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Summary

This paper studies the consensus control of second-order multiagent systems
with intrinsic dynamics based on delayed and noisy measurements, where the
delays in the position and velocity measurements are allowed to be differ-
ent. The nonlinear and linear intrinsic dynamics are considered, respectively.
For the case with nonlinear dynamics, mean square and almost sure consen-
sus conditions are established by applying the degenerate Lyapunov functional
and stochastic stability theorems. For the delay-free case with linear dynamics,
appropriate Lyapunov functions are established to get some simple sufficient
conditions for mean square and almost sure consensus, and necessary condi-
tions for mean square consensus. It is shown that, with respect to the weighted
average type control protocols, second-order multiagent systems are kept mean
square consentable under multiplicative measurement noises alone or intrinsic
dynamics alone, but may become unconsentable due to the coexistence of mul-
tiplicative noises and intrinsic dynamics. These results are further extended to
leader-following multiagent systems.
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1 INTRODUCTION

Recently, there has been considerable attention paid to the study of multiagent systems due to their flexibility and intel-
ligence in solving distributed problems. Potential applications of multiagent systems are numerous, including societies,
markets, satellite communications, and biological systems.1-5 One of the important research interests in multiagent

Int J Robust Nonlinear Control. 2018;1–21. wileyonlinelibrary.com/journal/rnc © 2018 John Wiley & Sons, Ltd. 1

https://doi.org/10.1002/rnc.4301
http://orcid.org/0000-0001-6173-7987
http://crossmark.crossref.org/dialog/?doi=10.1002%2Frnc.4301&domain=pdf&date_stamp=2018-08-20


2 ZONG ET AL

systems is the consensus control, which focuses on the design of distributed protocols to guarantee certain agreement or
synchronization. That is, the states (or partial states) of all agents can reach the same value or function by local information
exchange.6-9

Note that measurement noises often exist in data transmission channels.10,11 Hence, multiagent systems subjected to
measurement noises have to be taken into account. In the literature, both the additive and multiplicative noises were
investigated in the consensus control of multiagent systems. For the case with additive noises, the stochastic approxima-
tion method was applied for discrete-time model and continuous-time model to examine mean square and almost sure
consensus,12-18 where the consensus conditions related to control gain functions were found. For the case with multiplica-
tive noises, stochastic stability and martingale convergence theorems were applied to establish necessary conditions and
sufficient conditions for mean square and almost sure consensus of continuous-time models in the works of Ni and Li19

and Li et al,20 and sufficient consensus conditions of discrete-time models in other works.21-23 When the measurement
delay also appears in multiagent systems, Liu et al24 got sufficient conditions for mean square average consensus under
additive measurement noises by developing the generalized Gronwall-Bellman-Halanay type inequality, and our previous
work25 obtained necessary and sufficient conditions for mean square and almost sure weak and strong consensus under
multiplicative measurement noises by using degenerate Lyapunov functionals.

The consensus analysis aforementioned focused on the first-order multiagent systems. In practical applications, many
mobile agents are determined by both position and velocity states, such as torque motors and gas jets, which are adjusted
for their desired motion directly by the acceleration rather than the speed. Therefore, more and more attention has
been paid to consensus problems of second-order multiagent systems. In the work of Yu et al,26 the necessary and suffi-
cient consensus conditions were obtained for the delayed and delay-free cases, respectively. In the work of Carli et al,27

a second-order consensus algorithm was proposed for a family of nonidentical double integrators. Eichler and Werner28

studied the constrained min-max problem, which optimizes the consensus speed subject to a lower bound on damping.
Li and Chen29 applied Riccati equations to establish mean square consensus of linear multiagent systems. Taking the
measurement delay and multiplicative measurement noises into consideration, the second-order consensus conditions
were obtained in the works of Zong et al.30,31 Besides the second-order dynamic property, mobile agents may be governed
by more complicated intrinsic dynamics.32 With the interaction among neighboring agents, intrinsic nonlinear or linear
dynamics will determinate the agents' behavior, such as the well-known Kuramoto oscillator.33 Although some publica-
tions considered the second-order multiagent consensus with intrinsic dynamics,34-39 little is known about the joint effects
of measurement delays, noises, and intrinsic dynamics on multiagent consensus.

In this paper, we study the second-order consensus problem by analyzing the joint effects of measurement delays,
multiplicative noises, and intrinsic dynamics on multiagent consensus. Here, the protocol is based on the relative position
and velocity measurements according to the network structure, and the measurement delays in the relative position and
velocity measurements are allowed to be different. Compared with the deterministic case, the consensus conditions of
these models are difficult to be obtained in present of multiplicative noises. Recently, we have successfully established
consensus conditions of linear second-order systems with measurement delays and multiplicative noises.30 However, it
cannot be applied to nonlinear second-order models, since the stochastic stability theorem developed in the work of
Zong et al30 is based on the stochastic delay equation with the linear drift. Moreover, delays appear not only in agents'
external measurements but also in their intrinsic dynamics. This will add new difficulties in constructing the Lyapunov
functional and finding consensus conditions, since it produces the pure delayed second-order stochastic system, whose
stochastic stability criterion has not been well established. To this end, first, we make the most of the topology structure
and convert the consensus problem into the stochastic stability issue of complicated stochastic systems, and then apply
the stochastic stability theorem related to degenerate Lyapunov functionals to examine the consensus conditions in the
senses of mean square and probability one.

The main contributions and findings are listed as follows.

• For the leader-free multiagent systems, explicit consensus conditions for nonlinear and linear second-order systems
are established, respectively.

– For the case with nonlinear dynamics and delays, we develop sufficient conditions for mean square and almost
sure consensus and prove that, if the delays and noise intensities in the measurements and the Lipschitz constants
of the nonlinear dynamics are small enough, then the closed-loop system achieves mean square and almost sure
consensus under appropriate control gains.

– For the case with linear dynamics, we obtain some necessary conditions and sufficient conditions for mean square
consensus by choosing appropriate Lyapunov functions. It is revealed that, with respect to weighted average type
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control protocols based on local information, second-order multiagent systems are kept mean square and almost
surely consentable under multiplicative noises alone or intrinsic dynamics alone. However, the co-occurrence
of multiplicative noises and intrinsic dynamics may weaken and destroy the mean square consentability, ie, the
weighted average type control protocols based on the local information may not exist to guarantee the mean square
consensus if intrinsic dynamics and multiplicative measurement noises appear simultaneously. This is different
from the case without intrinsic dynamic.31

• For the leader-following multiagent systems, sufficient conditions for mean square and almost sure leader-following
consensus are obtained under the assumption that the subgraph formed by the followers is undirected.

The organization of this paper is as follows. The consensus conditions of leader-free multiagent systems are addressed
in Section 2, which contains two sections. In Section 2.1, sufficient conditions are established for mean square and almost
sure consensus of second-order multiagent systems with nonlinear dynamics. In Section 2.2, some simple sufficient con-
ditions for mean square and almost sure consensus, and necessary conditions for mean square consensus are obtained for
the case with linear dynamics. In Section 3, consensus conditions for leader-following multiagent systems are obtained.
The simulations are carried out in Section 4 to show the effectiveness of the theoretical method. The conclusion and
future research are given in Section 5.

Notation. Throughout this paper, unless otherwise specified, we use the following notations. 1N denotes an
N-dimensional column vector with all ones. 𝜂N,i denotes the N-dimensional column vector with the ith element being
1 and others being zero. JN = 1

N
1N1T

N . IN denotes the N-dimensional identity matrix. For a given matrix or vector A, its
transpose is denoted by AT, and its Euclidean norm is denoted by |A|. For two matrices A and B, A ⊗ B denotes their
Kronecker product. For a, b ∈ R, a ∨ b represents max{a, b} and a ∧ b denotes min{a, b}. Let (Ω, ,P) be a complete
probability space with a filtration {t}t≥0 satisfying the usual conditions, namely, it is right continuous and increas-
ing while 0 contains all P-null sets. For a given random variable or vector X, the mathematical expectation of X is
denoted by EX . For a continuous martingale M(t), its quadratic variation is denoted by ⟨M⟩(t) (see the work of Revuz
and Yor40). For the fixed 𝜏 > 0, we use C([−𝜏, 0];Rn) to denote the space of all continuous Rn-valued functions 𝜑

defined on [ − 𝜏, 0] with the norm ||𝜑||C = supt∈[−𝜏,0]||𝜑(t)||.
2 LEADER-FREE MULTIAGENT SYSTEMS

Consider N agents distributed according to an undirected graph  = { ,  ,}, where  = {1, 2, … ,N} is the set of nodes
with i representing the ith agent,  denotes the set of undirected edges, and  = [ai𝑗] ∈ RN×N is the adjacency matrix of 
with element ai j = 1 or 0 indicating whether or not there is an information flow from agent j to agent i directly. Ni denotes
the set of the node i's neighbors, ie, for j ∈ Ni, ai j = 1. In addition, degi =

∑N
𝑗=1 ai𝑗 is called the degree of i. The Laplacian

matrix of  is defined as  = −, where  = diag(deg1, … , degN). In this paper,  is assumed to be connected. In this
case,  admits a zero eigenvalue, denoted by 𝜆1, and other eigenvalues 0 < 𝜆2 ≤ … ≤ 𝜆N are positive.

The dynamic of each agent is given by{
�̇�i(t) = vi(t),
v̇i(t) = 𝑓 (𝑦i(t − 𝜏𝑦), vi(t − 𝜏v), t) + ui(t),

(1)

where 𝑦i(t) ∈ Rn and vi(t) ∈ Rn denote the position and velocity of the ith agent, respectively. Here, 𝜏y and 𝜏v are delays in
the intrinsic dynamic f ( yi(t − 𝜏y), vi(t − 𝜏v), t), ui(t) is the control input to be designed, and f (·, ·, t) is a nonlinear function.
Let 𝑦(t) = [𝑦T

1 (t), … , 𝑦T
N(t)]

T , v(t) = [vT
1 (t), … , vT

N(t)]
T , x(t) = [ yT(t), vT(t)]T, and u(t) = [uT

1 (t), … ,uT
N(t)]

T .

Remark 1. Before this paper, the consensus of nonlinear second-order multiagent systems has been investigated under
general digraphs in the work of Yu et al34 and switching graphs in other works.37-39 These works are remarkable for
deterministic models without time delay and measurement noise. In this paper, we take the time delays and mea-
surement noises into consideration, where the time delays appear not only in the nonlinear dynamics but also in the
measurements.

In this paper, we consider the following weighted average type control protocols:

ui(t) = k1
∑
𝑗∈Ni

z𝑦𝑗i(t) + k2
∑
𝑗∈Ni

zv𝑗i(t), (2)
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where k1 > 0, k2 > 0, z𝑦𝑗i(t) = 𝑦𝑗(t − 𝜏1) − 𝑦i(t − 𝜏1) + g1𝑗i(𝑦𝑗(t − 𝜏1) − 𝑦i(t − 𝜏1))𝜉1𝑗i(t), and zv𝑗i(t) = v𝑗(t − 𝜏2) − vi(t −
𝜏2) + g2𝑗i(v𝑗(t − 𝜏2) − vi(t − 𝜏2))𝜉2𝑗i(t) are the position and velocity measurements of agent i from its neighboring agent j,
respectively, 𝜏1 and 𝜏2 are measurement delays, 𝜉ji(t) = [𝜉1ji(t), 𝜉2ji(t)]T is a two-dimensional noise, and g1𝑗i(·) and g2𝑗i(·)
are intensity functions. We make the following hypotheses.

Hypothesis 1. The noise process 𝜉l𝑗i(t) ∈ R satisfies ∫ t
0 𝜉l𝑗i(s)ds = wl𝑗i(t), t ≥ 0, l = 1, 2, i = 1, 2, … , N, j ∈ Ni, where

{wlji(t), l = 1, 2, i = 1, 2, … ,N, j ∈ Ni} are independent scalar Brownian motions.
Hypothesis 2. For each (j, i), g1𝑗i(0) = g2𝑗i(0) = 0 and there exist positive constants �̄�1 and �̄�2 such that for all
𝑦1, 𝑦2 ∈ Rn, ||g1𝑗i(𝑦1) − g1𝑗i(𝑦2)|| ≤ �̄�1|𝑦1 − 𝑦2|
and ||g2𝑗i(𝑦1) − g2𝑗i(𝑦2)|| ≤ �̄�2|𝑦1 − 𝑦2|.
We assume that the initial data x(t) = 𝜑(t) ∈ C([−𝜏, 0];R2n), t ∈ [− 𝜏, 0], where 𝜏 = 𝜏y ∨ 𝜏v ∨ 𝜏1 ∨ 𝜏2. We aim to find

the control gains k1, k2 such that the control u(t) solves the consensus problems, where the definitions of the mean square
and almost sure consensus are given as follows.

Definition 1. We say that the protocol u(t) solves mean square (or almost sure) consensus if it makes the agents have
the property that for any initial data 𝜑 and all distinct i, 𝑗 ∈  , limt→∞E|xi(t) − x𝑗(t)|2 = 0 (or limt→∞|xi(t) − x𝑗(t)| = 0
almost surely.

Remark 2. The deterministic and ideal measurements have been examined in the works of Olfati-Saber and Murray41

and Yu et al26 for first-order model and second-order model, respectively. In this work, the measurements zy ji(t)
and zvji(t) can be considered as the joint impact of measurement delays and multiplicative noises on the ideal
measurements yj(t) − yi(t) and vj(t) − vi(t) and were detailed in our recent works25,30 for linear multiagent systems.

2.1 Second-order consensus with nonlinear intrinsic dynamics
We first investigate the consensus conditions of multiagent systems with nonlinear dynamics. We assume that the function
f ( y, v, t) satisfies the following hypothesis.

Hypothesis 3. We assume that f (0, 0, t) ≡ 0 and there exist positive constants q1 and q2 (Lipschitz constants) such that

|𝑓 (𝑦, v, t) − 𝑓 (�̄�, v̄, t)| ≤ q1|𝑦 − �̄�| + q2|v − v̄|
for all 𝑦, v, �̄�, v̄ ∈ Rn.

We will use the following notations. Define the unitary matrix T = [ 1N√
N
, 𝜙2, … , 𝜙N], where 𝜙i is the unit eigenvector

of  associated with the eigenvalue 𝜆i = 𝜆i(), ie, 𝜙T
i  = 𝜆i𝜙

T
i , |𝜙i| = 1, i = 2, … ,N. Denote 𝜙 = [𝜙2, … , 𝜙N]

and Λ = diag(𝜆2, 𝜆3, … , 𝜆N). Denote 𝛿y(t) = [(IN − JN) ⊗ In] y(t), and 𝛿𝑦(t) = [𝛿T
𝑦1(t), … , 𝛿T

𝑦N(t)]
T , where 𝛿𝑦i ∈ Rn,

i = 1, … N. Let 𝛿𝑦(t) = (T ⊗ In)𝛿𝑦(t) and 𝛿𝑦(t) = [𝛿T
𝑦1(t), … , 𝛿T

𝑦N(t)]
T , and then it can be verified that 𝛿𝑦1(t) = 1√

N

(1T
N ⊗ In)[(In − Jn)⊗ In)𝑦(t) ≡ 0 since 1T

N(In − Jn) = 0. Denote 𝛿𝑦(t) = [𝛿T
𝑦2(t), … , 𝛿T

𝑦N(t)]
T . Similarly, we can define 𝛿v(t),

𝛿v(t), and 𝛿v(t). Denote 𝛿(t) = [𝛿
T
𝑦 (t), 𝛿

T
v (t)]T .

Theorem 1. Suppose that Hypotheses 1, 2, and 3 hold. If the control gains k1 and k2 satisfy

2k1𝜆2 > 2q1 + q2 (3)

and

𝜌(k1) < 𝜚(k2), (4)

where 𝜌(k1) =
(2+q2+k1𝜆N (𝜏1+𝜏2)2)𝜆2

2k1𝜆2−2q1−q2
[((3 + q1 + q2)𝜏1 + 2𝜏2)k2

1𝜆N + (𝜏1 + 𝜏2 + 1)q1𝜆
−1
2 + 2k2

1
N−1

N
�̄�2

1 ] + 𝜆2k1(𝜏1 + 𝜏2) + q1 +

q2(𝜏1 + 𝜏2 + 2), 𝜚(k2) = 2𝜆2k2(1 − k2
N−1

N
�̄�2

2 ) − 𝜆2[(q1 + q2 + 2)𝜏2 + 𝜏1]k2
2𝜆N , then the protocol (2) solves mean square and

almost sure consensus.
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Proof. It is enough to prove that the protocol (2) with k1 and k2 satisfying (3) and (4) can solve mean square and
almost sure consensus. The proof is divided into the following four steps.

Step 1: Transformation of consensus problem into stability problem. We transform the consensus problem
of multiagent system into the stability of a stochastic delayed equation. Let F (t) = [ f T( y1(t − 𝜏y), v1(t − 𝜏v), t), … ,

f T( yN(t − 𝜏y), vN(t − 𝜏v), t)]T. Substituting the protocol (2) into the system (1) and using Hypothesis 1 yield

dv(t) = F(t)dt − k1(⊗ In)𝑦(t − 𝜏1)dt − k2(⊗ In)v(t − 𝜏2)dt + dM̄(t),

where M̄(t) = k1
∑N

i, 𝑗=1 ai𝑗 ∫ t
0 [𝜂N,i ⊗ g̃1 𝑗i(s − 𝜏1)]dw1𝑗i(s) + k2

∑N
i, 𝑗=1 ai𝑗 ∫ t

0 [𝜂N,i ⊗ g̃2 𝑗i(s − 𝜏2)]dw2 𝑗i(s), and g̃1𝑗i(s) =
g1𝑗i(𝛿𝑦𝑗(s)−𝛿𝑦i(s)), g̃2 𝑗i(s) = g2 𝑗i(𝛿v𝑗(s)−𝛿vi(s)). Noting that 𝛿y(t) = [(IN − JN)⊗ In] y(t) and 𝛿v(t) = [(IN − JN)⊗ In]v(t),
then we have from (IN − JN) = (IN − JN) that

⎧⎪⎨⎪⎩
d𝛿𝑦(t) = 𝛿v(t)dt
d𝛿v(t) = F̄(t)dt − k1(⊗ In)𝛿𝑦(t − 𝜏1)dt

−k2(⊗ In)𝛿v(t − 𝜏2)dt + dM̄0(t),

where F̄(t) = [(IN − JN)⊗ In]F(t) with F̄(t) = [𝑓T
1 (t), … , 𝑓T

N (t)]
T and 𝑓i(t) = 𝑓 (𝑦i(t − 𝜏𝑦), vi(t − 𝜏v), t) − 1

N

∑N
𝑗=1 𝑓 (𝑦𝑗(t −

𝜏𝑦), v𝑗(t − 𝜏v), t), M̄0(t) = k1
∑N

i,𝑗=1 ai𝑗 ∫ t
0 [(IN − JN)𝜂N,i ⊗g̃1𝑗i(s − 𝜏1)]dw1𝑗i(s) + k2

∑N
i,𝑗=1 ai𝑗 ∫ t

0 [(IN − JN)𝜂N,i ⊗ g̃2𝑗i(s −
𝜏2)]dw2𝑗i(s). Bear it in mind that 𝛿𝑦(t) = (TT ⊗ In)𝛿𝑦(t), 𝛿v(t) = (TT ⊗ In)𝛿v(t), 𝛿𝑦1(t) = 0, and 𝛿v1(t) = 0. Then, we have
the following delayed second-order stochastic system:

⎧⎪⎨⎪⎩
d𝛿𝑦(t) = 𝛿v(t)dt
d𝛿v(t) = (𝜙T ⊗ In)F̄(t)dt − k1(Λ⊗ In)𝛿𝑦(t − 𝜏1)dt

−k2(Λ⊗ In)𝛿v(t − 𝜏2)dt + dM̄1(t) + dM̄2(t),
(5)

where M̄1(t) = k1
∑N

i,𝑗=1 ai𝑗 ∫ t
0 [Q̄(i)⊗ g̃1𝑗i(s − 𝜏1)]dw1𝑗i(s) and M̄2(t) = k2

∑N
i,𝑗=1 ai𝑗 ∫ t

0 [Q̄(i)⊗ g̃2𝑗i(s − 𝜏2)]dw2𝑗i(s) with

Q̄(i) = 𝜙(IN − JN)𝜂N,i. Let L = L0 + L1 + L2 with L0 =
[

0 IN−1
0 0

]
, L1 =

[
0 0

−k1Λ 0

]
, and L2 =

[
0 0
0 −k2Λ

]
. Then,

we have

d𝛿(t) = F̃(t)dt + (L0 ⊗ In)𝛿(t)dt + (L1 ⊗ In)𝛿(t − 𝜏1)dt + (L2 ⊗ In)𝛿(t − 𝜏2)dt + dM̄3(t) + dM̄4(t), (6)

where F̃(t) = [0, (𝜙T ⊗ In)F̄T(t)]T , M̄3(t) = k1
∑N

i,𝑗=1 ai𝑗 ∫ t
0 B1i𝑗(s−𝜏1)dw1𝑗i(s), M̄4(t) = k2

∑N
i,𝑗=1 ai𝑗 ∫ t

0 B2i𝑗(s−𝜏2)dw2𝑗i(s),
B1i𝑗(t) = [0, bT

1i𝑗(t)]
T , b1i𝑗(t) = Q(i) ⊗ g̃1𝑗i(t), B2i𝑗(t) = [0, bT

2i𝑗(t)]
T , and b2i𝑗(t) = Q̄(i) ⊗ g̃2𝑗i(t). Note that 𝛿𝑦i(t) =

𝑦i −
∑N

k=1 𝑦k(t)∕N, 𝛿vi(t) = vi −
∑N

k=1 vk(t)∕N, i = 1, … ,N. Hence, by the definition of 𝛿(t), we can see easily that the
consensus problem is converted into the stability problem of (6).

Step 2: Construction of degenerate Lyapunov functional. To get the stability analysis of (6), we need to
construct a degenerate Lyapunov functional. Let

P =
[

𝜇Λ 𝜃IN−1
𝜃IN−1 IN−1

]
(7)

with 𝜇, 𝜃 > 0 to be designed. In fact, we need 𝜃2 < 𝜇𝜆2 to guarantee the positive definiteness of P. Let

z(t) = 𝛿(t) + (L1 ⊗ In)∫
t

t−𝜏1

𝛿(s)ds + (L2 ⊗ In)∫
t

t−𝜏2

𝛿(s)ds. (8)

We choose the degenerate Lyapunov functional

V(𝛿t) = V1(𝛿(t)) + V2(t), (9)

where

V1(𝛿t) = z(t)T(P ⊗ In)z(t) (10)
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and

V2(𝛿t) = ∫
0

−𝜏1

[
∫

t

t+s
𝛿

T
(𝜃)

(
LT

1 PL1 ⊗ In
)
𝛿(𝜃)d𝜃

]
ds + ∫

0

−𝜏2

[
∫

t

t+s
𝛿

T
(𝜃)

(
LT

2 PL2 ⊗ In
)
𝛿(𝜃)d𝜃

]
ds

+ (𝜃 + 1)

[
q1 ∫

t

t−𝜏𝑦
|𝛿𝑦(s)|2ds + q2 ∫

t

t−𝜏v

|𝛿v(s)|2ds

]
+ k2

1(q1 + q2)∫
0

−𝜏1
∫

t

t+s
𝛿

T
𝑦 (u)(Λ2 ⊗ In)𝛿𝑦(u)duds

+ k2
2(q1 + q2)∫

0

−𝜏2
∫

t

t+s
𝛿

T
v (u)(Λ2 ⊗ In)𝛿v(u)duds + (𝜏1 + 𝜏2)(q1 ∫

t

t−𝜏𝑦
|𝛿𝑦(s)|2ds + q2 ∫

t

t−𝜏v

|𝛿v(s)|2ds)

+ 2 N − 1
N

k2
1𝜎

2
1 ∫

t

t−𝜏1

𝛿
T
𝑦 (s)[Λ⊗ In]𝛿𝑦(s)ds + 2 N − 1

N
k2

2𝜎
2
2 ∫

t

t−𝜏2

𝛿
T
v (s)[Λ⊗ In]𝛿v(s)ds (11)

with 𝛿t = {𝛿(t + 𝜃) ∶ 𝜃 ∈ [−𝜏, 0]}. In the following, we will give an estimation of the functional (9).
Step 3: Computation and estimation of Itô operator V(·). Computing the Itô operator V1(·) on the solution

path 𝛿(t) yields

𝔏V1(𝛿t) = 2zT(t)(P ⊗ In)
[

F̃(t) + (L ⊗ In)𝛿(t)
]
+ J1(t)

= 𝛿
T
(t)

[
(LTP + PL)⊗ In

]
𝛿(t) +

6∑
𝑗=1

J𝑗(t),

where

J1(t) = k2
1

N∑
i,𝑗=1

ai𝑗||b1𝑗i(t − 𝜏1)||2 + k2
2

N∑
i,𝑗=1

ai𝑗||b2𝑗i(t − 𝜏2)||2,
J2(t) = 2𝛿

T
(t)(P ⊗ In)F̃(t),

J3(t) = 2𝛿
T
(t)(LTPL1 ⊗ In)∫

t

t−𝜏1

𝛿(s)ds,

J4(t) = 2𝛿
T
(t)(LTPL2 ⊗ In)∫

t

t−𝜏2

𝛿(s)ds,

J5(t) = 2∫
t

t−𝜏1

𝛿
T
(s)ds

(
LT

1 P ⊗ In
)
F̃(t),

J6(t) = 2∫
t

t−𝜏2

𝛿
T
(s)ds

(
LT

2 P ⊗ In
)
F̃(t).

Note that 𝜙𝜙T = IN − JN and (IN − JN)2 = (IN − JN), 𝜂T
N,i(IN −JN)𝜂N,i = N−1

N
. From the definition of 𝛿(t), Hypothesis 2,

and 2𝛿
T
𝑦 (t)[Λ⊗ In]𝛿𝑦(t) =

∑N
i=1

∑N
i=1 ai𝑗|𝛿𝑦𝑗(t) − 𝛿𝑦i(t)|2, we obtain

J1(t) ≤ 2 N − 1
N

k2
1𝜎

2
1𝛿

T
𝑦 (t − 𝜏1)[Λ⊗ In]𝛿𝑦(t − 𝜏1)

+ 2 N − 1
N

k2
2𝜎

2
2𝛿

T
v (t − 𝜏2)[Λ⊗ In]𝛿v(t − 𝜏2). (12)

Let �̄�(t) = 1
N

∑N
𝑗=1 𝑦𝑗(t) and v̄(t) = 1

N

∑N
𝑗=1 v𝑗(t); then, 𝛿𝑦i(t) = 𝑦i(t) − �̄�(t) and 𝛿vi(t) = vi(t) − v̄(t). Note that 𝑓i(t) =∶

pi1(t) + pi2(t) + p03(t), where pi1(t) = 𝑓 (𝑦i(t − 𝜏𝑦), vi(t − 𝜏v), t) − 𝑓 (𝑦i(t − 𝜏𝑦), v̄(t − 𝜏v), t), pi2(t) = 𝑓 (𝑦i(t − 𝜏𝑦), v̄(t −
𝜏v), t) − 𝑓 (�̄�(t − 𝜏𝑦), v̄(t − 𝜏v), t), p03(t) = 1

N

∑N
𝑗=1 Δ𝑗𝑓 (t), and Δ𝑗𝑓 (t) = 𝑓 (�̄�(t − 𝜏𝑦), v̄(t − 𝜏v), t) − 𝑓 (𝑦𝑗(t − 𝜏𝑦), v𝑗(t − 𝜏v), t).

Then, F̄(t) = p1(t) + p2(t) + 1N ⊗ p03(t), and we have

J2(t) = 2𝜃𝛿
T
𝑦 (t)(𝜙T ⊗ In)F̄(t) + 2𝛿

T
v (t)(𝜙T ⊗ In)F̄(t).
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By Hypothesis 3, we obtain

2𝛿T
𝑦i(t)pi1(t) ≤ q2

(|𝛿𝑦i(t)|2 + |𝛿vi(t − 𝜏v)|2) ,
2𝛿T

𝑦i(t)pi2(t) ≤ q1
(|𝛿𝑦i(t)|2 + |𝛿𝑦i(t − 𝜏𝑦)|2) ,

2𝛿T
vi(t)pi1(t) ≤ q2

(|𝛿vi(t)|2 + |𝛿vi(t − 𝜏v)|2) ,
2𝛿T

vi(t)pi2(t) ≤ q1
(|𝛿vi(t)|2 + |𝛿𝑦i(t − 𝜏𝑦)|2) .

It can be obtained that
∑N

i=1 𝛿
T
𝑦i(t)p03(t) = 0,

∑N
i=1 𝛿

T
vi(t)p03(t) = 0, |𝛿y(t)|2= |𝛿𝑦(t)|2, and |𝛿v(t)|2= |𝛿v(t)|2. Hence,

2𝛿
T
𝑦 (t)(𝜙T ⊗ In)F̄(t) = 2𝛿T

𝑦 (t)(𝜙𝜙T ⊗ In)[(IN − JN)⊗ In]F(t)

= 2𝛿T
𝑦 (t)F̄(t) = 2

N∑
i=1

(
𝛿T
𝑦i(t)pi1(t) + 𝛿T

𝑦i(t)pi2(t)
)

≤ (q1 + q2)|𝛿𝑦(t)|2 + q1|𝛿𝑦(t − 𝜏𝑦)|2 + q2|𝛿v(t − 𝜏v)|2.
Similarly, we have

2𝛿
T
v (t)(𝜙T ⊗ In)F̄(t) = 2

N∑
i=1

(
𝛿T

vi(t)pi1(t) + 𝛿T
vi(t)pi2(t)

)
≤ (q1 + q2)|𝛿v(t)|2 + q1|𝛿𝑦(t − 𝜏𝑦)|2 + q2|𝛿v(t − 𝜏v)|2.

The two inequalities aforementioned produce

J2(t) ≤ (q1 + q2)
(
𝜃|𝛿𝑦(t)|2 + |𝛿v(t)|2)

+ (𝜃 + 1)
[

q1|𝛿𝑦(t − 𝜏𝑦)|2 + q2|𝛿v(t − 𝜏v)|2] . (13)

By the inequality 2xT𝑦 ≤ 1
𝜀
|x|2 + 𝜀|𝑦|2, 𝜀 > 0, x, 𝑦 ∈ Rm, we have

J3(t) ≤ 𝜏1𝛿
T
(t)(LTPL ⊗ In)𝛿(t) + ∫

t

t−𝜏1

𝛿
T
(s)

(
LT

1 PL1 ⊗ In
)
𝛿(s)ds (14)

and

J4(t) ≤ 𝜏2𝛿
T
(t)(LTPL ⊗ In)𝛿(t) + ∫

t

t−𝜏2

𝛿
T
(s)

(
LT

2 PL2 ⊗ In
)
𝛿(s)ds. (15)

It can be seen that

J5(t) = −2k1 ∫
t

t−𝜏1

𝛿
T
𝑦 (s)ds(Λ𝜙T ⊗ In)F̄(t),

J6(t) = −2k2 ∫
t

t−𝜏2

𝛿
T
v (s)ds(Λ𝜙T ⊗ In)F̄(t).
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Note that 𝛿𝑦 = 𝜙T𝛿𝑦, Λ = 𝜙T𝜙, 𝜙𝜙T = IN − JN, (IN − JN)2 = (IN − JN), (IN − JN) =  = (IN − JN), and T1N = 0.
Then, we obtain

J5(t) = −2k1

(
∫

t

t−𝜏1

𝛿𝑦(s)ds
)T

(𝜙TT𝜙𝜙T ⊗ In)F̄(t)

= −2k1

(
∫

t

t−𝜏1

𝛿𝑦(s)ds
)T

(T ⊗ In)F̄(t)

= −2k1

(
∫

t

t−𝜏1

𝛿𝑦(s)ds
)T

(T ⊗ In)[p1(t) + p2(t)]

≤ 2k2
1(q1 + q2)∫

t

t−𝜏1

𝛿
T
𝑦 (s)(Λ2 ⊗ In)𝛿𝑦(s)|2ds +

(
1
q2

|p1(t)|2 + 1
q1

|p2(t)|2) 𝜏1

≤ k2
1(q1 + q2)∫

t

t−𝜏1

𝛿
T
𝑦 (s)(Λ2 ⊗ In)𝛿𝑦(s)ds + q1𝜏1|𝛿𝑦(t − 𝜏𝑦)|2 + q2𝜏1|𝛿v(t − 𝜏v)|2,

and similarly,

J6(t) ≤ k2
2(q1 + q2)∫

t

t−𝜏2

𝛿
T
v (s)(Λ2 ⊗ In)𝛿v(s)ds + q1𝜏2|𝛿𝑦(t − 𝜏𝑦)|2 + q2𝜏2|𝛿v(t − 𝜏v)|2.

Then, we obtain

J5(t) + J6(t) ≤ k2
1(q1 + q2)∫

t

t−𝜏1

𝛿
T
𝑦 (s)(Λ2 ⊗ In)𝛿𝑦(s)ds + q1(𝜏1 + 𝜏2)|𝛿𝑦(t − 𝜏𝑦)|2

+ k2
2(q1 + q2)∫

t

t−𝜏2

𝛿
T
v (s)(Λ2 ⊗ In)𝛿v(s)ds + q2(𝜏1 + 𝜏2)|𝛿v(t − 𝜏v)|2. (16)

Combining (12) to (16) yields

𝔏V1(𝛿t) ≤ S1(𝛿(t)) + ∫
t

t−𝜏1

𝛿
T
(s)

(
LT

1 PL1 ⊗ In
)
𝛿(s)ds + ∫

t

t−𝜏2

𝛿
T
(s)

(
LT

2 PL2 ⊗ In
)
𝛿(s)ds

+ (𝜃 + 1)
[

q1|𝛿𝑦(t − 𝜏𝑦)|2 + q2|𝛿v(t − 𝜏v)|2] + k2
1(q1 + q2)∫

t

t−𝜏1

𝛿
T
𝑦 (s)(Λ2 ⊗ In)𝛿𝑦(s)ds

+ k2
2(q1 + q2)∫

t

t−𝜏2

𝛿
T
v (s)(Λ2 ⊗ In)𝛿v(s)ds + 2 N − 1

N
k2

1𝜎
2
1𝛿

T
𝑦 (t − 𝜏1)[Λ⊗ In]𝛿𝑦(t − 𝜏1)

+ 2 N − 1
N

k2
2𝜎

2
2𝛿

T
v (t − 𝜏2)[Λ⊗ In]𝛿v(t − 𝜏2) + (𝜏1 + 𝜏2)

(
q1|𝛿𝑦(t − 𝜏𝑦)|2 + q2|𝛿v(t − 𝜏v)|2) , (17)

where

S1(𝛿(t)) = 𝛿
T
(t)

((
LTP + PL + LTPL(𝜏1 + 𝜏2)

)
⊗ In

)
𝛿(t) + (q1 + q2)

(
𝜃|𝛿𝑦(t)|2 + |𝛿v(t)|2) .

Hence, from the definition of V(·), we obtain that

𝔏V(𝛿t) ≤ 𝛿
T
(t)(Q ⊗ In)𝛿(t), (18)

where Q = LTP+PL+LTPL(𝜏1+𝜏2)+LT
1 PL1𝜏1+LT

2 PL2𝜏2+D with D =
[

d11(𝜃) 0
0 d22(𝜃)

]
, d11(𝜃) = (2q1+q2)𝜃IN−1+(𝜏1+

𝜏2+1)q1IN−1+(q1+q2)k2
1Λ

2𝜏1+2 N−1
N

k2
1𝜎

2
1Λ, and d22(𝜃) = (q2𝜃+2q2+q1+q2(𝜏1+𝜏2))IN−1+(q1+q2)k2

2Λ
2𝜏2+2 N−1

N
k2

2𝜎
2
2Λ.

In the following, we show that conditions (3) and (4) can guarantee P > 0 and Q < 0.
Step 4: Stability and consensus analysis under degenerate Lyapunov functional. It can be obtained that

LTP + PL =
[

−2k1𝜃Λ (𝜇 − k1 − 𝜃k2)Λ
(𝜇 − k1 − 𝜃k2)Λ 2(𝜃IN−1 − k2Λ)

]
,

LTPL =
[

k2
1Λ

2 k1k2Λ2 − k1𝜃Λ
k1k2Λ2 − k1𝜃Λ (𝜇 − k2𝜃)Λ − k2𝜃Λ + k2

2Λ
2

]
,

LT
1 PL1 =

[
k2

1Λ
2 0

0 0

]
and LT

2 PL2 =
[

0 0
0 k2

2Λ
2

]
.
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Let 𝜇 = k1 + k2𝜃 + k1𝜃(𝜏1 + 𝜏2). Note that[
0 k1k2Λ2

k1k2Λ2 0

]
≤
[

k2
1Λ

2 0
0 k2

2Λ
2

]
.

Therefore, we have

Q ≤
[

s11(𝜃) 0
0 s22(𝜃)

]
,

where s11(𝜃) = d11(𝜃) − 2k1𝜃Λ + 2k2
1Λ

2(𝜏1 + 𝜏2) + k2
1Λ

2𝜏1 and s22(𝜃) = d22(𝜃) + 2(𝜃IN−1 − k2Λ) + (𝜇 − 2k2𝜃)Λ(𝜏1 +
𝜏2) + k2

2Λ
2(𝜏1 + 2𝜏2). Then, we need s11(𝜃) < 0 and s22(𝜃) < 0. It is easy to verify that s11(𝜃) < 0 for 𝜃 >

𝜃1 ∶= 𝜆2
2k1𝜆2−2q1−q2

[((3 + q1 + q2)𝜏1 + 2𝜏2)k2
1𝜆N + (𝜏1 + 𝜏2 + 1)q1𝜆

−1
2 + 2k2

1
N−1

N
�̄�2

1] and s22(𝜃) < 0 for 𝜃 < 𝜃2 ∶=

2𝜆2k2(1−k2
N−1

N
�̄�2

2 )−𝜆2k1(𝜏1+𝜏2)−𝜆2𝜆N k2
2[(q1+q2+2)𝜏2+𝜏1]−q1−q2(𝜏1+𝜏2+2)

2+q2+k1𝜆N (𝜏1+𝜏2)2
. Note that conditions (3) and (4) guarantee 𝜃1 < 𝜃2, and then

s11(𝜃) < 0 and s22(𝜃) < 0 for 𝜃 ∈ (𝜃1, 𝜃2). That is, Q < 0 for 𝜃 ∈ (𝜃1, 𝜃2). We now show that the choice
𝜇 = k1 + k2𝜃 + k1𝜃(𝜏1 + 𝜏2) with 𝜃 ∈ (𝜃1, 𝜃2) can still guarantee the matrix P to be positive definite. From 𝜃2 < 𝜇𝜆2
and 𝜇 = k1 + 𝜃k2 + k1𝜃(𝜏1 + 𝜏2), it is enough to show that for 𝜃 ∈ (𝜃1, 𝜃2), 𝜃2 − 𝜃𝜆2(k2 + k1(𝜏1 + 𝜏2)) − k1𝜆2 < 0.
This can be guaranteed under the condition 0 < 𝜃 < 𝜃∗, where

𝜃∗ =
[
𝜆2 (k2 + k1(𝜏1 + 𝜏2)) +

√
𝜆2

2(k2 + k1(𝜏1 + 𝜏2))2 + 4k1𝜆2

]
∕2. (19)

It is easy to see that 𝜃2 < 𝜃∗. That is, for any 𝜃 ∈ (𝜃1, 𝜃2), we have P > 0 and Q < 0. It is easy to compute form
Hypothesis 3 that |F̃(t)| ≤ C1(|𝛿(t− 𝜏𝑦)|+ |𝛿(t− 𝜏v)|). This, together with Hypothesis 2, implies that all the coefficients
satisfy the linear growth condition. Therefore, by stochastic stability theorems (theorems 4.3 and 4.4 in the work of
Zong et al42), we know that

e𝛾t
E|𝛿(t)|2 < C and lim sup

t→∞

1
t

log |𝛿(t)| < −𝛾

2
, a.s.

for certain C, 𝛾 > 0. Note that 𝛿𝑦i(t) = 𝑦i − 1
N

∑N
𝑗=1 𝑦𝑗(t) and 𝛿vi(t) = vi − 1

N

∑N
𝑗=1 v𝑗(t), i = 1, … ,N, and then for i ≠ j,|yj(t) − yi(t)| ≤ |𝛿y j(t)| + |𝛿yi(t)| and |vj(t) − vi(t)| ≤ |𝛿v j(t)| + |𝛿vi(t)|. Therefore, we can obtain mean square and

almost sure consensus.

Remark 3. For pure delayed second-order stochastic systems such as (5), little is known about the stochastic stability
conditions. In the proof of Theorem 1, we introduce the degenerate Lyapunov functional V(·) to get the stability anal-
ysis. Here, the degenerate Lyapunov functional42 denotes a classes of functionals without satisfying V(𝜑) ≥ c|𝜑(0)|p
for all continuous functions 𝜑 defined on [ −𝜏, 0].

Remark 4. Theorem 1 implies that, for any given measurement delays 𝜏1, 𝜏2 and noise intensities �̄�1, �̄�2, if the growth
rates of the intrinsic dynamics q1 and q2 are small enough, then there are k1 and k2 such that mean square and almost
sure consensus can be obtained. In fact, for any given 𝜏1, 𝜏2 and noise intensities �̄�1, �̄�2, we can first fix k2 such that
2𝜆2k2(1− k2

N−1
N

�̄�2
2) > 0; then, if q1 and q2 are small enough, then we can choose k1 small such that 2k1𝜆2 > 2q1 + q2

and 𝜌(k1) < 𝜚(k2).

If the intrinsic dynamics vanish, ie, q1 = q2 = 0, then Theorem 1 gives the following corollary.

Corollary 1. Suppose that Hypotheses 1, 2, and 3 hold and q1 = q2 = 0. If 𝜌(k1) < 𝜚(k2), where 𝜌(k1) =
(2+k1𝜆N (𝜏1+𝜏2)2)

2
[(3𝜏1 + 2𝜏2)𝜆N + 2 N−1

N
�̄�2

1 ]k1 + 𝜆2k1(𝜏1 + 𝜏2), 𝜚(k2) = 2𝜆2k2(1 − k2
N−1

N
�̄�2

2 − 0.5(2𝜏2 + 𝜏1)k2𝜆N), then the
protocol (2) solves mean square and almost sure consensus.

Remark 5. For the case without intrinsic dynamics (q1 = q2 = 0), the previous work of Zong et al30 studied stochastic
consensus problems under the condition 𝜏1 = 𝜏2, ie, the delays in position measurements and velocity measurements
are equal, while Corollary 1 relaxes this condition by considering different measurement delays. Moreover, Corollary 1
shows that, for any noise intensity and measurement delay, mean square and almost sure consensus can be achieved by
choosing the appropriate control gains k1 and k2. In fact, for any given 𝜏1, 𝜏2, and 𝜎lji, we first choose k2 satisfying k2 <

k∗
2 ∶= (N−1

N
�̄�2

2 + 0.5(2𝜏2 + 𝜏1)𝜆N)−1, which can assure 𝜚(k2) > 0 for k2 < k∗
2. Then, fix k2 and choose a sufficiently small

k1 that 𝜌(k1) < 𝜚(k2) since limk1→0𝜌(k1) = 0. Therefore, mean square and almost sure consensus can be obtained.
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If all the noises and delays in the measurements vanish, then we obtain the following corollary, which implies that, for
arbitrary Lipschitz constants q1 and q2, multiagent consensus can be solved by choosing sufficiently large control gains.

Corollary 2. Suppose that Hypotheses 1, 2, and 3 hold and 𝜏1 = 𝜏2 = �̄�1 = �̄�2 = 0. If the control gains k1 and k2 satisfy

k1 >
2q1 + q2

2𝜆2
, k2 >

q1 + 2q2

2𝜆2
,

and
(2 + q2)q1 < (2𝜆2k2 − q1 − 2q2)(2𝜆2k1 − 2q1 − q2),

then the protocol (2) solves the deterministic consensus.

Remark 6. Corollary 6 improves theorem 1 and corollary 2 in the work of Yu et al34 in the case of undirected graphs.
For example, we assume N = 4, q1 = 0.2, q2 = 0.1 and take k1 = 1.2, k2 = 1.1, then 𝜆2 = 0.5858. Then we can see
that 0.5858 = 𝜆2 < 0.5 ∗ (q1∕k1 + k1∕k2

2 + q1∕k2 +
√

(q1∕k1 − k1∕k2
2 − q1∕k2)2 + (k1 + k2)2 ∗ q2

2∕(k
2
1 ∗ k2

2)) = 1.1810

and 𝜆2 <
k1
k2

2
. That is, the sufficient conditions in theorem 1 and corollary 2 in the work of Yu et al34 are defied and

whether the consensus can be solved is unknown from the work of the aforementioned authors.34 However, we can
see that 0.42 = (2 + q2)q1 < (2𝜆2k2 − q1 − 2q2)(2𝜆2k1 − 2q1 − q2) = 0.8051. That is, conditions in Corollary 6
hold and the consensus is solved.

For the case with multiplicative noises alone31 or intrinsic dynamics alone (Corollary 6), mean square and almost
sure consensus can be definitely solved by protocol (2) with appropriate k1 and k2. However, the coexistence of mul-
tiplicative noises and intrinsic dynamics may weaken or destroy the consentability with respect to linear protocols.
From Theorem 1, 𝜌(k1) < 𝜚(k2) implies 𝜚(k2) > 0, which means k2 < 2

2 N−1
N

�̄�2
2+[(q1+q2+2)𝜏2+𝜏1]𝜆N

. At the same time, 𝜌(k1) <

𝜚(k2) implies k2 >
q1+q2(𝜏1+𝜏2+2)

2𝜆2
at least. Hence, the condition 𝜌(k1) < 𝜚(k2) cannot hold for large �̄�1, �̄�2, q1, and q2. That

is, the consensus may not be solved by u(t) for any k1, k2 when multiplicative noises and intrinsic dynamics exist simulta-
neously with large intensities and large growth rates, respectively. This is revealed clearly in Theorem 2 and Remark 3 in
Section 2.2.

2.2 Second-order consensus under linear intrinsic dynamics
From the proof of Theorem 1, we can see that the intrinsic dynamics and the delays in intrinsic dynamics and mea-
surements increase the difficulty and complexity of consensus analysis. In the aforementioned statement, we only get
sufficient conditions. Particularly, if all the delays vanish and the intrinsic dynamics are linear, we can find more simpler
sufficient conditions for mean square and almost sure consensus, and necessary conditions for mean square consensus.
We need the following hypothesis.

Hypothesis 4. For each ( j, i), g1𝑗i(0) = g2𝑗i(0) = 0 and there exist positive constants 𝜎1, 𝜎2, 𝜎1, and 𝜎2 such that for all
𝑦1, 𝑦2 ∈ R,

𝜎1|𝑦1 − 𝑦2| ≤ ||g1𝑗i(𝑦1) − g1𝑗i(𝑦2)|| ≤ 𝜎1|𝑦1 − 𝑦2|
and

𝜎2|𝑦1 − 𝑦2| ≤ ||g2𝑗i(𝑦1) − g2𝑗i(𝑦2)|| ≤ 𝜎2|𝑦1 − 𝑦2|.
Theorem 2. Suppose Hypotheses 1, 2, and 4 hold, 𝜏y = 𝜏v = 𝜏1 = 𝜏2 = 0, and f ( y, v, t) = q1y + q2v with q1 ≥ 0
and q2 ≥ 0. If there exist k1 and k2 such that

k1 >
q1

𝜆2
, k2 >

q2

𝜆2
, (20)

and
k2

1𝜎
2
1

N−1
N

k1 −
q1
𝜆2

< k2𝜆2 − q2 −
N − 1

N
k2

2𝜎
2
2𝜆2, (21)

then the protocol (2) solves mean square and almost sure consensus. Moreover, if the protocol u(t) solves mean square
consensus, then k1 and k2 must satisfy (20) and

k2𝜆N − N − 1
N

k2
2𝜎

2
2𝜆N > q2. (22)
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Proof. For linear intrinsic dynamics, (6) can be simplified as the following stochastic differential equation (SDE):

d𝛿(t) = (L3 ⊗ In)𝛿(t)dt + dM̄3(t) + dM̄4(t), (23)

where L3 =
[

0 IN−1
q1IN−1 − k1Λ q2IN−1 − k2Λ

]
, M̄3(t), and M̄4(t) are defined in (6) with 𝜏1 = 𝜏2 = 0. Then, the

consensus problem is converted into the stability problem of SDE (23). We choose

P =
[

k1Λ − q1IN−1 + 𝜃(k2Λ − q2IN−1) 𝜃IN−1

𝜃IN−1 IN−1

]
. (24)

Here, P > 0 for 𝜃 ∈ [0, 𝜃∗), where

𝜃∗ =
k2𝜆2 − q2 +

√
(k2𝜆2 − q2)2 + 4(k1𝜆2 − q1)

2
.

Choose the following Lyapunov function:

V3(𝛿(t)) = 𝛿
T
(t)(P ⊗ In)𝛿(t). (25)

Then, one can obtain that
𝔏V3(𝛿(t)) ≤ 𝛿

T
(t)(S ⊗ In)𝛿(t),

where S = 2
[

s11(𝜃) 0
0 s22(𝜃)

]
with s11(𝜃) = −(k1Λ−q1IN−1)𝜃+N−1

N
k2

1𝜎
2
1Λ and s22(𝜃) = 𝜃IN−1−k2Λ+q2IN−1−N−1

N
k2

2𝜎
2
2Λ.

Hence, s11(𝜃) < 0 for 𝜃 > 𝜃1 ∶=
k2

1𝜎
2
1

N−1
N

k1−
q1
𝜆2

and s22(𝜃) < 0 for 𝜃 < 𝜃2 ∶= k2𝜆2 − q2 − N−1
N

k2
2𝜎

2
2𝜆2. It is easy to see that

𝜃2 < 𝜃∗ and condition (21) implies 𝜃1 < 𝜃2. Hence, the choice 𝜃 ∈ (𝜃1, 𝜃2) guarantees that P > 0 and S < 0.
Therefore, by stochastic stability theorems (theorems 4.2 and 4.4 in the work of Mao43), we know that mean square
and almost sure consensus follow.

Note that mean square consensus is equivalent to mean square stability of (23). Note that Brownian motions do not
contribute positively to the mean square stability of the closed-loop system, ie, the unstable system cannot be mean
square stabilized by Brownian motions (see the work of Zong et al44). Hence, in order for the mean square stability of
SDE (23), the deterministic part must be stable. That is, the matrix L3 must be Hurwitz, which implies condition (20).
We choose the Lyapunov function as follows:

V4(t) = 𝛿
T
𝑦 (t)

[
(k1Λ − q1IN−1)⊗ In

]
𝛿𝑦(t) + |𝛿v(t)|2. (26)

Applying the Itô formula to V4(t), we have

dV4(t) = −2𝛿
T
v (t)

[
(k2Λ + q2IN−1)⊗ In

]
𝛿v(t)dt + d⟨M̄1⟩(t)

+ d⟨M̄2⟩(t) + 2𝛿
T
v (t)d

[
M̄1(t) + M̄2(t)

]
, (27)

where M̄1(t) and M̄2(t) are defined in (5), ⟨M̄1⟩(t) = k2
1
∑N

i,𝑗=1 ai𝑗 ∫ t
0 |b1i𝑗(s)|2ds, and ⟨M̄2⟩(t) = k2

2
∑N

i,𝑗=1 ai𝑗 ∫ t
0 |b2i𝑗(s)|2ds.

Similar to (12), we can get
d⟨M̄1⟩(t) ≥ 2k2

1𝜎
2
2

N − 1
N

𝛿
T
𝑦 (t)(Λ⊗ In)𝛿𝑦(t)dt (28)

and

d⟨M̄2⟩(t) ≥ 2k2
2𝜎

2
2

N − 1
N

𝛿
T
v (t)(Λ⊗ In)𝛿v(t)dt. (29)

Hence, taking expectations on the both sides of (27), we obtain

EV4(t) ≥ V4(0) + 2E∫
t

0
𝛿

T
v (s)

[
h(k2,Λ)⊗ In

]
𝛿v(s)ds, (30)

where h(k2,Λ) = q2IN−1 − k2Λ + k2
2𝜎

2 N−1
N

Λ, since ⟨M̄1⟩(t) ≥ 0. Let hi(k2) = q2IN−1 − k2𝜆i + k2
2𝜎

2 N−1
N

𝜆i, i = 2, … ,N.
Now, if condition (22) is defied, then hi(k2) ≥ 0 for any i = 2, … ,N. Hence, h(k2,Λ) ≥ 0, and then we must have
lim inft→0EV4(t) ≥ V4(0) > 0 for 𝛿(0) ≠ 0. This is in conflict with the definition of the mean square consensus.
Therefore, the necessity of condition (22) follows.
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Remark 7. Theorem 2 gives the explicit consensus conditions of mean square and almost sure consensus. At the same
time, the necessary condition (22) implies that the gains k1 and k2 for mean square consensus may not exist. In fact, if
q2, 𝜎2 are large and satisfies 4q2

N−1
N

𝜎2
2 > 𝜆N , then k2𝜆N − q2 − N−1

N
k2

2𝜎
2
2𝜆N ≤ 0, for any k2 ∈ R. That is, (22) is violated,

and then mean square consensus cannot be achieved for any k1, k2 ∈ R. The necessity of (22) is also revealed in
the simulation section (Section 4), where an example is given to see that mean square consensus cannot be achieved
without (22).

In Theorem 2, we study the linear case with q1 ≥ 0 and q2 ≥ 0. If q1 < 0 and q2 < 0, then each single original
second-order system is stable, and then the noisy input control with small control gains does not affect such stability.30

In the following, we will consider the cases q1 < 0, q2 ≥ 0 and q1 ≥ 0, q2 < 0.

Theorem 3. Suppose Hypotheses 1, 2, and 4 hold, 𝜏y = 𝜏v = 𝜏1 = 𝜏2 = 0, and f ( y, v, t) = q1y + q2v with q1 < 0
and q2 ≥ 0. If k2 satisfies

0 < k2𝜆2 − q2 −
N − 1

N
k2

2𝜎
2
2𝜆2, (31)

then the protocol (2) with k1 = 0 solves mean square and almost sure consensus. Moreover, if the protocol u(t) with
k1 = 0 solves mean square consensus, then k2 must satisfy (22) and

k2 >
q2

𝜆2
. (32)

Proof. Under the protocol u(t) with k1 = 0, (6) can be simplified as

d𝛿(t) = (L3 ⊗ In)𝛿(t)dt + dM̄4(t), (33)

where L3 =
[

0 IN−1
q1IN−1 q2IN−1 − k2Λ

]
. Then, the consensus problem is converted into the stability problem of

SDE(33). We choose P defined by (24) with k1 = 0. Note that (31) implies (32). Hence, P > 0 for 𝜃 ∈ [0, 𝜃∗), where
𝜃∗ = k2𝜆2−q2+

√
(k2𝜆2−q2)2−4q1

2
. Considering the Lyapunov function (25), one can obtain that

𝔏V3(𝛿(t)) ≤ 𝛿
T
(t)(S ⊗ In)𝛿(t),

where S = 2
[

s11(𝜃) 0
0 s22(𝜃)

]
with s11(𝜃) = −q1𝜃IN− 1 and s22(𝜃) = 𝜃IN−1 − k2Λ + q2IN−1 − N−1

N
k2

2𝜎
2
2Λ. Hence, for

s11(𝜃) < 0 for 𝜃 > 0 and s22(𝜃) < 0 for 𝜃 < 𝜃2 ∶= k2𝜆2 − q2 − N−1
N

k2
2𝜎

2
2𝜆2, it is easy to see that 𝜃2 < 𝜃∗ and condition

(31) implies 0 < 𝜃2. Hence, the choice 𝜃 ∈ (0, 𝜃2) guarantees that P > 0 and S < 0. Therefore, by stochastic stability
theorems (theorems 4.2 and 4.4 in the work of Mao43), we know that mean square and almost sure consensus follow.

Note that mean square consensus is equivalent to mean square stability of (33). Hence, in order for the mean square
stability of SDE (33), the matrix L3 must be Hurwitz, which implies condition (32). Considering the Lyapunov function
V4(t) defined by (26) with k1 = 0 and applying the Itô formula to V4(t), we have

dV4(t) = −2𝛿
T
v (t)

[
(k2Λ + q2IN−1)⊗ In) 𝛿v(t)dt + d⟨M̄2⟩(t) + 2𝛿

T
v (t)dM̄2(t), (34)

where M̄2(t) is defined in (5) and ⟨M̄2⟩(t) = k2
2
∑N

i,𝑗=1 ai𝑗 ∫ t
0 |b2i𝑗(s)|2ds satisfies (29). Hence, taking expectations on the

both sides of (34), we obtain (30). Then, by the similar skills in proving Theorem 2, we can obtain the necessity of (22).

Theorem 4. Suppose Hypotheses 1, 2, and 4 hold, 𝜏y = 𝜏v = 𝜏1 = 𝜏2 = 0, and f ( y, v, t) = q1y + q2v with q1 ≥ 0
and q2 < 0. If k1 satisfies

k1 >
q1

𝜆2
(35)

and
k2

1𝜎
2
1

N−1
N

k1 − q1
𝜆2

< −q2, (36)
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then the protocol (2) with k2 = 0 solves mean square and almost sure consensus. Moreover, if the protocol u(t) with
k2 = 0 solves mean square consensus, then k1 must satisfy (35) and

k2
1𝜎

2
1

N−1
N

k1 −
q1
𝜆N

< −q2. (37)

Proof. Under the protocol (2) with k2 = 0, (6) is be simplified as

d𝛿(t) = (L3 ⊗ In)𝛿(t)dt + dM̄3(t), (38)

where L3 =
[

0 1
q1IN−1 − k1Λ q2IN−1

]
and M̄3(t) is defined in (6) with 𝜏1 = 0. Then, the consensus problem is

converted into the stability problem of SDE (38). We choose

P =
[

k1Λ − q1IN−1 − 𝜃q2IN−1 𝜃IN−1
𝜃IN−1 IN−1

]
.

Here, P > 0 for 𝜃 ∈ [0, 𝜃∗), where 𝜃∗ =
−q2+

√
q2

2+4(k1𝜆2−q1)

2
. Choose the following Lyapunov function:

V3

(
𝛿(t)

)
= 𝛿

T
(t)(P ⊗ In)𝛿(t). (39)

Then, one can obtain that
𝔏V3(𝛿(t)) ≤ 𝛿

T
(t)(S ⊗ In)𝛿(t),

where S = 2
[

s11(𝜃) 0
0 s22(𝜃)

]
with s11(𝜃) = −(k1Λ − q1IN−1)𝜃 + N−1

N
k2

1𝜎
2
1Λ and s22(𝜃) = 𝜃IN− 1 + q2IN− 1. Hence,

s11(𝜃) < 0 for 𝜃 > 𝜃1 ∶=
k2

1𝜎
2
1

N−1
N

k1−
q1
𝜆2

and s22(𝜃) < 0 for 𝜃 < 𝜃2 ∶= −q2. It is easy to see that 𝜃2 < 𝜃∗ and condition (36)

implies 𝜃1 < 𝜃2. Hence, the choice 𝜃 ∈ (𝜃1, 𝜃2) guarantees that P > 0 and S < 0. Therefore, by stochastic stability
theorems (theorems 4.2 and 4.4 in the work of Mao43), we know that mean square and almost sure consensus follow.

The necessity of condition (35) for mean square consensus can be obtained similarly to that of (20) for mean square
consensus. The remaining is to prove that mean square consensus implies (37). For the Lyapunov function (39), we
can obtain

𝔏V3(𝛿(t)) ≥ 𝛿
T
(t)(S ⊗ In)𝛿(t), (40)

where S = 2
[

s11(𝜃) 0
0 s22(𝜃)

]
with s11(𝜃) = −(k1Λ− q1IN−1)𝜃 + N−1

N
k2

1𝜎
2
1Λ and s22(𝜃) = (𝜃 + q2)IN−1. If condition (37)

is defied, then

−q2 ≤ 𝜃3 ∶=
k2

1𝜎
2
1

N−1
N

k1 − q1
𝜆N

∧ 𝜃∗. (41)

It can be proved that s11(𝜃) ≥ 0 and s22(𝜃) ≥ 0 for 𝜃 ∈ [− q2, 𝜃3]. This, together with Itô formula and (40), yields

EV3(𝛿(t)) ≥ V3(𝛿(0)) + E∫
t

0
𝛿

T
(s)(S ⊗ In)𝛿(s)ds ≥ V3(𝛿(0)).

Hence, we must have lim inft→0 EV3(𝛿(t)) ≥ V3(𝛿(0)) > 0 for 𝛿(0) ≠ 0. This is in conflict with the definition of mean
square consensus. Therefore, the necessity of condition (37) follows.

Remark 8. Theorems 3 and 4 tell us that if the original linear second-order system is partially stable (q1 < 0 or q2 < 0);
then, the protocol with partial relative measurements (the velocity measurement or the position measurement) is
enough to solve mean square and almost sure consensus. Moreover, we find some necessary conditions for mean
square consensus. Especially, for the case q2 < 0, the condition (37) shows the necessary relationship between the
control gain k1 for the position measurement and the velocity coefficient q2 in the original system, and then it is
different from the necessary condition (22) in Theorems 2 and 3, which focus on the necessary relationship between
the control gain k2 for the velocity measurement and the velocity coefficient q2 in the original system.
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3 LEADER-FOLLOWING MULTIAGENT SYSTEMS

In this section, we consider a leader-following multiagent system consisting of N + 1 agents where the agent indexed by
0 acts as the leader and the other agents indexed by 1, 2, … ,N, respectively, act as the followers. Generally, the behav-
ior of the leader is independent of the followers. Here, x0 denotes the state of the leader and is assumed to have linear
dynamics as

�̇�0(t) = v0(t), v̇0(t) = 𝑓
(
𝑦0(t − 𝜏𝑦), v0(t − 𝜏v)

)
. (42)

For the ith follower, the dynamics is described by (1) with ui(t) defined by (2). Note that this is different from Section 3,
since for each agent i, its neighbor set Ni may contain the leader 0. Hypotheses 1 and 2 is also deemed to include the leader
0. Considering the information flow from the leader to the followers, we denote the topology graph by ̃ = {̃ , ̃} with

̃ = {0, 1, 2, … ,N} and ̃ =
(

0 0N×N
a0 

)
∈ R(N+1)×(N+1), where  = [ai𝑗] ∈ RN×N , a0 = [a10, … , aN0]T, ai0 = 1 if

0 ∈ Ni; otherwise, ai0 = 0. Let D0 = diag(a10, … , aN0). We use  = ( ,) to represent the subgraph formed by the N
followers, where  = ̃ ⧵ {0}.

Definition 2. We say that the protocol u(t) solves mean square (or almost sure) leader-following consensus if it
makes the N + 1 agents have the property that for any initial data 𝜑 and all i ∈  , limt→∞E|xi(t) − x0(t)|2 = 0
(or limt→∞|xi(t) − x0(t)| = 0 a.s.).

We impose the following assumption on the graph ̃ and its subgraph .

Hypothesis 5. Assume that the graph ̃ contains a spanning tree and its subgraph  is undirected.

Let 0 =  + D0. Under Assumption 5, we know that 0 is symmetric, and then all the eigenvalues of the matrix 0
are positive,45 denoted by {𝜆0i}N

i=1. Hence, there exists an unitary matrix Φ such that ΦT0Φ = diag(𝜆01, … , 𝜆0N) =∶ Λ0.
Without loss of generality, we assume 0 < 𝜆01 ≤ … ≤ 𝜆0N.

Theorem 5. Suppose Hypotheses 1, 2, 3, and 5 hold. If the control gains k1 and k2 satisfy

2k1𝜆01 > 2q1 + q2 (43)

and
𝜌(k1) < 𝜚(k2), (44)

where 𝜌(k1) =
(2+q2+k1𝜆0N (𝜏1+𝜏2)2)𝜆01

2k1𝜆01−2q1−q2
[((3+q1+q2)𝜏1+2𝜏2)k2

1𝜆0N+(𝜏1+𝜏2+1)q1𝜆
−1
01 +2k2

1�̄�
2
1 ]+𝜆01k1(𝜏1+𝜏2)+q1+q2(𝜏1+𝜏2+2)

and 𝜚(k2) = 2𝜆01k2(1 − k2�̄�
2
2) − 𝜆01[(q1 + q2 + 2)𝜏2 + 𝜏1]k2

2𝜆0N , then the protocol (2) solves mean square and almost sure
leader-following consensus.

Proof. Let 𝛿yi(t) = yi(t) − y0(t), 𝛿vi(t) = vi(t) − v0 for i = 1, … ,N. Define 𝑦(t) = [𝑦T
1 (t), … , 𝑦T

N(t)]
T , v(t) =

[vT
1 (t), … , vT

N(t)]
T , 𝛿𝑦(t) = [𝛿T

𝑦1(t), … , 𝛿T
𝑦N(t)]

T , and 𝛿v(t) = [𝛿T
v1(t), … , 𝛿T

vN(t)]
T . Let 𝛿𝑦(t) = ΦT𝛿𝑦(t), 𝛿v(t) = ΦT𝛿v(t),

Φ(i) = ΦT𝜂N,i, and L = L0 + L1 + L2 with L0 =
[

0 IN
0 0

]
, L1 =

[
0 0

−k1Λ0 0

]
, and L1 =

[
0 0
0 −k2Λ0

]
. Substituting

the protocol (2) into the system (1) and using the definitions of 𝛿𝑦(t) and 𝛿v(t), we have d𝛿𝑦(t) = 𝛿v(t)dt, and

d𝛿v(t) = (ΦT ⊗ In)F̄(t)dt − k1(Λ0 ⊗ In)𝛿𝑦(t − 𝜏1)dt − k2(Λ0 ⊗ In)⊗ In𝛿v(t − 𝜏2)dt + d𝑀12(t), (45)

where F̄(t) = F(t) − 1N ⊗ 𝑓 (𝑦0(t − 𝜏𝑦), v0(t − 𝜏v)), F(t) is defined in the proof of Theorem 1, and 𝑀12(t) =
k1

∑N
i=1

∑N
𝑗=0 ai𝑗 ∫ t

0 Φ(i)𝑓1𝑗i(𝛿𝑦𝑗(s− 𝜏1)− 𝛿𝑦i(s− 𝜏1))dw1𝑗i(s)+ k2
∑N

i=1
∑N

𝑗=0 ai𝑗 ∫ t
0 Φ(i)𝑓2𝑗i(𝛿v𝑗(s− 𝜏2)− 𝛿vi(s− 𝜏2))dw2𝑗i(s).

By the definition of 𝛿(t), we obtain

d𝛿(t) = F̃(t)dt + (L0 ⊗ In)𝛿(t)dt + (L1 ⊗ In)𝛿(t − 𝜏1)dt + (L2 ⊗ In)𝛿(t − 𝜏2)dt + d𝑀34(t),

where F̃(t) = [0, (𝜙T ⊗ In)F̄T(t)]T , 𝑀34(t) = 𝑀3(t) + 𝑀4(t), 𝑀3(t) = k1
∑N

i=1
∑N

𝑗=0 ai𝑗 ∫ t
0 B1i𝑗(s − 𝜏1)dw1𝑗i(s), M̂4(t) =

k2
∑N

i=1
∑N

𝑗=0 ai𝑗 ∫ t
0 B2i𝑗(s − 𝜏2)dw2𝑗i(s), B1i𝑗(t) = [0, bT

1i𝑗(t)]
T , b1ij(t) = Φ(i)f1ji(𝛿yj(t) − 𝛿yi(t))), B2i𝑗(t) = [0, bT

2i𝑗(t)]
T , and

b2ij(t) = Φ(i)f2ji(𝛿vj(t) − 𝛿vi(t)). Let z(t) be defined by (8) and choose P =
[
𝜇Λ0 𝜃IN
𝜃IN IN

]
with 𝜇, 𝜃 > 0 to be designed.
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Similarly, we choose the Lyapunov functional V(𝛿t) = V1(t) + V2(t), where V1(𝛿t) = z(t)T(P ⊗ In)z(t) and

V2(𝛿t) = ∫
0

−𝜏1

[
∫

t

t+s
|𝛿T

(𝜃)
(

LT
1 PL1 ⊗ In

)
𝛿(𝜃)d𝜃

]
ds

+ ∫
0

−𝜏2

[
∫

t

t+s
|𝛿T

(𝜃)
(

LT
2 PL2 ⊗ In

)
𝛿(𝜃)d𝜃

]
ds

+ (𝜃 + 1)

[
q1∫

t

t−𝜏𝑦

|||𝛿𝑦(s)|||2ds + q2 ∫
t

t−𝜏v

|||𝛿v(s)
|||2ds

]

+ k2
1(q1 + q2)∫

0

−𝜏1
∫

t

t+s
𝛿

T
𝑦 (u)

(
Λ2

0 ⊗ In
)
𝛿𝑦(u)duds

+ k2
2(q1 + q2)∫

0

−𝜏2
∫

t

t+s
𝛿

T
v (u)

(
Λ2

0 ⊗ In
)
𝛿v(u)duds

+ (𝜏1 + 𝜏2)

(
q1∫

t

t−𝜏𝑦

|||𝛿𝑦(s)|||2ds + q2∫
t

t−𝜏v

|||𝛿v(s)
|||2ds

)
+ 2k2

1𝜎
2
1∫

t

t−𝜏1

𝛿
T
𝑦 (s)[Λ0 ⊗ In]𝛿𝑦(s)ds + 2k2

2𝜎
2
2∫

t

t−𝜏2

𝛿
T
v (s)[Λ0 ⊗ In]𝛿v(s)ds.

We compute the Itô operator V1(·) as follows:

𝔏V1(𝛿t) = 2z(t)T(P ⊗ In)
[

F̃(t) + (L ⊗ In)𝛿(t)
]
+ J1(t)

= 𝛿(t)T [
(LTP + PL)⊗ In

]
𝛿(t) +

4∑
𝑗=1

J𝑗(t),

where {Ji(t)}6
i=2 have the same forms as these in the proof of Theorem 1, and

J1(t) = k2
1

N∑
i=1

N∑
𝑗=0

ai𝑗||b1𝑗i(t − 𝜏1)||2 + k2
2

N∑
i=1

N∑
𝑗=0

ai𝑗||b2𝑗i(t − 𝜏2)||2.
From the definition of 𝛿(t), Hypothesis 2, and 2𝛿T

𝑦 (t)(⊗ In)𝛿𝑦(t) =
∑N

i=1
∑N

i=1 ai𝑗|𝛿𝑦𝑗(t) − 𝛿𝑦i(t)|2, we obtain

J1(t) ≤ k2
1�̄�

2
1𝛿

T
𝑦 (t − 𝜏1) [(2 + D0)⊗ In] 𝛿𝑦(t − 𝜏1) + k2

2�̄�
2
2𝛿

T
𝑦 (t − 𝜏2) [(2 + D0)⊗ In] 𝛿𝑦(t − 𝜏2)

≤ 2k2
1�̄�

2
1𝛿

T
𝑦 (t − 𝜏1)(Λ0)⊗ In)𝛿𝑦(t − 𝜏1) + 2k2

2�̄�
2
2𝛿

T
𝑦 (t − 𝜏2)(Λ0 ⊗ In)𝛿𝑦(t − 𝜏2). (46)

By the definition of J2(t), we have

J2(t) = 2𝜃𝛿
T
𝑦 (t)(ΦT ⊗ In)F̄(t) + 2𝛿

T
v (t)(ΦT ⊗ In)F̄(t).

It can be obtained that ΦΦT = IN, |𝛿𝑦(t)|2 = |𝛿𝑦(t)|2, and |𝛿v(t)|2 = |𝛿v(t)|2. Hence, by Hypothesis 3, we get

2𝛿
T
𝑦 (t)(ΦT ⊗ In)F̄(t) = 2𝛿T

𝑦 (t)(ΦΦT ⊗ In)F̄(t)

= 2
N∑

i=1
𝛿T
𝑦i(t)

(
𝑓
(
𝑦i(t − 𝜏𝑦), vi(t − 𝜏v)

)
− 𝑓

(
𝑦0(t − 𝜏𝑦), v0(t − 𝜏v)

))
≤ 2

N∑
i=1

||𝛿𝑦i(t)|| (q1 ||𝛿𝑦i(t − 𝜏𝑦)|| + q2 |𝛿vi(t − 𝜏v)|)
≤ (q1 + q2)

|||𝛿𝑦(t)|||2 + q1
|||𝛿𝑦(t − 𝜏𝑦)

|||2 + q2
|||𝛿v(t − 𝜏v)

|||2.
Similarly, we have

2𝛿
T
v (t)(ΦT ⊗ In)F̄(t) ≤ (q1 + q2)

|||𝛿v(t)
|||2 + q1

|||𝛿𝑦(t − 𝜏𝑦)
|||2 + q2

|||𝛿v(t − 𝜏v)
|||2.

The two inequalities aforementioned produce

J2(t) ≤ (q1 + q2)
(
𝜃
|||𝛿𝑦(t)|||2 + |||𝛿v(t)

|||2) + (𝜃 + 1)
[

q1
|||𝛿𝑦(t − 𝜏𝑦)

|||2 + q2
|||𝛿v(t − 𝜏v)

|||2] .
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The estimations of J3(t) and J4(t) have the form (14) and (15), respectively. Let p1i(t) = f ( yi(t − 𝜏y), vi(t − 𝜏v)) −
f ( y0(t − 𝜏y), vi(t − 𝜏v)), and p2i(t) = f ( y0(t − 𝜏y), vi(t − 𝜏v)) − f ( y0(t − 𝜏y), v0(t − 𝜏v)). Then, F̄(t) = p1(t) + p2(t),
where pl(t) = [pl1(t)T , … , pT

lN(t)]
T , l = 1, 2. Note that 𝛿𝑦 = ΦT𝛿𝑦 and Λ0 = ΦT0Φ. Then, we obtain

J5(t) = −2k1

(
∫

t

t−𝜏1

𝛿𝑦(s)ds
)T (

𝜙TT
0𝜙𝜙

T ⊗ In
)

F̄(t)

= −2k1

(
∫

t

t−𝜏1

𝛿𝑦(s)ds
)T (T

0 ⊗ In
) [

p1(t) + p2(t)
]

≤ 2k2
1(q1 + q2)∫

t

t−𝜏1

𝛿
T
𝑦 (s)

(
Λ2

0 ⊗ In
)
𝛿𝑦(s)|2ds +

(
1
q2

|p1(t)|2 + 1
q1

|p2(t)|2) 𝜏1

≤ k2
1(q1 + q2)∫

t

t−𝜏1

𝛿
T
𝑦 (s)

(
Λ2

0 ⊗ In
)
𝛿𝑦(s)ds + q1𝜏1

|||𝛿𝑦(t − 𝜏𝑦)
|||2 + q2𝜏1

|||𝛿v(t − 𝜏v)
|||2,

and similarly,

J6(t) ≤ k2
2(q1 + q2)∫

t

t−𝜏2

𝛿
T
v (s)

(
Λ2

0 ⊗ In
)
𝛿v(s)ds + q1𝜏2

|||𝛿𝑦(t − 𝜏𝑦)
|||2 + q2𝜏2

|||𝛿v(t − 𝜏v)
|||2.

Hence, we get

𝔏V1(𝛿t) ≤ S1

(
𝛿(t)

)
+ ∫

t

t−𝜏1

𝛿
T
(s)

(
LT

1 PL1 ⊗ In
)
𝛿(s)ds + ∫

t

t−𝜏2

𝛿
T
(s)

(
LT

2 PL2 ⊗ In
)
𝛿(s)ds

+ (𝜃 + 1)
[

q1
|||𝛿𝑦(t − 𝜏𝑦)

|||2 + q2
|||𝛿v(t − 𝜏v)

|||2] + 2k2
1𝜎

2
1𝛿

T
𝑦 (t − 𝜏1)[Λ0 ⊗ In]𝛿𝑦(t − 𝜏1)

+ k2
1(q1 + q2)∫

t

t−𝜏1

𝛿
T
𝑦 (s)

(
Λ2

0 ⊗ In
)
𝛿𝑦(s)ds + 2k2

2𝜎
2
2𝛿

T
v (t − 𝜏2)[Λ0 ⊗ In]𝛿v(t − 𝜏2)

+ k2
2(q1 + q2)∫

t

t−𝜏2

𝛿
T
v (s)

(
Λ2

0 ⊗ In
)
𝛿v(s)ds

+ (𝜏1 + 𝜏2)
(

q1
|||𝛿𝑦(t − 𝜏𝑦)

|||2 + q2
|||𝛿v(t − 𝜏v)

|||2) ,

where

S1

(
𝛿(t)

)
= 𝛿

T
(t)

((
LTP + PL + LTPL(𝜏1 + 𝜏2)

)
⊗ In

)
𝛿(t) + (q1 + q2)

(
𝜃
|||𝛿𝑦(t)|||2 + |||𝛿v(t)

|||2) .

Hence, from the definition of V(·), we obtain (18) with Q = LTP + PL + LTPL(𝜏1 + 𝜏2) + LT
1 PL1𝜏1 + LT

2 PL2𝜏2 + D,

D =
[

d11(𝜃) 0
0 d22(𝜃)

]
, d11(𝜃) = (2q1 + q2)𝜃IN−1 + (𝜏1 + 𝜏2 + 1)q1IN−1 + (q1 + q2)k2

1Λ
2
0𝜏1 + 2k2

1𝜎
2
1Λ0, and d22(𝜃) =

(q2𝜃 + 2q2 + q1 + q2(𝜏1 + 𝜏2))IN−1 + (q1 + q2)k2
2Λ

2
0𝜏2 + 2k2

2𝜎
2
2Λ0.

Thus, following the proof of Theorem 1, we can obtain the desired assertions.

Remark 9. If the graph ̃ forms a star graph, then  = 0, D0 = Λ0 = IN, Φ = IN, and (46) can be estimated by
J1(t) ≤ k2

1�̄�
2
1 ||𝛿𝑦(t − 𝜏1)||2 + k2

2�̄�
2
2 ||𝛿𝑦(t − 𝜏2)||2. In this case, (43) and (44) with 𝜆01 = 1 and �̄�2

1 , �̄�
2
2 being replaced by

0.5�̄�2
1 , 0.5�̄�

2
2 are the corresponding consensus conditions.

4 SIMULATIONS

We consider mean square and almost sure consensus for nonlinear and linear scalar four-agent systems with the topology
graph  = { ,  ,}, where  = {1, 2, 3, 4},  = {(1, 2), (2, 3), (3, 4), (4, 3), (3, 2), (2, 1)} and  = [ai𝑗]4×4 with a21 = a12 =
a32 = a23 = a43 = a43 = 1 and other being zero. It is easy to see that the graph  is strongly connected. Moreover, we
can compute the eigenvalues of the corresponding Laplacian matrix , ie, 𝜆1 = 0, 𝜆2 = 0.5858, 𝜆3 = 2, and 𝜆4 = 3.4142.
We first investigate the nonlinear case with delays in the intrinsic dynamics and measurements.
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FIGURE 1 States of the four nonlinear agents for one random path [Colour figure can be viewed at wileyonlinelibrary.com]

0 20 40 60 80 100
time t

0 20 40 60 80 100
time t

0

100

200

300

400

 

0

5

10

15

20

 

|y −y

|y −y

|y −y

|v (t) (t)−v |

(t) (t)|

(t) (t)|

(t) (t)|

(t) (t)|

(t) (t)|

|v −v

|v −v

  |
y

(t
)−
y

(t
)|

|v
(t

)−
v

(t
)|

FIGURE 2 Mean square errors of the relative states for the case with nonlinear dynamic [Colour figure can be viewed at
wileyonlinelibrary.com]

Nonlinear case with delays:𝑓 (𝑦, v, t) = 0.001 sin(𝑦) + 0.01 cos(v). Assume the delays in the intrinsic dynamics 𝜏y =
0.8, 𝜏v = 1, and the delays in the measurements 𝜏1 = 0.1 and 𝜏2 = 0.2. The noise intensity functions in the position
measurement and velocity measurement have the forms g1𝑗i(𝑦) = �̄�1𝑦, g2𝑗i(v) = �̄�2v, for any 𝑦, v ∈ R. We assume that
�̄�1 = 0.2 and �̄�2 = 0.4. The initial values are given as y(t) = [2, − 4, − 2, 5]T, v(t) = [5, 8, − 1, − 3]T, for all t ∈ [− 𝜏, 0],
where 𝜏 = 𝜏y ∨ 𝜏v ∨ 𝜏1 ∨ 𝜏2.

It is easy to see that Hypothesis 3 holds with q1 = 0.001 and q2 = 0.01. In order for mean square and almost sure
consensus, we first choose 0.52 = k2 < 2

2 N−1
N

�̄�2
2+[(q1+q2+2)𝜏2+𝜏1]𝜆N

= 1.0232, which will guarantee 𝜚(k2) = 0.2996 > 0. Then,

we choose k1 = 0.075. It is easy to verify 2k1𝜆2 > 2q1 + q2 and to compute 𝜌(k1) = 0.2887 < 𝜚(k2) = 0.2996. Hence,
from Theorem 1, we know that the second-order system can achieve mean square and almost sure consensus.

To see almost sure consensus, we take one random path and have Figure 1, which shows that the positions and velocities
of the four agents tend to get together, respectively. That is, almost sure consensus is revealed. In order to simulate mean
square consensus, we consider the behaviors of the relative states {|yi(t) − y1(t)|}i= 2,3,4 and {|vi(t) − v1(t)|}i= 2,3,4. We gener-
ate p = 104 sample paths, and relative states {|yi(t) − y1(t)|}i= 2,3,4 and {|vi(t) − v1(t)|}i= 2,3,4 under the pth path are denoted
as {|𝑦p

i (t) − 𝑦
p
1(t)|}i=2,3,4 and {|vp

i (t) − vp
1(t)|}i=2,3,4. Then, we take mean square average, ie, we use 1

104

∑104

p=1 |𝑦p
i (t) − 𝑦

p
1(t)|2

to approximate E|𝑦p
i (t) − 𝑦

p
1(t)|2, and obtain Figure 2, which shows that the four agents achieve mean square consensus.

Linear case without delay: f ( y, v, t) = q1y + q2v. This simulation is to show the effectiveness of Theorem 2 under
𝜏y = 𝜏v = 𝜏1 = 𝜏2 = 0. We first see that conditions (20) and (21) can guarantee mean square and almost sure consensus.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 3 Errors of the relative states for the case with linear dynamics: k1 = 1, k2 = 0.8, and 𝜎2 = 0.4 [Colour figure can be viewed at
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Assume that q1 = 0.2, q2 = 0.3, and choose k1 = 1, k2 = 0.8. Then, it is easy to see 0.0456 =
k2

1𝜎
2
1

N−1
N

k1−
q1
𝜆2

< k2𝜆2 − q2 −
N−1

N
k2

2𝜎
2
2𝜆2 = 0.1237. Theorem 2 yields that almost sure and mean square consensus can be achieved. Simulations in

Figures 3 and 4 confirm the sufficiency of the condition (21).
If the noise intensity 𝜎2 = 2, then 4q2

N−1
N

𝜎2
2 − 𝜆N = 0.1858 > 0 and the condition (22) is defied for any k1, k2 since

Q(k1, k2) ∶= k2𝜆N − q2 − N−1
N

k2
2𝜎

2
2𝜆N < 0 for any k1, k2. From Theorem 2, we know that mean square consensus cannot be

achieved for any choice k1, k2. For the choice k1 = 1, k2 = 0.8, Q(k1, k2) = −4.1239, and we can obtain Figure 5, which
shows that mean square consensus cannot be achieved without condition (22).

5 CONCLUSION

In this paper, the consensus conditions of the delayed multiagent systems with multiplicative noises have been derived
by using degenerate Lyapunov functionals and stochastic stability theorem. The necessary conditions and sufficient con-
ditions are established for nonlinear and linear multiagent systems. For the case with the coexistence of the intrinsic
dynamics and multiplicative noises, it is proved that if the noise intensities and the Lipschitz constant of the intrinsic
dynamics are small enough, then multiagent systems can achieve mean square and almost sure consensus. However, for
the delay-free case with linear dynamics, it is proved that, if noise intensities and Lipschitz constant are large enough,
then multiagent systems may not be mean square consentable with respect to weighted average type control protocols, ie,
mean square consensus protocol based on the relative state measurements may not exist. We also extend the leader-free
multiagent systems to the leader-following case and obtain the sufficient conditions for mean square and almost sure
consensus and stabilization.

It is worthy noting that the case with nonidentical measurement delays has been investigated in the works of Bliman
and Ferrari-Trecate46 and Münz et al47 for deterministic systems, but it is still difficult to extend this to stochastic systems.
We hope to discuss it in the future work. Moreover, in this paper, we assume that the topology is undirected and fixed.
We hope to further the current work to the cases with the general directed and switching graphs. Another future research
topic is stochastic consensus based on the event-trigger mechanism.
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