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Abstract: Leader-following consensus is investigated for second-order continuous-time multi-agent systems with limited
communication data rate in this study. The network communication topology is directed and static. Using the sampled position
and velocity data, a corresponding discrete-time system, whose leader-following consensus is proved to be equivalent to that of
the original system, is given. A distributed protocol is proposed based on dynamic encoding and decoding. A necessary and
sufficient condition is given for the existence of such communication and control protocol to ensure the achievement of leader-
following consensus, if the upper bound of the communication data rate is predetermined. Two algorithms are also presented to
achieve the leader-following consensus if the communication data rate is unfixed or limited, respectively. Finally, simulation
examples are given to verify and illustrate the theoretical analysis.

1 Introduction
The distributed cooperative control of multi-agent systems has
been an intense area of research in recent years, motivated by many
applications in control engineering, physics and biology. In
cooperative control, consensus problem in networked multi-agent
systems has been a topic of significant interest. If there exists a
single leader or multiple leaders, the leader-following consensus or
containment of multi-agent system will be considered [1–4]. In [1],
the distributed consensus tracking algorithms without velocity
measurements are proposed under both fixed and switching
network topologies. In [3], necessary and sufficient criteria which
guarantee the achievement of containment of first-order system are
given for both static and dynamic leaders.

In engineering applications, because of the unreliability of
information channels, the sensing ability of each agent or the cost,
only sampled-data at discrete sampling instants is available for
control synthesis in many cases, though the systems are continuous
process. Generally, multi-agent system with sampled-data control
is often considered in second-order system [5–9]. In [5], the
consensus of double-integrator dynamics with only sampled
positions is considered. In [6], necessary and sufficient conditions
for multi-agent system via sampled control are provided. In [7], not
only the sampled current position data, but also the post position
data is utilised to design the protocol. Chen et al. [9] addresses the
consensus with directed topology and static quantiser. In [10],
sampled-data-based average-consensus of continuous-time first-
order integrator agent is considered, in which the measurements of
the neighbour states are corrupted by random measurement noises.
The consensus based on sampled-data is also studied in observer-
based system [11], event-triggered transmission strategy [12],
asynchronous hybrid event-time driven interaction [13], multi-
tracking [14], asymptotic bounded consensus tracking [15, 16].

On the other hand, in practice, if the information of agents is
real number, it is obvious that the communication channels need to
be unlimited. While in the digital communication channel, the data
should be integer, often binary signal, and the communication
channel has a channel bandwidth. Li et al. [17] studies the average
consensus control of discrete-time multi-agent system with
undirected graph, and shows that average consensus is achievable
with a finite number of quantisation levels. Extensions of [17] are
further discussed in time-varying topology [18], high-order

systems [19], and quantised-observer case [20]. All the above
literatures are considered in undirected topology. Li and Xie [21]
extends the results of [17] for undirected network to general case of
directed network.

There is few literature to study the case of continuous-time
multi-agent system with limit communication data rate, which is
more practical. In continuous-time system, the communication data
rate is determined by the amount of transmitted data per second,
which means that not only the channel bandwidth, but also the
sampled period needs to be considered. Mu and Liu [22] firstly
considers the containment control with limited communication data
rate in continuous-time multi-agent systems, and necessary and
sufficient criteria which ensure the property of consensus are given.
Because of the structure constraint of the protocol in [22], there
exists a lower bound of the communication data rate to ensure the
achievement of containment. In this paper, we further study the
leader-following consensus of second-order continuous-time linear
multi-agent system with limited communication data rate. The
sampled position and velocity states are quantised into digital
signals by the given encoders and decoders, and sent to their
neighbours. A necessary and sufficient condition of leader-
following consensus with sampled-data and limited data rate is
given. Moreover, two algorithms are also given to design the
proper sampled period and encoder-decoder for unfixed or any
given limited communication data rate, respectively.

Our main challenge is to design the sampled period, encoder-
decoder pairs and sampled-data based protocol for directed
communication topology to achieve the leader-following
consensus. It needs to be emphasised that this paper is not a simple
combination of the aforementioned literatures on sampled-data and
limited data rate. There are two fundamental difficulties. One is
that the sampled-data based control systems are hybrid and with
both continuous-time and discrete-time signal, so not only the
states at sampling instants, but also the final effect of the control
law on the original continuous system should be considered, which
is what the designers are really concerned about. The other is that
the communication channels between the agents have limited
capacity, so only finite bytes of data can be sent per second, which
may lead to unbounded quantisation errors. To overcome these
difficulties, we design a corresponding discrete system, whose
leader-following consensus is proved to be equivalent to that of the
sampled-data based continuous system with limited data rate, and
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using it as a basis, two algorithms are given to design the sampled-
data-based disturbed leader-following consensus protocol with an
encoder-decoder. Compared with [6], limited data rate is
considered in this paper. In [20], the topology is undirected and the
system is discrete-time, while in this paper, the topology is directed
and the system is continuous-time. Compared with [22], the system
is second-order and the leader is dynamic in this paper. Moreover,
the consensus can be achieved under any given limited
communication data rate, while [22] needs the data rate to exceed a
bound. In [9], the consensus errors converge to a neighbourhood of
the origin because of the constraints of static quantiser, while in
this paper, the consensus errors accurately converge to the origin
because of the dynamic encoder-decoder.

This paper is organised as follows. In Section 2, the model of
network and the basic material on graph theory needed in this
paper are introduced. In Section 3, the protocol with sampled states
and encoder-decoder are proposed, and the equivalence of
consensus between the continuous-time system and sampled
system is given. In Section 4, the case of unfixed communication
data rate is considered. In Section 5, for limited communication
data rate, a necessary and sufficient condition is given to achieve
the leader-following consensus, and an algorithm is proposed to
design the proper protocol with sampled period and encoder-
decoder. Finally, simulations are provided to illustrate the
effectiveness of the theoretical results in Section 6.

Notation: Given a matrix A, Λ(A) and r(A) denote its
eigenvalue set and spectral radius, respectively. 1n denotes the n-
dimension column vector with all ones, In denotes the n × n
identity matrix. ∥ ⋅ ∥ and ∥ ⋅ ∥∞ , respectively, represent the
standard L2 and L∞ norms on vectors or their induced norms on
matrices. It is easy to get that
∀x ∈ ℝn, ∥ x ∥∞ ≤ ∥ x ∥ ≤ n ∥ x ∥∞ . diag{A1, …, An}
represents the diagonal. Given a complex number λ, Re(λ), Im(λ)
and |λ| are the real part, imaginary part and modulus of λ,
respectively. For a given positive real number y, ⌈y⌉ denotes the
smallest integer bigger than or equal to it, log2(y) denotes the
logarithm of y with base 2.

2 Model description and problem formulation
To investigate the consensus problem of multi-agent systems,
algebraic graph theory is a useful theory. We first introduce some
basic definitions in the algebraic graph theory [23]. A weighted
directed graph is denoted by G = {V, ℰ, A}, with the set of nodes
V = {1, 2, …, n}, the set of edges ℰ ⊆ V × V, and the weighted
adjacency matrix A = [ai j] ∈ ℝn × n. The edges of the graph are
denoted by ei j = ( j, i), where j is called the parent vertex or
neighbour of i. The adjacency elements associated with the edges
are positive, i.e. an edge ( j, i) ∈ ℰ if and only if ai j > 0, which
means node i can receive the data from node j. Self-edge (i,i) is not
allowed, i.e. (i, i) ∉ ℰ. A directed path between node i1 and node ik
is meant a sequence of distinct edges with the form
(i1, i2), (i2, i3), …, (ik − 1, ik), and a weak path, either (is, is + 1) or
(is + 1, is) ∈ ℰ. A graph is strongly connected if there exists a
directed path between any two different nodes of the graph, and is
weakly connected if any two vertices can be jointed by a weak
path. A directed tree is a directed graph, where every node, except
the root, has exactly one parent. A directed spanning tree is a
directed tree, which consists of all the nodes and some edges in G.

The in-degree of node i is denoted as degin(i) = ∑ j = 1
n ai j.

Denote the Laplacian Matrix of the graph G by ℒ = D − A,
where D = diag{degin(1), degin(2), ⋯, degin(n)}. Furthermore, 0 is
the simple eigenvalue of ℒ if and only if G is connected for
undirected or has a spanning tree for digraph.

To study a leader-following problem, we also concern another
graph Ḡ associated with the system consisting of n followers and
one leader (labelled 0). Similarly, a diagonal matrix ℬ ∈ ℝn × n is
defined to be a leader adjacency matrix associated with Ḡ, whose
diagonal elements bi = ai0 for some constant ai0 > 0 if the leader is
a neighbour of node i and bi = 0, otherwise. Denote ℋ = ℒ + ℬ.

Let dmax = maxi {ℋii}, where ℋii are the diagonal elements of ℋ.
For Ḡ, if there is a path in Ḡ from node 0 to every node i, we say
that the leader is globally reachable. The set of node i's neighbours
is denoted by Ni = { j | ( j, i) ∈ ℰ, j ≠ i}.
 
Lemma 1 [24]: All of the eigenvalues of the matrix ℋ = ℒ + ℬ
have positive real parts if and only if the leader 0 is globally
reachable in graph Ḡ.

In this paper, we consider a group of second-order continuous-
time multi-agent systems with double-integrator dynamics,

ẋi(t) = vi(t)
v̇i(t) = ui(t)i = 0, 1, …, n . (1)

For convenience we assume one-dimensional movement, i.e.
xi(t), vi(t) ∈ ℝ represent the position and velocity of agent i,
respectively, and they are transmitted as the agent's output.
ui(t) ∈ ℝ represents the control input, that is, consensus protocol.
Specially, consensus protocol of the leader is zero, that is, u0(t) ≡ 0
and v0(t) ≡ v0(0).
 
Definition 1 Leader-following consensus:: The multi-agent system
(1) is said to achieve leader-following consensus if its solution
satisfies limt → ∞ ∥ xi(t) − x0(t) ∥ = 0,
limt → ∞ ∥ vi(t) − v0(t) ∥ = 0, i ∈ V, for any initial condition.

In this paper, we aim to design an encoding-decoding scheme
and an interaction protocol using a finite number of bits per second
of data rate to achieve the leader-following consensus.

3 Protocol design
For the second-order multi-agent system, some researchers
considered the following consensus protocol at every moment [25,
26]:

ui(t) = a ∑
j ∈ Ni

ai j(xj(t) − xi(t))

+b ∑
j ∈ Ni

ai j(vj(t) − vi(t)), i ∈ V
(2)

where a > 0 and b > 0 are the coupling gains.
In above case, all the position and velocity data of the agents

needs to be obtained in time, i.e. for every t > 0, the agent i needs
to get the exact state information from its neighbours. However, In
engineering applications, exact information often cannot be
obtained, while the quantised data, usually symbolic data, is
communicated between the neighbours at each discrete time
instant.

Let h > 0 be the sampling period and k = 0, 1, … be the
sampling instants. The protocol is given by a piecewise constant
function which identically equals a constant, denoted by u(kh),
t ∈ [kh, (k + 1)h). Then, the sampled system of (1) can be written
as

xi(t) = xi(kh) + (t − kh)vi(kh) + (t − kh)2

2 ui(kh)
vi(t) = vi(kh) + (t − kh)ui(kh)

(3)

t ∈ [kh, (k + 1)h). From (3), we can see that the position xi(t) and
the velocity vi(t) in the continuous-time system (1) are not
piecewise constant functions. The corresponding discrete-time
system is given as follows,

xi[k + 1] = xi[k] + hvi[k] + h2

2 ui[k]
vi[k + 1] = vi[k] + hui[k]

(4)

in which xi(kh), vi(kh) and ui(kh) are, respectively, denoted by xi[k],
vi[k] and ui[k], ∀k ∈ ℤ ≥ 0, for the sake of simplicity.
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In digital communication network, only symbolic data can be
communicated between agents through digital channels. Thus for
each digital channel, the state of the sender is encoded into
symbolic data and then transmitted. After the symbolic data is
received, the receiver uses a decoder to get an estimate of the
sender's state. Similar to [17, 18], the encode, quantiser and
decoder are given as follows, respectively. The encoder Φ j
associated with jth agent is defined as follows. For all k = 1, 2, …,

x^ j[0] = v^ j[0] = 0,
x^ j[k] = x^ j[k − 1] + hv^ j[k − 1] + g(k − 1)Δx j[k],
v^ j[k] = v^ j[k − 1] + g(k − 1)Δvj[k],

Δx j[k] = q 1
g(k − 1)(xj[k] − x^ j[k − 1] − hv^ j[k − 1]) ,

Δvj[k] = q 1
g(k − 1)(vj[k] − v^ j[k − 1]) ,

(5)

where xj[k], vj[k] are the inputs of encoder Φ j, and x^ j[k], v^ j[k] are
the internal states of encoder Φ j. Δx j[k] and Δvj[k] are the outputs
of the encoder Φ j, which will be broadcasted through the digital
channels. g(k) > 0 is a scaling function. Here we choose the
scaling function g(k) = g0γk, with g0 > 0 and γ ∈ (0, 1) being
design parameters. q( ⋅ ) is a finite-level quantiser as follows

q(x) =

0, −1/2 < x < 1/2,
i, 2i − 1

2 ≤ x < 2i + 1
2 , i = 1, 2…L,

L, x ≥ 2L + 1
2 ,

−q( − x), x ≤ − 1/2,

(6)

where the quantisation level is given as 2L + 1 with a positive
integer L > 0. According to the construction of the quantiser, we
can get that |x − q(x) | ≤ 1/2, if |x | < L + 1/2.
 
Remark 1: If the leader-following consensus is achieved, the error
xj[k] − x^ j[k] tends to zero, as k → ∞. Therefore, the scaling
function g(t) should meet the following two properties. Firstly, it
should decay gradually, such that the data of the agent can be
estimated continuously. Secondly, it should be large enough to
make sure that the quantiser will not be saturated.

When the agent i receives the symbolic data Δx j[k] and Δx j[k]
sent by agent j through the communication channel ( j, i) ∈ ℰ, the
position and velocity data of the agent j can be estimated by the
following decoder Ψ ji associated with the directed channel (j,i).
For all k = 1, 2, …,

x^ ji[0] = v^ ji[0] = 0,
x^ ji[k] = x^ ji[k − 1] + hv^ ji[k − 1] + g(k − 1)Δx j[k],
v^ ji[k] = v^ ji[k − 1] + g(k − 1)Δvj[k],

(7)

in which x^ ji[k] and v^ ji[k] are the outputs of the decoder Ψ ji.
 
Definition 2: The communication data rate is defined as the
average number of bits per second passing in the communication
channel, i.e. Rd = ⌈log2(2L + 1)⌉/h.
 
Remark 2: The consensus of the discrete-time multi-agent system
with limited data rate is considered in [17, 21], in which we only
need to consider the quantisation level to get the communication
data rate because of the fixed sampled period. However, when the
communication data rate is considered in continuous-time case, in
order to calculate the data rate, not only the quantisation level
2L + 1, but also the sampled period h needs to be considered.

In this paper, we aim at designing a distributed protocol to
achieve leader-following consensus based on sampled-data and
quantised communications. For sampled-data based continuous-
time system (1), using the encoder, quantiser, and decoder given
above, the distributed protocol is proposed as follows,

ui(t) = ui[k] = a ∑
j ∈ Ni

ai j(x^ ji[k] − x^i[k])

+b ∑
j ∈ Ni

ai j(v^ ji[k] − v^i[k]),
(8)

i ∈ V, t ∈ [kh, (k + 1)h), in which we can see that the protocol
only depends on the states of its own encoder and the decoders
associated with the directed channels from its neighbours.
 
Remark 3: According to (5) and (7), we can get that

x^ ji[k] = x^ j[k], v^ ji[k] = v^ j[k],

for all k = 0, 1, …, j ∈ Ni, i ∈ V. Thus, the above protocol (8)
can be written as

ui[k] = a ∑
j ∈ Ni

ai j(x^ j[k] − x^i[k])

+b ∑
j ∈ Ni

ai j(v^ j[k] − v^i[k]), i ∈ V .
(9)

Now, we consider the relation between the leader-following
consensus of the system (1) and (4). In many engineering practice,
the leader, the reference state or the control target of the system
may have the time-varying velocity, such as [15, 16, 27, 28], thus
the following lemma considers the system with the time-varying
velocity without loss of generality.
 
Lemma 2: System (1) achieves leader-following consensus if and
only if system (4) achieves leader-following consensus.
 
Proof: Necessity can be easily get because discrete-time states
{xi[k]}k ≥ 0 and {vi[k]}k ≥ 0 are the sub-sequences of {xi(t)}t ≥ 0 and
{vi(t)}t ≥ 0,  respectively.
The sufficiency will be proved by two steps.
First, we show that limk → ∞ |ui[k] − u0[k] | = 0, ∀i ∈ V, if the
system (4) achieves leader-following consensus.
According to the definition of leader-following consensus, we can
get that limk → ∞ xi[k] = x0[k], limk → ∞ vi[k] = v0[k], i ∈ V.
Together with the fact

xi[k + 1] = xi[k] + hvi[k] + 1
2h2ui[k],

x0[k + 1] = x0[k] + hv0[k] + 1
2h2u0[k],

we have

xi[k + 1] − x0[k + 1] = (xi[k] − x0[k])

+h(vi[k] − v0[k]) + 1
2h2(ui[k] − u0[k]) .

Thus, limk → ∞ |ui[k] − u0[k] | = 0, i ∈ V.
Secondly, we show that the sufficiency holds. For any given
t ∈ [kh, (k + 1)h), according to the term (3), it yields that

|xi(t) − x0(t) | ≤ |xi[k] − x0[k] | + |vi[k] − v0[k] | (t − kh)

+ 1
2 |ui[k] − u0[k] | (t − kh)2, (10)

and

| vi(t) − v0(t)|
≤ |vi[k] − v0[k] | + |ui[k] − u0[k] | (t − kh) . (11)

Together with the fact limk → ∞ |ui[k] − u0[k] | = 0, we have

lim
k → ∞ | xi(t) − x0(t) | = 0, lim

k → ∞ |vi(t) − v0(t) | = 0.

The proof is completed. □
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Remark 4: It seems to be a trivial conclusion that the consensus for
sampled system (4) is equivalent to that for continuous system (1).
However, in the previous literatures, such as [3, 5, 7], the
consensus for the continuous system was demonstrated directly or
the equivalence between the consensus of continuous system and
sampled system was not provided. According to Lemma 2, we can
study the leader-following consensus of system (4) to replace that
of system (1).

4 Convergence analysis with unfixed
communication data rate
This section is devoted to achieve the leader-following consensus
when the data rate of the communication channel is not preset,
which means that the quantiser parameter L and sampling period h
can be chosen freely. While the convergence analysis of the
proposed distributed control law with limited data rate will be
studied in the next section. To this end, we introduce the following
notations

X[k] = (x1[k], …, xn[k])T, V[k] = (v1[k], …, vn[k])T,
U[k] = (u1[k], …, un[k])T, X^ [k] = (x^1[k], …, x^n[k])T,
V^ [k] = (v^1[k], …, v^n[k])T, δX[k] = X[k] − x0[k]1n,
δV[k] = V[k] − v0[k]1n, EX[k] = X[k] − X^ [k],
EV[k] = V[k] − V^ [k], Ex0[k] = (x0[k] − x^0[k])1n,
Ev0[k] = (v0[k] − v^0[k])1n,

G(h, a, b) =
In − 1

2h2aℋ hIn − 1
2h2bℋ

−haℋ In − hbℋ
. (12)

The following assumptions are given.
 
Assumption 1: There exist some constants CX, CV, Cδ > 0, s.t.
|xi[0] | ≤ CX, |vi[0] | ≤ CV, for i = 0, 1, …, n, and ∥ δX(0) ∥ ≤ Cδ,
∥ δV(0) ∥ ≤ Cδ.
 
Assumption 2: In the topology Ḡ, the leader is globally reachable.

Some useful lemmas are given as follows.
 
Lemma 3 [29]: For any given A ∈ ℝn × n, ϵ > 0, we have

∥ Ak ∥ ≤ Mηk, ∀k ≥ 0 (13)

where M = n(1 + (2/ϵ))n − 1, η = r(A) + ϵ ∥ A ∥.
 
Lemma 4 [30]: Given a complex coefficient polynomial of order
two as follows

g(s) = s2 + (ξ1 + ⅈγ1)s + ξ0 + ⅈγ0,

where ξ1, γ1, ξ0 and γ0 are real constants. Then, g(s) is stable if and
only if ξ1 > 0 and ξ1γ1γ0 + ξ1

2ξ0 − γ0
2 > 0.

The following lemma is proposed to investigate the spectral
radius of the matrix G(h, a, b).
 
Lemma 5: r(G(h, a, b)) < 1 if and only if the following two
conditions hold:

(i) h < 2b/a,
(ii) ∀μi ∈ Λ(ℋ),
8(Im(μi))2 ≤ (2Re(μi) − bh | μi |2 ) | μi |2 (1/a)(2b − ah)2.

 
Proof: From (12), we have

In 0

− haℋ
λ − 1 In

In − 1
2hIn

0 In

(λI2n − G)

=
(λ − 1)In − 1

2(λ + 1)hIn

0 (λ − 1)In + hbℋ + λ + 1
2(λ − 1)h2aℋ

.

Then we can get that

det ( λI2n − G)

= (λ − 1)2In + 1
2ah + b λ + 1

2ah − b hℋ

= ∏
μ ∈ Λ(ℋ)

(λ − 1)2 + 1
2ah + b λ + 1

2ah − b hμ
ς(μ)

,

in which ς(μ) is the algebraic multiplicity of μ, for every
μ ∈ Λ(ℋ).
Let s = (λ + 1)/(λ − 1), then we can get that

det (λI2n − G)

= ∏
μ ∈ Λ(ℋ)

ah2μ
(s − 1)2 s2 − 1 − 2b

ah s + 2
ah

2
hμ − b

ς(μ)

.

Thus, r(G(h, a, b)) < 1 if and only if for any μ ∈ Λ(ℋ), all of the
eigenvalues of the following function are in the left half complex
plane

f μ(s) = s2 − 1 − 2b
ah s + 2

ah
2

hμ − b

= s2 − 1 − 2b
ah s + 4

ah2 ⋅ Re(μ)
|μ|2 − 2b

ah

+ 4
ah2 ⋅ Im(μ)

|μ|2 ⅈ .

(14)

According to Lemma 4, one can get that this lemma holds. □
In the Following we will give the first main result of this paper.

 
Theorem 1: For the continuous-time multi-agent system (1),
suppose that Assumptions 1 and 2 hold. The constants h > 0, a, b
are chosen to ensure r(G(h, a, b)) < 1. Let ρ ∈ [r(G(h, a, b)), 1) and
γ ∈ (ρ, 1). For any given L, such that

L ≥ D∗(h, a, b) 2nD∗(h, a, b)
γ(γ − ρ) + 1

γ + 1
2γ (h + 1) − 1

2, (15)

where D∗(h, a, b) = dmaxh(a + b) max {h, 2}, let

g0 ≥ max CX + hCV
L + 1/2 , CV

L + 1/2 , Cδγ(γ − ρ)
D∗(h, a, b) . (16)

Then under the protocol (9) with the sampled period h, the encoder
(5), decoder (7) and (2L + 1)-level quantiser (6), the system (1)
achieves leader-following consensus.
 
Proof: According to the Lemma 2, we only need to prove that the
discrete-time system (4) achieves leader-following consensus under
the protocol (9). The key idea of the following is to show that the
quantiser (6) is always unsaturated with every k ≥ 0.
According to the terms (4), (5), (7) and (9), the dynamics of the
asymptotic errors are proposed as follows
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δX[k + 1] = δX[k] + hδV[k] + 1
2h2U[k]

= I − 1
2h2aℋ δX[k] + hI − 1

2h2bℋ δV[k]

+ 1
2h2EALL(a, b, k),

δV[k + 1] = δV[k] + hU[k]
= −haℋδX[k] + (I − hbℋ)δV[k]

+hEALL(a, b, k),

where EALL(a, b, k) = aℋEX[k] + bℋEV[k] − aℋEx0[k]
−bℋEv0[k].
Moreover, the dynamics of the estimate errors are given as

EX[k + 1] = X[k + 1] − X^ [k] − hV^ [k]

−g(k)Q 1
g(k) (X[k + 1] − X^ [k] − hV^ [k]) ,

(17)

EV[k + 1] = V[k + 1] − V^ [k]

−g(k)Q 1
g(k) (V[k + 1] − V^ [k]) ,

(18)

in which the product quantiser Q( ⋅ ) is provided by
Q( ⋅ ) = (q( ⋅ ), q( ⋅ ), ⋯, q( ⋅ ))T, whose dimension is compatible
with its input.
Denote δ̄X[k] = (1/g(k))δX[k], and similarly give the definitions of
δ̄V[k], ĒX[k], ĒV[k] and ĒALL[k]. Then we have

γδ̄X[k + 1] = I − 1
2h2aℋ δ̄X[k] + hI − 1

2h2bℋ δ̄V[k]

+ 1
2h2ĒALL(a, b, k),

(19)

γδ̄V[k + 1] = −haℋδ̄X[k] + (I − hbℋ)δ̄V[k]
+hĒALL(a, b, k), (20)

γĒX[k + 1] = RX[k] − Q(RX[k]), (21)

γĒV[k + 1] = RV[k] − Q(RV[k]), (22)

where RX[k] = (1/g(k))(X[k + 1] − X^ [k] − hV^ [k]), and
RV[k] = (1/g(k))(V[k + 1] − V^ [k]).
It is obvious that ∥ ĒX[k + 1] ∥∞ ≤ 1/2γ, ∥ Ēx0[k + 1] ∥∞ ≤ 1/2γ,
∥ ĒV[k + 1] ∥∞ ≤ 1/2γ, and |Ēv0[k + 1] ∥∞ ≤ 1/2γ, when
∥ RX[k] ∥∞ ≤ L + 1/2, ∥ RV[k] ∥∞ ≤ L + 1/2. Furthermore, we
have

∥ ĒALL(a, b, k) ∥∞ ≤ 2
γ (a + b)dmax . (23)

Now we prove that the quantiser will never be saturated, which
means that we will prove ∥ RX[k] ∥∞ < L + 1/2 and
∥ Rv[k] ∥∞ < L + 1/2, ∀k ∈ ℤ ≥ 0, by mathematical induction.
Firstly, because Assumption 1 holds, then

∥ RX[0] ∥∞ = 1
g0

∥ X[1] − X̄[0] − hV̄[0] ∥∞

≤ 1
g0

(CX + hCV) ≤ L + 1
2,

∥ RV[0] ∥∞ ≤ 1
g0

CV ≤ L + 1
2 .

Thus, when k = 0, the quantiser is unsaturated.
Second, for any given non-negative integer κ, suppose that when
k ≤ κ, the quantiser is unsaturated, which means that

supk ≤ κ ∥ RX[k] ∥∞ ≤ L + 1/2, supk ≤ κ ∥ RV[k] ∥∞ ≤ L + 1/2.
Below, we prove that the quantiser is unsaturated when k = κ + 1.

RX[k] = ĒX[k] + hĒV[k]

+ 1
2h2 − aℋδ̄X[k] − bℋδ̄V[k] + ĒALL[k]

= − 1
2h2aℋδ̄X[k] − 1

2h2bℋδ̄V[k]

+ 1
2h2ĒALL + ĒX[k] + hĒV[k] ,

RV[k] = −haℋδ̄X[k] − hbℋδV[k] + hĒALL + ĒV[k] .

It follows that

∥ R[k] ∥∞ ≤ D∗(h, a, b) ∥
δX[k]
δV[k] ∥

∞
+ 1

γ + 1
2γ (h + 1), (24)

where R[k] = RX
T[k], RV

T[k] T. The last ‘ ≤’ holds because of the
term (23).
By the terms (19) and (20), we can get that

γ
δ̄X[κ + 1]
δ̄V[κ + 1]

= G(h, a, b)
δ̄X[κ]
δ̄V[κ]

+ h
2

h
2 ⊗ InĒALL(a, b, κ) .

According to Lemma 3, There exist constants
ϵ ∈ (0, (1 − r(G(h, a, b)))/ ∥ G(h, a, b) ∥ ),
η = r(G(h, a, b)) + ϵ ∥ G(h, a, b) ∥ ∈ (0, 1) and
M = n(1 + (2/ϵ))n − 1, such that

∥ G(h, a, b)k ∥ < Mηk .

Denote δ̄[k] = δ̄X
T[k], δ̄V

T[k] T, then

γ ∥ δ̄[κ + 1] ∥ ≤ ∥ G(h, a, b)δ̄[κ] ∥

+ 1
2 2nh max {2, h}2

γ (a + b)dmax

≤ r(G(h, a, b)) ∥ δ̄[κ] ∥ + D∗(h, a, b) 2n
γ .

According to Lemma 5, choose γ and ρ such that
r(G(h, a, b)) < ρ < γ < 1, which follows that

∥ δ̄[ κ + 1] ∥

≤ ρ
γ ∥ δ̄[κ] ∥ + D∗(h, a, b) 2n

γ2

≤ ρ
γ

κ + 1
∥ δ̄[0] ∥ + 2n

γ2 D∗(h, a, b)∑
i = 0

κ ρ
γ

i

≤ Cδ
g0

ρ
γ

κ + 1
+ 2n

γ(γ − ρ)D∗(h, a, b) 1 − ρ
γ

κ + 1

≤ 2n max Cδ
g0

, D∗(h, a, b)
γ(γ − ρ) .

(25)

Together with terms (15), (16) and (24), we can get
∥ R[κ + 1] ∥∞ ≤ L + 1/2.
Thus, the quantiser is confirmed to be unsaturated at time κ + 1. By
induction, the (2L + 1)-level quantiser will never be saturated.
Noting the term (25), we have

sup
k ≥ 0

∥ δ̄X[k] ∥ < ∞, sup
k ≥ 0

∥ δ̄V[k] ∥ < ∞ .

Together with the definitions of δ̄X[k] and δ̄V[k], it follows that the
system (4) achieves leader-following consensus. By Lemma 2 and
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Remark 4, we can get that the continuous-time system (1) achieves
the leader-following consensus.□
 
Remark 5: Here, the scaling function g(t) is designed off-line.
According to the term (16), the choice of g0 depends on the upper
bound CX, CV, Cδ, the communication graph and the protocol
gains. This is a conservative selection, and in practice, smaller g0
may be available.
 
Remark 6: If the quantisation level 2L + 1 could be chosen freely,
Theorem 1 says that the system can achieve leader-following
consensus by using the scaling function g(t) and the
communication data rate which is given as Rd = ⌈log2(2L + 1)⌉/h.
It is worth noting that the communication data rate Rd given here
and the quantisation level 2L + 1 with the term (15) are
conservative estimates, and in practice, smaller Rd and 2L + 1 may
be available. It would be an interesting future topic and open
problem to find the fundamental lower bound for the quantisation
level. In fact, we will propose an algorithm to achieve leader-
following consensus for any given communication data rate in the
next section.
 
Remark 7: The existences of the control gain a, b and the sampled
period h are based on the inequalities of Lemma 5. According to
the above theorem, we can get that smaller γ leads to a better
asymptotic convergence factor. For the extreme case, as γ
approaches r(G(h, a, b)) from the right hand side, according to the
term (15), the quantisation level 2L + 1 goes to infinity, which
means that the communication data rate also goes to infinity, when
the sampled period h remains unchanged.

For the unfixed communication data rate, which means that we
can choose the quantisation level 2L + 1 and sampling period h
freely, we can get a simple algorithm to choose proper parameters
to make sure that the system (1) achieves the leader-following
consensus.
 
Algorithm 1:

Step 1: Choose h, a, b, such that r(G(h, a, b)) < 1.
Step 2: Choose ρ ∈ [r(G(h, a, b)), 1), γ ∈ (ρ, 1).
Step 3: Choose a positive integer L, such that the term (15) holds.
Step 4: Choose g0 > 0, such that the term (16) holds.

 
Remark 8: The existence of the parameters h,a,b which ensures
r(G(h, a, b)) < 1 will be given in following Lemma 6.

5 Leader-following consensus with limited data
rate
In this section, leader-following consensus with limited
communication data rate is considered, which means that Rd is pre-
determined by the capacity of transmission channels between
agents and their neighbours.

The following lemma is proposed to analyse the property of the
matrix G(h, a, b).
 
Lemma 6: Suppose that Assumption 2 holds, then there exist
constants h > 0, a > 0 and b > 0 such that the inequalities of
Lemma 5 hold. Moreover, if h̄, ā and b̄ ensure that the inequalities
of Lemma 5 hold, then for any given α > 0, h = αh̄, a = ā/α2,
b = b̄/α also ensure that the inequalities of Lemma 5 hold.
Moreover, we have

Λ(G(h, a, b)) = Λ(G(h̄, ā, b̄)) . (26)
 
Proof: According to Lemma 1, when Assumption 2 holds, we can
get that all the eigenvalues of matrix ℋ have positive real parts. So
the solvability of the inequities of Lemma 5 can be given similarly
as [6].

If h̄, ā and b̄ ensure that the inequalities of Lemma 5 holds, it is
easy to verify that the h,a,b also satisfy the inequalities.
Moreover, we have

G αh̄, a
α2 , b

α =
αIn 0
0 In

G(h̄, ā, b̄)
1
αIn 0

0 In

Then Λ(G(h, a, b)) = Λ(G(h̄, ā, b̄)). □
The main result of this section can be summarised as follows.

 
Theorem 2: Suppose Assumption 1 holds, there exists protocol (8)
with limited communication data rate for the continuous-time
multi-agent system (1) to achieve leader-following consensus, if
and only if the leader of Ḡ is globally reachable.
 
Proof Sufficiency:: According to Lemma 5, Lemma 6 and Theorem
1, we can get that there exist proper constants h̄, ā, b̄, and L, such
that r(G(h̄, ā, b̄)) < ρ < γ < 1 and the terms (15) and (16) hold.
For any given α > 0, denote h = αh̄ as the sampled period,
a = ā/α2 and b = b̄/α as the protocol gains. According to Lemma
6, we can get r(G(h, a, b)) = r(G(h̄, ā, b̄)), which means that the
corresponding parameters ρ and γ do not change with α.
Suppose R̄ is a pre-determined upper bound of the communication
data rate Rd because of the capacity of transmission channel. In
order to ensure that the quantiser is unsaturated, the data rate Rd
needs to satisfy

R̄ ≥ Rd = ⌈log2(2L + 1)⌉
h

≥ 1
αh̄

log2 D∗(h, a, b) 2n max Cδ,
D∗(h, a, b)
γ(γ − ρ) + 1

γ

+ 1
2γ (h + 1)

(27)

Obviously, as α goes to infinity, the right hand side of (27) tends to
0. Then for any given R̄, there exist proper parameters such that the
term (27) holds, which means that the leader-following consensus
can be achieved.
Necessity: If the leader of the graph Ḡ is not globally reachable,
there might be at least one follower such that it could not receive
any information sent by leader. It follows that this follower is
independent of the position of the leader. This means that leader-
following consensus of the multi-agent system may not be
achieved.
The proof is completed. □

Now, for the pre-determined upper bound R̄ of the
communication data rate, we can get a simple algorithm to choose
proper sampled period, encoder-decoder, and protocol gain to make
sure that the system (1) achieves the leader-following consensus.
 
Algorithm 2:

Step 1: Choose h̄, ā, b̄, such that r(G(h̄, ā, b̄)) < 1.
Step 2: Choose ρ ∈ [r(G(h̄, ā, b̄)), 1), γ ∈ (ρ, 1) .
Step 3: Choose α > 0 large enough, such that (27) holds.
Step 4: Let the sampled period h = αh̄, the protocol gains a = ā/α2

and b = b̄/α .
Step 5: Choose a positive integer L, such that the terms(15) holds.
Step 6: Choose g0 > 0, such that the term (16) holds.

6 Example
 
In this section, some examples are given to demonstrate the
validity of the proposed theoretical results.
 
Example 1: Consider the multi-agent system (1) with a leader-
follower network with four followers. The communication graph is
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given in Fig. 1 with 0 − 1 weight, which means that ai j = 1, if
( j, i) ∈ ℰ, otherwise, ai j = 0.

If the communication data rate could be chosen freely,
according to Theorem 1 and Algorithm 1, we can choose
h = 0.28, a = 1, b = 2, then r(G(h, a, b)) = 0.8864 < 1. Choose
ρ = 0.8865, γ = 0.9332. It follows that quantisation level L = 1159
and the communication data rate Rd = 39.9260. The state
trajectories of the leader and all the followers with unfixed
communication data rate are given in Fig. 2, in which we can see
that the leader-following consensus is achieved. 
 
Example 2: Still consider the communication graph of Fig. 1 with
0–1 weights. Now we consider the situation that the
communication data rate is limited.

Firstly, similar as Example 1, we choose h̄ = 0.28, ā = 1, b̄ = 2,
then r(G(h̄, ā, b̄)) = 0.8864 < 1. Choose ρ = 0.8865, γ = 0.9332.

By Theorem 2 and Algorithm 2, if the upper bound R̄ of the
communication data rate is given as R̄ = 10, we can choose
α = 3.75, which follows that sampled period h = 1.05, protocol

gains a = 0.7111 × 10−2, b = 0.5333 and quantisation level
L = 663. The communication data rate Rd is given as
Rd = 9.8799 < R̄. The simulation result is shown in Fig. 3. We can
see that all followers converge to the leader and the leader-
following consensus is achieved. 

If the upper bound R̄ of the communication data rate is given as
R̄ = 1, by Algorithm 1, sampled period, quantisation level and the
communication data rate are given as h = 16.24, L = 34409, and
Rd = 0.9896 < R̄. Fig. 4 shows the simulation results. 

Comparing the above two cases and the corresponding
simulation results, the smaller communication data rate we choose,
the more slowly that the followers tend to the leader.

7 Conclusion
Motivated by the situation that the agents can only receive the
quantised data and the communication channels have limited data
rate, we have studied the joint effects of the sampled states and
dynamic encoder-decoder on the leader-following consensus of
continuous-time second-order multi-agent system, in which both of
the position and velocity data needs to be sampled and quantised.
Using a lemma, the leader-following consensus of continuous-time
system is proved to be equipment to its corresponding discrete-time
system. A necessary and sufficient condition and two algorithms to
choose the proper sampled period and encoder-decoder have been
given. Finally, the theoretical results have been verified by
simulations.
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Fig. 1  Communication graph, which has a leader labelled 0 and 4
followers labelled 1, 2, 3, 4

 

Fig. 2  Trajectories of states xi(t) and vi(t) with unfixed communication
data rate

 

Fig. 3  Trajectories of states xi(t) and vi(t) with R̄ = 10
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