulli. ]

an I\.L‘ nnnnn 2 NI fal Ja Ns n o
Exercise 1.2.22. Consider ([0, 1) ’ L x £ A X }»), where £ x L is the

product Lebesgue o -algebra, and A x X is the product Lebesgue mea-
sure. Let T : [0, 1) — [0, 1)2 be given by

o o
1

[(2x,%y), 0<x<3
A, V)= |

1(2x ~1Ls(y+1), $<x<
The map T is called the Baker’s transformation (draw a picture to see

that 7 moves [0, 1)2 around similar to the way a baker folds a piece of
dough).

(i) Use Lemma 1.2.14 to show that T is measurable and measure pre-
serving with respect to A x A, by checking this on rectangles of the
form (a, b) x (c, d).

(1) Show that 7 is isomorphic to the compietion of the two-sided
Bernoulli shift 77 on ({O, 12, F, ,u), where F is the o-algebra
generated by cylinders of the form

A={x_yr=a—g,...,xe=ag :a; €{0,1}, i = —k, ..., £},

k,¢ >0,

and pu the product measure with weights (%, %) (so u(A) =
(%)k+€+l)- n

1.3 Continued fractions

Let x € (0, 1); in this section we will see that one can write x as a
continued fraction:
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X = , (1.6)

a3 + —

where a; > 1. Obviously x is a rational number in case (1.6) is a finite
expansion. Conversely, every rational number x has a finite continued
fraction due to Euclid’s algorithm, i.e., the division algorithm.

1.3.1 Euclid’s algorithm

How is an expansion such as (1.6) generated? To answer this question

we briefly review Euclid’s algorithm, also known as the division al-

77 [2Y agcg o 0y 77
Uy U T 44 Allud aooulliv 1v “u -~ U - JU.

ro:=a, ry:=b,
and determine a; > 1, ro > 0, such that
ro=ayry+rz,

where 0 < rp < ry. In case r; # 0, we repeat this procedure, which
clearly will stop after at most r| steps: There exists a positive integer n
such that r, # 0,

rk = agg1rest +req2 for k<n—1
and
O=rpy) <rp < - <ry.
Then, as 1s well known, we have that

a, b) denotes the greatest common divisor (gcd) o

3
-
¢
lom
a
—~
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Exercise 1.3.1. Determine the gcd’s (13, 20), (171951, 31250000)
and (5, 14). (]

Let us consider Euclid’s algorithm more closely; obviously one

ro r rn—1
al——: -_— ,a2= — 3 ...,an= N
ri r I'n

where | £ | denotes the greatest integer not exceeding £. Putting

b r r r
x=_=—l’Tl T2 3 --,Tn—l': n’
a ro "l "2 Fn—1
one has
1
-=a + T
X
: + T
— = q
Tl 2 2
: + T,
=a,_ _
Tn—2 n—1 n-—1
1
i = dan + 09
Ip—|
and therefore one finds
1 1 1 (1.7)
X = = = .. = . .
a) + T 1 . 1
aj +n~_1. 3 a) + ]
e a4+t —
an

An expression as in the right-hand side of (1.7) is called a finite regular
continued fraction. It follows from Euclld’s algorithm that each x =

4 c ﬂ can he written ac a finite reanl- .
q WAkl Uw VYV R ALLWE . A A LillIVW IVE\‘ ALARANAG ik SA\/12
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SN

X =ag + ] , (1.8)
a) +

. 1
a+ -+ —
An

where ag € Z is such that x — ag € [0, 1). The right-hand side of (1.8)

is abbreviated as
[aO; al’ a29--‘ ’ an]-

Euclid’s algorithm yields that a, > 2. Due to this, each rational number
x has two regular continued fraction expansions, viz.

[aO: als a29 LR an—l, an] = [a07 ala a29 LELE I | an—ls an - 17 l]
Yoo ¢hilc mace 37 se mallad ebhin doeal oA PN (. 7 I\R o A 11 ¢l
1I1 LI CADC i 1Id CdliCu LIC UC[} rn aliu t\a} - \71) IdD CdliCu LIC
signature of x = g.

Exercise 1.3.2. Determine the continued fraction expansions of 5%, %
. 171951 o~ C " - . : - . S
and 31555500 - Compare the iengths of these continued fractions with the
decimal expansions of these numbers as given in Section 1.1. |

Of course, there

s no reason whatsoever to stick to rationals. We
| P A b

Definition 1.3.3. The regular continued fraction operator T
[0, 1) — [0, 1) is defined by

- L B R
1x:=——L—J,x;tu; T0 := 0.
X X

The map T is illustrated in Figure 1.3.
Now let x € R \ Q and, as in the rational case, let ag € Z be such

21 2 — N L IR n aa’
that x —qp € |V, 1). rutung
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1

|

\ \ AN

| \ AN
o 44t 4

Figure 1.3. The continued fraction map T

e SR o _ le oS s R o)
Q.—X—da9Q, 1] .= 1r\x —4ag),

it follows at once from the above definition that

T, € [0,1)\ Q, foralln > 0.

Moreover, setting

one has

R e o de 2 I
12 :=1(11),...



Continued fractions 25

——

= ap + l (1.9)
a| + l
a+ +——
anp + Ty,
Z[QO;Q}sQL-A-,ﬂr—!sﬂn‘!‘-n]s ’IZI--
The integers ag, ay, ... are called the digits or partial quotients of

x and one has thata; > | fori > 1. We denote the (regular) continued
fraction expansion of x by

x =[ao; a1, az,..., an,...], (1.10)
where this notation should be understood as

lim [ag; a1, a2,...,an+T,].
n—oo

That this limit exists, and that every irrational x has a unique (regular)
continued fraction expansion, will be shown in the next subsection. In
case x is a rational, applying T to the fractional part of x yields a finite
continued fraction expansion, where the last partial quotient is greater
than 1.

Truncating (1.10) yields the so-called (regular) continued fraction

convergents

= [aO; als"' ,an]

ap +

a) + l

a+ o+ —
an

of x. Clearly these convergents are rational numbers; see Exercise
1.3.8.

Example 1.34. Let G = %(\/5 + 1) (the so-called golden mean or
golden ratio). An easy calculation shows that G? = G + 1, from which
it follows that

1

1
G=14—=1
+G +

l+ —
G
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Thus weseethatG = [1; I]=[1;1,...,1,...] (here—as usual—
the bar indicates the period). Now let us calculate the continued fraction
expansion of +/2. Let x = +/2 — 1; then

1

~
LT X

X =
from which we see that /2 =[1; 2]. [ |

Exercise 1.3.5. Argue why any real irrational number x with an

PR TS | PSR RpT.ag by 1t ~1..
CVClltU'dlly peIroaic con l. nuc dLllUll CApdllblUll lb lllC root Ul d pOly-

nomial of degree 2 (such an x is called a quadratic irrational). ]

The converse of the statement also holds, but is much harder to
prove. It is known as the Theorem of Lagrange (1770); see [RS92],
pp- 40-41.

1.3.2 Basic properties and matrices

In this section we will derive a number of basic properties of contin-

ad Frantinme r1oin gy 9] ntri~nac ' fFart thi ot Arracantat
uca llabllUllb ubllls }\ L lllallleb 111 1aui, llllb 1Hiatl ll\ ICPICDC 1atiuvlil

establishes the connection between continued fractions and (a part of)
algebraic geometry, a connection that has been beautifully explained
by C. Series in [Ser82] and [Ser85]. Let

A=[i S] € SL,(Z),

i.e., A has integer entries a, b, ¢ and d, and det(A) € {—1, +1}. The
letters SL in SL3(Z) stand for special linear. Now define a map A :
Rlllml—; Rllfmlhv

2N v A e A

ax + b
cx +d

A(x) = , x € RU{oc}.

Such a map is also known as a Mobius transformation. Notice that
we use the same notation both for the matrix A and for its associated
Mobius transformation.
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Exercise 1.3.6. Show that if A, B € SL,(Z), one has that
(AB)(x) = A(B(x)),

where A B 1s the usual matrix product of A and B. (]

Let x € R be an irrational number with continued fraction expan-
sion x = [aog; ay,..., an,...). Define for n > | matrices A, and M,

by
1l a 0 1
A = [ 10 ] LA, = [ o ] , (1.11)

Mn ::AOAl"'An,nZ 1.

Exercise 1.3.7. With A, and M, as before (considered as Mobius
transformations), show that

(n\—-[nn' 7Y o 7Y ]
Vip\V) = | 40, Qj, ..., Gn |
and
T
AlAZ"'An=(AnAn—l"'AI) . L

Exercise 1.3.8. Writing

M"l:[rn pn],nzo’
Sn  4n

show that (p,, qn) = 1. Use M,, = M,_ A, to show that

'n = Pn—1s Sn ={Y4n-1,

Pn-19n = Pngn-1 = (—1)", n=>1, and
& :[ao; al, ..., an], n 2 l
qn

Furthermore, show that the sequences (pp)n>—1 and (gn)n>— satisfy
the following recurrence relations

p-1:= l; po:=aog, pPn=appn-1+ pn-2, n = 1,
(1.12)

P ] - ® n. W~ ® l. Pe — Pe | Pe'l - Pe'l -
g-1:=0U;, qo:=1, ¢Gn=apnGn-1+Gn-2, 1

A%

1
1.



28 Introduction

Finally, use (1.12) to show that p,(x) = g,—1(Tx) forailin > 0, where
T, = T"x; see Section 1.3.1. m

Exercise 1.3.9. Use the recurrence relation for the g,’s to show that

4n—1

qn

=[0;a,,...,a1]. m

As promised we will now show that lim,_, 5o qL: = x. To this end,
we define one more matrix:

0 1
* = , f > 1.
A, [l an+Tn] or n >

Exercise 1.3.10. Show that x = (M,_1A})(0). Use the fact that

r

My = [ Pn=2 " Pn-1 J , forn > 1,
qn-2 4n-1

and the above mentioned recurrence relations for (pp),>-1 and

(gn)n>—1 to show that

pn + Tnpn—l
X =

, forn > 1,
qn + an;l—l

i.e., x = M,(T"x). Finally, use the fact that p,_1g, — pngn—1 = (—1)"
to conclude that

Pn (=1)"T,
x — —

= , forn>1. (1.13)
gn  qn(gn + Taqn-1)
=
Since 7,, € [0, 1) we have that
1
Ix—& -3 for n > 1. (1.14)
4n dn

The sequence (gn)n>0 1S @ monotone increasing sequence of positive
integers, which is—in case all a;’s are all equal to i1—the Fibonacci
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sequence (Fp)p>1, given by
1, 1, 2, 3,5, 8, 13, 21, ...

Now (1.14) yields that lim Pr_ .

n—>0oC ¢,

Exercise 1.3.11. Show that

L <, a

q0 q2 q3 q1

pPo P2 pP3 P1
_<— <..

1.3.3 Lebesgue vs. Gauss measure

The map T does not preserve Lebesgue measure A; e.g., one has (see
also Figure 1.3) that

1 1
=2-log4 =.613706--- # - =x1(0,=-]).
2 2
The following question is a natural one: Does there exist a T -invariant
measure |L equivalent to the Lebesgue measure A? l.e., does there ex-
ist a T-invariant measure u that has the same sets of measure zero as A?

Gauss [Gau76] found such an invariant measure in 1800, and this
measure i1s known today as the Gauss measure i, given by
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dx

1 r 1
A)= ——
H(4) 10g2/A1+x

for all Lebesgue sets A C [0, 1), where log refers to the natural log-
arithm. Nobody knows how Gauss found u, and his achievement is

even more remarkable if we realize that modern probability theory and

ergodic theory started almost a century later! In general, finding the
invariant measure 1s a difficult task.

Exercise 1.3.12. Use Figure 1.3 to show that for each interval (a, b) C
[0, 1) one has

o0
T~ 'a,b) = : , LY.
n+b n+a

n=l1

Then use this to prove that u(a,b) = ;L(T"l(a, b)). As mentioned
before, this implies that T is measure preserving. (]

As in the case of the decimal map, we define cylinders A, =
A(ay,az, ... ,a,) by

A(ay,...,an) = {x€[0,1): a(x)=ay,...,a,(x)=a,},

where a; € Nforeach 1 < j <n.

Exercise 1.3.13. Show that
1 1 1
AD)=|-=,1 and that A(l) = ,— |, forn > 2.
2 n+1 n
Determine A(l, 1) and A(m,n), form,n > 1. =

Exercise 1.3.14. Show that the above-defined cylinders A, form a
semi-algebra generating the Borel o -algebra B. =

Exercise 1.3.15. Show that A(ay,ay, ... ,ax) is an interval in [0, 1)
with endpoints
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3
b

1
K

P
— and ——,
dk

Q
=
+
Q
T

and conclude that

A(A(ay,az, ... ,a;)) = .
qk (g + qr—1)

When is py/qx the left-hand endpoint of A(ay, az, ... ,ax)? =

Exercise 1.3.16. Using Exercise 1.3.7, show that
pu(Alag, ag-1, - .. ,a1)) = u(Aay, az, ... ,ar)),

where u is the Gauss measure. |

1.4 For further reading

Although there are many introductory texts on both (elementary) num-
ber theory and measure theory/probability theory, only a few books
have—in spirit—a considerable overlap with this chapter.

The first book that should be mentioned here is the famous classic,
An Introduction to the Theory of Numbers by G.H. Hardy and E.M.
Wright [HW79]. Although the first edition of this great book appeared
in 1938, it is still very much worthwhile to study it. However, due to
its old age, there 1s no mention of ergodic theory, which i1s one of our
main subjects.

Another old book, but one very much in line with the spirit and
subjects of our book, is P. Billingsley’s Ergodic Theory and Informa-
tion [Bil65]. The books by A.Ya. Khintchine [Khi63] and A.M. Rockett
and P. Sziisz [RS92] both deal with continued fractions. Their results
are largely different from those presented here, due to a different point
of view. We want to show that there is a natural interaction between
number theory and ergodic theory, while [Khi63] and [RS92] address
the interaction between number theory (more specifically: the theory of

continued fractions) and probability theory.
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Other introductory books tend to focus on individual topics of this
chapter, such as H. Davenport [Dav92] and H. Rademacher [Rad83]
on elementary number theory, and W. Rudin [Rud87] and H.L. Royden
[Roy88] on probability and measure.

Finally, E. Schweiger’s Ergodic Theory of Fibred Systems and
Metric Number Theory [Sch95] gives further back-ground information
on all the subjects mentioned in this book—and many we left out!



CHAPTER 2
Variations on a theme (Other expansions)

In this chapter we investigate how far the dynamics of the decimal ex-
pansion can be generalized without losing its ‘essential properties’, like
Bernoullicity. We will see that the underlying property that guarantees,
for instance, independence of the digits is that the map T generating

(=}
lamant
1 .

2.1 n-ary expansions

The ideas and results for the decimal expansion go through in exactly
the same way if we look at n-ary expansions of numbers in [0,1). Here,
n > 2 is an integer and every irrational number x € [0, 1) can be
uniquely written as

o0

ar (x)
X=E T ar =ar(x) e {0,1,... ,n—1}.
n
k=1
Exercise 2.1.1. Letn € Z, n > 2, and let x be a real number with a
B erita ~e avrantrinnll varindis e e Avernmoinnm ChAawr ¢that o« —~ M) -
I11HIILC Ul ©VO Iludlly‘lJCllUUlb l'dl_y CAle ID1VLL. OIIUW Lllilal A T V. -

One finds—among other things—the following proposition.

33
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Proposition 2.1.2. Letn € Z, n > 2, and let x € [0, 1). Then

1. x has a finite n-ary expansion if and only if there exist p, q € N,
(p,q)=1,x= p/qand

piln (i.e., p; divides n)

for all primes p; such that p;|q.

2. x has a purely-periodic n-ary expansion if and only if there exist

P,q4€N (p,q)=1x=p/qand(q,n) =1

Decimal expansions are of course an example of n-ary expansions,
which are generated by iterations of the map Tx = nx (mod 1). That
is, Tx = nx — a; where a; = aj(x) is such that nx — a; € [0, 1),
or—equivalently—a; is such that x € [‘ﬂ ‘ﬂ#) From Tx = nx —ay
we have that x = ‘inl + % Putting a;(x) = |nx], aa(x) = [nTx],
ey ap(x) = |nT* 'x],... we find

aj Tx a ay T*

X = — = — — —_

n n n  n?2 n?
k
aj as ay T*x
n n? nk = nk
aj az ai
=—+—2+" +7+
n n n

Notice that if (a, b) C [0, 1), then

n—1 . .
b
T~ a,b) = (%+3,—’—+—),

i=0 nn n

so M(T~1(a, b)) = Z;:ol(% — %) =b—a = A(a, b), and T is measure
preserving with respect to Lebesgue measure.

Exercise 2.1.3. Show that the digits of n-ary expansions are indepen-
dent and identically distributed with the uniform distribution on the set
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{0,1,...,n — 1}, 1.e., show that

1
AMxel0,1): ai(x)=1ip,...,ak(x) =ik} = i

forany k > l andiy,...,ix € {0,1,...,n—1}. m

Nowadays bases 2 (binary expansion) and 10 (decimal expansion) are
the most commonly used, but in former days bases like 6 (and its mul-
tiples 12 and 24) were immensely popular. In fact, traces of this can

£ .- [P, g IZL‘ PO R o T P P Ay
bllll UC lUUllU lll CVClyUd)’ Hic ly lllllll\ Ul HHoul, llll[lUle, DCLUIIUD

Exercise 2.1.4. Find other traces of bases different from 2 and 10 in
everyday life. (]

.
Exercise 2.1.5. Clearly base 2 is very handy 1n computer science, and

base 10 is directly at hand. Think of reasons why base 6 instead of base
10 was chosen in former days (it was Napoleon Bonaparte who decreed
the use of base 10 by law). m

Now suppose x € [0, 1) is an irrational number, and let
ajay...ag ... (2.1)
be its expansion in base 2, while
didy .. .dy... (2.2)

is the decimal expansion of x. In general, the infinite expansions (2.1)
and (2.2) are not given to us, but only the ‘finite truncations’

= .qa|az...dak and f)’ = .a’la’z...a’k .

An important question i1s now: Which of these two rational approx-
imations a and B of x is closer to x ? That is: Which of the two yields
the better approximation? Although this question cannot be answered
without further information about x, one has the feeling S is—in gen-
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eral (whatever that means)—closer to x than « is. One has the feeling
that 8 contains more information about x than o does. Perhaps this
is more obvious if we assume that (2.2) is the expansion of x in base
10, 000. In that case one has

r 1 \
€ , 1>
g [‘8 p+ 10,000k)
and therefore
1
lx — Bl < ——=-
10,000~

Assuming that x can be found at some random location in the cylinder
set [B, B+ T 500,( ), one has that the expected distance of g to x, given
dy, ... ,dx, equals

i 1
2 10,000%

In the same way one finds that the expected distance of « to x, given
ai, ... ,ak, equals

1

2k+1 "

So, in general there seems to be a relation between the amount of in-
formation contained in finite strings of an expansion and the size of the
base n. In order to get a grip on the amount of information, the notion
of entropy was introduced by Shannon [Sha48] in the 1940s in infor-
mation theory and by A.N. Kolmogorov [Kol58] in 1958 in ergodic
theory; see also [Kol59]. Entropy is perhaps the single most important
notion for understanding the complexity of a system. We will return to
it in Chapter 6.

2.2 Liiroth series

In the n-ary case we had a partition of [0, 1) with partition elements
of the same length and the transformation was linear with range [0, 1)
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on each piece. We want to generalize these systems. First, let us drop
the condition of equal length. We now look at the case where we just
have a partition on [0, 1) (countable or finite) and the transformation is
full on each partition element, i.e., it maps each partition element onto
[0, 1).

Another kind of series expansion, introduced by J. Liiroth [Liir83]
in 1883, motivates this approach. Several authors have studied the
dynamics of such systems. Take as partition of [0, 1) the intervals

afin 1es, the so-called Liiroth (series) expansion
| |
= + ..
aj(x) aj(x)(ai(x) — Daz(x)
|
+,.4/.,\/,.A/.,\_ 1\ . N\ v 1\~ /.,\+“' ’
Ap{xXj(aix) — 1) - -Ap_ |\ X ){dp—1{X) — 1)anp{X)

here ax(x) > 2 foreach k > 1. How is such a series generated?

1

—
—
—
~

(a1 =2)
4 |

The Liiroth Series map T

o
-
N —
-
[FSTEEN

=y
[l
15-]
3
o
k.
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Let T : [0, I) — [O, 1) be defined by

nn+1)x—n, x
Tx — ( )
X

2.3
0 (2.3)

Let x # 0, fork > 1 and T !x # 0 we define the digits a, = ap(x)
by
ax(x) = ay(T* x),

where aj(x) =nif x € [ni, n;ll)’ n > 2. Now (2.3) can be written as

ai(x)(a1(x) — Dx — (a1(x) = 1), x #0,

Tx =
O, X = O.
Thncl oranv y < (0 1) ench that Tk"'l y £ 0 we have
A LiINAY L] AL “IIJ v N \U’ ll JUAWEL LilsAL X e 7_ U, W 164 A4
Tx 1 1 1 T2x
X = — = — — +
ap ap(a—1) a a(a—1) \a2 axa2-1)

+ +
ay aj(ar — Day aj(a; — Daz(az — 1)

1 1
= —+-- - - - -
aj aj(ay — 1)---ak-1(a@k-1 — 1)ag
Tkx
+

aj(a; — 1) -ag(ax — 1)’

=
oy
(¢']
:
X
P
p—
D
N
-
3
Q
2]
=3
oy
<
(¢']
S
o=
D

IFor ease of notation we drop the argument x from the functions a (x).
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In case T*!x # 0O for all k > 1, one gets

1 1 1
x=—+ TRpp +ee
a; ai(a; — ay aj(ay — 1) ---ax—1(ak—1 — 1ax

where a; > 2 for each k > 1. Let us convince ourselves that this last
infinite series indeed converges to x. Let Sy = Sx(x) be the sum of the
first k terms of the sum. Then

T*x .
ay(ay — 1) -ag(ax — 1) |’

lx — Skl =

since T*¥x € [0, 1) and ax > 2 for all x and all k > 1, we find

lx =Sk < — = 0ask — o0.
2k

From the above we also see that if x and y have the same Liiroth ex-
pansion, then, for each k > 1,

1

|X“)’|SF

and it follows that x equals y.

As usual we consider Lebesgue measure A on [0, 1). In the next
exercise you will show that T is measure preserving with respect to A.
Exercise 2.2.1. Let (a, b) C [0, 1). Show that

oo
R R UL
\k k(k=1)"k  k(k-1))

T~ ! (a, b) |
and conclude from this that A(T ~!(a, b)) = A(a, b). =

k=

Let us study the distribution of the digits
- & |
aj,ap =ayol,...,aqy=ayo0l" °,..
As before we define

A(G)={x: a(x) =i} and

Ay, i, ..., i) ={x 1 a1(x) =1),ax(x) =iz, ... ,ak(x) = ik}.
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MA@) = Mx: ai(x) =a}) = MT "D (A(a)))

= A({x: a)(T" 'x) = ay(x) = a}) (2.4)

1 1
((; a—1 )=a(a—1)'

Therefore, a(x), az(x), ... are identically distributed random vari-
ables with distribution as given in (2.4).
Now consider

A(A(ay,az, ... ,ax))
=A({x: ai(x) =ay,a2(x) = ay, ... ,ax(x) = a})
=Ar({x:ajpi(x)=ay, ... ,aj4k(x) = ar})
= A (all x whose Liiroth series begins with Px/Qy) ,

where

Pe/Qk = — : -

4.+ .
ay aj(a; — la ar(ay — 1)---ar—1(ak-1 — 1ak

Exercise 2.2.2. Show that A(aj, az,...,ar) is an interval in [0, 1)
with endpoints

P, P, 1
k and k

Ok Qk+al(al—l)"'ak(ak—l)’

and conclude that

X(Aay,az,...,a)) = ! !A( xe[0,]): ai(x) =a}).
=1

Using that for any k > 1,
ad 1

o0

z =1,
A  ay(ay—1)--

al:z F SN 1 7

-ag(ag — 1)
ay=2
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show that forany i} < iy <--- < ij,

A({x €[0,1): ai(x) =ay, aj,(x) =ay, ..., ai; (x) =aj})

J

[Trdxel0,1): g, (x) = am}). m

m=1
Thus the digits functions aj(x), az(x), ... are independent and
identically distributed.

Exercise 2.2.3. Among the things that Liiroth showed in [Liir83] is
that each rational has either a finite or a periodic expansion. Try to find a
proof of this yourself by first showing that T(2) = Zwith 0 < p' < g.
Conclude that there exist 0 < m < n < g such that T'"(g) = T"(g).

Exercise 2.2.4. Show that we can identify the dynamical system
((0, 1], B, ., T) with a Bernoulli shift ({2,3,...}, F, u, S), where
F is the o -algebra generated by the cylinders, S is the left-shift, and
is the product measure with weights

1 1 1
1x2 2x3 3x4" "

’

via
1 1
x=—+4 +--- +— [lap, az...]. |
ar ai(a; — Nay

2.3 Generalized Liiroth series

We will use the same dynamical mechanism that generated the n-ary
expansions and the Liiroth series to define a family of series expan-
sions, the so-called generalized Liiroth series, in short: GLS. We will
see that these generalized Liiroth series have the same dynamical prop-

erties as the aforemeniioned n-ary expansions and the Liiroth series;
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viz. the digits are independent and identically distributed, and the in-
variant measure of the underlying transformation is again Lebesgue
measure.

2.3.1 Introduction

Consider any partition Z = {[£,, r,) : n € D} of [0, 1) where D C Z*
is finite or countable and ), .p(rn —€,) = 1. We write L, =r, — ¢,
and I, = [€,, r,) for n € D. Moreover, we assume that i, j € D with
i > jsatisfy0 < L; < L;j < 1. D is called the digit set; see also
Figure 2.2.

| [ [ ) [ ) |
! L 7 L J L 7 1
0 €3 r3 ¢ ri ¢3 rz. 1

Figure 2.2. The partition Z

| [

0 £3r3 £ ry £y r2 1
Figure 2.3. The GLS-map 7
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We will consider the following transformation T on [0, I):
1 ¢
x — " . xel, neD,
Tx=1{ m— & rn — €n (2.5)

0, x € loo =10, D\ U,ep In;

see also Figure 2.3.

Proposition 2.3.1. The transformation T is measure preserving with
respect to A.

Proof. To show that T is measure preserving, by Remark 1.2.15 it is
enough to verify this on the open intervals. Let0 < a < b < 1; then

T~ (a, b)

/ \

= (T‘l(a,b) nlJ 1,,) U (T—‘(a,b) n Ioo)

= JWn = t)a+ n, (ra — &)+ £) U (T™ (@, b) N o).

Since A(Ix) = 0, it follows that

A (T“(a,b)) =Y tn—t)b—a)=b—a=Aa,b). =

n

We want to iterate 7 in order to generate a series expansion of
points x in [0, 1), in fact of points x whose T -orbit never hits /o,. We
will show that the set of such points has measure 1.

We first need some notation. For x € [¢,,, r,), n € D, we write
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), ifT"'x € Upep In»
, otherwise
(thus s(x) = s1(x), h(x) = hy(x)). From these definitions we see that

for x € Upep In N (0, 1) such that T*x € (J,ep In N (0, 1) for all
k > 1, one has

x=h1(x)+ Tx _ﬂ _T_x

si(x)  s1(x) 51 8]

hi 1 (ha T%\ hy hy T2k
=—+ = ( + ) = —+—=+

S1 s1 \ 52 52 51 S182 5182

hy hy hy T*x
= — +—— 4+ +

S1 5152 S182---Sk  S182---Sk
— hl | hz ] ] hk 1
= — T — T 7T T

51 5152 S182 -+ Sk

We refer to the above expansion as the GLS(Z) expansion of x with a
specified digit set D. Such an expansion converges to x. Moreover, it is

unique.
To prove the first statement we define the nth GLS-convergent

Py/ Qg of x by

P, h h h
Tk _ 11 + 2 + 4 k .
Qr s1 5182 5182+ - Sk
then
P P Tk
x— Xl =x- 2k = o . (2.6
Ok Ok $182 -+ Sk

Notice that

1
— = length of the interval that T*~1x belongs to.
Sk

For the proof of the second statement, use (2.6) and the triangle in

equality.
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Exercise 2.3.2. Let L := max,cp L,. Show that

Py
x—_

k

<L¥ 50 as k— oo. -

Proposition 2.3.3. Let J consist of all points in (0, 1) with infinite GLS

expansion; then J is T -invariant, \(J) = 1 and A(I5) = 0.

Proof. We only need to show that A(J) = 1. Observe that x € (0, 1)
has an infinite expansion, if and only if

ﬂxeLJhﬂmJ)mmszQ

neD

This shows that
f\ —k 1 \
[]T ([Jl NaoO,1nj.
k=0 neD

Since T is measure preserving, and A

(U
A( _k(UI,,ﬂ(O 1)\ 1 forall kK > 0.
/7

\ \neD

nep In N (0, 1)) = 1, we have

Hence, A(J) = 1. m
Notice that x € (0, 1) has a finite GLS(Z) expansion of the form
h h h
— __l + .__2_ 4+ .-+ —k,

in case k is the least positive integer such that T¥x = 0, and T*~1x ¢

Ioo.
Examples 2.34.

(1) Decimal expansion:

[
o}

=
=~
+
N—"

<

D=&L””%,h=[
L
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and s;(x) = 10 which implies that s,(x) = 10 for ail x. Finally
hi(x) =kif x € I.

(2) Liiroth series:

D=1{23,...}, Iy = (11, keD,
Lk k—1)"

si(x) =ktk—=1) =ai1(a; — 1)if x € Ix and s = ag(ax — 1),
hy = ax — 1. Notice that

hy 1

51828k aj(ay — 1) ---ak—1(ak-1 — Dak

A GLS expansion is identified with the partition Z and the index (or
digit) set D. Let x have an infinite GLS(Z) expansion, given by
hi  h hi
X=—+—++- -+ +
A)| 5152 5152 k

Now hy and s; are identified once we know in which partition element
T*=1x lies (hy and sy are constants determined by partition elements).
Therefore, to determine the GLS-expansion of x (for a given Z and D)
we only need to keep track of which partition elements the orbit of x
visits. For x € [0, 1) we define the sequence of digits a, = a,(x), n >
1, as follows

an=k < T" 'xelx, k€ DU {o0}.

Thus the values of the digits of points x € [0, 1) are elements of D;
this is why D was called the digit set.

Notice that every GLS expansion determines a unique sequence
of digits, and conversely. So

00
hk
=Y M e an .
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We can now define fundamental intervals (or cylinder sets) in the usual
way. Setting

A(l)={x:a;(x)=1i}ifi € DU{o0},
then
A@)=;,ri)ifi € D, and A(00) = I.
Foriy,is,...,ip, € DU {00}, define
A(iy, iy, ..., ip)={x:1a1(x) =i1,a2(x) =1iz,...,a,(x) = i,}.

Notice that, if i; = o0 for some 1 < j < n, then A(iy,iz,... ,iz)isa
subset of a set of measure zero, namely the set consisting of all points
in (0, 1) whose orbit hits /.

Let us determine the cylinder sets A(i,...,i), for
i1,i2,... ,ip € D. All points x with the same first k digits have
the same first k terms in their GLS expansion. Let us call the sum of

the first k terms py /qx; then

Tk
k T%x
qk St Sk

b

where s; = 1/L;, and T*x can vary freely in [0, 1). This implies that

(SN

Since L; = 1/s; for each j, we find that
MA@y, ... i) = LiLiy - - Liy = MA@))IAAG2)) - A(AGK)) -

Hence the digits are independent.
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Exercise 2.3.5. Show that the above defined GLS-transformation 7 on
[0, 1) is isomorphic to the Bernoulli shift (DN, F, A’, T') where T is
the left shift, F is the o -algebra generated by the cylinder sets and A’
is the product measure giving the symbol i € D weight L;. |

2.3.3 The general GLS case

So far, all the lines for our GLS-transformations had positive slopes.
If we extend our domain to [0, 1], we see that negative slopes work in
the same way; what is important is that one has a countable partition of
[0, 1) as before, and that each partition element is mapped bijectively
onto (0, 1] or [0, 1) by a linear map, with either positive or negative
slope. We will briefly outline the construction; for more details, see
[BBDK96].

We use the same notation as in Section 2.3.1, so the map T on
[0, 1) is as given in (2.5). We define the map S : [0, 1] — [0, 1] by

r r,,—x’ xel,,neD,
rn — €p
Sx = |
* 0, x € (0, 11\ Upep In»
1, x =0.

Now let ¢ = (g(n)),ep be an arbitrary, fixed sequence of zeros and
ones (this sequence tells you whether you are going to use a map with
positive or negative slope on the nth partition element). For x € (0, 1),
let

8(")7 X E lna

e(x) =

0, X € (O, l)\UnGD I,

and set €(0) = 0 and &(1) = 1. Define the map 7, : [0, 1] — [0, 1]

bv
J

Tex = e(x)Sx+ (1 —e(x)Tx, x €[O0,1]. 2.7)
Let
s{x) = : and h(x) = bn , incase x € [,.
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For k > 1,setg := &(T* '),

s(T¥1x) Tk1xel,I,N (O, 1),

S = Sp(X) =
k= s(x) 00 Ty € (0, 11\ U, In,

and hy is defined in a similar way. Now, for

er=ﬁ UTE""(I,,H(O, 1)),

k=0neD
one has
hy+¢ —1)%t hy +e¢ hy + ¢
_m 1_|_( )Tgx= etz te
A} s Sl 5152
+ (=) e hi + &k (— 1)1+ +ek Thy

slsZ...sk SISZ...sk

Foreachk > land 1 <i < konehass; > 1/L > 1, where L =
max,cp L,, and Tekx <1.

Exercise 2.3.6. Show that

Tkx
x—ﬁ —f" <I¥50 as k- o0,
qk S182 - Sk
where
pk ”‘l gl £ h +£2 g4+ +¢€ hk +8k
— = + (= 1)°! + - 4+ (=D k-1 )
gk 51 5152 $182 - Sk
u
Let g9 := 0; then for each x € 2 one has
so++en_t _n T &n
x—Z( 1) ~'-—-————. (2.8)

S182-

Exercise 2.3.7. Show that T, is measure preserving with respect to A,
and A(£2) = 1. [
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For each x € [0, 1] we define its sequence of digits ay = a(x),
k > 1, as follows:

a=n < Trlxel,,

for n € D U {oo}, where I = [0, 1]\ U, In- The expansion (2.8) is
called the (Z, €)—Generalized Liiroth Series (GLS) of x. Notice that for
each x € S2 there is a unique expansion (2.8), and therefore a unique
sequence of digits ax € D. Conversely, each sequence of digits ax.

k > 1, with ax € D defines a unique series expansion (2.8). We alsc

£, &2, &3, Ek,
X = .
a, a2, asz, ... ak, ...

Examples 2.3.8.

write

(1) Alternating Liiroth: Let I,, := [%, ;1—1), n > 2.Incase e(n) =C
for n > 2, one gets the classical Liiroth Series, while ¢, = 1 for
n > 2 yields the alternating Liiroth Series; see also [KKK90] and

(2) Tentmap:Forn e Nyn > 2, put l; = ’; %),i =0,1,...,n—1
In case (i) = O for all i, the restriction of T, on [0, 1) yields the
n-ary expansion. Incase n =2 and €¢(0) =0 =1 — g(1), T; is the

tent map. (]

Exercise 2.3.9. Let T, be an (Z, £)-GLS map on [0, 1], with digitset T
and partition set Z. Let a € D; then we define the jump transformation
S on [0, 1] as follows

S(x) = i

where k(x) := inf{m € N; a,,(x) = a}. Show that S is also a GLS mag
on [0, 1], and find its GLS partition. (In case ¢(n) = O for alln € D,
replace {0, 1] by [0, 1)). |
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~ A A e
L PO-CXPallSIoIS
In this section we give examples of expansions T generated in a way
similar to the GLS with positive slope, but where the ‘shape’ of T is
changed. We will see that Lebesgue measure is no longer the invariant

measure. These examples will be studied in detail in Chapters 3 and 4.
See also Chapter 4 for more examples.

2.4.1 Lebesgue is no longer invariant

Let B > 1 be areal number. Consider the transformation Tg : [0, 1) —
[0, 1), given by

If B = n € Z, we get the usual n-ary expansions, which have already
been considered. Here we will concentrate on 8 & Z

For x € [0, 1) we write

dy = di(x) := |Bx) anddy = dy(x) = di(T;™'x) =[BT 'x],

,,,,,,

and from Tgx = Bx — dy, _T[,)?x = BTgx —d,, ... wesee

d Tgx d| d>
= — 4 = .

B B B B2
We call d,, = L/BT[;’“lx_l, n > 1, the digits of the B-expansion of x.
One clearly has d, € {0, 1,..., |B]}.

X

Exercise 2.4.1. Let 8 = G, where G = %(«/5—-}- 1) = 1.618... is
the ‘golden mean’ (see also Example 1.3.4 and Figure 3.1, p. 78), and
consider the B-transformation 7 (x) = Gx mod 1.

(a) Let x € [0, 1). Show that d;(x) takes only two values: O or 1, and
thatd;(x) =0 <= x € [0,g), where g = G~ ! = %(\/5— 1) =
G-1.

(b) Show that for every x € [0, 1) a digit O can be followed by a 0 or a

1, but that a digit I must be followed by a 0. =
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B—1B] +
/

/ / / / /
/ / / /
N T N R

Figure 2.4. The B-map Ty with 8 = 4.504

If—as usual—A denotes Lebesgue measure on [0, 1], then Tg does
not preserve A if 8 € N; forifa and b are in [0, 1) such that 8 — |B] <
a <b < 1, then

LBl-1 . .
@by =) (2+2, 244)
F iZo \B B B B8/
(see Figure 2.4), and therefore
BI-1,
MT; @, b) = Y b-a Bl _ 4.
B B

Since 8 ¢ N we have |8]/8 < 1, and thus we find A(Tﬁ_l(a, b)) <
A(a, b).
A natural question is now: Does there exist a measure v of the

form vg(A) = fA gﬁ(x)dx, where 88 satisfies 0 < gplx) < o0
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and vg(T;'A) = vg(A)? (See Section 3.1.1 for a definition of
[4 88(x)dx.) Such a measure vg is said to be equivalent to Lebesgue
measure A; they share the same sets of measure zero.

Exercise 2.4.2. As in Exercise 2.4.1, let 8 = G, and consider the
piecewise constant function gg, given by

5435 V5 -1
——, O0<x< ,
10 2
gex)=4y —
545 v5—-1
, <x < l.
10

Show that for any interval (a, b) in [0, 1) one has that vg((a, b)) =
vG(TC:l (a, b)), where vg is the probability measure on [0, 1) that sat-
isfies

b
VG((a‘b))=/ g8c(x)dx . u

The existence of such measures vg for each B > 1 was shown by
A. Rényi [Rén57] in 1957, who obtained the exact form only for
B = G. The measure was explicitly determined for all 8 > 1 by
A. O. Gelfond [Gel59] in 1959 and independently by W. Parry [Par60]
in 1960. In fact, one of the goals of this book is to give a way of ob-
taining this invariant measure vg. This is done by connecting the 8-
expansion with an (appropriate) GLS expansion. The technique used
can be extended to a wide class of piecewise linear transformations.

) ) PR S A PN PN
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In the cases of n-ary and continued fraction expansions we saw that
eventually-periodic expansions can be easily characterized. At first
sight S-expansions might look like trivial variations of n-ary expan-
sions, but their simplicity is deceptive! We already saw in the prev1ous
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ant measure when 8 ¢ N. It turns out that it is also more difficult
to “understand” eventually-periodic expansions. We will sketch here
to some extent what is known and mention a longstanding conjecture.
Basic references are [Sch80a] and [Bla89].

We first introduce some notations.

Definition 2.4.3. Let B > 1 be an algebraic integer; that is, B is the
root of a polynomial with integer coefficients, of which the leading co-
efficient is 1. Then B is called a Pisot number if all its conjugate roots
have modulus strictly smaller thari 1. We call B a Salem number if all
its conjugates z have modulus |z| < 1, and if there is at least one con-
jugate of modulus 1.

Examples 2.4.4. The smallest Pisot number 6y is the real root of
Po(z) = 22—z -1, and equals 6p = 1.3247179572.... The next
Pisot number 6 is the positive root of Py (z) = z* — z3 — 1, and equals
6, = 1.3802775691 .. .. Clearly the ‘golden mean’ is also a Pisot num-
ber. The set of all Pisot numbers is an infinite set, which follows be-
cause all integers are Pisot, but also because A. Brauer [Bra51] showed
thatforallm > 2 and allay, ... ,ay, € N, wherea; > a3 > --- > a,,
one has that the positive root 8 of P(z) =z — a2 l—...—qg,isa
Pisot number. R. Salem [Sal63] showed in 1945 that every Pisot num-
ber is the limit of an increasing sequence and a decreasing sequence of

Salem numbers. ]

Exercise 2.4.5. Show by elementary means that 8y and 8, are Pisot.
|

Proposition 2.4.6. Let B > 1 and let Per(B) be the set of those
x € [0, 1) for which {Té‘x; k > 0} is finite (such x are also called B-
numbers). Furthermore, let Q(B) be the smallest field containing both
Q and B. We have Per(B) C Q(B8) N[0, 1).

Proof. Let x € Per(B); then there exist integers m > 1 and £ > 1 such
that the B-expansion of x is given by
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Em4E-1

ot

prn-t ~ pm Bm+e—1

where &, ¢ = &, for k > m. Abbreviating this symbolically gives

X =61 " Em—1Em " Em4l—1,

where the bar—as in Chapter 1—indicates the period. We now will
recycle the idea behind the solution of Exercise 1.1.2. Setting y =
Em - - Em4¢—1 one has

Em Em+e—1 Yy
y=——+--+ + =
B B B
From this it follows that
ﬁe_l ﬁe_z Em+e—1
y=-———m+ ——Ems1 + -+ ——— € Q(B)N[O, 1),
B —1i Bt —1 B —1
and therefore
£l Em-—1 y
x:E+---+ﬁ’;_l+ﬂm_l e QB)N[O0,1). .

It turns out that the converse statement is much harder than it is

in the case B8 € N, B > 1 (in that case Q(8) = Q and Per(8) = Q).
In 1980 K. Schmidt [Sch80a] obtained the following results, some of
which were previously obtained by A. Bertrand [Ber77].

Theorem 2.4.7. (K. Schmidt, 1980) Let B > 1 be such that Q N
[0, 1) C Per(B). Then B is either a Pisot number or a Salem number.

Theorem 2.4.8. (A. Bertrand, 1977, K. Schmidt, 1980) Let 8 > 1 be
a Pisot number. Then

Per(B) = Q(B) N[0, 1).

Schmidt aiso proposed the foliowing conjecture.
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Conjecture 2.4.9. (K. Schmidt) Let B > 1 be a Salem number. Then
Per(8) = Q(B) N[O, 1) .

This conjecture has been verified by D. Boyd for all Salem num-
bers of degree 4. Further, a heuristic model given by Boyd in [Boy96],
suggests that all or ‘almost all’ Salem numbers x of degree 6 will be 8-
numbers (i.e., x € Per(f)), but that, for degree 8 and higher, a positive
proportion of Salem numbers will not be eventually-periodic.



CHAPTER 3

Ergodicity

3.1 The Ergodic Theorem

nat i
T . In particular, it makes available the use of the Ergodic Theorem with
which answers to many number-theoretical questions can be given (like
frequency of digits).

The word ergodic comes from the Greek (ergon = work and
odos = path), and originates from physics. In the 1920s and 1930s
it drew the attention of mathematicians. In this chapter we will present

some of the basic results in ergodic theory.

3.1.1 Integrals

Before we proceed we give a short introduction to the notion of an
integral of a measurable function (or, as known in probability theory,
the expectation of a random variable). Let (X, F, u) be a probability
space; the definition of an integral is now given in four steps.

(I) First, let B € F and consider /g, the indicator function of B,
defined by

w
~
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{1, ifxeB,
'8(x) ‘“{ 0, ifx¢B.

Define the integral of /g by fX Is(x)du = u(B).

(I) Now let By, ..., B, € F be pairwise disjoint, and consider the
simple function ¢(x) = > i_,ailp (x), so that ¢(x) = a; if
x € B;. We define

[ =Y ans.
=1

If C € F is any measurable set, we define

n

[Leean= [ swictan =Y anno).

=1

(IIl) If f : X — [0, 00) is B-measurable, then we define

f fx)du = sup(f d(x)du: ¢ issimpleand 0 < ¢ < f) :
b ¢ X

VY If h : X — R is B-measurable, we can write h(x) =
h*(x) — h~(x), where hT(x) := max(0, h(x)) and h~(x) :=
max(0, —h(x)) for every x € X. Then h*, h~ > 0, and in
case both [, h*(x)du < oo and [, h™(x)du < 0o we define
th(x)d,u, by

fh+(x)du—/ h™ (x)du.
X X

We call h integrable if h is B-measurable and [, |h(x)|du < oo.
In this case fx h(x)du is finite; we write h € L1(X, F, n).

We say that a property holds almost everywhere (in short, a.e.), if
it holds for all points x outside a set of measure zero.

In case (§2, F, P) is a probability space, i.e., P(2) = 1 and Z
is a random variable defined on €2, then the expectation E(Z) of Z is

Tl NNAD ci:hnencrne 7 20 1mbacren
JQ L\(U}u r, WllCllCVCl L lb lllngldUlC
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Exercise 3.1.1. Let (X, F, 1) be a measure space, and let f : X —
[0, 00) be integrable. Define p : 7 — R by

p(A) = fA F()du.

(a) Show that p defines a measure on (X, F).

(b) Show that if u(A) = 0, then p(A) = 0. Furthermore, if f > 0
a.e., then p(A) = 0 implies u(A) = 0. So we see that p and u are
equivalent. =

Exercise 3.1.2. Using the same notation as in Exercise 3.1.1, show
that

[ fdu =0 impliesthat f =0 u -a.e. =
JX

For more information on integrals and measure theory we refer to
the excellent books by W. Rudin [Rud87] and H.L. Royden [Roy88].

3.1.2
The Ergodic Theorem is also known as Birkhoff’s Ergodic Theorem or
the Individual Ergodic Theorem (1931). This theorem is in fact a gen-
eralization of the strong law of large numbers (SLLN); see [KT66]. Let
X1, X2, ... beiid. random variables on a probability space (X, F, v),

with E|X;| < 00; then

l n
lim — ZX,‘ = EX (a.e.).

n—oo n

i=l1

For the GLS family the SLLN is in fact enough to investigate the distri-
bution of the digits. As an example we will show here that almost every
x (with respect to Lebesgue measure A) is simple normal. Let us first
define what simple normal numbers are.

Let Z = {[£,,rn) : n € D} be the partition of the GLS(Z) trans-

formation under consideration, and suppose x € [0, 1) has GLS(Z)
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expansion

o0
g P (3.1)

Let x = [a1,a3,...,ak,...] be the sequence of digits of x corre-
sponding to the GLS(Z) expansion (3.1). We call x a simple normal
number for the GLS(Z) expansion if, for all j € D,

where #A is the cardinality of the set A, i.e., the number of elements
in A. Fix j € Dand let X, X», ... be a sequence of random variables
on ([0, 1), 1), defined as fnllmxm

277 eradiawee K2 A 2ANYY O

1 ifa;(y) =],
Xi(y)= . .
‘) { 0 ifai(y) £ J.
Then X, X», ... are i.i.d. (since the digits are independent and identi-

cally distributed) and for each n
n
Y Xiy)y=#1<i=<n:a(y=j}
i=l1
But then it follows from the SLLN that for a.e. y,

1
lim l#{l <i<n:a(y)=j}= lim —ZXi(y)

n—-oonpn n—-oon 4

=EX| = Ma1(y) =J).

This is known as Borel’s Normal Number Theorem.

Definition 3.1.3. A number x € [0,1) with GLS(Z) expansion
(3.1) and sequence of digits x = [ay,aa,...,ak,...] is said to
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be normal if, for any positive integer m and any block of digits
boby...by_1 (bj € D),

o] )
lim —#{1 <i <n-m:a; =by, ait+1 =by,..., dixm-1 = bm-1}
n—-oon

=),{\) . an(\)\:bn Qﬁ(\)\:bt Qm(\)\zbm
J I\J/ U PAWA 1 J Iy

1}
m \J =1

’ ’

LyyLp, ... Ly

m—1 °

Here the strong law of large numbers cannot be used directly
to check normality. To see this, consider for example the binary ex-

pansion. In this case 7 = {[O, %), [%, l)] = {lo, I}, and digit set
D = {0, 1}. Suppose we want to study the frequency of the block O1.
Write y € [0, 1) in terms of its binary expansion y = [y, y2, ¥3,..- 1],

yi € D. Define the sequence of random variables X, X5, ... as fol-
lows:
[ 1, ifyiyis1 =01,
Xi = i
i) { 0, otherwise.

Then

-

Xi(y)=#{1 <i<n:yyy =01}

i=l

= number of times 01 occurred in y| ... y,4] .

The binary map Tx = 2x (mod 1) is measure preserving with A(X| =
1) = A(X; = 1), forall i, hence X, X5, ... are identically distributed.
However, X, X3, ... are not independent, since for example

AX1=1,X2=0)

=A{y =I[y1.y2,---1 : y1y2 =01 and y2y3 # 01})
= A(X, ::l):i
4

1
ZA(X1=DA(X2=0) = —.
16
How can we study the normality of numbers? One way to do this is
to replace the SLLN by a more general theorem, known as the Ergodic
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Theorem, which requires a weaker notion of independence known as
ergodicity. Heuristically, a dynamical system (X, F, u, T) is ergodic
if it cannot be seen as the union of two separate dynamical systems.

Definition 3.1.4. Let (X, F, u, T) be a dynamical system. Then T is
called ergodic if for every p-measurable set A satisfving T"'A = A
(such a set is called T -invariant) one has that u(A) = 0 or 1.

In case T is invertible, the above definition is equivalent to: T is
ergodic if and only if A = T A implies u(A) =0or 1.

There are many handy characterizations of ergodicity; here we list
some of them. For the proof of the following Proposition, see [Wal82],
Theorem 1.5. Another characterization will be given in Proposition
3.1.9.

Proposition 3.1.5. (Characterization of ergodicity) Let (X, F, u,T)
be a dynamical system. Then the following statements are equivalent.

(1) T is ergodic.
(ii) For every A € F with u(T"'AAA) = 0, one has that u(A) =0

or 1.

(iii) For every A € F of positive measure, one has that

00
n (U T_"A> = 1.
n=1

(iv) For every A, B € F of positive measures, there exists a positive
integer n such that u(T™"A N B) > 0.

Remarks 3.1.6.

1. In case T is invertible, then in the above characterization one can
replace T~" by T".

2. Note thatif u(AAT1A) =0, then u(A\T ~'A) = u(T~1A\A) =
0. Since
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and
T-'A = (T"'A \ A) U (AnT"A),

we see that after removing a set of measure 0 from A and a set of
measure O from T ! A, the remaining parts are equal. In this case
we say that A equals 7! A modulo sets of measure 0.

3. In words, (iii) says that if A is a set of positive measure, almost
every x € X eventually (in fact infinitely often) will visit A. (]

Theorem 3.1.7. (The Ergodic Theorem) Let (X, F, ) be a probabil-
ity spaceand T : X — X a measure preserving transformation. Then,

forany fin L'(u),

lim =Y foTi(x)= f*x)

_____ ‘ ¢ 7 N7/

exists a.e., is T-invariant and [y fdu = [, f*du. If moreover T is
ergodic, then f* is a constant a.e. and f* = [, fdpu.

Remark 3.1.8. The Ergodic Theorem was originally proved by G.D.
Birkhoff in 1931. Since then, several proofs of this important theorem
have been obtained; see for instance the books by P. Walters [Wal82]
and K. Petersen [Pet89]. Here we present a special case of a recent
and rather simple version of the proof by Y. Katznelson and B. Weiss
[KW82], initially given by T. Kamae [Kam82] in the setting of non-
standard analysis. For the complete proof we refer the reader to the
original articles [KW82] or [Kam82], or to the recent book by G. Keller
[Kel98]. =

Proof. We do the proof only for the case f = I, the indicator function
of some measurable subset B of X. In this case

n—1
Zf(Tix)=#{O§i <n-1:Txe B}
=0
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f(x) = limsup — Z Ig o T (x) and

n—0o0

1 n—1

= liminf— Y I o T (x).
f(x) L“lé’é,,; g oT (x)

Note that both f and S exist, are measurable (see Exercise 1.2.10) and
0< i(x) < 7(x) < 1 forall x € X. Also 7 is T-invariant since

— , n+1 1 & i Ig(x) —
f(Tx)=11msup( n+1§IBoT(x)— . ):f(x).

n— 00 n

at f is T-invariant. To prove the Ergodic

s th
~L ¢~ I..,\.c- 4-
InUw

A similar argument show
| P
L

T [N M <
1 1ICUIC1 ll lb CllUUgll D

ffdu</fdu flsdu u(B)</fdu

For then this implies that
I‘ —l‘- 2 —_ 7 TN\ - [ Vol |
J fdn=w®B) = | fdu.
X X

Since f — f > 0 it follows by Exercise 3.1.2 that f = f a.e. We call
their common value f*, and the result follows. -

We first show that [ fdu < u(B).Let € > 0O be given and let
Sn(x) = Z:’;O' Ig o T'(x). For each x € X, there exist infinitely many
integers n > 1 such that S,(x) > (f(x) — €)n. Let

N(x) = min{n > 1 : S,(x) > (f(x) — €)n}.

SNy (x) = (f(x) — €)N(x).

Since N(x) < o¢ for all x € X, it follows that there exists M > 0
such that

>
~
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Let B = BU{x € X : N(x) > M}and S,(x) = 1 377  Ip o T!(x).
Define
N(X), lfN(x) S M7

N (x) = { 1, if N(x) > M.

Note that N'(x) < M forall x € X, and

e if N(x) > M, then x € B’ so that
Shi @) =Ip(x) = 1> f(x) —e = (F(x) —e)N'(x).

e if N(x) < M, then since B C B’, we have

Nx)-1

Sym@) = D IpoT(x)
=0

N(x)-1

> Y IpoT'(x) > (f(x) —€)N'(x).

i=0

From the above we see that S;V,(x)(x) > (f(x) — €)N'(x) for all
x € X. Define no(x) = 0 and ng(x) = ng—1(x) + N'(T™-10) x),
for k > 1. Choose n much bigger than M, and let | = max{k > 1 :
ng(x) < n — 1}. Using the T -invariance of f one has,

n(x)—1 . I—1nip(x)-1 .
Sz Y IpoT' (=) Y IpoT/(x)
1=( i=0 j=n;(x)

= ZO Spvrrmtor (T (1))
1=

> S’“ N/(Tn'(x)x)(,?(Tni(x)x) —€)
b—v

-1

=D (i1 (0) = mi())(f(x) — )

i=0

2 (n = M)(f(x) —€).
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Dividing by n, integrating and using the fact that T is measure preserv-
ing, we get

u(B’):lfS;,(x)duzn_M(/ 7du—6).
nJjyx n X

Taking limits gives u(B’) > fx fdu—e. However, u(B') < u(B)+e¢;
thus w(B) > fx fdu — 2¢. Since € > 0 was arbitrary, it follows that
w(B) > fX fdu, as required.

Next we show that [y fdu > w(B). To do this we apply the

.................. V\D.‘,.,.A.nf,.,.il o 1 )
PICVIUUD dlBUIllC[ll to X \ D ad 1U11IUWDS. LJCtg == IX\B — 1—1B.

g(x) =1— f(x). Now,

nein,

“/ld“=/§(X)uSu(X\B)=l—u(B).
X X

That f* is a constant a.e. if T is ergodic follows from Proposition 3.1.9
below. This completes the proof. (]

Proposition 3.1.9. A measure preserving transformation T on a prob-
ability space (X B, 1) is ergodic if and only if every T -invariant mea-
vl £, £ AT — T 4 20) ic 3 rnAsnctant s f
uluuu:ju L _[ (l €. .y J VI — I WUu.c.) i§ a consiani a

where.

Proof. Suppose every T -invariant function is a constant almost surely.
Let A be a T-invariant set and consider the indicator function /4 of A.
Since

I[A(Tx) = IT—IA(X) = Ta(x),

it follows that /4 is a T-invariant function. Notice that /4 attains only
the valu nd 1, so that either /4 is 0 or I 4 is 1 almost everywher

~

2]

Since u(A) = fy Iadu it follows that (A) is either O or 1, and

Conversely, suppose that T is ergodic and that f is T-invariant.
For each r € R, define A, as

w7

Ar={xeX; f(x) >

-—v
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Since f is T-invariant it follows that A, is a T-invariant set, and so
by ergodicity of T we must have that w(A,) is O or 1. Now suppose
that f is not a constant a.e. Then there must exist an r € R such that
0 < u(A;) < 1, which is a contradiction. =

The following exercise is in fact a classical theorem in ergodic
theory. We advise you to try to prove it yourself, but in case of difficulty,
see [Wal82], p. 41.

worntcan 21 10 T T | 5N <
Xercise J5.1.1U. Let \A J, ;,L) O S
generating semi-algebra. Let T : X — X be a measure preserving

transformation; then T is ergodic if and only if for every A, B € A

1ites comnme nemd 1ae A Lo o
lllly })dbc, allu jIcL A UC a

-1
lim — S‘ w(T7'ANB) = u(A)u(B). n

n—>o00 p “—t =3

From the above exercise one can interpret ergodicity as a weak
form of independence.

Exercise 3.1.11. Use Exercise 3.1

l RAN/VALAL kAT

is ergodic. .

Exercise 3.1.12. Show with the help of the Ergodic Theorem that if T
is ergodic, then for every set B of positive measure and for a.e. x € X
one has T"x € B infinitely often. ]

In order to apply the Ergodic Theorem to study the frequency of
blocks generated by a GLS transformation, we must first prove ergod-
icity. For this the following lemma is very useful.

Lemma 3.1.13. (Knopp) If B is a Lebesgue set and C is a class of
subintervals of [0, 1) satisfying

(a) every open subinterval of [0, 1) is at most a countable union of
disjoint elements from C,
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(b) VA € C, A\(AN B) > yA(A), where y > 0 is independent of A,
then L(B) = 1.

Proof. The proof is done by contradiction. Suppose A(B¢) > 0. Since
B is a Lebesgue set, then B = C U D with C a Borel set and D a subset
of a Borel set of Borel measure zero. Further the Lebesgue measure
A(B) of B is equal to the Borel measure A(C) of C (recall that the
completion A* of A is also denoted by A; see the discussion following

Exercise 1.2.6), and if A(B¢) > 0, then A(C¢) > 0. Given £ > 0 there
exists by Theorem 1.2.7 a set E, that is a finite disjoint union of open
intervals such that A\(C°AE;) < ¢. Now by conditions (a) and (b) (that
is, writing E, as a countable union of disjoint elements of C) one gets
that \(C N E;) > yA(E,).

Also from our choice of E; and the fact that
MCAE:) 2 MCNE;) 2 yA(Ee) 2 yMC NE) > y(MC) —¢),
we have that
Y(A(C) —¢e) < M(C°AE,) < ¢.

Hence yA(C°) < €+ ye¢, and since ¢ > 0 is arbitrary, we get a contra-
diction. |

Theorem 3.1.14. Let T be a GLS(T) transformation on [0, 1); then T
is ergodic.

Proof. Let B be a T-invariant Lebesgue set of positive measure. Ac-
cording to Definition 3.1.4 we need to show that A(B) = 1, which will
be derived using Knopp’s Lemma. Let C be the collection of all funda-
mental intervals. Property (a) from Knopp’s Lemma is clearly satisfied.
Now, since T has constant slope on each fundamental interval E of rank

n, it follows that

MANE) MTTANE) MANT"E)
ME) — ME)  MTRE)

= A(A),
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o w

which implies that A (BN E) = A(B)A(E) for every fundamental inter-

val E.
Applying the above Lemma with y = A(B) we get that A(B) = 1,
i.e., T is ergodic with respect to A. ]

Remark 3.1.15. In Exercise 2.3.5 we saw that every GLS transforma-
tion is (isomorphic to) a Bernoulli shift. In Exercise 3.1.11 you gave
a proof that every Bernoulli shift is ergodic; this gives another reason
why every GLS transformation is ergodic. (]

Let us return to the binary example discussed after Definition
3.1.3. Here,

I, ifyiyiy1 =0l i1
X; = = X,oT! )
i(7) { 0, otherwise Le )

We can apply the Ergodic Theorem with f = X|. We then have

f .
=j Xidr=A({y : yiy2=01}) = ;.

In general, given any GLS(Z) transformation with digit set D, and any
admissible block by, ... , b,, i.e., this block appears in the GLS ex-
pansion of some y € (0, 1), one can study the frequency of occurrence
of by,..., b, by considering the function f, defined as follows. Let
[a1, az, .. .] be the sequence of digits of x corresponding to the GLS(Z)
expansion (with digit set D) of x. Write

f(y)=l 1, lfal,.:.,am=b|,...,bm,
| 0, otherwise;
then
_ 1, ifai,...,aqi+m-1 =b1,..., by,
f(Tl l}’)— i . i+m-1 1 m
0, otherwise,

and
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1 It_l

. 1 .
Y T = #ISiSnai=bi.diimet = bal,
1=0

which implies that

1 n—l ,
— f(T'_ly) = Lp Lpy---Lyp, a.e.
n
i=0
The above shows that, for any GLS(Z) expansion, almost every point
is normal.

3.1.3 Mixing

So far we have discussed only two kinds of so-called mixing proper-
ties, ergodicity and Bernoullicity (i.e., isomorphic to a Bernoulli shift).
Loosely speaking, by a mixing property we mean the degree of inde-
pendence and, seen in this perspective, Bernoullicity is the strongest
property possible. In between ergodicity and Bernoullicity are various
notions of mixing, of which we will mention three. We will be brief
by giving only definitions, since ergodicity (the weakest property) is
sufficient for our purposes. However, mixing properties in general play
an important role in ergodic theory, and we refer the reader to standard
ergodic theory books like [Kel98], [Pet89] or [Wal82].

Throughout this subsection we assume that T is a measure pre-
serving transformation on a probability space (X, F, u).

(1) T is weakly mixing if forall A, B € F

n—

1=l .
lim - l,u,(T-'A N B) — w(A)u(B)| = 0.
n—-00 n
=0

There are several equivalent definitions of weakly mixing. In par-
ticular, the following definition is useful in Section 6.3.

T is weakly mixing if and only if T x T is ergodic,

where T x T is a (measure-preserving) transformation on (X x
X, FxF,uxpn),definedby T x T(x,y) = (T(x), T(y)).
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(i1) T is strong mixing if forall A, B € F

lim (T~ AN B) = u(A)u(B).
n—
(iii) We say that T is weak Bernoulli if for each ¢ > 0 there exists
a positive integer N, such that, for all m > 1 and for all A €
moT  FandCe \ N, T 'F,

lu(ANC) - u(A)u(C)| < ¢,

,,,,,,,,,,,,,,

where \/ ,e( T~ F denotes the smallest o -algebra containing T~/ F
fori =k, ..., £. Notice that weak Bernoulli means that the future
and distant past are approximately independent.

Exercise 3.1.16. Show that Bernoullicity implies strong mixing, that
strong leII‘IQ lmnhec weaklv m:xmg and, finally, that weakly m_l_x_m_g

implies ergodicity. (]

3.2 [Examples of normal numbers

Although the existence of normal numbers has been known for some
time (Borel’s Normal Number Theorem, which we discussed above,
dates back to 1909), it was not until 1933 that a concrete normal num-
ber was given (or rather constructed) by D.G. Champernowne. The lit-
erature on normal numbers is enormous, and almost merits a book on
its own. We only mention here—without proofs—some of the earlier
results.

3.2.1 Decimal exnansion

oanio & WEARERESE W ARSISALIAVAR

123 ...9101112131415161718192021...

See also [Cha33]. A beautiful generalization of Champernowne’s result

Yy ™ (8 S -dal!

was glven Dy H. Davenport and P. Erdos in lDEDZ]. Let ](n) be any
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non-constant polynomial in n, all of whose values forn = 1, 2, ... are
positive integers. Then the decimal number 0. f (1) f(2)... f(n)...,
where f(n) is written in base 10, is normal.

3.2.2 Binary expansion

.0100011011000001010100 ...

In general for any n > 2 one can construct a normal number in base
n by concatenating successively (in any order) all blocks of length 1,
followed by all blocks of length 2, ... etc.....

3.2.3 Continued fractions

Consider the infinite sequence of rational numbers

1 1 2 1 2
n=—-,n=-,nN3=_-,04=—, 15 = —,
2 3 3 4 4
and concatenate the (finite) continued fraction expansions of
ni, ny, .... This yields a number x with continued fraction expansion

x=1[0;2,3,1,2,4,2,1,3,...]

which is normal with respect to the continued fraction partition. This
construction is due to R. Adler, M.S. Keane and M. Smorodinsky;
see also [AKS81]. Another construction was given by A.G. Postnikov
[Pos60] in 1960.

temarks 3.2.1.

1. There are many constructions of normal numbers; see e.g.
[SV94], [Wag95], and [BM96], and the references in these papers. In
[AD79], Y.N. Dowker and J. Auslander apply Furstenberg’s concept
of disjointness [Fur67] to construct new normal numbers from a given
one.
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2. Although the above examples give normal numbers, one can
not escape the feeling that these numbers are somehow not really ran-
dom (e.g., for the Champernowne number one can easily compute any
of its digits, without knowing the preceding ones). It is for this rea-
son that other concepts—Ilike Kolmogorov complexity—of random-
ness have been developed. It is beyond the scope of this book to discuss
such subjects, but the interested reader is referred to Paul Vitanyi's sur-
vey paper [Vit95]. m

3.3 [B-transformations

Let B > 1 be real. Recall that the transformation Tg : [0, 1) — [0, 1),
given by Tgx = Bx (mod 1), generates a series expansion

o0
_y %
x_?;nﬁk

where dy = di(x) = [ﬁTé_li, for k > 1. We denote the B-expansion
of x € {0,1) by .d\d2...d, ..., to stress the similarity with n-ary
expansion. Although 1 is not in the domain of Tg, one can still speak
of the B-expansion of 1, denoted by d(1,8) = .b1by---, where

bi = |BT;'1) with Tyl = B — | B].
Interestingly enough, given a non-integer 8 > 1, not every infinite

series of the form de/ﬂk, dy € {0,1,...,|B]} is the B-expansion
of some number x.

is the B-expansion of a point x € {0, 1).
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Exercise 3.3.2. The B-expansion is sometimes known as the greedy
algorithm; see also [EJK90]. The so-called lazy expansion generates
expansions of each x € [0, 1) of the above form that are not 8-
expansions. What would be an appropriate definition of such lazy ex-
pansions? ]

The fact that for a B-expansion not all sequences of digits are ad-
missible is one of the most important reasons why B-expansions are
studied. In general, if A, is a finite set of n symbols, say,

-An={0,1,2,--- y . — l}s

and if we look at all one- (or two-) sided sequences of elements from

A, then the admissible sequences of the S-expansions for a non-

m[eger p > 1 wrm a propcr LIOSCU anu SnlIl-lﬂVdrldnl 5UDbC[ Uﬁ 0[
AN where n = |B]. For B = 2(1 + +/5) we saw in Exercise 2.4.1 that
a sequence ddy ...di ... of O’s and 1’s is an admissible sequence if
and only if one never has that two consecutive d;’s equal 11. So one can
characterize the set of admissible sequences Dg by giving a finite set of
forbidden words (in general, a word is simply a finite string of symbols
from the “alphabet” A, ). This holds for some non-integer 8 > 1, and
one speaks of subshifts of finite type. These subshifts of finite type have
many applications, e.g., in coding theory, transmission and storage of
data or tilings. For further reading the books of D. Lind and B. Marcus
[LMOS] and B.P. Kitchens [Kit98] are excellent.

The following proposition, due to W. Parry [Par60], gives a char-
acterization of all admissible sequences (i.e., all sequences that give
rise to ﬂ-expansions) In a way it explains the nickname of the 8-

expansion: greedy algorithm. We state this proposition without proof

Proposition 3.3.3. LetW:= (0, 1,2,..., |8]}N and let Dg be the sel
of admissible sequences obtained from the B-expansions of real num-
bers x € [0, 1). Furthermore, let o be the shift and <iex be the lexico-
graphical ordering on W.
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(1) When the B-expansion d(1, B) of 1 is not finite, the condition
o'n(s) <lex d(19 ﬁ) ’ fOralln Z O

is necessary and sufficient for the sequence s € W to belong to Dg.
() Ifd(1, B) = .b1by ... b 0000.. ., that is, the B-expansion d(1, B)

of 1 is finite, then s € W belongs to Dg if and only if for alln > 0,
o (s) is lexicographically less than the purely-periodic sequence

d*(B) = .byby...by_y(by — Dbyby ... by _(by — )b by

= 7 [ el .9 Rl 4

TR (7 ) P

In case the B-expansion of 1 is infinite, we write d* () instead of

d(l, B).
Examples 3.3.4.

1. Let B be the positive root of the polynomial z2 —z — 1 = 0, i.e,
B =A%(l + /5) (the golden mean); then B2 = 1 + B and dividing
by B* gives

so that 1 has a finite 8 = %(1 + +/5)-expansion. Thus, the only
sequences that correspond to B-expansions are those that are lex-
icographically less than (1010101010...). As an example, we
see that (1001001001001 ...) gives rise to a B-expansion while
(11d3dy ...) with d; € {0, 1} does not.

Similarly, consider 8 > 1 such that 8 is the (only) positive root of
m—z"l—...—z2—1=0.Then g™ = g™ ' +...+ B+ 1,and
dividing by B yields

N
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The only sequences of 0’s and 1°s that give rise to S-expansions are
those that have at most m — 1 consecutive 1’s. We call such a 8 a
pseudo-golden mean of order m.

3. When 8 > 1 is an integer, Parry’s proposition is trivially true. For if
B = n, then 1 in base n has as expansion

1=(n—1,n—1,...,n—1,.--);

e.g.inbasen = 10one has 1 = (9,9,9,...,9,...). Since the
digits allowed are elements of {0, 1, ... ,n — 1} it follows that any
sequence with digits from {0, 1, ... , n — 1} not ending in an infinite
string of n — 1’s gives rise to an n-ary expansion. Conversely, any
n-ary expansion yields a sequence lexicographically less than (n —
l,n—1,...,n—1,...). ]

3.4 Ergodic properties of the 3-expansion

We consider here the case B > 1, 8 & Z. Rényi [Rén57] showed that

1. Tg 1s ergodic (we will return to this in a moment).
2. There exists a unique probability measure vg, equivalent to the
Lebesgue measure A, which is invariant under Tg. Moreover

vg(B) = [ hg(x)dx,
JB

where hg(x) is a measurable function satisfying

1—%5’1,9()6)5

x|—

Shortly afterwards Gelfond [Gel59] and (independently) Parry [Par60]
found the invariant measure explicitly, viz.

1 1
hﬁ(x)=F—(B; > - for x € [0, 1), (3.2)
x<Tf;'l
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——ar
° r

where the sum runs over all n > 0 such that x < ﬁ I, and

1

1
F(ﬁ):/o > o dx

x<Tf','l

is the normalizing constant.

In the next chapter we will derive formula (3.2), the density of the
invariant measure, by connecting any S-expansion with a suitable GLS
expansion. First, let us look at an easy but instructive example to stress
the importance of the existence of an invariant measure.

Example 3.4.1. Let 8 be the golden mean, i.e., 8 = %(1 + +/5) which
satisfies 2 — B — 1 = 0. In this case + = (=1 + +/5) = .6180- -

B — 2
satisfies z2 + z — | = 0. The associated transformation T4 has the
.11 L VoS R 5L S |
following form; see also Figure 3.1.
0< ‘
Bx, =x<g,

Tgx =
b Bx —1, % <x < l.

Note that foreach 0 < x < 1/8 = .6180... one has that x <
1 = Tf?l and x < I/8 = Tﬁll, while for each 1/8 < x < 1 one has
x < | = Tgl. Since Té‘l = 0 for n > 2, a simple calculation yields
that F(B8) = %(5 — +/5) and the density of the invariant measure is

oiven by
(=4 4

5+345 0 V5-1

<x<--—-—),

10 - 2
hﬁ(x)=<
—5+ﬁ —\/5—1<x<l‘
0’ 2 - ’

see also Exercise 2.4.2.

With the invariant measure at hand (and assuming ergodicity of
Tg') we can use the Ergodic Theorem to calculate frequencies of ap-
pearances of any given block of digits. We identify points x € [0, 1)
with their associated admissible sequence of 0’s and I’'s—say x =
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/ /
/

0 8 1
Figure 3.1. Tp for g the ‘golden mean’

(d1,dy, ...) where d; = d;(x) € {0, 1}. Then Ty is just the shift, and
for A (or vg) a.e. x € [0, 1) we have

1
Iim —#{l <i <n : dj(x) =0}

n—oo n

1 n—1 )
= lim - l{()_]/ﬁ)(T[;x)
0

n—->o00o n 4

.1236. ..

which is the frequency of 0’s. Similarly for any other block.
It is easy to see that in this case we have

1 1 1 1 1

! | ! !
T

1
pTETE R T E T

I
I
_{
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and therefore it follows from Parry’s proposition that the only admis-
sible sequences of digits are those in which the block 11 never occurs.
That is, every 1 is preceded (unless it is at the beginning of a sequence)
and followed (unless it is at the end of a finite sequence) by a 0.

Given an admissible block 1y, i3, ... , i,, we denote by

Al ig,...,ip)={x : di(x)=1y,...,dy(x) =1},

where

2\ di(x)
x=) —
o1 P

is the B-expansion of x. We call A(iy, i3, ... ,i,) a full interval of
rank n if )\(T’,;'A(il, i72,...,Iip)) = 1, and non-full otherwise. One

can easily see that for any full interval A, of rank n one has that
AAy) = 1/B", since Té’ on A, is a linear map with slope 8", attain-
ing the value O at the left endpoint of A,,, and | at the other endpoint.

Hence one has that

1
slope ~ p"°

)\-(An) =

Also, notice that the non-full intervals of rank n are precisely those
whose last digit i,, equals 1 and that the length of any such interval
equals 1/8" 1.

Let S(n) be the number of cylinders of rank n (= all full 4+ non-
full intervals of rank n). Now S(n) = S(n — 1) + S(n — 2) and notice
that S(n — 1) equals the number of full intervals of rank n and S(n — 2)
is the number of non-full intervals of rank n. Further, each full interval
of rank n has length 1/8", while each non-full interval of rank n has

length 1/8"+1. Therefore,

S(n) Sm-1) Sn-2) Sn-1) Sn-2)
ﬂn+l = ﬁn+l + ﬂn-’r—l = 'Bn + ﬂn+l =1,

nrz_L!

which implies S(n) < g"". m
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Remark 3.4.2. For 8 = G = %(\/’5 + 1) we see that we can cover
[0, 1) with disjoint full intervals of rank n orn + 1. ]

In general one has the following lemma, which we state without
proof.

Lemma 3.4.3. Given any n > 1 we can cover [0, 1) with disjoint full
intervals of rank n or n + 1.

Corollary 3.4.4. Any interval is at most a countable union of full in-
tervals.

Theorem 3.4.5. Let B > 1. The map Tgx = Bx (mod 1) is ergodic.

Proof. Let B be a Tg-invariant Lebesgue set o
cording to Definition 3.1.4 we need to show that A(B) = 1, which will
be derived using Knopp’s Lemma. Let C be the collection of all full
intervals. By Corollary 3.4.4 property (a) of Knopp’s Lemma 3.1.13 is
clearly satisfied. Now let E be such a full interval of rank n; then for

any Lebesgue measurable set C,

v tbinra mnanciisea A A
positive measure. Ac-

MTg"CNE)=B"\MC).
Hence,
MBNE) MIz"BNE) p=i(B)
ME) ME) B

which implies that A(B N E) = A(B)A(E) for every full interval £
of rank n. Applying Knopp’s Lemma with y = A(B) we get that
A(B) = 1;1.e., Tg is ergodic with respect to A. |

= MB),

3.5 Ergodic properties of continued fractions

In this section we will show that the continued fraction map 7 is er-
godic. To be more precise, we have the following theorem.
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Theorem 3.5.1. Let 2 = [0, 1), L the coliection of Lebesgue sets of
[0, 1) and u the Gauss-measure on (52, L). Then the dynamical system

(2,L,u,T)

is an ergodic system.

Proof. We already saw that T is measure preserving on intervals. Due
to Remark 1.2.13 it follows that T is measure preserving.
We now will show that T is ergodic. We have that

X = Mn(Tnx)v

where M, is the Mobius transformation corresponding to x; see Exer-
cise 1.3.10. One easily shows fora and b, with 0 < a < b < 1, that
{x ta<T"x <b}N A, equals

(p._ va+p. p. 1b<4+ p.\
n—1 I &/ rFn—iIi T Fn
[qn—la+qn , qn—lb+qn)

when n is even, and equals

Pn—1b+ pn  pn_1a+ pn

\qn—lb+qn gn-1a + qn |

forn odd. Here A,, = A, (ay, ... ,ay)1s afundamental interval of rank
n; see also Exercise 1.3.15. Notice that T™"*[a,b) = {x : a < T"x <
b}.

Exercise 3.5.2. Show that the Lebesgue measure of T"[a, b) N A, is
given by

A([a,b))k(A,,) qn(qn-—l ‘+‘qn) . -

(Gn-1b + qn)(gn-1a + qn)

Notice that

o _ Gn(Gn—1 + qn)
2 gn-1+4qn  (Gn-1b+ gn)(Gn-1a + qn)
- n(qn—1 + qn)

)
4n

< 2.
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Therefore we find for every interval 7, that

%A(I)A(A,,) <MTTINAp) < 20D (A) -

Let A be a finite disjoint union of such intervals /. Since Lebesgue
measure is additive one has

SAAAA) S AT AN B SIAMAY). ()

The collection of finite disjoint unions of such intervals generates the
Borel o -algebra. It follows that (3.3) holds for any Borel set and hence
for any Lebesgue set A.

For any A € £ one has

1
A(A) < u(A) < —=A(A); (3.4)
2log?2 log 2

see also Figure 3.2, where the densities of A and u are compared. In the
above and throughout the book, all logarithms considered are natural
logarithms, unless otherwise stated.

Due to (3.3) and (3.4) one has

log 2
wWT"ANA,) > O%u(Am(An) . (3.5)

1

log2 N\

I
1 \

2log2 |

0 1
2.

Figure 3.2. The densities of A and
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Now let C be the collection of all fundamental intervals A,,. Since the
set of all endpoints of these fundamental intervals is the set of all ratio-
nals in [0, 1), it follows that condition (a) of Knopp’s Lemma 3.1.13 is
satisfied.

Now suppose that B is invariant with respect to T and w(B) > 0.
Then it follows from (3.5) that for every fundamental interval A,

log2
K(BN AL = == R(B)W(A,) .

loo 2
VE &

So condition (b) from Knopp’s Lemma is satisfied with y = —2=u(B);
thus u(B) = I;1.e., T is ergodic. ]

Exercise 3.5.3. Show that the continued fraction map 7T is not

Bernoulli, but is strong mixing. ]

We conclude this chapter with some classical results by Lévy and
Khintchine, which can also be found in standard textbooks on con-
tinued fractions, like A.Ya. Khintchine’s book [Khi63], or the more
recent book by A .M. Rockett and P. Sziisz [RS92]. Originally these re-
sults were obtained via probability theory; in both cases the so-called
Gauss-Kusmin-Lévy Theorem is fundamental. This theorem originated
from a letter from Gauss to Laplace, dated January 30, 1812. In this
letter Gauss stated that he could show that (in modern notation)

nl_ipgox(T—"[o, zZ)=wn(0,2]) 0=<z<l, (3.6)

and asked Laplace to give an estimate of the error term

0 1 n
v 1, 1t

roA2) = T 0. 21 — 5 (10 1
\&J o= A\ LYy <) v .

'Al

IA
IA
|V

»71) -
n ’ RV <

It took more than a century before a proof of (3.6) was published and
Gauss’ question was answered. In 1928 R. Kusmin [Kus28] showed
that

rn(2) = O(q‘ﬁ), n— 00,
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where g is some constant, 0 < g < 1. By this notation we mean that
Im@| < Cq¥",  asn— oo,

for some constant C. Independently and with a different approach using
ideas from probability theory, P. Lévy [L29] proved in 1929 that

rn(Z)=(9(CI"), n— o0,

with ¢ = 0.7.... Notice that both results are very strong; not only
do they give the limit, they also show that the rate of convergence to
the limit is exponential. Results like those of Kusmin and Lévy are
nowadays known as Gauss-Kusmin or Gauss-Kusmin-Lévy Theorems.

After Kusmin and Lévy, several improvements (i.e., smaller
constants ¢g) of the Gauss-Kusmin Theorem were obtained, see
e.g. P. Sziisz [Szii61], F. Schweiger [Sch68], [Sch70], and recently
M. losifescu [[0s92], [Ios94], [I0s95], [Ios97]. To some extent one
could say that the problem found its final solution in the hands of E.
Wirsing [Wir74] and K.I. Babenko [Bab78]. For more references and

details, see the excellent book of Schweiger [Sch95], and th

book by Iosifescu and Kraaikamp [IK2002].

The probabilistic theory of continued fractions started with the pa-
pers by Kusmin and in particular Lévy; several results (two of which
we are about to mention) were obtained using the Gauss-Kusmin The-
orem and probability theory, and in general the proofs of these results
were by no means obvious. In 1940 Lévy’s student W. Doeblin [Doe40]
and in 1951 C. Ryll-Nardzewski [RNS51] discovered that there is an er-
godic system underlying the (regular) continued fraction expansion. In

particular, Ryll-Nardzewski showed how several results by Lévy and
Khintchine can be obtained using ergodic theory.

Although ergodic theoretic proofs of these results by Lévy and
Khintchine can be found in several books, we decided to include them
simply because they illustrate the elegance of the use of the Ergodic
Theorem. We present some of these results as exercises, the more in-

voived ones as propositions.
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Exercise 3.5.4. (Paul Lévy, 1929) Let a € N, be given and let x €
[0, 1), with continued fraction expansion (1.6). Then for almost all x €

[0, 1) one has

1 1
Im —-#{l <i <n; a,-:a}z——-—log(l-}-———— .
n—00 n log 2 \ a@+2))

Thus one sees that for almost every x about 41 %% of the partial
quotients are equal to 1, and slightly fewer than 17% are equal to 2.

Proposition 3.5.5. (Paul Lévy, 1929) For almost all x € [0, 1) one has

lim 1 i (3.7)
im —logg, = , :
nsoon 2= 1210g2
.1 —m?
nli»ngo ;log(A(A,,)) = 6log2 ' and (3.8)
. pn _Hz
lim —log|x — —| = : (3.9)
n—00 p qn 6log?2
Proof. By Exercise 1.3.8, for any irrational x € [0, 1) one has
L L pa) peiTx)  pa(T"2x)
an(x)  gn(x) Gn-1(Tx) gu—2(T?%x)  q1(T""'x)
_ P puo1(Tx)  pi(T" ')
an(x) gn-1(Tx) — qu(T"~'x)
Taking logarithms yields
—logg,(x) = log pn(x) + log _____p,,_l(Tx) +---+log ________p](T"_lx)
" qn(x) qn-1(Tx) qu(T"=1x)
(3.10)

For any k € N, and any irrational x € [0, 1), % is a rational

number close to x by (i.14). Therefore we compare the right-hand side
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of (3.10) with
logx +log Tx +log T?x + --- + log(T" " 'x).
We have
—logg,(x) = logx+log Tx +log T2x+- - -+log(T""ix)+ R(n, x).

In order to estimate the error term R(n, x), we recall from Exer-
cise 1.3.15 that x lies in the interval A,, which has endpoints p,/qn
and (p, + pn-1)/(gn + gn-1)- Therefore, in case n is even, one has

1 1 1 1
O<logx—log£'i=(x—£'i)—§ < —,
dn dn '3 qn(Gn-1 + qn) Pn/‘]n qn

where £ € (%, x) is given by the mean value theorem. Let F, Fa, . ..
be the sequence of Fibonacci 1, 1, 2, 3, 5, ... (these are the g;’s of the
small golden ratio g = —(,15). It follows from the recurrence relation for
the g;’s in Exercise 1.3.8 that g,(x) > F,. A similar argument shows
that

Pn
— < logx —log —,
dn qn
in case n 1s odd. Thus
| | 1
|IR(n, x)| < + + -t =,
fn ]:n—l -7:1

and since we have
G" + (_l)n+ign

V5
: 1 1 1 1 -
it follows that Fn ~ EG", n— oo..Thus v + T + o+ 7, is
the nth partial sum of a convergent series, and therefore

Fn=

1

1 o g
RO 1< ook oS3 i=C

Hence for each x for which

1
lim —(logx +1logTx + log T2x + -+ log(T"_lx))

n—o0 n
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exists,

1
— lim —logg,(x)

n—-20 n

exists too, and these limits are equal.

Now lim,, - 0 %(Ing +log Tx + log T?x + - -- + log(T" " x))
i1s ideally suited for the Ergodic Theorem; we only need to check that
the conditions of the Ergodic Theorem are satisfied and to calculate the
integral. This is left as an exercise for the reader. This proves (3.7).

[t follows from Exercise 1.3.15 that

AAy(ay,...,ay)) =

qn(qn + gn-1) ’

thus
—log2 —2logqgn, < logA(A,) < —2loggy .

Now apply (3.7) to obtain (3.8). Finally (3.9) follows from (3.7) and

1 1
X ——| < ,
29nqn+1 Gn Angn+1

see also (1.13) in Chapter 1. ]

Pn

< n>1;

Exercise 3.5.6. (A.Ya. Khintchine [Khi35]) For almost every x €
[0, 1) with continued fraction expansion (1.6), one has

lim k — 1.7454056 . . .. a

n—>001 1
al an

The following exercise is slightly more difficult, the difficulty being the
fact that the Ergodic Theorem cannot be applied directly.

Exercise 3.5.7. (A.Ya. Khintchine [Khi35]) For almost every x €
[0, ) with continued fraction expansion (1.6), one has
ay+---+ap

lim = 0. ]
n—-odo n
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Proposition 3.5.8. (A.Ya. Khintchine [Khi35]) For almost all x

log k
o0 I\ 2
: o _ _
lim (ajaz - - an) _/Dn (1 + PO 1)) 2.6854 ... .

Proof. Define for x € (0, 1) the function f(x) = logaj(x), where
aj(x) = Lxlj; see also Definition 1.3.3. Then f € L((0, 1), B, u, T);
1.e., f is an integrable function, since

r oo r,l—.
fdu=Z/ fdu  and
0 k=1 5
ey L CP
e log 2 A T+x
log k ( ) logk
= log{ 1+ ~ ,
log?2 ( k(k+2)) kk +2)

is convergent it follows that fol fdu =:a € R.
But then we have

(o ¢]
. I/n _ _a __
nlitgo(alaz a,)’'" =e€" = l_[ (1 +



CHAPTER 4
Systems obtained from other systems

In this chapter we will show that there is a deep relationship between
GLS expansion and B-expansion. A similar relationship will be used in
Chapter 5 to find many metric and Diophantine properties of the regular
and (infinitely many) other continued fraction expansions.

4.1 GLS-expansion and 3-expansion: A first
glimpse at their connection

T At 110 Mo~ rmame ratiirn tA tha anlAdam mranem avaminanla Da~all ¢lhae 0 —_—
L.CL UDd ULILC 111V1 1CLuUul 1l LU U110 5UIUCII 111CAall CAal IPIC. INCUdAdll Llial p —
—é(ﬁ-{- 1) satisfies z2 — z — 1 = 0, and therefor have
| 1 + 1
B B?
see also Example 3.4.1. Now Tj is given by
Bx, x €[0, ),
Tgx = |
ﬂx—l, XE[E,I).
LetZ = {{0 % , [%, 1)} and let S be the GLS(Z) transformation (see
Section 2.3.1). Thus
Bx, x € [0, 3),
Sx = 5 |
ﬁ X — .B , X € [ﬁv 1)
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/ /
/

0 8 1
Figure4.1. The GLS-map S

Notice that for x € [0, %) we have Sx = Tgx and for x € [Zl?’ 1),
Tgx = Bx — 1 € [0, ), while TZx = Tg(Tpx) = B(Bx — 1) =
B*x — B = Sx. Thus

Tgx, x€l[0,1),
Sx = Z !
Tﬂx, XE[B,I).

Let us now consider 8 > 1, where B is the positive root of the equation
f@)=2-72~2z~1=0.Then

1 = : + : + L.
B B B
moreover, since f(1) < Oand f(2) > O we have that | < 8 < 2,
which yields that [ = I.
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Let Ty denote the B-transformation; then
Bx, x €[0, ),

Tﬁx = |
,Bx—l, XG[B,I).

Just as in Section 3.3 we let Tgl = B — 1. Consider the partition
I=1{00%,[55+ #), [ + ﬂ—'z 1)} of [0, 1), and let S be the
corresponding GLS(Z) transformation. Thus

[ﬁx x €[0, 5),
Sx= ﬁz'x—ﬁ XE[%,'};*‘ﬂ—lz),
B3x —B%2-B xe[;,{-+ﬂ—12.1).

Notice that

1. forx € {0, %) we have Tgx = Sx,

2. forx € [-;;. l—é— + ﬂ—lz) we have Tgx = B%x — B = Sx, since Tgx =
Bx — 1 € [0, %),

3. forx € [}3 + ﬂlz, 1) we have T;’x = B(B%x — B — 1) = Sx, since

Tﬂx=ﬁx—le[é,%+#)andTﬁzx=ﬁ2x—ﬂ—16[0,';;)-

To summarize:
[ Tex. x€l0, ) =1[0TD),
sx={ Tix, xelg g+5)=ITfLTp0),

Tgx, xelg+g. D=I[Tpl1).

Here are three questions we will address in the course of this chapter:

1. Does a similar relationship exist between B-transformations and
corresponding GLS transformations in general?

2. Is it possible to derive one system from the other?

3. Can we see both of these expansions as derived from one dynamical
system?
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[

B—1-+

Figure 4.2. Ty and the GLS-map §

4.2 Induced and integral transformations

In 1943, S. Kakutani [Kak43] introduced the idea of a transformation
induced by a measure preserving transformation 7 on a subset A of
the domain of T of positive measure. The idea is to localize the system
and only observe T"x when it is in A. This has been very useful for
producing examples with a wide variety of properties. We will show
that induced transformations produce the link between B-expansions
and GLS expansions.

The basis of the construction is the Poincaré Recurrence Theorem.

Definition 4.2.1. Let (X, F, u, T) be a dynamical system, (see Defini-
tion 1.2.17), and let B € F. A point x € B is said to be B-recurrent, if
there exists an integer k > 1 such that T*x € B.
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Theorem 4.2.2. (Poincaré Recurrence Theorem) Let (X, F, u, T) be
a dynamical system, and B € F of positive measure. Then almost every
x € B is B-recurrent.

Proof- Let F = {x € B : x is not recurrent}, then
F={xeB: Tx¢B, forallk > 1}.

Noticethat FNTXF =@, forallk > 1, hence T *FNT™F = ¢,
for all £ # m. Thus the sets

F, T"'F, T?F, ...
are mutually disjoint, and since T is measure preserving,
u(F)= w(T~'F) = w(T7*F) =

If w(F) > 0, then

I
NeL
k'
\E
Il

3

(
(

/ ] F\
(XY > u I I‘ —k
‘“"\lll_l““\ /

k=0

k
I
o

which is a contradiction. ]

In fact, the proof of Poincaré’s Recurrence Theorem shows that
for almost every x € B, there exist infinitely many positive integers k
such that T*x € B. To see this, let

D = {x € B: T*x € B for finitely many k's}

={xe B: T*x € F forsomek > 0}
oo

=|Jr*F.
k=0

Thus w(D) = O since u(F) = 0 and T is measure preserving.
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4.2.1 Induced transformations
Let (X, F, u, T) be a dynamical system. Let A C X with u(A) > 0.

By Poincaré’s Recurrence Theorem almost every x € A returns to A
infinitely often under the action of T. For x € A, let n(x) := inf{n >
A

1 . Tn vy ¢ Al Wa rall »nfv) tha frct roh rnn timo nf v to Than »n{y)
. 4 2N []l Yvuw vaill rte \/\v} I.ll\.fJG's)l« reinn 'lv Leriec \.ll A LU 1. 1l11IVil Il\/\«)
is well defined and finite a.e. on A. In the sequel we remove from A the

set of measure zero on which n(x) = 00, and we denote the new set
again by A. Consider the o -algebra 7N A on A, which is the restriction
of F to A. Furthermore, let x4 (B) be the probability measure on A,
defined by

B
=8 B ca,

n(A)
so that (A, F N A, p4) is a probability space. Finally, define the in-
ducedmap T4 : A - Aby

Tax =T"Wx ., forx e A.

From the above we see that T4 is defined on A. What kind of a trans-
formation is T4 ? We have the following proposition.

Proposition 4.2.3. T4 is p4-invariant.

Proof. Fork > 1, let
Ay ={xe€ A : nx) =k}
Bi={xeX\A:Tx, ..., T"Ix ¢ A, T*x € A}.

Notice that

T-'A=A;UB; and T !B, = Ansi VU Buqi. (4.1)
Let C € F N A, since T is measure preserving it follows that u(C) =

w(T~10).
To show that 4 (C) = us(T~'C), we show that

-1~

\ r—1
)

4 \
p(r ).

. 4T
p(1
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B)
}
B, B,
T T T2A\AUTA = (A,3)
B B> B3 = (4
’T T 'T TA\A=(A,2)
B B> B3 B4
(R |
A=(A])
Al Ar A3z Ay As

Figure 4.3. A tower

Now,

oo oo
T, €)= JanT'C=|JAnT™C,
k=1 k=1

hence

o0
U (TA_I(C)) = Z,u (Ak N T_kC) .
k=1
On the other hand, using repeatedly (4.1), one gets for any n > 1,
u(T710)) = mA N T O + (BN TIC)

=uw(ANT'C)+ W@ (B NT~IC))
= w(A NTIC) + u(Ay NT72C) + u(B, N T72C)

n
=Y wANT*C) + w(B.NT™"C).
k=1
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Since

(e, 0] o0
1> u (U B, N T“"C) = Z,U,(B,, NT"C),

n=1 n=1

it follows that
lim w(B,NT™"C) =
n—00

Thus,

1w(C) = w(T~'C) = Z (AknT—"‘c) = w(T; ).

This shows that 4 (C) = ,uA(TA_lC), which implies that T4 is mea-
sure preserving with respect to u 4. ]

Exercise 4.2.4. Assume T is invertible. Show that

na(C) = na(T40),
for any C € F N A. (This gives another proof of Proposition 4.2.3 in
the invertible case.) m

Exercise 4.2.5. Give a proof of the following statements:

(a) T is invertible = T4 is invertible.

(c) (Kac’s Lemma) If T is invertible and ergodic, then f anxydu=1.
Conclude that n(x) € L1(A, L 4), and that

n—1

| ) |
lim — Y n(Ti(x) = —,
n—00 n :6 - H(A)

almost everywhere on A. ]

Remark 4.2.6. There is a dual construction: given an induced system,
we can recover the original system. We refer to this as an integral op-

eration. m
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4.2.2 Integral transformations
Given a dynamical system (A, F, v, S), let f € LY(A, v) be posi-

tive and integer valued. We now construct a new dynamical system
(X, C i, T) such that the original system (A, .7-" v, §) is isomorphic

tn 2N
W oail

() X={(y,i) :yeAand1 <i < f(y), i e N},
(2) C is generated by sets of the form

1 L \

(B,i) ={(y,0) : y € Band f(,

l %
w.a

where BC A, Be Fandi € N.

3) u(B, iy = —2&
D =T T dv(y)

(4) Define T : X — X as follows:

and then extend u to all of X.

(v, i+ 1), ifi+1<f(y),

Tk, = (Sy, 1), ifi +1> f(y).

Now (X, C, i, T) is called an integral system of (A, F, v, S) under f.

Remark 4.2.7. Suppose (A, F, v, S) is the induced dynamical system
of some invertible dynamical system (Y, G, p, U) (i.e., S = U,), and

f = n (= first return time to A under U).

If

P (U U"A) =1, (4.2)
n=0

then the integral system (X,C, u, T) of (A, F, v, S) under f is iso-
morphic to (¥, G, p, U). In case U is ergodic then (4.2) is satisfied.
=

We now show that T is u-measure preserving. In fact, it suffices
to check this on the generators.
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So let B C A be F-measurable, and let 1 > 1. We have to discern
the following two cases:

(1) Ifi > 1,then T"Y(B,i) = (B,i — 1) and clearly
v(B)

fA F)dv(y) .
2) Ifi =1, wewrite A, ={y € A : f(y) =n}, and we have

uw(T~'(B,i)) = u(B,i — 1) = u(B,i) =

oo
T—lln \ I I ~

(B, 1) = U(AnIIS_

n=|

ln -\ 7 .12
D, n) (ai

Since | Joo., A, = A we therefore find that

I’r'_llD 1)) gU(An nS_lB) v(S—lB)
A A = LT T rndv(y) [ F(vdu(y)
n=1JAJ \// \J 7 AJ 7/ J 7
v(B)
f4 Fv(y)

This shows that T is measure preserving.

4.3 Natural extensions

We first start with the definiti

namical system can be viewed as a subsystem of another system in the
sense that the dynamical structure is preserved.

Definition 4.3.1. Let (X, F, u, T) and (Y,C, v, S) be two dynamical
systems. Then (Y, C, v, S) is said to be a factor of (X, F, u, T) if there
exists a measurable and surjective map ¥ : X — Y such that

(i) ¥~I1C C F (so ¥ preserves the measure structure);
(1)) ¥ T = Sy (so ¥ preserves the dynamics),

.....

(iii) u(Yy~'E)=v(E), VE € C (so y preserves the measure).
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The dynamical system (X,F,u,T) is called an extension of
(Y,C, v, S) and ¥ is called a factor map.

Remark 4.3.2. Note that in the above definition the map ¥ need not
be invertible. (]

Example 4.3.3. Let T be the Baker’s transformation on
([0, 1)2, B x B, A x /\), given by

(

2x
T(x,y) = i

v

)
7

-
IA

X <

’

N|—

y
1

(
@x—13(0+1), j3=<x<

— N —

b

(see Exercise 1.2.22), and S the 2-ary transformation on ([0, 1), B, 1),
defined by

Cryr — Vv fmnd 1)
DA = LA \IlIVU 1).

Let ¥ : [0, 1)2 — [0, 1) be given by ¥ (x, y) = x. It is easy to check
that conditions (1), (11), and (iii) in Definition 4.3.1 are satisfied, so that
S 1s a factorof T. ]

Now suppose (Y, C, v, S) is a non-invertible measure-preserving
dynamical system. An invertible measure-preserving dynamical system

(X, F, i, T) iscalled a natural extension of (Y,C, v, S) if Y is a factor
of X and the factor map v satisfies VO_,T™ ¢ ~!C = F. Notice that

oo
\/ r*yv~lc
k=0

is the smallest o -algebra containing the o-algebras T*y~!C for all
k> 0.

Remarks 4.3.4.

1. There is a canonical way of constructing a natural exten-
sion of non-invertible measure preserving dynamical systems due to
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V.A. Rohlin [Roh61]. Natural extensions are—up to isomorphisms—
unique. Due to this, we will refer to any natural extension of a given
transformation T as the natural extension 7 of T.

2. It can be shown that the natural extension 7 is a factor of any
invertible dynamical system having T as a factor, see [Bro76], p. 26.
In this sense, 7 is the ‘smallest’ invertible dynamical system contain-
ing T.

3. In many examples, the canonical construction of the natural
extension given by Rohlin may not be the easiest version to work
with. For the non-invertibie transformations considered in this book,
we show how one can build a version of the natural extension in a
straightforward and convenient way. The invertible dynamical system
that we construct captures all possible “pasts” as well as “the future”
of points under the original transformation.

4. Clearly T is ergodic if 7 is. The converse also holds, but is less
easy to prove; see e.g. [Bro76] and [CFS82].

5. Natural extensions are extremely helpful in understanding the
dynamics of expansions. In the next section the natural extension of
GLS-expansions is given, while B-expansions are dealt with in Section
4.5. In that section we will also see that the—seemingly simple—idea
of an induced transformation is very helpful in understanding the rela-
tionship between any B-expansion and its related GLS transformation.
Similar ideas will be applied to continued fractions in Chapter 5. =

Example 4.3.5. Let T* on ({0, 1}2, F, i) be the two-sided Bernoulli
shift, and S$* on ({O, I}NU{O}, g, u) be the one-sided Bernoulli shift,
both Bernoulli shifts with weights (%, %). Notice that T* is invertible,
while $* is not. Set X = {0, 1}%, ¥ = {0, )NV and define ¢ :
X —> Yby

v(..,x_1,X0,X1,...)=(x0, X1,...).

Then, ¥ is a factor map. We claim that

o0
\/ 1y 'g=7F
k=0
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To prove this, we show that \/7— T**4 —1G contains all cylinders gen-
erating F.

let A ={x € X : x_x =a_k,...,xy = ag} be an arbitrary
cylinder in F, andlet D = {y € ¥ : yo = a—k, ..., Yk+t = as}
which is a cylinder in G. Then,

v !'D={xeX:xo=ak, ..., Xk4¢ = a¢} and T*y~'D = A.

This shows that

3

\ / rxk 1
1

T
J.

v'g

k=0

Thus, T* is the natural extension of S$*. Notice that the maps T and S in
Example 4.3.3 are isomorphic to T* and $* respectively (see Exercise
1.2.22). So from the above we see that T is the natural extension of S.

=

4.4 Natural extension
of the GLS transformation

Let Z be a GLS partition, i, Z = {[{n,rn) : n € D C N}isa
partition of [0, 1) such that, if L, = r, — Ip, then Y nep Ln = 1 and
0<L; <Lj<1VijeDwithi > j;see also Section 2.3. Let
T :[0,1) — [0, 1) be the GLS(Z) transformation. We shall define a
map 7 : [0,1) x [0, 1) — [0, 1) x [0, 1) which we will prove 1s the
natural extension of T'.

Define 7 : [0. 1) x [0, 1) — [0, 1) x [0, 1) as follows. Consider
x € [0, 1), with GLS(Z) expansion

then for y € [0, 1) we define

T(x,y)= (Tx, ﬁ—i— -}i\l
\ 51 51/
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Note that if [a), a2, ...] 1s the sequence of digits associated with the
GLS(Z) expansion of x, and if we identify x with this sequence of
digits [ay, a3, ... ], then

T7x,00=7 ([a1,az,...], 0) = (la2,a3,...], [a1]) ,

s hy h)
[a2’a39'°°]=_+_+°"=2— and [al]=_'
k=252...sk sl

Continuing in this way one obtains for n > 1
T"(x,0)=T"(la1,a2,...], 0) = ([@n+1, Gns2, - .- ), [Gny ..., a1])) .

In general, if y € [0, 1) has GLS(Z) expansion [by, b2, ... ], then

Tn v (r
pa

{ + Y — 2 . ~y - 1 [P P L. h
\Ay V) — \W4n+1sUn+2y o+« )y Ynye-- yUjl, U, U

4 )
is (7.9)

~ LR
2y e ])e
On [0, 1) x [0, 1) we consider two o -algebras, the product Borel
o-algebra B x B, and its completion £ x L. Since the inverse image
under 7 of any rectangle is a union of rectangles, it follows that 7 is

anr‘llrnkla \Il;tk ”

w t t
mcasuraoci wiui 1eSpeCL L

mn
AV}

Proposition 4.4.1. The transformation T is invertible and measure
preserving with respect to . X A.

Proof. The proof of the first statement is left to the reader. For the
second statement, it is enough to show that

A X M(T N A x Am)) = (A x A)(Ap X Am)

for all cylinder sets A, and A, of rank n and m, respectively.
- » » » » T~ .
Letky,... kp,11,...,In € D; then

A x WTHAKky, ... ke) x AL -, Im)))
= (A x MDAk, ... k) X AUy, ..., 1p))

T 4 7 ) 4

L‘kl'..lenL‘ll...Ll

m*
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By Lemma 1.2.14, the proposition is true if one considers the Borel or
Lebesgue o -algebra. =

Theorem 4.4.2. The system ([0,1) x [0, 1), B x B, A x A, T) is the
natural extension of the system ([0, 1), B, A, T), where T and T are
defined as above.

Proof. Define r : [0,1) x [0,1) — [0,1) by m(x,y) = x. Then
n~a, b) = [a, b) x [0,1) € Bx Band (A x A)(m"!a, b)) = b —
a = A(la, b)), from which we see that  is measurable and measure

preserving.
It remains to show that

\/ T"x7'B=\/ T"(Bx[0,1)) = Bx B.

m>0 m>0
As in example 4.3.3, it suffices to show that szo Tm(B x [0, 1))
contains all the two-dimensional cylinders. Referring to (4.3), we see
that for any (k, ... ,k,) € D" and (I}, ... ,ln) € D™ one has

Alky, ... k) x Ay, ..., L)
=T"(Alm,... L, ki,... kp) x[0,1)). ]

Again by Lemma 1.2.14, 7 is measurable and measure preserving with
respect to £ x L.

Exercise 4.4.3. Define the map 7, : [0, 1) x [0, 1) — [0, ]) x [0, ])

where the map T is defined as in (2.7).

(a) Show that the probability measure A x X is 7 -invariant.

(b) Show that the system ([0, 1) x [0, 1), B x B, A x A, T¢) is the
naturai extension of ({0, 1), B, A, Ty). ]
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. W PR <

A = __4_____ 0 ____4_ _
4.0 INdAlurdl €xic

sion of the 3-transform:

It is possible to give an explicit description of the natural extension of
the B-transformation for all 8 > 1. However, to keep things as clear as
possible, we will first describe the natural extension of Tg where 8 is a
pseudo-golden mean number (see also Example 3.3.4(2)). The general
case is simply a more complicated construction based on the same main
idea.

4.5.1 The pseudo-golden mean

The natural extension must be constructed so that it captures the future
as well as the past of shifts of B-expansions. It is easy—in case 8 is a
pseudo-golden mean number—to define a transformation on a suitable
space that does the trick. We will see that the invariant measure for the
natural extension is normalized Lebesgue measure, from which Parry’s
measure as described in Section 3.4 follows. We will show that the
natural extension of the B-transformation has a suitable GLS-system

as an induced transformation. This will be used in the last result of this
book. Corollarv 6.3.2

Let B > 1 be a pseudo-golden mean number of order m > 2. That
is, B > 1 is the positive root of the polynomial z™ — am R

and therefore

1
1 =

| 1
—_ ...

B B

so that 1 has a finite B-expansion. Denoting the B-transformation by
Tg, we then have

k]

* o

4oidb—— for i=0,1,...,m—1,

and Tt’;l = 0 for i > m. Note that in the B-expansion of any x € [0, 1),
one can have at most m — 1 consecutive digits equal to 1. If we view
x as a one-sided sequence of digits, then the natural extension has the

same property.
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We now fix m = 3 just to help us visualize things; the same pro-
cedure goes through for any m > 2. As in the GLS-case—see Section
4.4—we choose as our map

Tg(x,y) = (TBX (LﬁXJ +y)\

which must be defined on a proper subset X of [0, 1)2. We now con-
sider [0, 1) horizontally as the future-axis, and [0, 1) vertically as the
past-axis, each with natural partition

°5) st w) 5 e)
3BT R) BT R

representing points x whose S-expansion starts with a0, a 10 or an 11
respectively. In view of this, a natural choice for X is

(3 7))
B ’ BB ‘B B?
+ .

B
(-l
ull—=
p

In general one chooses

Notice that

1 ([0, %) x [0, l)) = [0, 1) x [O, %),
S R P R A I R A A
P\l g2) LB pg2)) " L08) LB )
1 1 1 1 1 |
Tg\| 5+ =1 0,-))=|=-+—=
"([ﬁ+,92 )x[ ﬁ)) B ﬁ+ﬁ2)
<[5 1+ 1).
LB B B/
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0 B B
Figure 4.4. The natural extension of Tg if m

-4

W ‘H-—

which shows that 74 is onto. As usual, on X we consider as o -algebra
the restriction of the product Borel or Lebesgue o -algebras. By exam-
ining 7g, we see that both coordinates are linear maps, one with slope
B, the other with slope 1/8. Thus, a natural candidate for an invariant
measure is the normalized Lebesgue measure on X.

Exercise 4.5.1. Let 8 > 1 be a pseudo-golden mean number of order
m > 2, and u normalized Lebesgue measure on X.

(a) Show that 7g is one-to-one.

(b) Show that 7 is measurable and measure preserving. =

We now show that the projection of u (which is normalized
Lebesgue measure on X) on the first coordinate is the Parry mea-
sure. Let ) be the projection on the first coordinate, define a measure
von [0,1) by v(B) = ,u(nl_lB) = u((B x [0, 1)) N X) for every
B C {0, 1) measurabie. Then,
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r 0 /1 1 1\
p i i 1
N&=/ 2 3[0ﬂx(_ _““7)“
BE+55+E? ﬁ ﬂ »B
’9 (7+ %)
+/ Iii, o (x) 5+ 55 )dx
Bptatg PPN T\B B
B
+f I ll(x) dx,
Bz',--l—f%-i—-gg[Jrﬁ)
since
l—l+l+l
g B

[ 1 (1l 1) 1)
§+-§7+%K ste) *<l%8)
h(x) =1 71 2l 3(1"’1)’ xe-%"ﬂ}_i'%)
sttt \ P S
! 1, xe—-l—+l,l),
Ftat g N

it follows from above that
v(B) = / h(x)dx .
B

Thus v is equivalent to Lebesgue measure A on [0, 1). Since m17g =
Tgm, we see that v is a Tg-invariant measure and m; is a factor map.
The measure v is the same measure obtained by Gelfond and Parry; see
Equation (3.2) in Section 3.4. Further, by an argument similar to that
used in the proof of Theorem 4.4.2, one can show that

o0
\/ Tpn'B=(BxB)NX.
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This shows that (X, (B x B) N X, u,7) is the natural extension of
([O, 1), B, v, T,g). Since Tg is ergodic, see Theorem 3.4.5, it follows
from Remark 4.3.4(4) that 7 is ergodic on (X, (B x B)N X, u), and
therefore also on (X, (L x £) N X, w).

LetY =[0,1) x [0
l_\l

LU A U, 1)

-

1/7R and W -V _5 V h
1/ 0)anG yv . I > 1 O
r

formation of 7g on Y, with return time n, given by

(¢

b

.

L, (x,y)€l0,5)xI[0, %),
n(x,y)=1 2 (x,y)e[,—;-,—};+l2)x[o,7§-)
|3 (uy)elg+g D %[0, p)

One easily sees that W is given by

((Bx. 3). (x.y) € [0.5) x [0.3),
{0 n|/1 N / N o S T TR a1\
(B2x = B. z(1+y), (x.y) €[5 5+5) [0 5)

W(x,y) = {

and that the invariant measure is S(A x A).

We now show that the induced system (Y, W) is isomorphic to
the natural extension of a GLS(Z) operator in case we use the Borel
o -algebra on both spaces, and is isomorphic to the completion of the
GLS(Z) operator in case we use the Lebesgue o -algebra. Let Z be given

by

1 | 1 1 ]

p B B 2 B B?
Then Z is a GLS partition. Let S be the corresponding GLS operator
Thus,

r ﬁx ) O S X < _é- ’
— 2, 1l - 14 1
Sx =1 Bx—-8, g=x<gtg,
B3x —p2_g. L L <y
r o ﬂ ﬂz -—
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Let S be the natural extension map of S, so that

(ﬁx,%), (x,y)e_O,%)x[O,l),
(Bzx—3—+l,.\, (x,y) € ! l+L\><l0 1)
\ B B%) B B ‘
S(x,y) = 1

(Bx-p b5+ 5+ %)

B B: B’

(x,y) e l-l + LA l\\ x [0, 1).

‘ LB B~ )

We have seen that S is measure preserving with respect to A x A
on [0, 1)2. The following proposition is easily verified.

Proposition 4.5.2. Let ¢ : [0, )2 - Y be defined by ¢(x,y) =
( DAY TL o oA e e L o 1v2 1 w1 C s
\A, B‘} 11er (p LY drt ornorprnwm _]rU’l \[U, l} s A X A, O) {
(Y, B(A x 1), W)

4.5.2 General 8

The general case is a more complicated version of the pseudo-golden
mean case. Our aim is to build an invertible dynamical system that
captures the past as well as the future of the map Tg and is the small-
est dynamical system with such a property, in the sense that it is a
factor of any other dynamical system that also captures the past and
future of Tg. In case B belongs to a special class of algebraic num-
bers, other versions of the natural extension can be also obtained; see

[Nak95].

We will outline briefly the construction of the natural extension,
and the related GLS as an induced system; see also [DKS96]

Let

. 1 .
Ro = [0, 1)? and R; = [0, T;jl) X [0, _Ié'-) , 1> 1

the underlying space Hpg is obtained by stacking (as pages in a book)
Riy1 on top of R;, for each i1 > 0. The index i indicates at what
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height one is in the stack. (In case 1 has a finite S-expansion of length
n, only n R;’s are stacked.) Let BB; be the collection of Borel sets of
R;, and let the o-algebra F on Hg be the direct sum of the B;’s, i.e.,
F = @B,;. Furthermore, the measure on Hg that is Lebesgue measure
on each rectangle R; is denoted by n, and we put u = W,‘;;n Finally
1 : Hg — Hpg is defined as follows. Let d*(8) = .bll;)z... (as in
Proposition 3.3.3), and let (x, y) € R;,i > 0, where x = .did>... is
the B-expansionof x andy = .00...0c¢;41¢i+2 - - - 1s the B-expansion

[ —times
of y (nnn(‘e that (x, y) € R; lmnllPQ thatdy < b;11). In view prrgpg-
sition 3.3.3, we now define
R() ifd1 < b'+1
Te(x,y) := (Tgx, y*) € T e 4.4
p(x.y) = (Tpx. y") { Riy1, ifdy =biq, *4)

where

b bi ~ d y

'B—+° +"B—’+ W+E =.by---bidiciyici42---,
y* = | ifd, < bjyy,

%=.000...00 Ci+1Ci+2 " ifd; = bjy.

{ i+1—times

Notice that in case i = 0 one has

( 1
E()’+d1), dy < by,
*=
’ 4 d=b
E, 1 =0].

Exercise 4.5.3. Show that the Parry measure as given in Equation (3.2)
is obtained by projecting u on the first coordinate. |

Consider the probability space (Ro, Hg N Ro, /tR,), Which by
construction equals ([0, 1)2, B x B, A x A). Let Wg : Ry — Ry

[T i 3. i T . D ML e S YAY St oM
DE e 1nau LC(I map Ol1 lﬁ Ol ng. Llllal 15, VVﬁ IS gIvEil a5 10110WbS.
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Let (x,y) € Ry, where x = .did;... is the S-expansion of x and
d*(B) = .b1b;...; then

Tp(x,y), ifd; <by,

Wg(x,y) =
p(x.7) {Té’(x,y), ifdi =b;forl <i<n-1andd, < b,.

\

This follows from definition (4.4) of 7g on Ry, for

(i) ifd) < by then Tg(x, y) € Ry.
22\ £ 1 | B £..__ 1 - - t .1 1 - L e~ P ls_. Y = D
() 1wa; =b;tori =1 =n—landay < bponehasig(x,y) € R;

forl§i_<_n—landTé’(x,y)eRo.

For (x, y) € Ro, letn(x, y) := inf{k > 1; Té‘(x, y) € Rp} and Rg =
{(x,y) € Ro; n(x, y) = k}; thus

1
| (TﬁX, E(y+d1)) , (x,y) € R},
Wg(x,y) = { (b by dp y
P (Tﬁx,?3—+-~+F+ﬁ+§ :
‘ (x,y) € Rk, k> 2.

Notice that n(x, y) is the first return time of the map 7g to Ry, where
n € N. The above shows that

R) =10, .by) x [0, 1)
RE =[.by - bx_y, by -by_1by) x [0, 1), k > 2, and

o0
Ro = URS
k=1

Let Z = {I,; n > 1} be the partition on [0, 1) defined as follows: for
each n > 1, there exist unique integers k > O and 1 < i < by4) such
that

n=bo+b +-+b+3i—1),
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where by definition we put by := 0. Set

,3 ,Bk ﬁk+l ? ﬂ ,Bk ﬁk+l
(4.5)

b be -1 b be
1n=[bo+—‘+---+—"+——— bo+ — + -+ + )

Note that for (x, y) € I,, x [0, 1),

We(x, y) = T4 (x, y)

r“_ b by 1—1 y )
l_ﬁ X, b0+§+ ﬁ+ﬁk+l+ﬁk+l)

We have the following proposition.

Proposition 4.5.4. Let T = (I,),cN be the partition from (4.5). Then

the natural extension T of the GI Q(T\ tran cfnrmannn T is identical to

W.

Proof. The proof follows from the fact that 7 on Ipy4...4h+(i—1) X
[0, 1) for 1 <i < bg4) is given by

b1 bk 1 — 1 y
T(x,y)=(Tx, bo+;+---+—f-37+B,{Jrl +ﬂk+l)'

Sinceforxe[bo+%+-- +F"k— by +3L+ +Z’,ﬁi‘,),Tx—T"+l
a \ v )

it Fallawe that YA
1L IVIIUW Liat

s e

Remark 4.5.5. By Remarks 4.3.4(2) we see that 7, and hence W, are
ergodic. u

4.6 For further reading

Several good books on ergodic theory have been mentioned in this
chapter, or previously. Our first choices of reference and further read-

XYy 101

mg are An Introduction to l:,rgoatc 1ne0ry Dy Peter Walters {Walbéj,
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and Ergodic Theory by Karl Petersen [Pet89]. We also recommend
Billingsley’s book [Bil65], although it is old now and most of the open
problems mentioned in it—like the isomorphism problem for Bernoulli
Shifts—have been solved.

A book of encyclopedic nature by I.P. Cornfeld, S.V. Fomin and
Ya.G. Sinai [CFS82] is unfortunately handicapped by a largely non-
existing index; moreover it is quite hard for a beginner.

Other excellent books are (in a random order) by U. Krengel
[Kre85], J.R. Brown [Bro76], M. Pollicott and M. Yuri [PY98], and G.
Keller [Kel98]. Finally the books by R. Mané [Mn87] and D.J. Rudolph
[Rud90] should not be omitted from this list, but are not first recom-
mendations for beginners.

For topics not mentioned here, we recommend H. Furstenberg’s
beautiful monograph [Fur81], where an introduction to recurrence in
topological dynamical systems is given. What makes Furstenberg’s
book particularly interesting is that a multidimensional version of Sze-
meredi’s theorem is obtained on the existence of arbitrarily long arith-
metic progressions in sequences of integers with positive density.






CHAPTER 5

Diophantine approximation
and continued fractions

5.1 Introduction

5.1.1 Why continued fractions?

In Section 1.3.1 continued fractions were introduced as a generaliza-
tion of Euclid’s algorithm. Although at first view they appear strange,
continued fractions play an important role at many places in mathe-
matics. For instance they appear in primality testing, which is not so
surprising, since Euclid’s algorithm is also a test whether two integers
m and n are relatively prime. For more details, see the book by Bres-
soud [Bre89]. There is also an important relation between continued
fractions and algebraic geometry, see the nice introductory papers by
C. Series [Ser82] and [Ser85].

Another important application of continued fractions is the ap-
proximation of real irrational numbers by rationals, also known as Dio-
phantine approximation, which is a phrase derived from Diophantus of
Alexandria, who lived around AD 250. In this chapter we will go deeper

~tr racnlt no Crin ":“n ~F

L\ IJ l‘ G A Y atatdal'd 21
llllU uua, auu WC Wlll uuu lllall‘y dPPlUAllllallUll lbbullb ad Dl)lll Ullb Ul
the natural extension of the reguiar continued fraction. Before doing
so, we will first recall some classical results by Dirichlet and Hurwitz.

115
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Theorem 5.1.1. (Dirichlet, 1842) Let x and Q be real numbers, where
Q > 1. Then there exist integers p and q, with 1 < q < Q such that

< —. (3.1

Proof. Notice that we may assume that Q is an integer, for otherwise
we may replace Q by Q*, defined by Q* := | Q] + 1.

Essential in the proof of Dirichlet’s theorem is the so-called
pigeon-hole principle (‘if you want to put n 4 1 letters in n boxes,
at least one box will contain at least two letters’); the following Q + 1
numbers all lie in the unit interval [0, 1]:

0, {x}, {2x},..., {(Q@Q-Dx}, 1; (5.2)

here {£} denotes the fractional part of &, i.e., (€} := &€ — |&]. Now
partition [0, 1] into Q subintervals of equal length 1/Q:

b Q b4 Q b Q L AR | Q b Q b Q b *
3)

~~

Then there is at least one of these subintervals that contains two (or
more) of the O + | numbers from (5.2), i.e., there exist two integers
q1 and g2 with q; # g2 (say q1 > g2) and 1 < g1, g2 < Q, such that

both {g;x} and {g>x} are contained in the same subinterval from (5.3).

Since
gix}=qgix—p;, i =1,2,

for some appropriate p;, ps € Z, it follows that

1

l(q1x — p1) — (@2x — p2)| < —.
Qo
Setting

q9 =491 —4q92, Pp:=p1— p2
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we have p,g € Z,1 < g < Q and
1
5_9
Qo

which proves the theorem. m

lgx — pl

Exercise 5.1.2. Show that in case x is a real irrational number, there
exist infinitely many pairs of integers p and ¢, withg > 1 and (p, q) =
1, such that

< iz (5.4)

e am mwromes daenn o~ o oa

Renenica 2 12 QL naxr ¢l nt 4l ccnniile Jed Do nceniaa & 19
LACTICDDT JeleJ. JINUW LAl LUIC 1TOOUIL 11 LACICIDC U.1.£2 1D HHOVCL 1 Uc 11l

case x 1s rational. ]

In 1891, Hurwitz showed that for irrational numbers x inequality
(5.4) can be improved considerably.

Theorem 5.1.4. (Hurwitz, 1891) For every irrational number x there
exist infinitely many pairs of integers p and q, such that

11
x—B' <—_ (5.5)

The constant 1//5 is best possible; i.e., if we replace 1/ VS by a
smaller constant C, then there are infinitely many irrational numbers
x for which

Ke)

| |
Ix— 2| <
| |

Q|
N

q
holds for only finitely many pairs of integers p and q.

There are several ways to prove this theorem. One classical way

b |

is to use Ford circles; see also the books by W.M. Schmidt {Sch80b]
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and Rademacher [Rad83]. Another way is to use continued fractions.
In 1903, Borel obtained the following theorem, which at once implies
Hurwitz’ theorem.

Theorem 5.1.5. (Borel, 1903) Let n > 1 and let £2=L, B2 gng Brtl
be three consecutive continued fraction convergents to the irrational
number x. Then at least one of these three convergents satisfies (5.5).

In the 80 years following Borel’s result several generalizations and
improvements to this theorem have been obtained. In Section 5.3.1 we
will show that a dynamical approach to continued fractions yields these
generalizations and improvements as easy corollaries.

5.1.2 Approximation coefficients
In Exercise 5.1.2 we saw that for x irrational

p
x_—.

q

=

1
q2
has infinitely many rational solutions g. From Borel’s Theorem 5.1.5

it follows that infinitely many of these solutions are (regular) continued
fraction convergents f]’—" of x. A classical theorem of Legendre shows

that the real good rational approximations g of x are in fact always

convergents f]-’f. We will present here a refined version of Legendre’s
Theorem by D. Barbolosi and H. Jager [BI94]. We first give some def-

initions.

Definition 5.1.6. The approximation coefficient © (x, g) of a rational

number g with respect to a real irrational number x is defined by

A
@ (xs —) = qqu - p'a
q
Le.,
O(x, p/q)

-2
x——|= 5
I ql q-
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In case ‘;'-' equals the kth continued fraction convergent 2’—: of x for
some k, we write g € RCF(x), and we write Oy (x) (or Oy) instead of
O(x, 5). Further we define

/o [ +1, ifx> 2,
ekx,—'i = 1
q i —1, ifx<g.

Finally, the signature §(x, g) of g with respect to x is defined by
b (x, E) = (—1)"e (x, E) :
q q

where n is the depth of the continued fraction expansion of g. (See also
Section 1.3.1.)

Note that Hurwitz’ Theorem 5.1.4, Borel’s Theorem 5.1.5 and Ex-
ercise 5.1.2 are in fact statements on approximation coefficients, since

in general
| p|_ O(x p/q)
el T T
and 1n particular
oo 2| = &
xX——l=—.
a | q

Given an irrational x and a rational p/q, how can we determine
in a quick and efficient manner whether p/¢q € RCF(x), without first
expanding x in a continued fraction? In the second year of the French
Revolution, Legendre gave a partial answer in terms of the approxima-
tion coefficients, see Corollary 5.1.8. In 1994, Barbolosi and Jager gave
a complete characterization by generalizing Legendre’s result.

Theorem 5.1.7. (Barbolosi and Jager, 1994) Let p and g be two inte-
gers such that (p, q) = 1, ¢ > 0, and let x be a real irrational number.
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If 6(x, -‘;5) = +1, then

2
@( ,B)<— = P cRCF(),
q 3 q

Q
-~
N

@(x,f) > 1= 2 ¢rcRy).
q q

If on the other hand §(x, ) = —1, then

1
@( ,£)<— = 2 ¢ RCFW),
q 2 q

and
@(x —) >- = £ ¢RCF(x)

All constants are best possible, i.e., cannot be replaced by bigger con-
stants.

Proof. Suppose that the depth n of 2’13 is even (the case n odd runs along
lines similar to the even case, and is therefore omitted). That is, g =
lao; a1, ... ,a,] with a, > 2, and n is even. Denote by § the last but
one convergent of £, i.e., £ = [ag; ay, ... ,an—1].

The set of all irrational numbers x with x > g, i.e., with
5(x, 5) = +1, and with g € RCF(x) is just the cylinder set A* =
An(ay, ... ,an) \ Q of order n. For any irrational x in this cylinder A*
one has that

q Qn

and from Exercise 1.3.15 it follows that A* equals

(2,277 \q,
\9 qg+s)
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which has length g~ (g+s) !, since rg —sp = pp_1Gn— Pngn-1 = 1;
see Exercise 1.3.8. From §(x, g) = +1 we have

x €N & @(x,£)=q2 =214
q q q+s
Thus
1
P eRCF(x) @(x, ”) <— (5.6)
q q 1 + q
By Exercise 1.3.9, é = [0;a,, ... =Q1] = Ay (a,) with Ay(a,) is an
interval with endpoints ﬁ and --; thus we have
1 _S | 5.7)
- < —. .
a,+1 7 ¢ dn
Therefore,
® (x, 3) <2 o P eRreFx)
q an + 1 q
and
O/ I an+1=>p¢RCF()
D(x,—) > = x).
k (1) an + 2 q
Since
Gn 2-2— and an + 1 <1,
a, + 1 3 a, + 2

for all a, > 2, the constants cannot be replaced by bigger ones, and the
first part of the theorem follows.

Let x < g, and notice that g = [ao;ay,... ,an — 1,1]. By
Exercise 1.3.15 the set of all irrational numbers x with x < 5 and
3 € RCF(x) is the cvlmder set A = Apyr(ay, ... ,ap — 1, 1) \Q‘-’f
order n + 1, with endpoints £2 » and Past , With

4n qn+l
it
Pn ,
— = [ag; ay, ... ,an — 1]

4n
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and
Pu p
;’“ = [ao;al,...,an— 1,1] = —.
9n+1 q

From the recursion relations (1.12) it follows that
g __ _ — p —

Pn=Pn—Pn-1=p—1T,
g __ _ — g —

qn - Qn Qn—l - q S,

so from Exercise 1.3.15 it follows that

2p—r p)
An:( y — \Qv
29 —s q

which has length g~!1(2g — s)~!. A similar argument leading to (5.6)

now vialde
1HUVY ] IvVIuUD

(5.8)

P ¢RCF(x) & ©(x, 2y < —.
q g 2-3

Notice that (5.7) is equivalent to

an + 1 1 an
< < ,
2a,,+1_2—$ 2a, — 1

and therefore the assertions follow again, since

a"+lz-1-and an

2
< —
-3

for all a, > 2. As above we see the constants are best possible. This
proves the theorem. (]

Legendre’s theorem now follows from the result of Barbolosi and
Jager as a corollary.

Corollary 5.1.8. (Legendre) Let p and q be two integers such that
(p,q) = 1,q > 0, and let x be a real irrational number. Then
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/ p\
® (x, —) <
q

The constant % is best possible.

= £ ¢ RCF(x).

q

N |

Remark 5.1.9. Let x € [0, 1) be an irrational number with (regu-
lar) continued fraction expansion x = [0;ay,... ,a,, ...}, with se-
quence of convergents (%)nzo, and with approximation coefficients
®, = 0,(x), n > 0. Barbolosi and Jager also characterized the ratio-
nals £ that are not convergents but still satisfy (5.4). They showed that

these g are from the set of intermediate convergents of x, defined by

kpn + Pn—1

| <k <apy)1—1,n>0.
kqn+qn—l n

For more details, see [BJ94]. |

Remark 5.1.10. In Section 1.3.1 we abbreviated T"(x) by T, forn >
1. Notice that

Tn = [07 an+1,0n42, - °°]a

which can be understood as the future of x at time n. Similarly we
define

V,,=qn_l for n > 1 and Vy =0.
dn
Thus
Vo =1[05an,...,a1],n>1; Vo =0,
is the past of x at time n =

Exercise 5.1.11. Show, using (1.12), that for n > 1 one has

Vn Tn

O = — " d © =—"__ (59
~t=1rrv, " "E1rT,V, (5:9)
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From (5.9) it at once follows that each approximation coefficient
®, 1s a number between 0 and 1. Roughly speaking, this means that the
speed with which p, /g, converges to x is the same as the speed with
which the denominators g, (and hence also the numerators p,,) tend to
infinity. The recurrence relations (1.12) show that this convergence is at
least as fast as the way the Fibonacci numbers grow (these are the g,,’s
one gets if all a,’s are equal to 1). However, due to Lévy’s Proposition,
Proposition 3.5.5, we see that this convergence is exponential for a.e.

X.
With a it !e pffnrt ane findc muyb

YVviuii lll- AAVIL Ulklw 11x1v0 111 1 Il.l\.ll

~

re 1n ormation on the an_
A L2AAVI L11QALIVEL Uil LW uy

proximation coefficients ®,. For each irrational x one clearly has that
(Tn, Vo) € (0,1) x [0, 1], forn > 0.

With 2 := [0, 1) x [0, 1], in view of (5.9) it seems natural to study the
map ¥ :  — R?, defined by

y X
b := L] 0] f L) EQo 5.10
v(x,y) (l+xy l—l-xy) or (x, y) (5.10)

In this case one has for all irrational numbers x and all n > 1 that

(On-1,0n) =Y (Tn, V) € ¥(£). (3.11)

Exercise 5.1.12. Let I' := y(£2). Show that I" is the triangle in R?
with vertices (0, 0), (0, 1) and (1, 0), specify its boundary and show
that ¥ : 2 — T is a bijection. ]

From (5.11) and Exercise 5.1.12 the following result by Vahlen
follows at once.

Corollary 5.1.13. (Vahlen, 1895) For all irrational numbers x and all

n 1
I i

A%
ﬂb
.

h

N
I 7

1
min(®,_1, 0,) < 3"

In order to obtain Borel’s Theorem, Theorem 5.1.5, and its gen-
eralizations and refinements, one needs to have a better understanding
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of the dynamics of the sequence ((®,-1,®,)),>1 in I' = ¥ ($2) for
(almost) all x. In order to do so, we study €2 in the next section as the
space for the natural extension of the (regular) continued fraction. In
Section 5.3 we will finally derive the generalizations of Borel’s Theo-
rem, by going from Q2 to I'.

5.2 The natural extension of the regular
continued fraction

In Section 1.3.3 we saw that the probability measure p on [0, 1), with
density function

1 1

, xe€l0, D,
log2 1+ x

the so-called Gauss measure, is the invariant measure for the contin-
ued fraction map T. In Section 3.5, Theorem 3.5.1, it was shown that
([0, 1), B, u, T) is an ergodic system.

In order to study the distribution of the sequence (®,(x)),>|
for almost all x (with respect to Lebesgue measure), the system
([0, 1), i, T) is ‘insufficient’, since it only deals with the future, while
®, depends on both past V,, and future 7,, as we saw in (5.9). Since
0<T, <lforx g Qand0 < V, < 1, we introduced in the previous
section the space 2 = [0, 1) x [0, 1]. Now defineamap 7 : Q —

T"(x,0) = (T,, V). -

We have the following theorem.



126 Diophantine approximation and continued fractions

Theorem 5.2.2. (Nakada, Ito and Tanaka, [NIT77], [Nak81]) Let it be
the probability measure on S2 with density d(x, y), given by

1 1
log2 (14 xy)?’

d(x,y):= (x,y) € Q;

then [ is the invariant measure for T. Furthermore, the dynamical
system

2,1, T)

is an ergodic system.

Exercise 5.2.3. Use ideas from Section 4.4 to prove Theorem 5.2.2.
|

5.3 Approximation coefficients revisited

5.3.1 Arithmetical properties

In this section we will prove—via several exercises—the following the-
orem.

Theorem 5.3.1. Let x be an irrational number, and let n > 1. Then

1

mne®, 160, 0 )« — (5 12)
UL~ n—1y iy ~Yn+1) > \Yei&y
‘/an+l +4
and
|
max(©,_1,0,, Ony1) > (5.13)
‘/a_z_. , + 4
V n—+1

Remark 5.3.2. Clearly (5.12) generalizes Borel’s Theorem (Theo-
rem 5.1.5). Several authors have given various proofs of (5.12), e.g.,
Bagemihl and McLaughlin [BM66]. Inequality (5.13) was first ob-
tained by J. Tong [Ton83] in 1983. The approach in this section is
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can also be used to obtain asymmetric results, as first found by Segre
[Segd5] in 1945. For such results the interested reader is referred to
[Kra90]. =

Exercise 5.3.3. Using the notation from (5.10) and Exercise 5.1.12,
show that the inverse ¥ ~! : ' — Q is given by

o, By = ( 1 — «/21;—'“4aﬁ’ 1 - ,/21';—“4aﬂ) _ .

Fora € N, let

Q| -

1
'Ha=!(x,y)€§2:—.——‘—<y§
{ a-+1

, fora > 2, and

e — \esm—p—

A
Q| ==

1
. yeq: — <
Va [(xy)e a+1_x_

|
V1={(x,y)eQ: §<x<ll.

Notice that 7V, = H,, and that

T"(x,y) eV, © any1 =a, n >0,

vV

Tn(x’y)EHa <~ d, =a,n

where x = [0; ay,as,...].

Exercise 5.3.4. Let V¥ := ¢/ (V,) and H} := ¥ (H,), where a > 1.
Show for a > 2 that V} is a quadrangie with vertices

1 1
0,l , 2 , , a+1, : , and |0, ,
a a+1 a+1 a+2 a+?2 a+1

and that ‘H is the reflection of V} through the diagonal « = B. For
a = | both quadrangies reduce to triangies. ]
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Exercise 5.3.5. Define the operator K : I' — I' by setting K :=
YT ¢!, and use Exercise 5.3.3 to show that

(@ B) eV} - K, B) = (B,a+ay1—4aB —a’B).

and
(, B) € H; — K Y, B) = B+ayl—4daB — a’a,z). =
Since
W(Tn, Vn) = (@n—l, ®n),
and

(O, Ony1) = V(T (W 1 (On_1,0,))),

the following proposition is a direct corollary of Exercise 5.3.5.

Proposition 5.3.6. Let x be an irrational number, with continued frac-

b Y. . 1 TL
ton ejcpan.uun A ={v,dl,d2,...]. 1n€en

®n+l =0, +an+l\/1 —40,_,0, —(13_'_1@” , n>0,

and

®n-1 =0Op4 +ant1v1 —40,0,4, —a,ZH_l@,,, n>1.

Exercise 5.3.7. Fora > 1, let £, be the irrational number given by
Sa = [O; C_l],

i.e., &, has a periodic continued fraction expansion with period length 1.
Show that

E, =

pits

s T(ga ga) = (§a9 ga) *

—a+va’+4
2
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and

1 1
Va ) = (\/a2+4, x/a2+4) . .

It follows from Exercises 5.3.3, 5.3.5 and 5.3.7, that

1 ] 1 ]
, =K< , ), fora > 1.
(m m) Val+4 JaZ+4

In view of this we define fora > | the map f, : V; — R by
falee, B) := a +a/1 — 4aB — a’B.

Exercise 5.3.8. Show that for any («, B) in the interior of V; one has

d

F Al RY «c Nand _— f (o R -~
Ja\&, 0} < v aild 3 a\&, p) <

N -
V. -

&
1

Exercise 5.3.9. Use

1 1 1
f(~/ i, )ZJ ’
‘“\VaZ+4 VaZ+4 aZ+4

and Exercise 5.3.7 to finish the proof of Theorem 5.3.1. (]

5.3.2 Maetrical properties

In the early 1980s H.W. Lenstra formulated the following important
conjecture on the distribution of the approximation coefficients ®,,(x).
This conjecture had previously been formulated (in a slightly dif-
ferent way) by W. Doeblin [Doe40], but had been completely for-
gotten. Our discussion requires the following definition: a function
F : R — [0, 1] is a distribution function if it is a non-decreasing
function, that is right continuous and that satisfies lim,_, oo F(x) =0
and limy,_, _oc F(x) = 1.
For almost all x and for all z € [0, 1] the limit

|
lim —#{1 <n < N;0,(x) <z}

N—oo N
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exists, and equals the (distribution) function F(z), given by

Z
log2’

Nof—

O0<z<

F(z) =
— (1 —z+1log2z), l<z§l.
l log2" ‘
In other words: For almost all x the sequence (©,(x)),> has limit-
ing distribution F. Notice that, once this conjecture is established, we
have—simply by calculating the expectation of F—that for almost all x

lim —Z@ (x) = ———0360673

N—>oon<N

The Doeblin-Lenstra conjecture was proved by W. Bosma, H. Jager and
F. Wiedijk [BJW83]. Here we will present a proof due to Jager [Jag86].

When one tries to prove this conjecture by applying the ergodic-
theoretic apparatus, which seems only natural, one soon realizes that
the ergodic system ([0, 1), £, i, T) underlying the (regular) continued
fraction is insufficient. From (5.9) it is obvious that ®,(x) depends on
both the future (i.e., T,, = T"(x)) and the past (i.e., V,,) of x; T forgets
about the past (the same applies also to ®,_(x)). It is for this reason
Bosma, Jager and Wiedijk turned to the natural extension (2, £, i, T)
of ([0, 1), £, u, T); they wanted to have a grip on the past.

One problem in studying the dynamic behaviour of the orbit

Tne. N (T Y N :c that tha t\r\l‘n ~F giirh Arhaet
L \X, U) = ({T,,Vy),n > 0, is that the collection of such orbits as

x varies in [0, 1)—whichis N = [0, 1) x ([0, 1] N Q)—has measure
zero with respect to the measure . Due to the Ergodic Theorem we
know that for almost every (x, y) € [0, 1) x [0, 1], and for any Borel
set C of positive measure,

N=1
Jim % :L;j) e (T*(x, ) = &(O),

Definition 5.3.10. Let ((xn, yn))n>0 be a sequence in [0, 1) x [0, 1].

e o/ DY Y 2 DAY LU LENRY SR RN o W I o o YR 1 RESNEDY X
1nen ine sequence ((Xn, Yn)),>q IS disiriouted over |U, 1) x |U, 1] wiin
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density functiond(x, y) = (log2)~ (1 + xy) 72, if

| M-
h — 1 , = u(J
Nl—+mooN k;o J Xk ye) = n(J)

holds for all rectangles J = {(a,b) x (c,d) C [0,1) x [0, 1]). Here
0<a<b<10<c<d<1,anda,b) is one of the intervals

[a, b), [a, b), (a, b] or (a, b).

This definition is a two-dimensional generalization of the classi-
cal definition of a uniformly distributed sequence; see e.g. [KN74] and
[Hla84]. Clearly, if ((xn, yn))n>0 is distributed over [0, 1) x [0, 1] with
density function d, then one also has that

2

w— . 1 rr dxdy . e
le(xe, o) = 7— ——— = u(C) (5.14)

. 1
Iim
k=0 ]ng./jC(l+xy)2

N—>oo N

for any set C that is the countable union of (complements of) rectangles
J. In fact one can show that (5.14) holds if C € B is such that u(9C) =

N. can TWANI7TAY o 1774 1778
U, SCC [ NIN/ &), PP- 175, 170,

The following lemma is very useful.

Lemma 5.3.11. (Jager, 1986) For almost all irrational numbers x €
[0, 1) the two-dimensional sequence

(Tn(x, O))nZO = (T, Vn)n_>_0

is distributed over [0, 1) x [0, 1] with density function d(x,y) =
(log2)~'(1 + xy)~%

Proof. Let ¢ > 0 be arbitrary. For a rectangle J = (a, b) x (c,d),
define sets J4, and J_; by

Jie ={(a,b) x[c—&,d+¢€] and J_. = (a,b) x[c+¢,d— €]
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For any (x, y) € ([0, )\ Q) x [0, 1], with x = [0; ay, ... ], there exists
a uniform ng = ng(e) > 1 such that

1[0; an,an-1,... ;a1 +y] —[0;an,an-1,... ,a1ll < &
for all n > ng. But then we have for any n > nyg
T"(x,y) = (T, [0;an,an-1,... ,a1 +y) €J_e = (Tn, V) €J
and

(T, Vo) eJ = Tn(x,y)e-]+€,

which yields that
{ V-l ( \ { V- / \
llminf—vl. Tkiy ) <||m|nf_vl Tk(x )

‘Nooc N e\t YY) = NG N & \0 )

k=0 k=0

| Nl
< limsup — 1y (Tk(x, O))

N—-oo N k=0

< limsup — le+e (Tk(x Y))

N—->oo

From this and the Ergodic Theorem we find that for almost all x
| M=l )
fi(J=e) < liminf é 1., (T4x,0))

< llmsup— Zl; (Tk(x O)) < i(J4e).

N — 00 l'

Since
_ _ £
ln(Jxe) — ()] £ —,
log2

it follows that
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A1

n(J) — l—(%-z- < ]/lvn-l»lo%f : :—0' 1y, (Tk(x,O))
. | M=l ) i
<timsupy 31 (7H00,0)) = 20+ o5
from which the conclusion of the lemma follows. m

Setting for0 <z < 1,

X
Av = X, EQ; < )
“ [( PTG ‘Zl

it follows from Lemma 5.3.11 that for almost all x

. N—1
lim — 3 14 (Ti(x, 0)) = fi(Ay).
N OONié(; z\ ] —

Exercise 5.3.12. Show by direct calculation that F(z) = u(A;). This
proves the Doeblin-Lenstra conjecture. ]

In view of (5.9) one can also look at the distribution of two con-
secutive ©’s.

Exercise 5.3.13. (Jager, 1986) Let (z1, z2) € I'. Show that for almost
all x the limit

1
lim —#{1 <n < N; ©,_1(x) <21, Onx) < 22}
Nooxo N
exists, and equals the (distribution) function G(z;, z2), given by

In fact, we already saw that (®,_)(x), ®,(x)) lives in its own
space I". To be more precise, we have the following exercise.
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Exercise 5.3.14. (Jager, 1986) Show that the dynamical system
(T, p, K), with p the probability measure on I' with density

I I
log2 /T —4aB’

forms an ergodic system. (]

Clearly (T, p, K) is better suited to derive the Doeblin-Lenstra
conjecture and the result from Exercise 5.3.13. We decided to present
this material in its historical order, so you would get a better under-
standing of the dynamics of the system (2, £, i, 7).

5.4.1 Introduction

Apart from the regular continued fractions (RCF) an—at first sight—
bewildering variety of continued fraction expansions exist. Here we
mention the continued fraction to the nearer integer (NICF), Hur-
witz’ singular continued fraction, the continued fraction with odd (or
even) partial quotients, Rosen’s A-expansions, Nakada’s «¢-expansions,

.
amac ﬂF I'IIF'FQ‘I'QI’\' f‘f\ﬂflnllﬂf]
11 13QILIVD ULl JLliviviIL vuULIL LA

Fortunately, many of these expansions are inter-related via induc-
ing or via the integral transformation (or both), which we studied in
the previous chapter. In this section we will describe a class of contin-
ued fraction expansions that can be obtained from the RCF via induc-
ing; these are the S-expansions; see also [Kra91]. These S-expansions
are examples of semi-regular continued fraction expansions, defined as
follows.

Definition 5.4.1. A semi-regular continued fraction (SRCF) is a finite
or infinite fraction
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£
13

by + 3 , (5.15)
b +

€n

by+ -+

by + -
withe, = +1;bg € Z; b, € N, for n > 1, subject to the condition
Engl +bn =1, forn > 1,
and with the restriction that in the infinite case
En+1 + by > 2, infinitely often.

Moreover we demand that €, + b, > 1 for n > 1. We will abbreviate
the SRCF from (5.15) by

[bo; €1b1, &2b7, ... ,Enby, ... ].

Example 5.4.2. One of the most important examples of a semi-regular
continued fraction expansion is the nearest integer continued fraction
expansion (NICF). Introduced in 1873 by Minnigerode [Min73] and
studied by Hurwitz [Hur89], this SRCF derives its name from the fact
that the partial quotients are always the nearest integers. To be less
poetic and more precise, let T% : [—%, %) — [—%, %) be given by

T (x):= )l‘ — Ul.%—lJ , x#0;, Ti():=0.
2 X 2 2

X

For x € R, setting bgp = bo(x) € Z such that x — bg € [—%, %), the
partial quotients b, = b,(x) and the ‘signs’ ¢, = &,(x) are defined as
follows. Let n > 1 be such that T" ! (x — bg) # 0; then

v}

En = SgN (T%"_l(x — bp)),

where
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N

i, ifx>0,
sgn (x) = 0, if x =0,
-1, ifx <O,
and
1 1
b":= n—-1 +3
T, (x — bo) 2
3
Since
|
x = by +
0 bl+T%(x_bO)

we find that x has (5.15) as its NICF-expansion. In this case one more-

Vver nas tnat

(@]

bpy>2 and b, +e,4 =2, forn > 1. (5.16)

Conversely, if x has an SRCF-expansion of the form (5.15) which
also satisfies (5.16), then this SRCF-expansion (5.15) is the NICF-
expansion of x. =

Exercise 5.4.3. Letx =[0; 1, 1, 2].

(a) Show that x = —1 + $/10 =0.5811....

(b) Determine the first 10 RCF-convergents of x. (Hint: Use the recur-
rence relations from Exercise 1.3.8.)

(c) Determine the NICF-expansion of x, and calculate via finite trun-
cation the first six NICF-convergents of x. Compare these with the
RCF-convergents of x. What do you see? (]

Let x € R, and suppose that (5.15) is some SRCF-expansion of
x. Finite truncation in (5.15) yields the convergents (r¢/sk)k>) of x of
this particular SRCFE. In a moment we will see that, for instance, the

ATYAATY .

sequence of NICF-convergents (r¢/sk)k>1 of x forms a subsequence
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of the RCF-convergents (p,./qn)n>1 Of x; 1.€., there exists a function
n, =n : N — N such that

e P p sy,
Sk dn(k)
We will also see that for almost all x
k log 2
lim "®) _ 1082 04

koo k  logG

with G the golden mean from Example 1.3.4, so the NICF-convergents
provide a faster approximation to x than the RCF-convergents. Further-
more we will see, setting

rk
x__

O = O (x) := s} o

’ kZI,

that for aimost all x one has

I & V5-2
lim - 6 = =0.24528... ,
k_',"o‘ok;' 210g G

so the NICF also eives—in the mean—<closer approximations to x than

L NAN—A DrY S A23 viiw aiiwiexs WALV OVL Sppa Alvi RS v

the RCF does. This raises the natural question whether there exist
SRCF-expansions of x that are faster and closer to x than the NICF.
We will see that there exists a unique SRCF-expansion, the optimal
continued fraction expansion (OCF), which is as fast as the NICF, but
which yields the closest possibie approximations to any irrational x.

Example 5.4.4. In 1981, H. Nakada [Nak81] generalized the idea be-
hind the NICF in the following way. Let a € [%, 1], and let the map
Ty i [ — 1,a) = [¢ — 1, @) be given by

1

_ ['_

X

o

X

T,(x) := + 1 —aJ , X #0; Ty(0):=0.

As in the case of the NICF, the map 7, generates a semi-regular
continued fraction expansion, the a-expansion. For x € R, setting
bo = bo(x) € Z such that x — by € [« — I, ), the partial quotients
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b, = b,(x) and the signs ¢, = ¢&,(x) of the a-expansion of x are
defined as follows. Let n > 1 be such that T, (x — bg) # 0; then

£y = SgN (T(;’_l(x — bg))

and
Ty~ (x — bo)
Since
€]
x = by + ,
O b1 + Tu(x — bo)

we find that x has (5.15) as its a-expansion. Obviously the case o = %

gives the NICF, while ¢ = 1 yields the RCE In the next exercise we
consider the case « = g, the “small” golden mean. In [Nak81] Nakada
gives the natural extension for each a-expansion. In the next subsection
we will re-obtain—albeit in a completely different way—his results.

Exercise 5.4.5. A continued fraction closely related to the NICF is
Hurwitz’ singular continued fraction (SCF). The operator underlying
the SCFisthemap T, : [g — 1, g) — [g — 1, g), given by

Tg(x) := i%i— H%i—l—l—g‘i , x#0; Tg(0):=0.

(a) Let x be an irrational number, with SCF-expansion (5.15). Show
that

5) amd L 1 o~ 5] £ 2n 1 & 17N
L dila Un T ¢&n L, 101 1 1. \J.ll}

vV
v
v

L
Un

(Further on in this section we will see that also the converse
holds, i.e., if x has an SRCF-expansion of the form (5.15) which
also satisfies (5.17), then this SRCF-expansion (5.15) is the SCF-

expansion of x.)
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(b) Let x = [0: I, 1, 2]. Determine the SCF-expansion of x, and cal-
culate the first six SCF-convergents of x. Compare these with the
RCF- and NICF-convergents of x you found in Exercise 5.4.3.
What do you see? =

Example 5.4.6. Let (5.15) be some SRCF-expansion of x € R, with
convergents (rx/sk)k>1 and approximation coefficients (6¢)x>1. This
SRCF-expansion is called Minkowski’s diagonal continued fraction
expansion (DCF) of x if it satisfies ¢ < 3, for k > 1. The DCF-

o

expans ~F o M 2o s3vtsus: Ter tha mne

e Ofi WE wxssll cnan
Cilion W<€ Wil 5€C

CXpaiis sion of any x € N is uuu.luc ifi tne next suosec
that it can be obtained in a very simple way from the RCF-expansion
of x via singularizations. (]
4.2 S-expansions

At first one might think there is no relation whatsoever between the
semiregular continued fraction expansions we have just discussed.
However, there is a simple—and quite old—procedure, called singu-

larization, which links these (and very many other SRCF-expansions)

II\ (o3} s 4
I.U l.ll\/ AN 1 \/ lJ 1HOLIVEL. 1) olusu

manipulation on partial quotients of SRCF-expansions, described in the
following exercise.

n (2 (‘ mr\ln ’\I"D"\I‘nlf‘
Ol 4 SHIpIC digeoiail

Exercise 5.4.7. Let a, b be positive integers, and let £ € [0, 1). Show
that the following identity holds:
1 -1

S l 4+ ———— . .
a+ ] a+ +b+l+§

We now define the notion of singularization based on this idea.

Let x be an irrational number, and let (5.15) be some SRCF expansion
of x with sequence of convergents (rx/sk)k>1, Where

Tk

= [bo; £1b1, €2b2, . .. , €k bi]
Sk
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and (rg, sxk) = 1, sk > 0. Suppose that for a certain £ > 0 we have
that by;1 = 1 and that ¢,4| = €747 = 1. The operation by which the
continued fraction (5.15) is replaced by

[bo; €1b1, ... s €0—1be—1, €¢(be + 1), —(be42 + 1),
ee+3be43, ee4abeta, ... ],

which again is an SRCF-expansion of x, with convergents, say,
(¢cn/dn)n>—1, is called the singularization of the partial quotient by

equut io l \lll CadC L = U llllb CUILIICY UU CP dblllg \J lJ} U)’ lUO ‘1“

1; —(ba2 + 1),e3b3,€4b4,...].) One easﬂy shows that (cp/dp)n>—1
is obtained from (ry/sk)k>—1 by skipping the term r¢/sq. See also
[Kra91], Sections 2 and 4.

Exercise 5.

4.8. Let x = [0;

(1) Singularize the first partial quotient of x equal to 1 (this is a}), and
repeat this 5 times recursively. What are the convergents of this
‘new’ SRCF expansion of x? Could you have done the singular-
ization in ‘one stroke’? Which expansion did you obtain?

(i1) Singularize the second partial quotient of x equal to 1 (this is ay),
and repeat this 5 times recursively. What are the convergents of this
‘new’ SRCF expansion of x? Again, could you have done these

smgl larizations in ‘one stroke’? Which mm:mqmn did you obtain?

L 339 34 0} A a e LR

The following two exercises ‘generalize’ the previous exercise.

Y he come 1
} Ww JIOVillw

Singularize in each block of m consecutive partial quotients

an+l - i,... ,an+m = i,
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where m € N U {00}, apym4+1 # 1 and a, # 1 incase n > 0, the
first, third, fifth, etc. partial quotient.

After applying this algorithm to the RCF—expansion of x one obtains
an SRCF-expansion [bg; €1by, €207, ... , €4bn, ... ] of x. Show this is
the NICF-expansion of x. (Hint: Show that (5. 16) is satisfied.) m

Exercise 5.4.10. Again, let x € [0, 1) be some irrational number, with
RCF-expansion x = [0; ay, as, .. ] Now consider the following vari-

nfnnn ~
alruil v

=3

Singularize in each block of m consecutive partial quotients

Apn+l = ls°-- » An4m = ls

where mw e odd A L Vand g L 1ic cncen < N o
wnere m € IN 1S 044, dyym41 F 1t anad a, = 1 i case n > U, o1

P
=
¢
f o]
(fr
m
U‘|
a
a
=

singularize the second, fourth, sixth, etc. partial quotient.

After applying this algorithm to the RCF-expansion of x one obtains

an S.\\,F-Cxpaﬂoluu [hO, 8ibi N 82!)2, e ey gnbn, .o ] n{: Qh()“v’ tho 1S
the SCF-expansion of x. (Hint: Show that (5.17) is satisfied.) m

A simple way to derive a strategy for singularization is given by
a singularization area S. Let (2, B, ii, T) be the natural extension of
the RCE. Here we will choose S to be a subset of §2. Before we give
the definition we have two exercises, in order to introduce the idea in a
natural (!) way.

Exercise54ll Let x € [0,1) be some irrational number, with

£ Ve T __ "rn/ _
101¢C, ICL 1, — \.X} =
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T( Szl N Sdcf)

8+ - - 7

/

$1 N Sdcf

/

0 1 g 1
Figure 5.1. S; and Sy.f
2

N

[0; ant1,an42,...Jand Vy, = gn_1/qn = [0; an, an—-1,... ,a1l,n >
1. Finally, let S% = [%, g) x [0,g]U[g, 1) x [0, g), where g is the
“small” golden mean; see also Figure 5.1. Consider the following algo-
rithm:

Singularize a,+) = 1 if and only if (7,,, V) € S%.

(a) Show that you never have to singularize two consecutive partial
quotients equal to 1.

(b) After applying this algorithm to the RCF-expansion of x one
obtains a SRCF-expansion [bo; €1b1, €202, ... ,€nby,...] of x.
Show this is the NICF-expansion of x. (]

Exercise 5.4.12. Let x € [0, 1) be some irrational number, with
RCF-expansion x = [0; aj,az,...]. As before, let T,, = T"(x) =
[0; any1,any2,...1and V, = gn_1/qn = [0; G, an—1, ... ,a1l,n >
1. Finally, let S, := [g, 1) x [0, g) U (g, 1) x [g, 1]; see also Figure
5.1. Consider the following algorithm.

Singularize a,4+) = 1 if and only if (7, V,;) € Sg.



Other continued fractions 143

(a) Show that you never have to singularize two consecutive partial
quotients equal to 1.

(b) After applying this algorithm to the RCF-expansion of x one
obtains a SRCF-expansion [bq; €1b1, €2b3, ... , €pby, ... ] of x.

Show this is the SCF-expansion of x ]

I.lllu i llv -l TeAY i L8 S 2R} -—

The sets S| and S, from Exercises 5.4.11 and 5.4.12 are examples
2
of a so-called singularization area. Here is the formal definition.

Definition 5.4.13. A subset S from 2 is called a singularization area
if it satisfies

M Scl
IOV AR

—
N’

[0, 1};

7

/

’

N|—

(i1) 7(S) and S are either disjoint or intersect in the single point
(8. 8);
(1) S € Band u(dS) =0;

This definition reflects that we only singularize partial quotients
equal to 1 (1), and that we never singularize two consecutive partial
quotients equal to 1 (ii). Note that (g, g) is a fixed point of 7. That S
should be a Borel set is obvious; otherwise we would not be able to use
n{fl-\nf 1 (ACY — 0 micht he hit

lelllell Liiatl M\UU} -_— v uusut UL a Uil

:h
-'
-
5
D
")
D

0 At
ue\u_y. n ll l. LIV lbq

mysterious. This is needed to exclude pathological cases. Consider for
instance the set

=KL”€S;y¢Qh

soSis S ! with all its points (x, y) with rational second coordinate
removed. Clearly this set S has the same measure as S b in fact 3§ =
S1,and (1) and (11) from Definition 5.4.13 are satisfied. However, since
(72",,, V,) always has a rational second coordinate, no partial quotient is
singularized.
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Exercise 5.4.14. Use Definition 5.4.13 and Figure 5.1 to show that

log G
0<@(s) <1-—22 _03057...,
log2
where G = %(\/5 + 1). See also [Kra91], Theorem (4.7). [

A singularization area is called maximal in case

Definition 5.4.15. Let S be a singularization area and let x € [0, 1)

be an irrational number. The S-expansion of x is the semi-regular con-

t131140 NPT DYRAMCOINN AAMVD RGN D Ahtarmod fin

+h ~ + L
uuucd Jlubllull (:.J\,[/un.uun LU’IVCISL"S lU X l’lul ¢~) oviuLricu J’U’ L

-
, N

RCF-expansion x = [0; ay, ay, ... ] of x by singularizing a, | if and
only if T"(x,0) € S, n > 0.

Exercise 5.4.16.

(a) Show that S ] and S, are maximal singularization areas; see
[Kra91].

(b) Show that Sy.¢ := {(T,V) € @;V < mm(T, — )} IS a maxi-
mal singularization area. The S-expansion assocnated with this sin-

gularization is called the optimal continued fraction (OCF); see
[BK90] and [BK91].

(c) Show that Sy.¢ := ((T,V) € @ 5y > 3} is a non-maximal
singulanzation area that yields the diagonal continued fraction
(DCF) of Minkowski; see [Kra91]. .

Remark 5.4.17. That the NICF, SCF and OCF algorithms singularize
blocks of odd length in the same way reflects the fact that these expan-
sions are maximal. There is only one way to throw out (= to singular-
ize) as many [’s as possibie in a biock of odd iength. In a biock of even



Other continued fractions 145

length a jump has to be made somewhere; see also [Kra91]. E.g., for
the NICF one makes this jump at the end, and for the SCF at the be-
ginning. We will see that the OCF chooses the jump in such a way that
one is left with the smallest possible 6’s. One can show (see [BK90])
that for the OCF the jump takes place in the middle of the block.

That for a maximal S-expansion one always makes the maximal
number of throw-outs in any block of consecutive 1’s has several nice
consequences. E.g., maximal S-expansions are isomorphic. An explicit
isomorphism can be found in [Kra93]. (]

Let S be a singularization area and let x € [0, 1) be a real ir-
rational number, with RCF-expansion x = [0; aj, a3, ...] and RCF-
convergents (P, /qn)n>1. Furthermore, let [by; €1 by, ... , &bk, ... ] be
the S-expansion of x, and let ri/sx, k > 1 be its S-convergents, i.e.,

Ik . ) A
— = [bo; €1b1, ... , &bl kK > 1.

Sk
Due to the singularization mechanism one obviously has that
(rk/sk)k>1 forms a subsequence of (p,/qn)n>1. But then there exists

a monotone function ng : N — N such that

(2)-(22)- o=
Sk Qns (k) N

We have the following proposition, which can be seen as a special

f Kac’s Lemma. See Exercise 4.2.5(c)
. . \\l}.

[ 9] TviTsRs . -~ 2SS RS0 )

case
waSv

Q

Proposition 5.4.18. ([Kra91]) Let S be a singularization area. Then
for almost all x one has

v ns(k) 1
11111 = = .
k-—00 k 1 — ,U.-\S)

Proof. From the definition of ng it follows that

ns(k)
ng(k) =k + Z 1s(T;, V})-
j=1
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It follows from Lemma 5.3.11 that

ns(k)

Z Ls(Tj, V) = i(S),

k 1 ns(k)

L= ns(k) + ns(k) Z‘; s (Lo Vi) .

ns(k) < 10g2

< < = 1.4404-- -,
k—oo k log G

the upper bound being attained if and only if S is maximal. Since we
saw that S is maximal for the nearest integer continued fraction expan-
sion, we have obtained a theorem of William W. Adams [Ada79]; see
also [Jag82] for a third proof. In fact many results previously obtained
for the nearest integer continued fraction now hold generally for any
S-expansion. =

We have the following corollary.

Corollary 5.4.20. Let S be a singularization area and let x be an ir-
rational number with S-expansion [bg; €\by, ...] and S-convergents
rr/sk, k > 1. Then for almost all x one has

1 1 w2
lim —logsy = — ’
k—o00 Kk — u(S) 121og?2
and
1 | Ik | 1 —m?

Iim —lOg X ——| =
k—o00 k

" 1— a(S)6log2 "

Proof. For the first statement, notice that

1 ns(k) 1
—logsy = — — log gng k) -
k k ns(k)
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But then the first statement follows for aimost ail x from Lévy’s Propo-
sition 3.5.5 and Proposition 5.4.18; see also Equation (3.7). In the same
way the second statement follows from Equation (3.9). ]

For any irrational number x with RCF-expansion [ag; ay, ... ] and
S-expansion [bg; €1by, . . . ], we define the shift ¢ by

t(x —bg) :=1[0; &b, ... ,exbk,...].
For a fixed x and for k > 0 we put
te i=t*(x — bo) = [0; ekt 1bks1, Eks2bk+2s -1 and vy = sp_y /s,
where
v =[0; by, exbi—y, ... ,8b1], k>1;, vg=0.
See also [Kra9l], (1.4) and (5.1). We have the following theorem,

which is given here without proof.

Theorem 5.4.21. ([Kra91]) Let S be a singularization area and put
As:=Q\S AT :=TSand AT := A\ AT. Let x be a real num

O_QU\U,I_)So S —l_lb \l_)So‘_JD‘J\«UDuI
with RCF-expansion [ag; a), . ..] and RCF-convergents (pn/qn)n>1.
Then one has:

1. The system (As, L, ps, Os) forms an ergodic system. Here ps is the
probability measure on (As, L) with density

(1= (SN 1og2)~ (1 + xy)~?
and the map Oy is induced by T on Ag, i.e.,

[ T(x,y), T(x,y) e As,

Octr. 1) =
55 ) iTz(x,y), T(x,y)€S;

2. T"(x,0) € S &  pn/qn is not an S-convergent,

3. Pn/qn is not an S-convergent = both p,_1/qn—1 and pp4+1/qn+1
are S-convergents,
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'

rk—1 = Pn—1, Tk =
4. Tr(x,0) e AY & 3k: | T P Tk
Sk—1 = 4n—1, Sk = {qn

and T"(x,0) = (tk, vx);

( 3 ~ _

B rk—\ = Pn-2, Tk = Pn

5. T"(x,0) € Ay « 3k : i
Sk—1 ={qn-2, Sk ={qn

and T"(x,0) = (Tj—fk, 1 —w).
(See also [Kra91], Theorem (5.3).)

The following exercise is a direct consequence of the Ergodic The-
orem and the fact that the system (Ag, £, ps, Os) forms an ergodic
system.

Exercise 5.4.22. Let S be a singularization area and let x be an ir-

rational number with S-expansion [bg; €1by, ...] and S-convergents
re/sk, k > 1. Show that for almost all x one has
Ig~, _ | L= 30(S)

lim — . .
k00 k g 1= ()

In view of Theorem 5.4.21 we define the map M : As — R? by

(T, V), (T,V) e A},
M(T,V) = _T v _
(T—I-_fl— ), (T,V)GAS.

We have the following theorem.

Theorem 5.4.23. ([Kra91]) Let S be a singularization area and put
Qs := M(As). Let L be the collection of Lebesgue subsets of 25 and
let s be the probability measure on (s, L), defined by

us(E) = ps(M™'(E)), E€ L.
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If we also define the map Tg : Qs — Q25 by

Ts(t, v) :== M(Os(M™ (1, v))), (t,v) € Qs
then T is isomorphic to Os by M, and (2s, L, s, Ts) forms an er-
godic system with density (1 — 1(S))log2)~1(1 + tv)~2. Finally, for

almost all x € [0, 1) the sequence (tx, vi)k>0 is distributed over Q2g
according to this density.

Exercise 5.4.24. LetS =S L the singularization area of the NICF.

(a) Show that Qs is given by AT = [0, %) x [0, g) and

(| \
M(A7) =] —=,-g%) x [0, U[-¢g%,0) x [0, g%].
L 2 /
See Figure 5.2.
g2
| PN 1
~3 0 )

Figure 5.2. The natural extension for the NICF

(b) Also determine 25 for § = Socf, for § = S, and more generally
o .

faew C _ C .-.|..
10T 5 = J¢g, Wi

p—
w2
a
(¢]
=2
w

f——
—
£
o
e
oo
U,

et

n._,‘ l ™ e
€€ » < =<
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Remarks 5.4.25.

I. From Theorems 5.4.21 and 5.4.23 it follows that
(s, L, us,Ts), which is the two-dimensional ergodic system
underlying the corresponding S-expansion, is isomorphic (via the
M-map) to an induced system of (S2, T') with return-time bounded by
2.

2. One can show that 7g can be written in the following way:

( y

(1] 1
Is(t,v) = { || = fs(

) sgn(t) - v+ fs(t, v)} ’

for (¢, v) € 5.
Furthermore one has

brk+1 = fs(tk, vk), k > 0, where (t9, vo) = (x — bo, 0).

Thus we see that the S-expansion is the process associated with 7s and
fs. For details, see [Kra9l].
For the aforementioned examples we have
1

fi(e,v) |!}!+:|(NICF) fe(t,v) =|!t!+ 2|(SCF)

t\.

and

<a<l.

N —

1
fa(t,v) = H;’ +1-— aJ (a-expansion) for

3. In case of the OCF the last statement of Theorem 5.4.23 says
that for a.e. x € [—%, %) the sequence (To"cf(x, O))n20 is distributed
according to the density function (log G)~!(1 + tv)~2; i.e., it behaves
like the orbit of a generic point. In general, this last statement is a direct
corollary of Jager’s Lemma, Lemma 5.3.11. ]

At this point one could mimic for any S-expansion what we did for
the RCF in Sections 1.3 and 5.3. Matrices can be used to obtain recur-
rence relations for the numerators and denominators of S-convergents,
the (distribution of) S-approximation coefficients can be studied, etc.
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Although such a variation on a theme yields interesting resuits in it-
self, we refrain from doing it. We invite the interested reader to consult
[Kra91] for further results and references.

5.5 A skew product related
to continued fractions

In ergodic theory the idea of a skew product forms an important con-
cept. In this final section on continued fractions we will not discuss
skew products in general, but rather illustrate the concept by an ex-
ample: a skew product related to continued fractions.

Letm € Z, m > 2, and let G (m) be the group of 2 x 2 matrices

of determinant + 1 and with entries in the ring Z/mZ, i.e.,

G(m) := [( ;‘/‘ ? ) . o, B, 7,8 € Z/mZ, |as — By| = 1}.

It is easily seen that G (m) forms a finite group.

Exercise 5.5.1. Letm € Z, m > 2, and let SL,(Z/mZ) be given by

SLy(Z/mZ) := {A € G(m); det(A) = 1}.

(a) Show that SLy(Z/mZ) is a subgroup of G (m) of index 2 if m > 2,
and of index 1 if m = 2.

(b) From [Shi71]: Show that the cardinality of SL,(Z/mZ) equals
mJ (m). Here J is Jordan’s arithmetical totient function, defined

bv
J

J(m) :=m2n(l—#) ,

pim

where the product is taken over all the primes p that divide m. See

1_ A ___NN1  __ AQ PR | nNQoOLA Y A__C L LA
also [Apo90U], p. 48, and [PS64], VIII, Auigabe 64.
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(c) Conclude that the cardinality |G (m)| of G (m) equals
2mJ(m), m> 2,

GOm)| = [ mJ(m) =6, m=2. "

For the next theorem G (m) needs to have a measure structure. A
natural choice for the o -algebra is the collection D(m) of all subsets of
G (m), and for the measure h,, the discrete uniform distribution (also
known as Haar measure).

0 1
J(x,8) = (Tx,g(l 51—(}3)) (x,8) €[0,1) x G(m),

where T is the continued fraction map and the bar denotes reduction
modulo m. Then the skew product

F:=({0,1)x G(m), L. x D(m), u x hp, T)

is ergodic.

Furthermore, if (pn/qn) is the sequence of RCF- nvergents
11 . r Py
[ l

S TP R SR T _ NPT I .
of x, tnen for aimost ait x € |U, 1) the sequence u_/ matii
Pn—1 Pn
n— )}, n>1,
qn—1 n

is uniformly distributed over G(m).

The proof of this theorem resembles to some extent the proof that
the continued fraction map T is ergodic. Clearly the proof of the above
theorem must be more complicated, since the dynamical system of the
RCF is now skewed with G (m).

One of the nice ingredients of the proof is the following lemma,
which we mention just for its own beauty.

Lemma 5.5.3. Letm € Z, m > 2, and let

(¢ )
\ ¢ d/
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be a matrix with integer entries and determinant 1. Then there exists
a finite sequence of positive integers ay, . .. ,ay, such that

a by _ (01 0 1 0 1 (mod m)

c d)] \1 a 1 ap I ay, '

For a proof of Theorem 5.5.2 we refer to [JL88], Section 4. From
Theorem 5.5.2 and the Ergodic Theorem, Jager and Liardet were able
to draw several corollaries, some of which were previously obtained (in

a completely different way) by R. Moeckel [Moe82]. Here we mention
the following result.

Proposition 5.5.4. (Moeckel 1982; Jager and Liardet, 1988) Let p, g
and m be three integers, such that m > 2 and (p,q, m) = 1. Then for

1
Im —#in; 1 <n<N, Pn Y _ (P modm ; = : .
N—)OON dn q J(’n)

Consider, modulo 2, the sequence (g,),>-1 of the RCF-

. .
al ninmher vy Ohviancely ths
VEIICAI EIVLILAUNWL A VU'IU“JIJ il

zeroes and ones. Again Moeckel [Moe82], and later Jager and Liardet
[JL88], showed that for almost all x the blocks 01, 10 and 11 occur
in this sequences with equal probabilities, i.e., %; notice that one can
never have an occurrence of 00. Using the Jager-Liardet skew-product
I', V. Nolte [Nol90] obtained (among other things) the probabilities of
the five possible blocks of length three and of the eight possible blocks
of length four in such sequences of zeroes and ones. Due to technical
difficulties his method breaks down for longer blocks.

In 1998, the natural extension of I' was studied in [DK98].
Due to this—and using a natural generalization of the concept of
singuiarization—results similar to those described above could be
transported to S-expansions. This leads to the surprising result that
for any S-expansion and for almost all x the sequence of numerators
(rn)n>1 resp. denominators (s,),>| of the S-convergents (r, /s, )n>1 of
x have—mod m—the same asymptotic behavior as the sequence of nu-
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merators (p,),>1 resp. denominators (g, )»>1 of the RCF-convergents
(Pn/Gn)n>1 of x.

5.6 For further reading

Section 5.4 deals with the theory one can build using singularizations.
As we saw, a singularization is equivalent to removing a convergent.
Can one add other rationals as convergents and still get a semi-regular
continued fraction expansion? One can add intermediate convergents
via a similar algebraic manipulation

b-1+¢

By going in the other direction, one can build a theory of insertions,
similar to the theory of singularizations. In the same way as singular-
izations are related to the induced transformations of subsection 4.2.1,
insertions are related to the integral transformations of subsection 4.2.2.
We decided not to go into these details; continued fractions would take

over this book! However, the interested reader is referred to [DKO0O].



CHAPTER 6

Entropy

6.1 Introduction

6.1.1 Randomness and information

Given a measure preserving transformation T on a probability space
(X, F, n), we want to define a nonnegative quantity h(7T) that mea-
sures the average uncertainty about where T moves the points of X.
That is, the value of 4 (T) reflects the amount of randomness generated
by T. We want to define h(T) in such a way that (i ) e amount of in-

8 ats ed b
formation gained by an application of T is pr¢

of uncertainty removed, and (i) h(T) is isomorphism invariant, so that
isomorphic transformations have equal entropy.

The connection between entropy (that is randomness, uncertainty)
and the transmission of information was first studied by Claude Shan-
non in 1948. As a motivation let us look at the following simple ex-
ample. Consider a source (for example a ticker-tape) that produces a
string of symbols ... x_jxpx; ... from the alphabet {a), as, ... ,an}.
Suppose that the probability of receiving symbol a; at any given time

is pi, and that each symbol is transmitted independently of what has
been transmitted earlier. Of course we must have here that each pi > 0

and that ) _; p; = 1. In ergodic theory we view this process as the dy-
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namical system (X, F, u, T), where X = {a;,a>, ..., a,,}Z, F is the
o -algebra generated by cylinder sets of the form

An(ai]’aizao" ’ain) = {x €X: Xiy = Qjyy-ee 5 Xiy =a,~n},

~ «L .. a— .= 2 e~ am 2 am

Ui is the pro { measure assigning {0
pi of seeing the symbol ai,and T 1 sequence
of symbols is one-sided we take X = {aj,as, ... ,ay }N. We define the
entropy of this system by

H(pi,..., pn) :=—Zp,~logp,-. (6.1)

=1

If we define log p; as the amount of uncertainty in transmitting the sym-
bol a;, then H is the average amount of information (or uncertainty) per
symbol (notice that H is in fact an expected value). To see why this is
an appropriate definition, notice that if the source is degenerate, that is,
pi = 1 for some i (i.e., the source transmits only the symbol a;), then
H = 0. In this case we indeed have no randomness. Another reason
this definition is appropriate is that H is maximal if p; = l for all i,

and this agrees with the fact that the source is most random when all the

symbols are equiprobable. To see this maximum, consider the function
f 10, 1] - R4 defined by

0,
f) = { —tlogt

Then f is continuous and concave downward, and Jensen’s Inequality
implies that for any py, ..., p, with p; > 0and p; +--- + p, =1,

n /1 n \
1"/ \_ 1 t Velba .\ - Vad : .
;HKPI,---,Pn)—;Z ](Pl)i]\';z Pt’
o T =1 \""i=1 /

so H(p1,..., pn) < logn for all probability vectors (p1,..., pn).
Since
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1\
H(i,... ,i) = logn,
n n

the maximum value is attained at (ni, cee )

6.1.2 Definitions

So far H is defined as the average information per symbol. The above
definition can be extended to define the information transmitted by the
occurrence of an event E as —log u(E). This definition has the prop-
erty that the information transmitted by E N F for independent events
E and F is the sum of the information transmitted by each one individ-
ually, i.e.,

—logu(ENF) = —logu(E) —log u(F).

The only measurable function with this property is log, x, with a >
0. Since entropy originates from Information Theory (information is
transmitted via binary sequences), some authors prefer to use a = 2.
We prefer to use natural logarithms because it is more appropriate for
our calculations.

In the above example of the ticker-tape, the symbols were trans-
mitted independently. In general, the symbol generated might depend
on what has been received before. In fact, these dependencies are of-
ten built-in to be able to check the transmitted sequence of symbols for
€ITors \uum\ here of the Morse sequence, sequences on compact discs,
etc.). Such dependencies must be taken into consideration in the cal-
culation of the average information per symbol. This can be achieved
if one replaces the symbols a; by blocks of symbols of a particular
size. More precisely, for every n, let C, be the collection of all possible

n-blocks (or cylinder sets) of length n, and define

~ Y P(C)log P(C).

CceC,

Then an,, can be viewed as the average information per symbol when
a block of length n is transmitted. The entropy of the source is now
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defined by
H,
h= lim -—. (6.2)

n—-o00 n

The limit in (6.2) exists because H, is a subadditive sequence, i.e.,

H,+m < H, + H,,, and because of the following proposition.

Proposition 6.1.1. If {a,} is a subadditive sequence of nonnegative
real numbers, then

. an

lim —

n—-oo n

exists.

Proof. Fix any m > 0. For any n > 1 one has n = km + i for some i
between 0 < i < m — 1. By subadditivity it follows that

a;

an Akm—+i < Akm aj < kam n a; — am n .
km  km m km

= - =< + =
n km + i km = km
Note thatif n — 00,k — oo and so limsup,,_, o, a,/n < an,/m. Since
m is arbitrary one has

. an . ~Qn . . ~Qn
limsup — < inf — < liminf —.
n—»oo N n>1l n n—-oo n

Therefore lim,,_, 5 a, /n exists, and equals infa, /n. .

Now replace the source by a measure preserving system
(X, F, u, T). How can one define the entropy of this system similar
to the case of a source? The symbols {ay, ... ,a,} can now be viewed
as a partition « = {Ay,..., A,} of X, so that X is the disjoint union

., X_1, X0, X1, ..., Where x; isaj if and only if T'x € A;. We define
the entropy of the partition o by

H(a) = Hy(@) :=— ) u(Ai)log u(A;) .

=1
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Our aim is to define the entropy A(T') of the (not necessarily invertible)
transformation 7 independent of the partition we choose. In fact h(T')
will be the supremum of the entropies over all possible finite partitions.
But first we need a few facts about partitions.

Exercise 6.1.2. Leta = {A,... ,A,}and B ={B), ..., B,} be two
partitions of X. Show that

T la:={(T7'A,,..., T7'A,}
and
aVvpB:={A;NBj: A ea, Bj € B}
are both partitions of X =

The members of a partition are called the atoms of the partition.
We say that the partition 8 is a refinement of the partition «, and write
a < B,if forevery 1 < j < m there exists 1 < 1 < n such that
B, C A; (up to sets of measure zero). The partition a Vv B is called the
common refinement of a and B.

Exercise 6.1.3. Show that if 8 is a refinement of «, then each atom of
« is a finite (disjoint) union of atoms of B. =

Exercise 6.1.4. Let o and B be partitions of (X, F, u, T), where T is
a measure preserving transformation.

{n)
(a)
(b) Show that if « < 8, then H(x) < H(p).

(c) Show that H(x v B) < H(x) + H(B).

(d) We call two partitions « and B independent if

~

wW(ANB) = u(A)u(B) forall Aeca, Be§B.
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Show that, if « and B are independent partitions,

H(av B)=H@@)+ H(B). n

Now consider the partition \/"~; T ~'a, whose atoms are sets of
the form A;, N T~ 1A, N---NT~"=D4; | consisting of all points
x € X with the property that x € A;;, Tx € A;, ... LTy e Ai,_,-
We are now in position to give the definition of the entropy of the trans-
formation T.

Definition 6.1.5. The entropy of the measure preserving transforma-
tion T with respect to the partition « is given by

n—-oo n

1 n—1 . \
h(a,T) =h,(a, T):= lim —H (\/ T—'a/ . (63)
=0

e =% 7

where

n-—1
H (\/ T—"a) =— ) w(D)log(u(D)).
=0

~\ =1 r_j
—_ 1

n ~
’ UCV, w

Finally, the entropy of the transformation T is given by

h(T) =h,u(T) :=suph(a, T),
a
where the supremum is taken over all finite partitions « of finite entropy.
Remarks 6.1.6.

1. Note that the limit in (6.3) exists due to Proposition 6.1.1.

2. In almost all of the classical books on ergodic theory, entropy
is defined as above, i.e., via finite partitions. For a number of the trans-
formations we are interested in, like the GLS transformations and the
continued fraction map, it is more natural to work with countable par-
titions. Fortunately, in the above definition of entropy, and in the the-
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orems that will follow, one can replace finite partitions by countabie
partitions of finite entropy. See [Bro76], p. 148, and [Pet89], p. 248.
]

We have the following theorem.

Theorem 6.1.7. Entropy is an isomorphism invariant.

Proof. Let (X, F,u,T) and (Y,C, v, S) be two isomorphic measure
preserving systems (see Definition 1.2.18), with ¢ : X — Y the corre-
sponding isomorphism. We need to show that h,(T) = h,(S).

Let 8 = {Bi,...,B,} be any partition of Y; then ¥ ~!8
(v~!'By,..., v~!B,} is a partition of X. Set A; = ¢! B;, for 1
[ < n.Since ¥ : X — Y is an isomorphism, we have that v = puyr
and y T = Sy, sothatforanyn >0and B;,,... ,B;,_, € B

LA

v (B,-O Ns'B;N---N s—<"-”B,,,_l)

= (w—'B,-O ny='s~'B, Nn---n l//_lS_(n_l)B,‘"_l)

n (¢"‘B,~o NT-'y~'B;n-..n T""‘"”W’Bfn-n)

u (A,‘O N T"lA,'I N---N T_("_I)A,'n_l) .

A(n) = A, N---NT~ =Dy,

and
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1

= sup lim —— Y v(B(n))log v(B(n))

ﬂ n—soo n

B(n)e\/7Z; 5~
) 1
= sup lim —- 3 u(A(n)) log u(A(n))
lﬂn—>oo n n
A()\v/_o'rc/ IR

= sup hu (v '8, T)
v-lg

S Suphﬂ(aa T) = hll(T) ’
o

where in the last inequality the supremum is taken over all possible
finite partitions a of X. Thus h,(S) < h,(T). By symmetry h,(T) <
h,(S). Therefore h,,(S) = h,(T), and the proof is complete. (]

Remark 6.1.8. Entropy is also preserved under the operation of tak-
ing natural extension; i.e., a measure preserving transformation has the
same entropy as its natural extension. See [Bro76], p. 125. |

6.1.3 Calculation of entropy

Calculating the entropy of a transformation directly from the definition

does not seem feasible, for one needs to take the supremum over all
finite nartm(mq which is nracncallv lmnmmhle However, the entropy

of a partition is relatively easier to calculate if one has full information
about the partition under consideration. So the question arises whether
it is possible to find a partition o of X where h(«a, T) = h(T). Natu-
rally, such a partition would contain all the information transmitted by
T. To answer this question we need some notations and definitions. For
simplicity we assume in this subsection that T is invertible.

Fora = {A1,... ,A¢}andallm > n > 0, let

m

oy = \/ T '« and o, = V T 'a,

k=n k=—m
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and let o (\/72_o, T ') be the smallest o-algebra containing all
the partitions « and «Z,, for all n and m. In general we call
a finite or countable partition o a generator with respect to T if
o (V2 o T"ia) = F, where F is the o-algebra on X. Naturally,
this equality 1s modulo sets of measure zero. One also has the follow-
ing characterization of generators, saying basically that each measur-
able set in X can be approximated by a finite disjoint union of cylinder
sets. See also [Wal82], p. 6, for more details and proofs.

Proposition 6.1.9. [f the partition « is a generator of F, then for each
A € F and for each ¢ > O there exist m > n > 0 and a finite disjoint
union C of elements of (]}, such that u(AAC) < e.

We now state twe

(.J
>
3
=
wnn
-
-
[¢)
-~
=
9]
= 3
ol
x
=
(@)
&
=
"
I!
)
o
3
Q
09

’

lneurem dlld l\rzegel eurem V C l[lVllC LIIC lﬂlClelCU

reader to refer to Petersen’s [Pet89] or Walter’s [Wal82] books for the
proofs.

Theorem 6.1.10. (Kolmogorov and Sinai, 1958) If « is a finite or
countable generator for T with H(a) < oo, then h(T) = h(a, T).

The theorem of Kolmogorov and Sinai gives a convenient way of
calculating the entropy of a transformation.

Theorem 6.1.11. (Krieger, 1970) If T is an ergodic measure preserv-
ing transformation with h(T) < oo, then T has a finite generator.

We will use these two theorems to calculate the entropy of a
Bernoulli shift, which agrees with formula (6.1).

Example 6.1.12. Consider the two-sided Bernoulli shift on the sym-
bols 1,2, ... ,n (withn € N U {oo}), and with welghts given by the

probability vector (py, p2, ..., pn), satisfying /_,, log pi < o0.
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In other words, we have the measure preserving system (X, F, u, T),
where X = {1,2,..., n}Z and F is the o-algebra generated by the
cylinder sets of the form

(xeX:xo=1l0,... ,xm =1im}, ij€{l,2,...,n}.

This means that every measurable set in X can be approximated by a fi-
nite disjoint union of cylinders; see also Proposition 6.1.9. The measure
u 1s the product measure given by

ot o~V o o e YN o .
u{ix € X : x0=10,--- ,Xm = Iim}) = PigPi; " Pip »

and T as usual is the left shift. Our aim is to calculate 4 (T). To this end
we need to find a partition « that generates the o -algebra F under the
action of T. The natural choice of « is what is known as the time-zero

partition « = {Ay, ..., A,}, where

A ={xeX:xg=i},i=1,...,n.
Notice that for all m € Z,
T "A;={xe X: xy =i},
and

Aiy NT'A; 0 NT™™A; ={(xeX:xo=1i0,... , %m =inm}.

In other words, \/™_, T "« is precisely the collection of cylinders of
length m (i.e., the collection of all m-blocks), and by definition these
generate F. Hence, « is a generating partition, so that

ALAAX i x i
msoom \ .V
\I=VU 4

T) = lim 1y /”{_/l T—ia) .

First notice that—since u is product measure here—the partitions
o, T la, ..., T~m Dy

are all independent, since each specifies a different coordinate, and so
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HavT lav...vT

=H@)+HT 'a)+ -+ HT " Dq)
=mH(a) = —m ) _ pilogpi.

For the last step, see also Exercise 6.1.4(a,d). Thus,

. 1 n n
h(T) =mll)moo’;(—m)z;p,- log p; = —Z;p,- log pi . ]
1= 1=

Corollary 6.1.13. If T is a GLS(Z) transformation withZ = {I, : n €
D}, where D C N is the digit set, A\(I,) == Ln, Y ,cpLn = 1, and
H(I) < oo, then h(T) = =), .pLnlogL,.

Proof. We have seen earlier (see also Section 4.4) that if we identify
points with infinite sequences of symbols from the digit set D, then the
natural extension map 7 of T can be seen as a left shift, and

A(x:xo=10,... ,Xm =im}) =Ljy--- L, .

Further, A can be viewed as product measure, and so the dynamical
system ([0, 1), B, A, T) is a Bernoulli shift with weights {L,, : n € D};
hence we have h(T) = - .p LylogL,. L

6.1.4 Conditional entropy

Given two partitions « = {Ay,...,Ap,}and 8 = {B),..., Bn} of X,
and under the convention that Olog 0 := 0, we define the conditional
entropy of a given 8 by

H@p):= =) ) log| — 75— )u(A NB).
Aca Bep
Exercise 6.1.14. Leta = {A),...,A,}and B8 = {By,..., By} be

two independent partitions of X. Then show that H(«|8) = H(«).
]
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The above quantity H(«|B) 1s interpreted as the average uncer-
tainty about which element of the partition o the point x will enter
(under T) if we already know which element of g the point x will en-
ter.

Exercise 6.1.15. Let «, B and y be partitions of X.

(a) Show that H(x Vv Bly) = H(a|y) + H(Blx V y).
(b) Show that, if 8 < «, then H(y|a) < H(y|B).

(c) Show that H(x v 8) = H(a) + H(B|a).

(d) Show that, if 8 < «, then H(B|a) = 0.

(e) Explain in words why each result (a)-(d) is reasonable. [

Using induction and Exercise 6.1.15 part (c) repeatedly, one ob-
tains the following theorem.

Theorem 6.1.16. The entropy of the measure preserving transforma-
tion T with respect to the partition « is also given by

n-1
h(@,T) = lim H (a 1\ T""a) :

i=1

6.1.5 Ent

In section 4.5, we showed that any P-transformation contains a
Bernoulli shift as an induced system, namely an appropriate GLS(Z)
transformation. Example 6.1.12 showed how one can calculate, in a
straightforward way, the entropy of Bernoulli shifts. The following the-
orem, known as Abramov’s formula, gives the relationship between the
entropy of an induced transformation and the original map. For a proof,
the reader is referred to [Pet89].

opy of B-transformations

™~ 45H.3% ass

Theorem 6.1.17. (Abramov’s formula) Let (X, F, u, T) be a measure
preserving dynamical system. Let B € F be of positive measure, and
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denote by Tg : B — B the corresponding induced transformation.
Then

_ W(T)
h(Tg) = ——. (6.4)

pu(B)

We calculate the entropy of a B-transformation using Abramov’s
formula. For simplicity we start with the case that 8 is a pseudo-golden
mean number with m = 3. We use the notations given in Section 4.5.1.
We have seen that in this case the natural extension of Tg is given by
(X, €&, u, Tg), where

1
Tg(x,y) = (Tﬁx, E(LBXJ + )’)) for (x,y) € X,

and

2
P
p(A) = (A x 2)(A)
2 3
ﬁ 52 .33
for any measurable subset A of X. Further, the induced system
(YWn\wi[hY;f() D x[0.1/81. W = (72)vy and 0 = B(A x 1)
LR Y agV ] LYy 2 LY /1 v \“p/1I r r~\ 7

was shown to be isomorphic to the natural extension S of the GLS-

transformation S given by

Since every GLS-transformation is a Bernoulli shift, it follows

that S is isomorphic to the two-sided Bernoulli shift with weights

(< L1 1y Hence hv Example 6.1.12, the entropy of S—and there-
ﬁ ﬁ ﬁ KA r ~rJ
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fore also of W (due to Theorem 6.1.7)—equals

(l-f-z 3)10;‘3
g g )"

1
w(Y) = ff dxdy = 15—,

= +
ﬁ ﬂ2 /3 ﬁ2 B
and so by Abramov’s formula (6.4)

]
h(Tz) = ——h(W) = log 8.
(1p) M(Y)( ) =log B

Due to Remark 6.1.8 (i.e., entropy is preserved under the operation of
taking a natural extension), we also have that h(Tg) = log B.
Performing similar calculations yields that A(Tg) = log B for any
pseudo-golden mean number B.
In fact, more is true and can be proved in a similar way.

Theorem 6.1.18. For any B > 1, h(Tg) = log B.

Proof. For the proof we use the same notation as in Section 4.5.2. Since

o b ; o~ bt
= — and T!l1= —_
> o =%

k=1

it follows that

AN \O—O\Trél \—\\—\ k+:
n(Hp) =14+~ =1+ ) zrr
=1 i=lk=I

Since b, < | B] foralln > 1, it follows that ZZ

[)’k — is convergent,
i=1k=1

and that
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o~ bkri by b3 by
— = + — +
Z;I; k+i ﬁz ﬂ3 '34
bs ba bs
+ﬁ3+ﬁ+§+
ba bs be
+§+E+-’ég+

Summing over the anti-diagonals now yields that
bi+1 k+l
n(Hg) =1+ Zk k:l Z(k + D P

Now we consider the induced system ([0, 112, Wg) of T, which
is isomorphic to the natural extension of the GLS-transformation with
partition as given in Equation (4.5). Thus

b+ 1
h(Wp) = _Z 31;1 log &g+t

logﬁZ(k + 1)}3’1:11 :

From this and Abramov’s formula it follows that h(7g) = log 8. Again
due to Remark 6.1.8, we have that h(Tg) = log B. (]

6.2.1 The Shannon-McMillan-Breiman Theorem

Let us consider an ergodic measure preserving system (X, F, u, T),
and let o be a finite or countable partition of X. We have seen that for

each n. \/" —l'r B S S AV o belones

alCll 1, V 1 a lb agalu d pal llllUll Ol N, auu IlClle a.c. X UClU 155
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to a unique atom A, € V, 0 T~a. In this case, 1.e., In case x € A,
we denote A, by A,(x). Of course, A,(x) is what we call a cylinder
set (with respect to partition «) of size n containing x. The Shannon-
McMillan-Breiman Theorem gives the asymptotic size of such cylin-
ders.

Theorem 6.2.1. (Shannon-McMillan-Breiman) Let (X, F, u,T) be
an ergodic measure preserving system, and let a be a finite or count-
able partition of X with H(a) < 00. Then for a.e. x € X,

lim ———log (u(An(x))) = h(a, T).

n—0o0

The interested reader can find a proof of this theorem in any stan-
dard book on ergodic theory, e.g., [Bii65], [CFS82], [Pet89], [Wal82].

The entropy A (T) of the regular continued fraction map T is eas-
ily obtained from Lévy’s Proposition 3.5.5, the Theorem of Shannon-

McMillan-Breiman and the following lemma.

e man - { -,“ ,“.l.'.,.,ln.‘

T . -~ £ T 4 -\ Py he ¢ nno
L/.CIIIIIA VLol LEIL n\A) EFOLE T € cylitnacer sct

continued fractlon ap T containing x. Then for all irrational x

log A(An(x))
m —
n=00 log i(An(x)

Proof. From Equation (3.4),

1 1
Tioa3 M(Bn() < p(Ba(0) < o MAn(x)).
og?2 log?2

log(2log?2) +log u(An(x)) _ logA(An(x))
log 1 (An(x)) ~ log u(An(x))
_ log(log?2) + log 1 (An(x))
log u(An(x))
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Taking limits, the desired result follows from the fact that u(A,(x)) —
Oasn — oo. m

Remark 6.2.3. Here we specified the lemma for the continued fraction
map, but it holds in general for any measure preserving transformation
with a measure equivalent to Lebesgue measure A, which has a density
which is bounded away from 0 and oco. In the general case one has to
replace A, (x) in the statement of the lemma by (A;, N T‘IA,-1 N---N

T_("_')A,-n_l )(x), the atom containing x, where Ay, ..., A,, forms a
oenaratino nartition m
6\-/ lllllllll é tl“l LCALANZA -_—

It follows from Lemma 6.2.2 that for almost all x
1 1
lim ——logA(A,(x)) = lim ——log u(An(x)).
n—-o00 n n—-o0 n

In view of the Theorem of Shannon-McMillan-Rreiman it thus suffices

ARE VAW VY NJE Rhiw A fiwwniwini wa wSiilliigaviiT AaVaAwaATAaRzAaliaT AP waraadiaa I LiieS Deaiiv D

to determine the former limit for almost all x.

Exercise 6.2.4. Using Equation (3.8) in Proposition 3.5.5 and Lemma
6.2.2, show that

2

6log2 "

W(T) =

Exercise 6.2.5. Let S C [0, 1) x [0, 1] be a singularization area; see
also Section 5.4. Use Abramov’s formula (6.4) to show that
1 n?

h(Is) = T 5y 61082 - -

Remark 6.2.6. Without going into details, we want to mention here
that there exists a class of maps T (containing all the examples from
this book like n-ary expansions, continued fractions and S-expansions),
for which the entropy h(T) can easily be calculated using the Rohlin
Entropy Formula,

h(T) = J/ log | T"(x)|du(x);
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here T’ denotes derivative. Essential ingredients of the proof of
Rohlin’s Entropy Formula are Lemma 6.2.2, the Theorem of Shannon-
McMillan-Breiman, and the so-called Rényi Condition, which follows
if one wants to generalize the proof of the ergodicity of the (regular)
continued fraction map to more general maps; see also [Rén57]. For a
proof of Rohlin’s Entropy Formula we refer to the book of M. Pollicott
and M. Yuri [PY98], p. 133. =

ohlin’s Entropy Formula to calculate the entropy
IT to

(a) n-ary expansions, forn € N, n > 2;
(b) B expansions, for > 1,8 ¢ N;

(c) the regular continued fraction.

6.2.2 Lochs’ Theorem

Suppose that the irrational number x has decimal expansion x =
did, ..., and RCF-expansion (1.6). Let y be the rational number de-
termined by the first n digits of x, i.e., y = .d|dy...d,, and let
(0; ¢y, €2, - .. , ck] be the RCF-expansion of y. We now deﬁne the func-
tion m = m(n, x) as follows: m is the largest positive integer for which
a; =c; fori <m,i.e.,

ay=c¢|, a2 =0C2,..., Gn = Cm, Am+1 7 Cm+1 -

In spite of results like Legendre’s Theorem, Corollary 5.1.8, G. Lochs
[Loc64] obtained the following, surprising result.

Theorem 6.2.8. (Lochs, 1962) For almost all x one has

. m(n,x) 6log2log10
lim = 3
n—00 n T

= 0.97027014... .

Remark 6.2.9. Lochs’ original proof rests on P. Lévy’s Proposition
3.5.5. In this subsection we will see that Lochs’ result is related to
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the ratio of entropies of the maps under consideration and is really a
consequence of the Theorem of Shannon-McMillan-Breiman. ]

The continued fraction map has three essential properties that al-
low us to give a new proof of Lochs’ result with the help of the The-
orem of Shannon-McMillan-Breiman, Theorem 6.2.1. With this new
approach we will be able to generalize Lochs’ Theorem to all piece-
wise defined transformations with the same essential properties as the
continued fraction.

(1) Firstly, the Gauss measure p as defined in Section 1.3.3 has a
bounded density

| 1
log2 1 4+ x
g |

on [0, 1), which implies equation (3.4). Due to this, Lemma 6.2.2
follows.

(i1) Secondly, for any cylinder set A, = A(ay, ... ,a,) one has that

|
‘In(CIn +Qn—l) .

T SA N
AMlBn) =

(See also Exercise 1.3.15.) This, together with the recurrence rela-
tions in Exercise 1.3.8, yields the following result.

Exercise 6.2.10. Define A} := A(a), ... ,an—1,a, + 1). We call A,
and AT adjacent cylinders. Show that

MAp) < 3MAT). ]

(ii1) Thirdly, the continued fraction map Tx = xl — |_le is decreas-
ing on each partition element Aj(k), k € N. As a result, to ob-
tain A,y = A(ay, ... ,ap41) from A, = A(ay,...,a,) one
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refines A, from right to left if n is odd, and from left to right
if n is even. This implies that if I is any interval in [0, 1) and if
A, = A(ay, ... ,ay,) is the smallest cylinder containing /, then
for almost all x € I either A,y ;(x) C I, or its adjacent cylinder
Ay, Cl wherel < j <3.

In general, replacing 3 in the above by r > 1, we call any piecewise
defined map with properties (1), (i) and (ii1) r-regular. We are now
ready to give a proof of Lochs’ Theorem. (]

Proof of Theorem of Lochs. We denote the decimal map by §, its cylin-
der sets of order n by D,, and D,(x) is the cylinder set of order n
containing x.

For x € [0, 1), given the first n decimal digits, we find by property
(ii1) two T -cylinder sets Ay, = Ap(x) and A4 j, for which

Am+j C Du(x) C Am(x),

where Ap j is either Ay 4 ;(x), or its adjacent cylinder Ajn'ﬂ.. Then
by Exercise 6.2.10,

~1 1 1 1
——log3 + —1og A(Am4r (1)) < —10g A(Dn(x)) = ~log A(Am(x)) .

Applying Lemma 6.2.2 (to both T and S) and the Theorem of Shannon-
McMillan-Breiman, the result follows. ]

Exercise 6.2.12. Show that the above proof of Lochs’ Theorem also
works if we replace the continued fraction map T by any r-regular
map, and the decimal transformation S by any n-ary transformation or
B-transformation, or any GLS-transformation. (]

In fact, in 1963 Lochs showed that the first 1000 decimal digits
of m yield its first 968 continued fraction digits ([Loc63]). Nowadays,
with an increase in computer power, it is much easier to make such a
comparison. In view of Exercise 6.2.10 we can compare several maps
with maps satisfying r-regularity.
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Exercise 6.2.13. Show that the alternating Liiroth map from Examples
2.3.8 is also r-regular, and make a computer program that gives you
m(n) alternating Liiroth digits if you feed it with n digits of our fa-
vorite map (the B-transformation with B8 equal to the golden mean).
Use Corollary 6.1.13 to compare how close m(n)/n gets to the ratio of
the entropies. ]

One might wonder how far Lochs’ result can be extended. In a
recent paper Dajani and Fieldsteel [DF] showed that Lochs’ result can
be extended very far indeed!

6.3 Saleski’s Theorem

1 Section 3.1.3 we mentioned some mixing properties, an
cise 3.1.16 showed that Bernoullicity is the strongest possible mix-
ing property (of the ones mentioned). In Section 3.1.3 we also men-
tioned a property that is close to, but weaker than, Bernoullicity: weak
Bernoulli. An example of a weak Bernoulli transformation is the con-
tinued fraction map T'; see also Roy Adler’s paper in [PV75].

Clearly any map Tx = nx(mod 1), where n € N, n > 2, is
Bernoulli; see Section 1.2.2. In this section we will show that the nat-
ural extension of the B-transformation is also Bernoulli, a result due to
Meir Smorodinsky [Smo73]. We will use a theorem of Alan Saleski,
giving conditions under which one can conclude that a transformation
is Bernoulli, given that an induced system is Bernoulli. This is an ap-
proach different from that of Smorodinsky, who showed that for each

B > 1 the system

(10, ), L, vg, Tg ),
where L is the collection of Lebsegue sets of [0,1), is weak Bernoull.
A deep result by N. Friedman and D. S. Ornstein [FO70] then yields
that the natural extension of ([0, 1), £, vg, Tg ) is a Bernoulli automor-
phism.
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In 1973 Saleski [Sal73] obtained the following result. It refers to
a Lebesgue space, which is a space isomorphic to the unit interval with
Lebesgue sets and Lebesgue measure.

roam £ 21 T »¢ 4 V ’f 12 T\ I-\n 7 Avnasrral cvctom vorth
1A% Uede de L.CI \2y v ’b, i) [ 74 “ u_ynuluu,ut O)’Olclli, Yiiirt

(X, F, u) a non-atomic Lebesgue space. Let A € F be a subset of
X of positive measure and denote by Ty the induced transformation of
T on A. Moreover, suppose we have that T4 is Bernoulli, T is weakly
mixing and

o0 00 ) o0 )
H,, (\/ \/ Tiv;| \/T,;P) <00,
where P is a Bernoulli partition of (A, T4) and

Yi={A-U_TA, ANU/

l=l 1=

T~ A}

Then T is a Bernoulli automorphism.

A simple corollary of Saleski’s Theorem is Smorodinsky’s result;
see also [DKS96], where the present approach was first given.

Corollary 6.3.2. The completion of the system
(Hﬂv fs Mﬂv Y-ﬂ)’

as described in Section 4.5.2, is Bernoulli.

Proof. The system (Hg, F, ug, Tg) and its completion are weakly
mixing, due to W. Parry [Par60]. Moreover, in Proposition 4.5.4 it was
shown that the induced transformation Wg is isomorphic to an appro-
priate GLS-transformation. Therefore Vg is Bernoulli, and in Proposi-
tion 4.5.4 we saw that Wg has Bernoulli partition P = I% := T x[0, 1],

7. £ D

s T2 ~ P Yo el AN L4t 1 e A3
WICTE L 1S 4S5 glven 1 £quation (4.0 ). 11Ne partiiions Ij OI (g 4S dclined
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in Saleski’s Theorem have the following form:
by b
(bt o)
\° "B J |
Clearly, Y; < Z* foreach j > 1, i.e., I" is a refinement of each Y}, so
that

\/ \/ WpY; < \/ WyT*
i=1 j=I j
and hence
/00 00 00 \
g IN/N/wiva N/ wiTt) — 0
“u’RO V V Yy lj ' rvoaopl / v,
\i:l j=I i=0
where ug, is, by construction, Lebesgue measure on Ry = [0, 1)2;

see also page llO Thus, by Saleski’s Theorem, we have that

(Ha. F. ua.T:

n m
g, S B, LB

6.4 For further reading

Entropy plays a key role in ergodic theory. It is for this reason that
all books on ergodic theory mentioned in Section 4.7 contain major
introductions to the concept of and ideas behind the notion of entropy.
We recommend two more books. One (sometimes known as the ‘“Red
Book™) is Mathematical Theory of Entropy by N.F.G. Martin and J.W.
ngland [ME81]. The second book is The ergodic theory of discrete
sample paths by P.C. Shields [Shi96], where much more information
can be found on weak Bernoulli transformations, and further variations

on the idea of Bernoullicity, such as very weak Bernoulli.

UFJ
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