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Solving maximum cut problems in the Adleman–Lipton model
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Abstract

In this paper, we consider a procedure for solving maximum cut problems in the Adleman–Lipton model. The procedure
works in O(n2) steps for maximum cut problems of an undirected graph withn vertices.
© 2005 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction
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In recent works for high-performance computing,
omputation with DNA molecules, i.e. DNA comput-
ng, has considerable attention as one of non-silicon-
ased computing. Watson–Crick complementarity and
assive parallelism are two important features of DNA.
sing the features, one can solve an NP-complete
roblem, which usually needs exponential time on a
ilicon-based computer, in a polynomial number of
teps with DNA molecules. As the first work for DNA
omputing,Adleman (1994)presented an idea of solv-

ng the Hamiltonian path problem of sizen in O(n) steps
sing DNA molecules.Lipton (1995) demonstrated

hat Adleman’s experiment could be used to determine
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NP-complete problem).Ouyang et al. (1997)presente
a molecule biology-based experimental solution to
maximal clique NP-complete problem. In recent ye
lots of papers have occurred for designing DNA p
cedures and algorithms to solve various NP-comp
problems. Moreover, procedures for primitive ope
tions, such as logic or arithmetic operations, have
also proposed so as to apply DNA computing on a w
range of problems(Frisco, 2002; Fujiwara et al., 200
Guarnieri et al., 1996; Gupta et al., 1997; Hug
Schuler, 2001; Kamio et al., 2003).

In this paper, the DNA operations proposed
Adleman (1994)andLipton (1995)are used for figur
ing out solutions ofmaximum cut NP-complete prob-
lems: for a graphG = (V, E) find a subsetC of the
vertices that maximizes the number of edges that
one vertex inC and one not inC. It is clear that ifC
is a solution to the maximum cut problems, then s
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Fig. 1. GraphG.

V \ C by the definition. The graphG in Fig. 1defines
such a problem. It is easy to see thatC = {A6, A3}
(equivalentlyC = {A5, A4, A2, A1}) is a solution to
the maximum cut problem for graphG in Fig. 1.

The rest of this paper is organized as follows. In
Section2, the Adleman–Lipton model is introduced in
detail. Section3 introduces a DNA algorithm for solv-
ing the maximum cut problem and the complexity of
the proposed algorithm is described. We give conclu-
sions in Section4.

2. The Adleman-Lipton model

Bio-molecular computers work at the molecular
level. Because biological and mathematical operations
have some similarities, DNA, the genetic material that
encodes for living organisms, is stable and predictable
in its reactions and can be used to encode information
for mathematical systems.

DNA is the major information storage molecule in
living cells, and billions of years of evolution have
tested and refined both this wonderful informational
molecule and highly special enzymes that can either
duplicate the information in DNA molecules or trans-
mit this information to other DNA molecules.

A DNA (deoxyribonucleic acid) is a polymer, which
is strung together from monomers called deoxyribonu-
cleotides(Pǎun et al., 1998). Distinct nucleotides are
detected only with their bases. Those bases are, respec-
t yto-
s an

form (under appropriate conditions) a double strand,
if the respective bases are the Watson–Crick comple-
ments of each other—A matches T and C matches G;
also 3′ -end matches 5′-end, e.g. the singled strands
5′-ACCTGGATGTAA-3′ and 3′-TGGACCTACATT-
5′ can form a double strand. We also call the
strand 3′-TGGACCTACATT-5′ as the complementary
strand of 5′-ACCTGGATGTAA-3′ and simply denote
3′-TGGACCTACATT-5′ by ACCTGGATGTAA. The
length of a single stranded DNA is the number of
nucleotides comprising the single strand. Thus, if a sin-
gle stranded DNA includes 20 nucleotides, it is called
a 20 mer. The length of a double stranded DNA (where
each nucleotide is base paired) is counted in the num-
ber of base pairs. Thus, if we make a double stranded
DNA from a single stranded 20 mer, then the length of
the double stranded DNA is 20 base pairs, also written
as 20 bp.

The Adleman–Lipton model: A (test) tube is a set
of molecules of DNA (i.e. a multi-set of finite strings
over the alphabet{A, C, G, T}). Given a tube, one can
perform the following operations:

(1) Merge (T1, T2): for two given test tubesT1, T2
it stores the unionT1 ∪ T2 in T1 and leavesT2
empty;

(2) Copy (T1, T2): for a given test tubeT1 it produces
a test tubeT2 with the same contents asT1;

(3) Detect (T): given a test tubeT it outputs “yes” if
puts

-

s;

th
ively, abbreviated as adenine (A) , guanine (G), c
ine (C), and thymine (T). Two strands of DNA c
T contains at least one strand, otherwise, out
“no”;

(4) Separation (T1, X, T2): for a given test tubeT1
and a given set of stringsX it removes all sin
gle strands containing a string inX from T1, and
produces a test tubeT2 with the removed strand

(5) Selection (T1, L, T2): for a given test tubeT1 and
a given integerL it removes all strands with leng
L from T1, and produces a test tubeT2 with the
removed strands;

(6) Cleavage (T, σ0σ1): for a given test tubeT and
a string of two (specified) symbolsσ0σ1 it cuts

each double strand containing

[
σ0σ1

σ0σ1

]
in T into

two double strands as follows:[
α0σ0σ1β0

α1σ0σ1β1

]
=⇒

[
α0σ0

α1σ0

]
,

[
σ1β0

σ1β1

]
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(7) Annealing (T): for a given test tubeT it produces
all feasible double strands inT. The produced
double strands are still stored inT afterannealing;

(8) Denaturation (T): for a given test tubeT it dis-
sociates each double strand inT into two single
strands;

(9) Discard (T): for a given test tubeT it discards the
tubeT;

(10) Append (T, Z): for a given test tubeT and a given
short DNA singled strandZ it appendsZ onto the
end of every strand in the tubeT.

Since these ten manipulations are implemented with a
constant number of biological steps for DNA strands
(Pǎun et al., 1998), we assume that the complexity of
each manipulation is O(1) steps.

3. DNA algorithm for the maximum cut
problem

Let G = (V, E) be a graph with the set of vertices
beingV = {Ak|k = 1, 2, . . . , n} and the set of edges
beingE = {ei,j| for somen ≥ i > j ≥ 1}. Let|E| = s.
Thens ≤ 1

2n(n − 1).
In the following, the symbols 0, 1, #,Ak, andBk

(k = 1, 2, · · · , n) denote distinct DNA singled strands
with same length, say 10-mer. Obviously the length
of the DNA singled strands greatly depends on the
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(1) For a graph withn vertices, each possible sub-
set of the setV of vertices is represented by an
n-digit binary number. A bit set to 1 represents a
vertex in the subset, and a bit set to 0 represents
a vertex out of the subset. For example, the subset
(A6, A5) in Fig. 1is represented by the binary num-
ber 110000. In this way, we transform all possible
subsets ofV in ann-vertex graph into an ensemble
of all n-digit binary numbers. We call this the data
pool.
(1-1) Merge (P, Q);
(1-2) Annealing (P);
(1-3) Denaturation (P);
(1-4) Separation (P, {A1#}, Ttmp);
(1-5) Discard (P);
(1-6) Separation (Ttmp, {#Bn}, P).
After above six steps of manipulation, sin-
gled strands in tubeP will encode all 2n

subsets of V in the form of n-digit binary
numbers. For example, for the graph inFig. 1
with n = 6 we have, e.g. the singled strand
#B61A6B51A5B41A4B31A3B20A2B10A1# ∈ P ,
which denotes the subset{A6, A5, A4, A3} cor-
responding to the binary number 111100. This
operation can be finished in O(1) steps since each
manipulation above works in O(1) steps.

(2) For each element in the data pool that represents
some subsetC of V, we count the number of
edges that have one vertex inC and one not
in C. Let the subsetC correspond then-digit
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ize of the problem involved in order to distinguish
bove symbols and to avoid hairpin formation(Li et al.,
003). We choose DNA singled strandsyi,j to encode

he edges connecting the verticesAi andAj with length
f 10-mer. All theseyi,j can be taken the same, sayy1,

or our problem. For convenience of argument we
se a dummy symbolyi,j of length 0-mer if the ver

icesAi andAj is not connected by an edge ori = j.
et

= {0, 1, A1#, #Bn, AkBk−1|k = 2, 3, . . . , n},
= {#, Bk1Ak, Bk0Ak|k = 1, 2, . . . , n}, and

= {yi,j | i, j = 1, 2, . . . , n}.

We design the following algorithm to solve the m
mum cut problems and give the corresponding D
perations as follows:
binary numberan · · · ai · · · aj · · · a1. For each pa
(ai, aj) with ai = 1, aj = 0 or ai = 0, aj = 1 we
append the singled strandyi,j or yj,i to the end
of the singled strand which encode then-digit
binary numberan · · · ai · · · aj · · · a1. For example
the singled strands #B61A6B51A5B41A4B31A3
B20A2B10A1# (representing the binary numb
111100 for the graph inFig. 1) is transformed int
#B61A6B51A5B41A4B31A3B20A2B10A1#y6,2
y6,1y3,2 where the singled strandsy5,2, y5,1,

y4,2, y4,1, y3,1 do not appear since there
not corresponding edges in the graph show
Fig. 1 and so they all have length 0-mer by
definition of yi,j. It means that if we take th
subsetC of vertices of the graph inFig. 1 to
be {A6, A5, A4, A3}, then there are totally thre
edgesA6A2, A6A1, A3A2 which have one verte
in C and one not inC.
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Fork = n to k = 1
(2-1) Separation (P, {Bk1Ak}, T1)

For i = n to i = 1
(2-2) Separation (T1, {Bi0Ai}, T2)
(2-3) Append (T2, yk,i)
(2-4) Merge (T1, T2)

End For
(2-5) Merge(P, T1)

End For
In the above operation we use two “For” clauses.
Thus this operation can be finished in O(n2) steps
since each single manipulation above works in
O(1) steps.

(3) We take out those singled strands inP with largest
length, which give the solutions to maximum cut
problems. For example, for the graph inFig. 1,
those singled strands inP with largest length are
#B61A6B50A5B40A4B31A3B20A2B10A1#y6,5
y6,4y6,2y6,1y3,5y3,4y3,2 and #B60A6B51A5B4
1A4B30A3B21A2B11A1#y5,6y5,3y4,6y4,3y2,6y2,3
y1,6. Therefore, solutions to maximum cut prob-
lems for the graph inFig. 1 are {A6, A3} and
{A5, A4, A2, A1} in each of which there are seven
edges to have only one vertex in the resulting
subsets.

Fork = s to k = 1
(3-1) Selection (P, 30n + 20+ 10k, T )
(3-2) If Detect (T) is “yes”, then End For andk is

the number of edges corresponding to max-
imum cutsC, else continue the circulation.
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vertices can be implemented in four operations using
DNA molecules. The first and fourth operations costs
O(1) steps, while the second and third operations costs
O(n2) steps. Thus, the solutions of maximum cut prob-
lems for a graph withn vertices can be figured out in
O(n2) steps using DNA molecules.�

4. Conclusions

As the first work for DNA computing,(Adleman,
1994)presented an idea to demonstrate that deoxyri-
bonucleic acid (DNA) strands can be applied to solving
the Hamiltonian path NP-complete problem of sizen
in O(n) steps using DNA molecules. Adleman’s work
shows that one can solve an NP-complete problem,
which usually needs exponential time on a silicon-
based computer, in a polynomial number of steps with
DNA molecules. From then on,Lipton (1995)demon-
strated that Adleman’s experiment could be used to
determine the NP-complete satisfiability (SAT) prob-
lem (the first NP-complete problem).Ouyang et al.
(1997)showed that restriction enzymes could be used
to solve the NP-complete clique problem. In recent
years, lots of papers have occurred for designing
DNA procedures and algorithms to solve various NP-
complete problems. AsGuo et al. (2005)pointed out,
it is still important to design DNA procedures and
algorithms for solving various NP-complete problems
since it is very difficult to use biological operations for
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Sinces is the size of the setE of edges ands ≤
1
2n(n − 1), the above “For” clause can be finish
in O(n2) steps.

4) Finally theRead operation is applied to giving th
exact solutions to the maximum cut problems.
example, for the graph inFig. 1, the maximum cut
are{A6, A3} and{A5, A4, A2, A1}. This operation
works in O(1) steps.
(4-1) Read (T).

Finally, from above four steps of operations
btain:

heorem 3.1. The solutions of maximum cut problems
or a graph with n vertices can be figured out in O(n2)
teps using DNA molecules.

roof. As the algorithm described above, the so
ions of a maximum cut problem for a graph withn
eplacing mathematical operations.
In this paper, we propose a procedure for solv

aximum cut NP-complete problems in the Adlem
ipton model. The procedure works in O(n2) steps fo
aximum cut problems of an undirected graph win

ertices. All our results in this paper are based on a
retical model. However, the proposed procedures
e implemented practically since every DNA mani

ation used in this model has been already realize
ab level.
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