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Abstract

In this paper, we consider a procedure for solving maximum cut problems in the Adleman-Lipton model. The procedure
works in O¢?) steps for maximum cut problems of an undirected graph withrtices.
© 2005 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction the NP-complete satisfiability (SAT) problem (the first
NP-complete problemPuyang et al. (199 fresented
In recent works for high-performance computing, a molecule biology-based experimental solution to the
computation with DNA molecules, i.e. DNA comput- maximal clique NP-complete problem. In recent years,
ing, has considerable attention as one of non-silicon- lots of papers have occurred for designing DNA pro-
based computing. Watson—Crick complementarity and cedures and algorithms to solve various NP-complete
massive parallelism are two important features of DNA. problems. Moreover, procedures for primitive opera-
Using the features, one can solve an NP-complete tions, such as logic or arithmetic operations, have been
problem, which usually needs exponential time on a also proposed so as to apply DNA computing on a wide
silicon-based computer, in a polynomial number of range of problem@-risco, 2002; Fujiwara et al., 2004;
steps with DNA molecules. As the first work for DNA  Guarnieri et al., 1996; Gupta et al., 1997; Hug and
computing Adleman (1994presented an idea of solv-  Schuler, 2001; Kamio et al., 2003)
ing the Hamiltonian path problem of sizén O(n) steps In this paper, the DNA operations proposed by
using DNA moleculesLipton (1995)demonstrated  Adleman (1994andLipton (1995)are used for figur-
that Adleman’s experiment could be used to determine ing out solutions ofnaximum cut NP-complete prob-
lems: for a graphG = (V, E) find a subseC of the
"+ Corresponding author. Tel.: +86 21 62233060: vertices tha.t maximizes the numbgr of edges that have
fax: +86 21 52682621. one vertex inC and one not irC. It is clear that ifC
E-mail address: wxli@math.ecnu.edu.cn (W. Li). is a solution to the maximum cut problems, then so is
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V \ C by the definition. The grapt in Fig. 1defines
such a problem. It is easy to see tlat {Ag, A3}
(equivalentlyC = {As, A4, A2, A1}) is a solution to
the maximum cut problem for grapghin Fig. 1

The rest of this paper is organized as follows. In
Section2, the Adleman—Lipton model is introduced in
detail. Sectior8 introduces a DNA algorithm for solv-
ing the maximum cut problem and the complexity of
the proposed algorithm is described. We give conclu-
sions in Sectior.

2. The Adleman-Lipton model

Bio-molecular computers work at the molecular
level. Because biological and mathematical operations
have some similarities, DNA, the genetic material that
encodes for living organisms, is stable and predictable
in its reactions and can be used to encode information
for mathematical systems.

DNA is the major information storage molecule in
living cells, and billions of years of evolution have
tested and refined both this wonderful informational
molecule and highly special enzymes that can either
duplicate the information in DNA molecules or trans-
mit this information to other DNA molecules.

A DNA (deoxyribonucleic acid) is a polymer, which
is strung together from monomers called deoxyribonu-
cleotides(Paun et al., 1998)Distinct nucleotides are

detected only with their bases. Those bases are, respec-

tively, abbreviated as adenine (A) , guanine (G), cyto-
sine (C), and thymine (T). Two strands of DNA can
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form (under appropriate conditions) a double strand,
if the respective bases are the Watson—Crick comple-
ments of each other—A matches T and C matches G;
also 3 -end matches’g&end, e.g. the singled strands
5-ACCTGGATGTAA-3 and 3-TGGACCTACATT-

5 can form a double strand. We also call the
strand 3TGGACCTACATT-5 as the complementary
strand of >ACCTGGATGTAA-3 and simply denote
3-TGGACCTACATT-5 by ACCTGGATGTAA. The
length of a single stranded DNA is the number of
nucleotides comprising the single strand. Thus, if a sin-
gle stranded DNA includes 20 nucleotides, it is called
a 20 mer. The length of a double stranded DNA (where
each nucleotide is base paired) is counted in the num-
ber of base pairs. Thus, if we make a double stranded
DNA from a single stranded 20 mer, then the length of
the double stranded DNA is 20 base pairs, also written
as 20 bp.

The Adleman—Lipton model: A (test) tube is a set
of molecules of DNA (i.e. a multi-set of finite strings
over the alphabeftA, C, G, T}). Given a tube, one can
perform the following operations:

(1) Merge (Ty, T2): for two given test tubedy, 7>
it stores the uniorf; U T» in T; and leavesl»
empty;
(2) Copy (T1, T): for a given test tubé? it produces
a test tubel, with the same contents d3%;
(3) Detect (T): given a test tubd' it outputs “yes” if
T contains at least one strand, otherwise, outputs
“no”;
Separation (T1, X, T»): for a given test tubdh
and a given set of string® it removes all sin-
gle strands containing a string \hfrom 71, and
produces a test tul#® with the removed strands;
Selection (T4, L, T>): for a given test tub&; and
agiven integeL itremoves all strands with length
L from T1, and produces a test tulie with the
removed strands;
Cleavage (T, ogo1): for a given test tubg” and
a string of two (specified) symbolgo it cuts

(4)
(5)

(6)

oo
each double strand containing 071 in T into
0001

two double strands as follows:
o1Bo0
- y |
o1B1

ao0o1B0
1000151

®000
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(7) Annealing (T): for a given test tub& it produces
all feasible double strands if. The produced
double strands are still storedftafterannealing;

(8) Denaturation (T): for a given test tubd it dis-
sociates each double strandZinnto two single
strands;

(9) Discard (T): for a given test tub& it discards the
tubeT;

(10) Append (T, Z): for a given test tub& and a given
short DNA singled strand it append< onto the
end of every strand in the tulie

Since these ten manipulations are implemented with a
constant number of biological steps for DNA strands
(Paun et al., 1998)we assume that the complexity of

each manipulation is O(1) steps.

3. DNA algorithm for the maximum cut
problem

Let G = (V, E) be a graph with the set of vertices

beingV = {Axlk = 1,2, ..., n} and the set of edges
beingE = {e; ;| for somen > i > j > 1}.Let|E| = s.
Thens < %n(n - 1).

In the following, the symbols 0, 1, #i;, and By

(k=1,2,---,n) denote distinct DNA singled strands
with same length, say 10-mer. Obviously the length
of the DNA singled strands greatly depends on the
size of the problem involved in order to distinguish all

above symbols and to avoid hairpin format{tnet al.,
2003) We choose DNA singled strandgs; to encode
the edges connecting the vertiegsandA ; with length
of 10-mer. All thesg); ; can be taken the same, say

for our problem. For convenience of argument we still

use a dummy symbol; ; of length O-mer if the ver-
ticesA; and A is not connected by an edgeiot ;.
Let

P=1{0,1, A1#, #B,,, AxBi—1lk = 2,3, ..., n},

QO = {# By 1Ay, BOA |k =1,2,..., n},
H = {yi,j | i,j=1,2,...,n}.

and

We design the following algorithm to solve the max-
imum cut problems and give the corresponding DNA

operations as follows:
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(1) For a graph withn vertices, each possible sub-

@)

set of the seW of vertices is represented by an
n-digit binary number. A bit set to 1 represents a
vertex in the subset, and a bit set to O represents
a vertex out of the subset. For example, the subset
(A, As)inFig. lisrepresented by the binary num-
ber 110000. In this way, we transform all possible
subsets o¥ in ann-vertex graph into an ensemble
of all n-digit binary numbers. We call this the data
pool.

(1-1) Merge (P, Q);

(1-2) Annealing (P);

(1-3) Denaturation (P);

(1-4) Separation (P, {A1#}, Tymp);

(1-5) Discard (P);

(1-6) Separation (Timp, {#B,}, P).

After above six steps of manipulation, sin-
gled strands in tubeP will encode all 2
subsets ofV in the form of n-digit binary
numbers. For example, for the graph kig. 1
with n =6 we have, e.g. the singled strand
#BglAgBslAs5Ba1A4B31A3B20A>B10A1# € P,
which denotes the subséfig, As, A4, A3} cor-
responding to the binary number 111100. This
operation can be finished in O(1) steps since each
manipulation above works in O(1) steps.

For each element in the data pool that represents
some subseC of V, we count the number of
edges that have one vertex @ and one not
in C. Let the subsetC correspond the:-digit
binary numbet, - - -a; - - - a; - - - a. For each pair
(ai,aj) with a; = 1, aj=00ra;=0,a; =1we
append the singled strang ; or y;; to the end

of the singled strand which encode thedigit
binary numbee, - --a; - - -a; - - - a1. For example,
the singled strands B§1AgBs1A5B41A4B31A3
B>0A>B10A1# (representing the binary number
111100 for the graph iRig. 1) is transformed into
#BelAgBs1A5B41A4B31A3B20A2B10A1#y6 2
¥6.1y3,2 Where the singled strandss gz, ys 1,
ya2,ya1,y31 do not appear since there are
not corresponding edges in the graph shown in
Fig. 1 and so they all have length 0-mer by the
definition of y; ;. It means that if we take the
subsetC of vertices of the graph irFig. 1 to

be {Ag, As, A4, A3}, then there are totally three
edgesAgAr, AgA1, A3A2 which have one vertex
in C and one not irC.
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Fork=ntok=1
(2-1) Separation (P, {B;1Ag}, T1)
Fori=ntoi=1

(2-2) Separation (T, {B;0A;}, T2)

(2-3) Append (T2, yx.i)

(2-4) Merge (T1, T2)

End For

(2-5) Merge(P, T1)

End For

In the above operation we use two “For” clauses.

Thus this operation can be finished i) steps

since each single manipulation above works in

O(1) steps.

We take out those singled strandgiwith largest

length, which give the solutions to maximum cut

problems. For example, for the graph Fig. 1,

those singled strands ik with largest length are

#B61AsBs0A5B40A4B31A3B,0A5B10A1#y6 5

V6,4Y6,2Y6,1Y35Y3,4y32 and #Bc0AgBs1lA5By

1A4B30A3B21A2B11A1#ys 6Y5,3Y4,6Y4,3Y2,6Y2,3

y1.6. Therefore, solutions to maximum cut prob-
lems for the graph irFig. 1 are {Ag, A3} and

{As, As, Ao, A1} in each of which there are seven

edges to have only one vertex in the resulting

subsets.
Fork=stok=1

(3-1) Selection (P, 30n + 20+ 10k, T)

(3-2) If Detect (T) is “yes”, then End For andis
the number of edges corresponding to max-
imum cutsC, else continue the circulation.

Sinces is the size of the seft of edges and <

%n(n — 1), the above “For” clause can be finished

in O(n?) steps.

Finally theRead operation is applied to giving the

exact solutions to the maximum cut problems. For

example, for the graph iRig. 1, the maximum cuts
are{Ag, A3} and{As, A4, A2, A1}. This operation
works in O(1) steps.

(4-1) Read (T).

Finally, from above four steps of operations we
obtain:

3)

(4)

Theorem 3.1. The solutions of maximum cut problems
for a graph with n vertices can be figured out in O(n?)
steps using DNA molecules.

Proof. As the algorithm described above, the solu-
tions of a maximum cut problem for a graph with
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vertices can be implemented in four operations using
DNA molecules. The first and fourth operations costs
O(1) steps, while the second and third operations costs
O(n?) steps. Thus, the solutions of maximum cut prob-
lems for a graph with vertices can be figured out in
O(n?) steps using DNA molecules.O]

4. Conclusions

As the first work for DNA computing(Adleman,
1994)presented an idea to demonstrate that deoxyri-
bonucleic acid (DNA) strands can be applied to solving
the Hamiltonian path NP-complete problem of size
in O(n) steps using DNA molecules. Adleman’s work
shows that one can solve an NP-complete problem,
which usually needs exponential time on a silicon-
based computer, in a polynomial number of steps with
DNA molecules. From then oljpton (1995)demon-
strated that Adleman’s experiment could be used to
determine the NP-complete satisfiability (SAT) prob-
lem (the first NP-complete problemPuyang et al.
(1997)showed that restriction enzymes could be used
to solve the NP-complete clique problem. In recent
years, lots of papers have occurred for designing
DNA procedures and algorithms to solve various NP-
complete problems. AGuo et al. (2005pointed out,
it is still important to design DNA procedures and
algorithms for solving various NP-complete problems
since itis very difficult to use biological operations for
replacing mathematical operations.

In this paper, we propose a procedure for solving
maximum cut NP-complete problems in the Adleman—
Lipton model. The procedure works in &%) steps for
maximum cut problems of an undirected graph with
vertices. All our results in this paper are based on a the-
oretical model. However, the proposed procedures can
be implemented practically since every DNA manipu-
lation used in this model has been already realized in
lab level.
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