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a b s t r a c t

This paper investigates the continuous-time multi-agent consensus with stochastic communication
noises. Each agent can only use its own and neighbors’ information corrupted by random noises to design
its control input. To attenuate the communication noises, we consider the stochastic approximation type
and the Kalman–Bucy filtering based protocols. By using the tools of stochastic analysis and algebraic
theory, the asymptotic properties of these two kinds of protocols are analyzed. Firstly, for the stochastic
approximation type protocol, we clarify the relationship between the convergence rate of the consensus
error and a representative class of consensus gains in both mean square and probability one. Secondly,
we propose Kalman–Bucy filtering based consensus protocols. Each agent uses Kalman–Bucy filters to
get asymptotically unbiased estimates of neighbors’ states and the control input is designed based on the
protocol with precise communication and the certainty equivalence principle. The iterated logarithm law
of estimation errors is developed. It is shown that if the communication graphhas a spanning tree, then the
consensus error is bounded above by O(t−1) in mean square and by O(t−1/2(log log t)1/2) almost surely.
Finally, the superiority of the Kalman–Bucy filtering based protocol over the stochastic approximate type
protocol is studied both theoretically and numerically.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, the distributed coordination of multi-agent
systems (MASs) has attracted more and more attention of multi-
disciplinary researchers, due to its wide applications in the for-
mation control (Fax & Murray, 2004), the distributed optimization
(Nedic & Ozdaglar, 2009), and the flocking problem (Olfati-Saber,
2006). The consensus problem,which is one of themost fundamen-
tal topics in the distributed coordination, has been widely studied
in the system and control communitymotivated by Vicsek’s model

✩ This work was supported by National Natural Science Foundation of China
under Grants 61370030, 61174078, Shanghai Rising-Star Program under Grant
15QA1402000 and Fundamental Research Funds of Shandong University. The
material in this paper was partially presented at the 53rd IEEE Conference on
Decision and Control, December 15–17, 2014, Los Angeles, California, USA. This
paper was recommended for publication in revised form by Associate Editor Wei
Ren under the direction of Editor Ian R. Petersen.

E-mail addresses: tanghuaibin@sdu.edu.cn (H. Tang), sixumuzi@shu.edu.cn
(T. Li).
1 Tel.: +86 21 56331183; fax: +86 21 56331183.

http://dx.doi.org/10.1016/j.automatica.2015.08.007
0005-1098/© 2015 Elsevier Ltd. All rights reserved.
in Vicsek, Czirok, Ben-Jacob, Cohen, and Sochet (1995). Consen-
sus control generally means to design a distributed protocol such
that all agents asymptotically reach an agreement on their states. A
comprehensive survey on consensus problems can be found in Ren,
Beard, and Atkins (2005) and more recent results can be found in
Nourian, Caines, andMalhame (2014), Pasqualetti, Borra, and Bullo
(2014) and Su and Huang (2012), etc.

Consensus problems with random measurement or communi-
cation noises have attracted several researchers since such model-
ing reflects many practical properties of distributed networks. For
the consensus protocol with precise communication, for a given
agent, the weighted sum of relative states between neighbors and
itself is used to update the agent’s state. This weighted sum of
relative states can be viewed as a kind of spacial innovation. For
the case with communication noises, the spacial innovation is cor-
rupted. To attenuate the noise effect, one idea is using the cau-
tious control, that is, to decrease the algorithm gain. As long as
the consensus system evolves, the differences between agents’
states become smaller and smaller, then the new information
contained in the space innovation corrupted by noises becomes
less and less, so a vanishing algorithm gain has to be used. This
is so called distributed stochastic approximation type consensus.
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Huang and Manton (2009) considered the discrete-time stochas-
tic approximation type consensus algorithmwith fixed topologies.
They proved that if the consensus gain a(k) (where k is the dis-
crete time instant) decays with a rate O(1/kγ ), γ ∈ (0.5, 1], the
communication graph has the circulant invariance property and
strong connectivity, then the algorithm ensures both mean square
and almost sure consensus. Huang and Manton (2010) extended
the results to the case with general digraphs, which proved that
if the digraph contains a spanning tree, then


∞

k=0 a(k) = ∞

and


∞

k=0 a
2(k) < ∞ suffices for both mean square and almost

sure consensus. Kar and Moura (2010) considered the discrete-
time distributed averaging with quantized data and random link
failures. By using dithered quantization, the quantization error
sequence is transformed towhite noises and the stochastic approx-
imation consensus protocol is employed to ensure mean square
convergence of the algorithm. Li and Zhang (2010) considered the
case of fixed and time-varying topologies, and they showed if the
network switches between jointly-containing-spanning-tree, in-
stantaneously balanced digraphs, then the designed protocol can
guarantee that each individual state converges, both almost surely
and in mean square, to a common random variable, whose expec-
tation is right the average of the initial states of the whole sys-
tem. Besides, a rough estimate of the almost sure convergence rate
for the consensus error was given. Continuous-time stochastic ap-
proximation type consensus problems have also beenwidely stud-
ied. Li and Zhang (2009) showed that if the network is a balanced
digraph containing a spanning tree, then a necessary and suffi-
cient condition to guarantee the asymptotic unbiasedmean square
average-consensus is


∞

0 a(t)dt = ∞ and


∞

0 a2(t)dt < ∞. More
extended results on continuous-time stochastic approximation
type consensus protocols can be found for the leader-following
cases (Hu & Feng, 2010; Ma, Li, & Zhang, 2010), the case with gen-
eral digraphs (Wang & Zhang, 2009), the case with time-delay (Liu,
Liu, Xie, & Zhang, 2011) and the cases of second-order and lin-
ear dynamics with static state feedback (Cheng, Hou, & Tan, 2014;
Cheng, Hou, Tan, & Wang, 2011). And recently, this kind of pro-
tocols are applied to the containment control of multi-agent sys-
tems with random measurement noises (Wang, Cheng, Hou, Tan,
& Wang, 2014).

The works on continuous-time stochastic approximation type
consensus protocol mainly concentrated on the conditions to en-
sure the mean square or almost sure consensus. However, its
asymptotic convergence rate, which represents the negotiation
speed of the agents as time goes to infinity, is rarely investigated in
the relevant literature. It is more meaningful to study the relation-
ship among the asymptotic convergence rate, the consensus gain
function a(t), and the communication graph. In this paper, mo-
tivated by the above discussions, we investigates the asymptotic
convergence rate of the continuous-time stochastic approximation
type consensus protocol.We consider a representative class of con-
sensus gains which satisfy


∞

0 a(t)dt = ∞ and


∞

0 a2(t)dt < ∞.
Using the basic results of stochastic analysis and algebraic graph
theory, in particular the law of the iterated logarithm of stochas-
tic integrals, we get precise estimations of the convergence rate of
the consensus error. It is found that if the consensus gain satisfies
that limt→∞(tγ a(t)) exists and is positive for γ ∈ (0.5, 1], and
for γ = 1, limt→∞(ta(t)) > 1/(2λmin), with λmin denoting the
smallest real part of Laplacian eigenvalues of the network graph,
we have: (i) the mean square of the consensus error is bounded
above by O(t−γ ) asymptotically; (ii) for the case with balanced di-
graphs, the mean square of the consensus error is bounded both
above and below byΘ(t−γ ) asymptotically; (iii) the consensus er-
ror is almost surely bounded above byO(t−γ /2+ε), ∀ ε > 0, asymp-
totically for the case with undirected graphs. In this paper, we
improve the results of Li and Zhang (2009, 2010) in the sense
that (i) the mean square convergence rate of the continuous-time
stochastic approximation type consensus protocol is first given;
(ii) the almost sure convergence rate is estimated more precisely.

Since the vanishing consensus gain function is used in the
stochastic approximation type consensus protocol, the commu-
nication noises are attenuated at the price of a slower con-
vergence rate of the algorithm (Huang & Manton, 2009). This
motivates us to propose another idea to attenuate the commu-
nication noises. The received information from neighbors can be
filtered firstly to get the estimates of neighbors’ states, then the
estimates can be used instead of the true states for the control pro-
tocol design. This methodology for controller design is often used
in single-agent control systems and is called the certainty equiv-
alence principle. It is well-known that the Kalman–Bucy filter is
the main tool of state estimation for continuous-time linear sys-
tems driven by Gaussianwhite noises (Kallianpur, 1980; Øksendal,
2010). Here, based on the Kalman-Bucy filtering theory, we de-
sign a filter for each noisy communication link to get the asymp-
totically unbiased estimates of neighbors’ states, then the control
input of each agent is designed based on the consensus protocol
with precise communication (Olfati-Saber &Murray, 2004) and the
certainty equivalence principle.We develop the iterated logarithm
law of estimation errors and show that if the communication graph
has a spanning tree, then this novel Kalman-Bucy filtering based
protocol leads to both mean square and almost sure weak consen-
sus. Moreover, the mean square of the consensus error is bounded
above by O(t−1) asymptotically, and the consensus error for each
agent is almost surely bounded above by O(t−1/2(log log t)1/2).
Comparing the convergence rates of these two kinds of protocols,
it is shown that the Kalman-Bucy filtering based protocol leads to
a higher convergence rate than the stochastic approximation type
protocol in some circumstances. Especially, we verify this superi-
ority for the case with undirected graphs.

The paper is organized as follows. In Section 2, we formulate
the considered consensus problem. Section 3 gives the asymptotic
convergence properties for the stochastic approximation type
protocol. In Section 4, we introduce the Kalman-Bucy filtering
based consensus protocol and analyze the convergence rate of the
consensus error. The protocol is also applied to a leader-following
scenario. The asymptotic convergence properties of these two
kinds of protocols are compared in Section 5, while a numerical
example is presented. Finally, Section 6 concludes the paper and
gives some interesting future topics.

In this paper, we will adopt the following notations: Rm×n

denotes the m × n dimensional real space; 1N×1 denotes an
N × 1 column vector with all ones; 0N×1 denotes an N × 1
column vector with all zeros. For a given vector or matrix A,
AT denotes its transpose, and ∥A∥ denotes its Frobenius norm.
For a given complex number λ, Re(λ) denotes its real part and
Im(λ) denotes its imaginary part. The notion f (t) = O(g(t))
denotes lim supt→∞ |f (t)/g(t)| < ∞; f (t) = Ω(g(t)) denotes
lim inft→∞ |f (t)/g(t)| > 0; f (t) = Θ(g(t)) denotes 0 <
lim inft→∞ |f (t)/g(t)| ≤ lim supt→∞ |f (t)/g(t)| < ∞ and f (t) =

o(g(t)) denotes limt→∞ |f (t)/g(t)| = 0.

2. Problem formulation

Let the communication topology of MASs be modeled by a
weighted digraph G = {V , E ,A }. The set of nodes V =

{1, . . . ,N}, and node i represents the ith agent. A pair (j, i) belongs
to the edge set E ⇔ the jth agent can send information to the ith
agent directly. Here, j is called the parent of i, and i is called the
child of j. The neighborhood of the ith agent is denoted by Ni =

{j ∈ V |(j, i) ∈ E }. Node i is called a source if it has no parent but
only children. The weighted adjacency matrix A = [aij] ∈ RN×N .
For any i, j ∈ V , aij ≥ 0, and aij > 0 ⇔ j ∈ Ni. The Laplacian
matrix LG = D − A , where D = diag(

N
j=1 a1j, . . . ,

N
j=1 aNj).
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The digraph G is called a balanced digraph, if
N

j=1 aji =
N

j=1 aij,
i = 1, 2, . . . ,N . It is clear that an undirected graph is a balanced
digraph. A directed tree is a digraph, where every node except the
root has exactly one parent and the root is a source. A spanning tree
of G is a directed tree whose node set is V and whose edge set is a
subset of E . In this paper, we make the following assumption and
use the properties of Laplacian matrices.

Assumption 1. The digraph G contains a spanning tree.

Lemma 2.1 (Huang & Manton, 2010). Suppose that Assump-
tion 1 holds. Then (i) LG has a unique zero eigenvalue and all other
N − 1 eigenvalues have positive real parts. (ii) There exists a unique
probability measure π T such that π T LG = 01×N. (iii) There exists a

nonsingular matrix Φ = (1N×1 φN×(N−1)) and Φ−1
=


πT

ψ(N−1)×N


such that Φ−1LGΦ =


0 0
0 L̃G


. Here, all N − 1 eigenvalues of L̃G ,

which are also nonzero eigenvalues of LG , have positive real parts.

Hereinafter, we denote all distinct non-zero eigenvalues of LG

by λ1, . . . , λl, λmin = min{Re(λm), 1 ≤ m ≤ l}, and λmax =

max{Re(λm), 1 ≤ m ≤ l}.
In this paper,we consider the consensus control for theN agents

with the dynamics

ẋi(t) = ui(t), i ∈ V , (1)

where xi(t) ∈ R and ui(t) ∈ R are the state and the control input
of the ith agent. Themeasurement of the jth agent’s state by the ith
agent is modeled by

yji(t) = xj(t)+ σjiηji(t), j ∈ Ni, (2)

where {ηji(t), i ∈ V , j ∈ Ni} are mutually independent stan-
dard white noises, and σji > 0 is the noise intensity. Here,
the noises are independent of the initial states. Denote X(t) =

[x1(t), . . . , xN(t)]T , and (G , X) is called a dynamic network (Olfati-
Saber & Murray, 2004). A measurement-based distributed pro-
tocol is a group of control inputs U = {ui, i ∈ V |ui(t) ∈

σ(xi(s), yji(s); j ∈ Ni, 0 ≤ s ≤ t), ∀ t ≥ 0} (Li & Zhang,
2009). The agents are said to reach almost sure (mean square, resp.)
strong consensus if there exists a random variable x∗ such that,
limt→∞ xi(t) = x∗, i ∈ V almost surely (limt→∞ E|xi(t)− x∗

|
2

= 0
and E|xi(t)|2 < ∞, resp.). The agents are said to reach almost sure
(mean square, resp.) weak consensus if for all distinct i, j ∈ V ,
limt→∞ |xi(t)−xj(t)| = 0 almost surely (limt→∞ E|xi(t)−xj(t)|2 =

0, and E|xi(t)|2 < ∞ for all i ∈ V , resp.).

3. Asymptotic properties for the stochastic approximation type
protocol

To attenuate the communication noises, the stochastic approx-
imation type protocol ua(t) = [ua1(t), . . . , uaN(t)]T with

uai(t) = a(t)

j∈Ni

aij(yji(t)− xi(t)), t ≥ 0, i ∈ V , (3)

is a kind of effective consensus control laws. Here, the consensus
gain function a(·) : [0,∞) → (0,∞) is a piecewise continuous
function. Substitute the protocol (3) into the system (1). Denote
Xa(t) = [xa1(t), . . . , xaN(t)]T as the corresponding closed-loop
states with respect to ua(t), then the closed-loop system in the
form of Itô stochastic differential equation is given by

dXa(t) = −a(t)LG Xa(t) dt + a(t)Σ dw(t). (4)

Here, Σ = diag(αT
1Σ1, . . . , α

T
NΣN), where αi is the ith row of the

weighted adjacency matrix A and Σi = diag(σ1i, . . . , σNi) with
σji = 0 for j ∉ Ni. Andw(t) = (w11(t), . . . , wN1(t), . . . , wNN(t))T

is an N2 dimensional standard Brownian motion. In Li and
Zhang (2009) and Wang and Zhang (2009), it was proved that if

∞

0 a(t)dt = ∞,


∞

0 a2(t)dt < ∞, and Assumption 1 holds, then
the stochastic approximation type protocol (3) ensures both mean
square and almost sure strong consensus. Hereinafter, we denote
J = 1N×1π

T , and the consensus error δa(t) = (IN − J)Xa(t). In
this section, wewill show how fast δa(t) vanishes in both senses of
mean square and probability one. The following assumptions will
be used.

Assumption 2. The consensus gain function a(t) satisfies that
limt→∞ tγ a(t) exists and is positive, where γ ∈ (0.5, 1).

Assumption 3. The consensus gain function a(t) satisfies that
limt→∞ ta(t) > 1/(2λmin).

Remark 1. If a(t) satisfies either Assumption 2 or Assumption 3,
clearly, we have


∞

0 a(s)ds = ∞ and


∞

0 a2(s)ds < ∞, which
are typical conditions on the consensus gain function (Li & Zhang,
2009).

Firstly, we analyze the convergence rate of E(∥δa(t)∥2).

Theorem 3.1. Suppose that Assumption 1 holds. Apply the proto-
col (3) to the systems (1) and (2). If Assumption 2 holds, then the
closed-loop system satisfies E(∥δa(t)∥2) = O(t−γ ); and if Assump-
tion 3 holds, then E(∥δa(t)∥2) = O(t−1).

Proof. Noticing that (IN − J)LG = LG = LG (IN − J), by Eq. (4), we
have

dδa(t) = −a(t)LG δa(t) dt + a(t)(IN − J)Σ dω(t). (5)

Define δ̃a(t) = Φ−1δa(t), with Φ given in Lemma 2.1. Then it is
sufficient to analyze the convergence rate of E(∥δ̃a(t)∥2) sinceΦ is
nonsingular. By Eq. (5), Lemma 2.1 and π T1N×1 = 1, we have

dδ̃a(t) = −a(t)diag(0, L̃G )δ̃a(t) dt

+ a(t)


01 × N2

ψ(N−1)×N(IN − J)Σ


dω(t).

Denote ηa(t) = (δ̃a2(t), . . . , δ̃aN(t))T . Then we get

δ̃a1(t) = δ̃a1(0) = π T δa(0) = π T (IN − J)X(0) = 0.

By the variation of constants formula for SDEs, we get

ηa(t) = exp

−L̃G

 t

0
a(s) ds


ηa(0)+

 t

0
a(s)

× exp

−L̃G

 t

s
a(r) dr


ψ(N−1)×N(IN − J)Σ dω(s).

Hence, we know that E(∥δ̃a(t)∥2) = E(∥ηa(t)∥2).
To obtain the desired upper bound, we begin by estimating

exp

−L̃G

 t
0 a(s) ds


. By Jordan matrix decomposition, there exists

an invertible matrix P such that P−1L̃G P = JL̃G . Here, JL̃G is the
Jordan normal form of L̃G , i.e. JL̃G = diag(Jλ1,n1 , Jλ2,n2 , . . . , Jλq,nq),
where q is the number of Jordan blocks, λ1, . . . , λq are all non-zero
eigenvalues of L̃G , which may not be distinct from each other, and
Jλm,nm is the corresponding Jordan block of size nm with eigenvalue
λm, m = 1, . . . , q. It follows that

exp

−L̃G

 t

0
a(s) ds


= P exp


−JL̃G

 t

0
a(s) ds


P−1
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= P diag

exp


−Jλ1,n1

 t

0
a(s) ds


, . . . ,

exp

−Jλq,nq

 t

0
a(s) ds


P−1

and

exp

−Jλm,nm

 t

0
a(s) ds



=



e−λm
 t
0 a(s) ds

· · ·


−

 t
0 a(s)ds

nm−1
e−λm

 t
0 a(s) ds

(nm − 1)!

0 · · ·


−

 t
0 a(s) ds

nm−2
e−λm

 t
0 a(s) ds

(nm − 2)!
...

...
...

0 · · · −

 t

0
a(s) dse−λm

 t
0 a(s) ds

0 · · · e−λm
 t
0 a(s) ds


.

Note that the complex eigenvalues of the Laplacian matrix LG will
occur in conjugate pairs since LG is real, thus, each element of
exp


−L̃G

 t
0 a(s) ds


is a finite linear combination of t

0
a(s) ds

k
cos


Im(λm)

 t

0
a(s) ds


e−Re(λm)

 t
0 a(s) ds

and t

0
a(s) ds

k
sin


Im(λm)

 t

0
a(s) ds


e−Re(λm)

 t
0 a(s) ds,

k = 0, . . . , nm − 1, m = 1, . . . , q.
Similarly, noticingψ(N−1)×N(IN − J)Σ is a constant matrix, and

each element of t

0
a(s) exp


−L̃G

 t

s
a(r) dr


ψ(N−1)×N(IN − J)Σ dω(s)

is a finite linear combination of t

0

 t

s
a(r) dr

k
cos


Im(λm)

 t

s
a(r) dr


× e−Re(λm)

 t
s a(r)dra(s)dωji(s)

and t

0

 t

s
a(r) dr

k
sin


Im(λm)

 t

s
a(r) dr


× e−Re(λm)

 t
s a(r)dra(s)dωji(s),

k = 0, . . . , nm − 1, m = 1, . . . , q, (j, i) ∈ E . It can be proved
that for any fixed integer k, Re(λm) > 0 and s < t , there exists
ε ∈ (0, Re(λm)) and C1(k, ε) > 0, such that t

s
a(r) dr

k
cos


Im(λm)

 t

s
a(r) dr

 ≤ C1eε
 t
s a(r) dr , (6)

 t

s
a(r) dr

k
sin


Im(λm)

 t

s
a(r) dr

 ≤ C1eε
 t
s a(r) dr . (7)

For the case where Assumption 2 holds, by Lemmas A.1 and A.2, it
follows that for any given λ > 0, we have e−2λ

 t
0 a(s) ds

= o(t−γ )
and

E
 t

0
a(s)e−λ

 t
s a(r)dr dωji(s)

2
= Θ(t−γ ), (8)

which together with (6) and (7) leads to E(∥ηa(t)∥2) = O(t−γ ).
For the case where Assumption 3 holds, noticing that
limt→∞(ta(t)) > 1/(2λmin), we can always take ε satisfying λmin
− ε > 1/(2 limt→∞(ta(t))). Then by inequalities (6) and (7) and
Lemma A.3, we can conclude that E(∥ηa(t)∥2) = O(t−1). �

Theorem 3.1 gives upper bounds of convergence rate of the
mean square consensus errors under general digraphs. In the
following theorem,we get the exactmean square convergence rate
of δa(t) if the network is balanced.

Assumption 4. The digraph G is balanced.

Theorem 3.2. Suppose that Assumptions 1 and 4 hold. Apply the
protocol (3) to the systems (1) and (2). If Assumption 2 holds,
then the closed-loop system satisfies E∥δa(t)∥2

= Θ(t−γ ); and
if Assumption 3 holds, then E∥δa(t)∥2

= Θ(t−1).

Proof. Under Assumptions 1 and 4, by (5) and the Itô formula, it is
easy to check that

E(∥δa(t)∥2) ≥ E(∥δa(0)∥2)e−2λN
 t
0 a(s)ds

+ tr((I − J)2ΣΣT )

 t

0
a2(s)e−2λN

 t
s a(u)duds.

Here, λN is the largest eigenvalue of L̂G = (LG + LTG )/2, which is
the Laplacian matrix of the symmetrized graph of G (Olfati-Saber
& Murray, 2004). Noting the results obtained in Theorem 3.1, it
will be sufficient to show

 t
0 e−2λN

 t
s a(u)dua2(s)ds = Ω(t−γ ) for

γ ∈ (0.5, 1]. And the result follows from Lemmas A.2 and A.3. �

If the network is undirected, we can give the upper bound of the
convergence rate of δa(t)with probability one.

Assumption 5. The digraph G is an undirected graph.

Theorem 3.3. Suppose that Assumptions 1 and 5 hold. Apply the pro-
tocol (3) to the systems (1) and (2). If Assumption 2 holds, then the
closed-loop system satisfies ∥δa(t)∥ = O(t−γ /2(log log bλmax(t))

1/2)
a.s.; if Assumption 3 holds, then ∥δa(t)∥ = O(t−1/2

(log log bλmax(t))
1/2) a.s., where bλmax(t) =

 t
0 a2(s)e2λmax

 s
0 a(r) dr ds.

Proof. We first consider the case where Assumption 2 holds.
Note that the adjacency matrix of an undirected graph is
symmetric. Thus, the Laplacian matrix can be diagonalizable
and all its eigenvalues are real. Under Assumptions 1 and 5,
similar to the proof of Theorem 3.1, we can conclude that each
element of δa(t) is a finite linear combination of e−λm

 t
0 a(s) ds and t

0 a(s)e−λm
 t
s a(r) dr dωji(s) for m = 1, . . . , q and (j, i) ∈ E . So it

will be sufficient to analyze the convergence behaviors of these two
kinds of items respectively. By Lemma A.1 and limt→∞ bλmax(t) =

∞, we have

e−λm
 t
0 a(s) ds

= o

t−γ /2(log log bλmax(t))

1/2.
Hence, we only need to consider the convergence behaviors of t
0 a(s)e−λm

 t
s a(r) dr dωji(s). For any given λ ∈ (0, λmax), denote

bλ(t) =

 t

0
a2(s)e2λ

 s
0 a(r) dr ds. (9)

It is easy to verify that limt→∞ bλ(t) = ∞. Thus, by the law of
the iterated logarithm of stochastic integrals (Chen & Guo, 1991;
Friedman, 1975), we have

lim sup
t→∞

 t
0 a(s)eλm

 s
0 a(r)dr dωji(s)


2bλm(t) log log bλm(t)

1/2 = 1 a.s. (10)



150 H. Tang, T. Li / Automatica 61 (2015) 146–155
By (9), we know thattγ /2(log log bλm(t))−1/2
 t

0
a(s)e−λm

 t
s a(r) dr dωji(s)


=


tγ

 t

0
a2(s)e−2λm

 t
s a(r)drds

1/2

×

 t
0 a(s)eλm

 s
0 a(r) dr dωji(s)


bλm(t) log log bλm(t)

1/2 .
Combining Lemma A.2 and (10), it is concluded that

sup
t≥0

tγ /2(log log bλm(t))−1/2
 t

0
a(s)e−λm

 t
s a(r) dr dωji(s)


< ∞ a.s.

Thus, we have t

0
a(s)e−λm

 t
s a(r) dr dωji(s) = O(t−γ /2(log log bλm(t))

1/2) a.s.

Noticing that bλm(t) ≤ bλmax(t) for m = 1, . . . , q, we get the
conclusion of the theorem if Assumption 2 holds.

For the case where Assumption 3 holds, the result can be
obtained similarly by using Lemma A.3. �

Remark 2. Noticing that (log log 2bλmax(t))
1/2

= o(tε), ∀ ε > 0,
from Theorem 3.3, we know that ∥δa(t)∥ = O(t−γ /2+ε) a.s., which
means that ∥δa(t)∥ is dominated by O(t−γ /2+ε) asymptotically
with probability one.

4. Kalman-Bucy filtering based consensus protocol

For the case with precise communication, i.e. σji = 0 for all
(j, i) ∈ E (Olfati-Saber & Murray, 2004), the classical consensus
protocol is ui(t) =


j∈Ni

aij(xj(t) − xi(t)), t ≥ 0, i ∈ V ,
i.e. each agent updates its state by the differences between its state
and the information received from its neighbors. For the case with
communication noises (i.e., σji > 0), since the ith agent cannot
receive xj(t) from the jth agent accurately, it is natural to use an
estimate instead of xj(t) itself. Here, based on the Kalman-Bucy
filtering theory, we propose the following protocol

ui(t) =


j∈Ni

aij(x̂j|i(t)− xi(t)), t ≥ 0, i ∈ V . (11)

Here, x̂j|i(t) is the estimate of xj(t) by the ith agent based on its
observations {yji(s), 0 ≤ s ≤ t}, which satisfies

dx̂j|i(t) = uj(t) dt +
Rji(t)
σ 2
ji


yji(t)− x̂j|i(t)


dt, (12)

dRji(t) = −
R2
ji(t)

σ 2
ji

dt, (13)

where the initial values x̂j|i(0) and Rji(0) > 0 are chosen arbitrarily.

Remark 3. For each channel (j, i) ∈ E , by introducing zji(t) = t
0 yji(s)ds, from systems (1)–(2), we can extract a pair of state and

measurement equations given by

dxj(t) = uj(t)dt, (14)

dzji(t) = xj(t)dt + σji dwji(t), zji(0) = 0. (15)

Noting that the state Eq. (14) has no process noise, we apply the
Kalman-Bucy filter result (Kallianpur, 1980; Øksendal, 2010) to
systems (14)–(15) and then Eqs. (12)–(13) are obtained. If x̂j|i(0) =
E(xj(0)), Rji(0) = var(xj(0)) and xj(0) is normally distributed
and independent of wji(t), then (12)–(13) constitute the classical
Kalman-Bucy filter, i.e. x̂j|i(t) is the conditional expectation
minimizing the mean square error E(x̃j|i(t))2. However, since the
statistical information about xj(0) is unknown, the initial values
x̂j|i(0) and Rji(0) > 0 will be chosen randomly in this paper.

Substituting the protocols (11)–(13) into the system (1), the
closed-loop system is given by

dX(t) = (−LG X(t)+ MΥ (t)) dt. (16)

Here, M = diag(α1, . . . , αN) is an N × N2 dimensional block
diagonal matrix, where αi is the ith row of the adjacent matrix
A , Υ (t) = (Υ T

1 (t), . . . ,Υ
T
N (t))

T with Υ T
i (t) = −(x̃1|i(t), . . . ,

x̃N|i(t))T being an N2
× 1 vector, and x̃j|i(t) being the estimation

error defined as

x̃j|i(t) =


xj(t)− x̂j|i(t), for (j, i) ∈ E ,
0, otherwise. (17)

Similar to the case of stochastic approximation type protocols, we
denote the consensus error δ(t) = (IN − J)X(t). In this section,
after giving the asymptotical properties of the estimate x̂j|i(t) and
the estimation error x̃j|i(t), we will show the convergence rate of
δ(t) in both senses of mean square and probability one.

Lemma 4.1. Iterated logarithm law of estimation errors: with
randomly chosen initial values x̂j|i(0) and Rji(0) > 0, the estimate
x̂j|i(t) satisfying Eqs. (12)–(13) is an asymptotically unbiased estima-
tor of xj(t). Moreover, the estimation error x̃j|i(t) satisfies

lim sup
t→∞

|x̃j|i(t)|
√
2σjit−1/2(log log t)1/2

= 1 a.s.

Proof. By Eq. (13), we get

Rji(t) =
Rji(0)σ 2

ji

σ 2
ji + Rji(0)t

. (18)

Combining the definition of the estimation error x̃j|i(t), Eqs. (1),
(12), (15) and (18), it is easy to check that

dx̃j|i(t) = −
Rji(0)

σ 2
ji + Rji(0)t

x̃j|i(t) dt −
Rji(0)σji

σ 2
ji + Rji(0)t

dwji(t),

which gives

x̃j|i(t) =
σ 2
ji

σ 2
ji + Rji(0)t

x̃j|i(0)−
Rji(0)σji

σ 2
ji + Rji(0)t

wji(t). (19)

Noticing that x̃j|i(0) and ωji(t) are independent, we have

E(x̃j|i(t)) =
σ 2
ji

σ 2
ji + Rji(0)t

E(x̃j|i(0)),

and

var(x̃j|i(t)) =
σ 4
ji var(x̃j|i(0))+ R2

ji(0)σ
2
ji t

(σ 2
ji + Rji(0)t)2

.

Although the initial values x̂j|i(0) and Rji(0) > 0 are chosen ran-
domly, we still have E(x̃j|i(t)) = Θ(t−1) and var(x̃j|i(t)) = Θ(t−1).
Thus, x̂j|i(t) is an asymptotically unbiased estimator of xj(t). Then
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by (19) and the law of iterated logarithm of Brownian motions, we
have

lim sup
t→∞

|x̃j|i(t)|
√
2σjit−1/2(log log t)1/2

= lim sup
t→∞

Rji(0)t
σ 2
ji + Rji(0)t

|ωji(t)|
(2t log log t)1/2

= 1 a.s. �

Now, we will analyze the convergence rate of E(∥δ(t)∥2) under
Assumption 1.

Theorem 4.1. Suppose that Assumption 1 holds. Apply the proto-
cols (11)–(13) to the systems (1) and (2). Then the closed-loop system
satisfies E(∥δ(t)∥2) = O(t−1).

Proof. Denote δ̃(t) = Φ−1δ(t) with Φ given in Lemma 2.1. Then
it is sufficient to show that E(∥δ̃(t)∥2) = O(t−1) since Φ is
nonsingular. By (16) and Lemma 2.1, we have

dδ̃(t) =


−diag(0, L̃G )δ̃(t)+


01×N

ψ(N−1)×N(IN − J)MΥ (t)


dt.

Denote η(t) = (δ̃2(t), . . . , δ̃N(t))T . Then we get

δ̃1(t) = δ̃1(0) = π T δ(0) = π T (IN − J)X(0) = 0,

η(t) = exp

−L̃G t


η(0)

+

 t

0
exp


−L̃G (t − s)


ψ(N−1)×N(IN − J)MΥ (s)ds.

Subsequently, we have E(∥δ̃(t)∥2) = E(∥η(t)∥2). Following
the computation of ηa(t) in the proof of Theorem 3.1, we
can conclude that each element of η(t) is a finite linear
combination of tk cos


Im(λm)t


e−Re(λm)t , tk sin


Im(λm)t


e−Re(λm)t , t

0 (t − s)k cos

Im(λm)(t − s)


e−Re(λm)(t−s)x̃j|i(s) ds, and

 t
0 (t −

s)k sin

Im(λm)(t−s)


e−Re(λm)(t−s)x̃j|i(s) ds, k = 0, . . . , nm−1, m =

1, . . . , q, (i, j) ∈ E .
Notice that for any fixed integer k and Re(λm) > 0, there exists

ε ∈ (0, Re(λm)) and C2(k, ε) > 0, such that(t − s)k cos

Im(λm)(t − s)

 ≤ C2eε(t−s), (20)(t − s)k sin

Im(λm)(t − s)

 ≤ C2eε(t−s). (21)

By Lemmas B.1 and B.2, it follows that for any given λ ∈ (0, λmax)
and (j, i) ∈ E , we have t

0

e−λ(t−s)

σ 2
ji + Rji(0)s

ds = Θ(t−1),

and

E
 t

0

e−λ(t−s)

σ 2
ji + Rji(0)s

ωji(s) ds
2

= Θ(t−1).

This together with Eq. (19) leads to

E
 t

0
e−λ(t−s)x̃j|i(s) ds

2
= Θ(t−1), ∀ (j, i) ∈ E . (22)

Combining Eqs. (20), (21), (22) and e−2λt
= o(t−1), it is concluded

that E(∥δ(t)∥2) = O(t−1). �

Theorem 4.1 gives the upper bound of the convergence rate
of the mean square consensus error with general digraphs. If
the network is undirected, we can get the exact mean square
convergence rates of the consensus error.
Theorem 4.2. Suppose that Assumptions 1 and 5 hold. Applying the
protocols (11)–(13) to the systems (1) and (2), then the closed-loop
system satisfies E(∥δ(t)∥2) = Θ(t−1).
Proof. If Assumption 5 holds, then from the proof of Theorem 3.1,
we can conclude that each element of δ(t) is a finite linear
combination of e−λmt and e−λm(t−s)x̃j|i(s) ds, m = 1, . . . , q, (i, j) ∈

E . Then the conclusion of the theorem follows from (22). �

For the convergence rate of δ(t) with probability one, we have
the following theorem for the case with general digraphs.

Theorem 4.3. Suppose that Assumption 1 holds. Apply the proto-
cols (11)–(13) to the systems (1) and (2). Then the closed-loop system
satisfies ∥δ(t)∥ = O


t−1/2(log log t)1/2


a.s.

Proof. Following the proof of Theorem 4.1, noting Eqs. (20), (21)
and e−λt

= o

t−1/2(log log t)1/2


for any λ > 0, it will be sufficient

to prove that for any given λ ∈ (0, λmax) and (j, i) ∈ E , we have t

0
e−λ(t−s)x̃j|i(s) ds = O


t−1/2(log log t)1/2


a.s. (23)

By Lemma 4.1, we know that for any given ε > 0, there exists
t0 > 0, such that for any given s ≥ t0, |x̃j|i(s)| ≤ (1 +

ε)
√
2σjis−1/2(log log s)1/2 a.s. Hence

t1/2(log log t)−1/2
 t

0
e−λ(t−s)x̃j|i(s) ds


≤ t1/2(log log t)−1/2e−λt

 t0

0
eλsx̃j|i(s) ds


+ (1 + ε)

√
2σjit1/2(log log t)−1/2

×

 t

t0
e−λ(t−s)s−1/2(log log s)1/2 ds a.s.

Notice that
 t0
0 eλsx̃j|i(s) ds is bounded a.s. due to the continuous

property of x̃j|i(s). Combining with

lim
t→∞

t1/2(log log t)−1/2e−λt
= 0,

the first item tends to 0 as t → ∞ a.s. For the second item, by
L’Hôpital’s rule, we have

lim
t→∞

t1/2(log log t)−1/2
 t

t0
e−λ(t−s)s−1/2(log log s)1/2 ds

= lim
t→∞

d
 t

t0
eλss−1/2(log log s)1/2 ds


/dt

d

eλt t−1/2(log log t)1/2


/dt

= 1/λ.

Thus, it can be concluded that

sup
t≥0


t1/2(log log t)−1/2

 t

0
e−λ(t−s)x̃j|i(s) ds

 < ∞ a.s.

and (23) holds. �

Now we apply the Kalman-Bucy filtering based protocols
(11)–(13) to the leader-following scenario. Assume that agent 1
is the leader, and its state is ϑ , which is chosen randomly and
remains a constant after. Since N1 = ∅, the first row of A is

zero. The Laplacian matrix LG =


0 0

−B1(n−1)×1 LḠ + B


, where the

digraph Ḡ = {V̄ , Ē , ¯A } denotes the subgraph formed by the N − 1
followers, and B = diag(a21, . . . , aN1). Clearly, all eigenvalues of
LḠ + B, which are also nonzero eigenvalues of LG , have positive
real parts. Denote X̄(t) = (x2(t), . . . , xN(t)) and the tracking error
δ̄(t) = X̄(t) − ϑ1(n−1)×1. In the following theorem, we will give
the convergence rate analysis of the tracking error.
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Theorem 4.4. Suppose that Assumption 1 holds. Apply the proto-
cols (11)–(13) to the systems (1) and (2). Then for this leader-
following scenario, the closed-loop system satisfies E(∥δ̄(t)∥2) =

O(t−1) and ∥δ̄(t)∥ = O

t−1/2(log log t)1/2


a.s., which means that

the protocols (11)–(13) ensure both mean square and almost sure
strong consensus. Moreover, if the subgraph Ḡ is undirected, then
E(∥δ̄(t)∥2) = Θ(t−1).

Proof. By (16), for the leader-following case, we have

dX̄(t) = (−(LḠ + B)X̄(t)+ Bϑ1(n−1)×1 + M̄Ῡ (t))dt.

Here, M̄ = diag(α2, . . . , αN), where αi is the ith row of the adja-
cent matrix A , and Ῡ (t) = (Υ T

2 (t), . . . ,Υ
T
N (t))

T with Υ T
i (t) =

−(x̃1|i(t), . . . , x̃N|i(t))T . Hence, the tracking error is given by
dδ̄(t) = (−(LḠ + B)δ̄(t)+ M̄Ῡ (t))dt , which gives

δ̄(t) = exp (−(LḠ + B)t) δ(0)

+

 t

0
exp (−(LḠ + B)(t − s)) M̄Ῡ (s)ds.

By Theorems 4.1 and 4.3, we directly obtain that E(∥δ̄(t)∥2) =

O(t−1) and ∥δ̄(t)∥ = O

t−1/2(log log t)1/2


a.s. If the subgraph Ḡ is

undirected, then its Laplacian matrix LḠ is symmetric. And LḠ + B
is also symmetric since B is a diagonal matrix. Therefore, LḠ + B
can be diagonalizable and all its eigenvalues are real. Similar to the
proof of Theorem 4.2, we have E(∥δ̄(t)∥2) = Θ(t−1). �

Remark 4. Here, for the Kalman-Bucy filtering based protocol, we
assume that the control input information of each agent was sent
to its neighbors accurately. If the transmission of control inputs
were corrupted by noises, then from the proofs of Lemma 4.1
and Theorem 4.1, there would be non-zero steady-state error for
the mean square consensus error E(∥δ(t)∥2), and the amplitude
of E(∥δ(t)∥2) would be proportional to the noise intensity. An
interesting problem is whether the closed-loop consensus error
is still vanishing if the control inputs of neighbors are neglected
in (12). This might be true, however, without the control inputs
of neighbors, the classical structure of the Kalman-Bucy filter is
corrupted and the closed-loop analysis becomes more difficult.

5. Comparison of stochastic approximation type and Kalman-
Bucy filtering based protocols

From Theorems 3.2 and 4.2, we can conclude that if Assump-
tion 3 holds, then the closed-loop systems satisfy E(∥δ(t)∥2) =

Θ

E(∥δa(t)∥2)


. However, for other cases, the Kalman-Bucy filter-

ing based protocols (11)–(13) may have a higher asymptotic con-
vergence rate than the stochastic approximation type protocol (3).
In this section, we will illustrate this property.

Theorem 5.1. Suppose that Assumptions 1 and 5 hold. Apply the
protocols (3) and (11)–(13) respectively to the systems (1) and (2).
If limt→∞ ta(t) exists and there exists a Laplacian eigenvalue λ
satisfying that 2λ limt→∞(ta(t)) < 1, then the closed-loop systems
satisfy E(∥δ(t)∥2) = o


E(∥δa(t)∥2)


.

Proof. If Assumption 5 holds, from the proof of Theorem 3.1, we
can conclude that each element of δa(t) is a finite linear combina-
tion of e−λm

 s
0 a(r) dr and

 t
0 a(s)e−λm

 t
s a(r)dr dωji(s), m = 1, . . . , q.

By the result of Theorem 4.2, it will be sufficient to show that
e−2λ

 t
0 a(s)ds

= Ω(t−m)with m < 1. Note that 2λ limt→∞(ta(t)) <
1. Then we can take β ∈ (limt→∞ ta(t), 1/2λ), and there exists
T0 > 0 such that a(t) ≤ βt−1 for all t ≥ T0. Hence, we have

e−2λ
 t
0 a(s)ds

≥ e−2λ
 T0
0 a(s)dsT 2λβ

0 t−2λβ .

And the conclusion follows from 2λβ < 1. �

Remark 5. From Theorem 4.2, we can see that the mean square
convergence rate of the Kalman-Bucy filtering based protocol can
always achieve Θ(t−1) for the case with undirected graphs. How-
ever, for the stochastic approximation type protocol, by Theo-
rem 5.1, it is not always true that the mean square consensus error
E(∥δa(t)∥2) = Θ(t−1) even if a(t) = Θ(t−1). The convergence
rate of the stochastic approximation type protocol depends on not
only the convergence rate of a(t), but also the Laplacian eigenval-
ues of the network topology graph.

If the consensus gain function a(t) satisfies Assumption 2,
one can directly conclude that the closed-loop system satisfies
E(∥δ(t)∥2) = o


E(∥δa(t)∥2)


from Theorems 3.2 and 4.2, that is,

the Kalman-Bucy filtering based protocol leads to a higher conver-
gence rate than the stochastic approximation type protocol. Ac-
tually, the convergence rate of the closed-loop system under the
Kalman-Bucy filtering based protocol is not slower than that un-
der the stochastic approximation type protocol for both cases of
a(t) = Θ(t−1) and a(t) = Θ(t−γ ), γ ∈ (0.5, 1).

A numerical example for the leader-following casewill be given
below.

Example 1. Consider a leader-following dynamic network of 4
agents with V = {1, 2, 3, 4}. The weighted adjacency matrix
of the communication graph is given by a21 = a23 = a32 =

a42 = a43 = 1 and all other entries are zero. It is easy to check
that JLG = diag


0, 2, (3 +

√
5)/2, (3 −

√
5)/2


. We take the

state of the leader x1(t) ≡ 4 and X(0) = [4, 2, 5, 1]T , the noise
intensities σ12 = σ23 = σ32 = σ34 = σ24 = 0.7. The stochastic
approximation type protocol (3) and the Kalman-Bucy filtering
based protocols (11)–(13) are implemented respectively. For the
stochastic approximation type consensus protocol, we take the
consensus gain function a(t) = (t+1)−0.55. Fig. 1 shows the curves
of closed-loop states and tE(∥δa(t)∥2) under the protocol (3). Fig. 2
shows the curves of closed-loop states and tE(∥δ(t)∥2) under the
protocols (11)–(13). As shown in Figs. 1 and 2, under protocol (3)
and protocols (11)–(13), the states of followers both converge to
the leader’s state. But as t increases, tE(∥δ(t)∥2) converges, while
tE(∥δa(t)∥2) diverges. Hence,we can infer that E(∥δ(t)∥2) vanishes
faster than E(∥δa(t)∥2).

Remark 6. For the protocols (11)–(13), one may wonder whether
there exists a realization issue, since to calculate ui(t), uj(t), j ∈ Ni,
are needed. Below we give the discretization of the Kalman-Bucy
filtering based protocols for the continuous-time systems, from
whichwe can see that to calculate ui[kTs], only uj[(k−1)Ts], j ∈ Ni,
are used. Here, u(t) = u(kTs), t ∈ [kTs, (k+1)Ts), for k = 0, 1, . . . ,
with Ts as the time sampling interval. For ease of notation, u(kTs)
and x(kTs) are abbreviated as u[k] and x[k], respectively.

• System model and measurement model:

xi[k + 1] = xi[k] + ui[k]Ts, for i ∈ V ,

yji[k] = xj[k] + σjiηji[k], for j ∈ Ni.

• Assumptions: (i) the ith agent can receive its neighbor’s control
input accurately. (ii) the noise sequences {ηji(k), i ∈ V , j ∈

Ni} are mutually independent stand white noises which are
uncorrelated with x0.

• Initialization: for all i ∈ V and j ∈ Ni, we set x̂j|i[0] = 1,
Rji[0] = 1.
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Fig. 1. Case with the stochastic approximation type protocol (3): curves of closed-
loop states and tE(∥δa(t)∥2).

Fig. 2. Case with the Kalman-Bucy filtering based protocols (11)–(13): curves of
closed-loop states and tE(∥δ(t)∥2).

• For k = 0, 1, 2, . . . , for all i ∈ V , the ith agent takes the protocol

ui[k] =


j∈Ni

aij(x̂j|i[k] − xi[k]),

and sends ui[k] and xi[k] to its neighbors.
• For all i ∈ V , the ith agent updates its state as follows:

xi[k + 1] = xi[k] + ui[k]Ts.
• For all i ∈ V , and j ∈ Ni, we update the estimate of the

neighbor’s state and the Kalman gain for each communication
channel given by

x̂j|i[k + 1] = x̂j|i[k] + uj[k]Ts +
Rji[k]
σ 2
ji


yji[k] − x̂j|i[k]


Ts,

Rji[k + 1] = Rji[k] −
R2
ji[k]

σ 2
ji

Ts.

Remark 7. Comparing with the stochastic approximation proto-
col, the Kalman-Bucy filtering based protocols (11)–(13) have
superiority in the convergence rate. As a trade-off, more infor-
mation are used, e.g., the statistic information of the noises, the
accessibility of neighbors’ inputs information. Besides, since the
dynamics of the Kalman-Bucy filter is introduced in each agent,
more computation is introduced. Here, as a preliminary research,
we give a framework based on Kalman-Bucy filters and many in-
teresting problems remain open for improving the performances
with less information and resources.

6. Conclusion

In this paper, the continuous-time consensus problem of net-
worked agents with noisy measurements and fixed directed
topologies has been considered. By the tools of stochastic calcu-
lus, algebraic graph theory and limit analysis, we have analyzed
the asymptotic properties of two kinds of consensus protocols:
stochastic approximation type and Kalman-Bucy filtering based
protocols.

For the stochastic approximation type protocol, we have quan-
tified the convergence rate of the consensus error in both mean
square and probability one. The relationship between the conver-
gence rate and the consensus gain function has been revealed. It is
found that if the consensus gain function a(t) satisfies that tγ a(t)
converges to a positive value as t → ∞, γ ∈ (0.5, 1], then the
mean square of the consensus error is bounded above by O(t−γ )
asymptotically, and the consensus error is almost surely bounded
above by O(t−γ /2+ε), ∀ ε > 0, asymptotically. For the Kalman-
Bucy filtering based protocol, each agent uses Kalman-Bucy fil-
ters to get asymptotically unbiased estimates of neighbors’ states
and the control input is designed based on the protocol for precise
communication and the certainty equivalence principle. The iter-
ated logarithm law of estimation errors has been developed. It is
shown that if the communication graph has a spanning tree, then
the consensus error is bounded above by O(t−1) in mean square
and byO(t−1/2(log log t)1/2) almost surely. At last, we compare the
stochastic approximation type protocol and the Kalman-Bucy fil-
tering based protocol, and verify the superiority of the latter both
theoretically and through simulation.

There are some restrictions in this paper and many interesting
topics are still open.

(a) For the convergence rate analysis of the stochastic approxima-
tion type protocols, it is valuable toweaken Assumptions 2 and
3 to


∞

0 a(s)ds = ∞ and


∞

0 a2(s)ds < ∞.
(b) It is of interest for models with dynamic topologies, and in

particular, extending our results to networks with switching
topologies.

(c) As stated in Remark 4, for the Kalman-Bucy filtering based pro-
tocol, we assume that the protocol input information of each
agent is sent to its neighbors accurately. The problem whether
the close-loop consensus error is still vanishing if neglecting
neighbors’ control inputs remains open.

(d) As stated in Remark 6, the Kalman-Bucy filtering based proto-
col has a discrete-time version. Extending the results in this pa-
per to the discrete-time case is not difficult. An interesting topic
is the sample-data based analysis for the overall hybrid system.

(e) As stated in Remark 7, more information and computation
resources are required for implementing the Kalman-Bucy fil-
tering based protocol. It would require more substantial inves-
tigation to improve this protocol and reduce the computational
burden in future.

Appendix A. Auxiliary lemmas for Theorem 3.1

Lemma A.1. Suppose that Assumption 2 holds. Then for any given
λ > 0, we have e−2λ

 t
0 a(s) ds

= o(t−γ ).
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Proof. By Assumption 2, there exist T0 > 0 and α > 0 such that
a(t) ≥ αt−γ for all t ≥ T0. Hence, it follows that

e−2λ
 t
0 a(s) ds

≤ e−2λ
 T0
0 a(s) dse

2λα
1−γ T1−γ0 · e−

2λα
1−γ t1−γ

.

Take u = t1−γ , then u → ∞ as t → ∞ by γ ∈ (0.5, 1). By
γ /(1 − γ ) > 0 and −2λα/(1 − γ ) < 0, we see that

lim
t→∞

tγ e−
2λα
1−γ t1−γ

= lim
u→∞

u
γ

1−γ e−
2λα
1−γ u

= 0.

Hence limt→∞ tγ e−2λ
 t
0 a(s) ds

= 0, i.e. e−2λ
 t
0 a(s) ds

= o(t−γ ). �

Lemma A.2. Suppose that Assumption 2 holds. Then for any given
λ > 0, we have

lim
t→∞

tγ
 t

0
a2(s)e−2λ

 t
s a(r) dr ds = lim

t→∞
(tγ a(t))/(2λ).

Proof. By Assumption 2 and Lemma A.1, it is easy to check that

lim
t→∞

ta2(t)e2λ
 t
0 a(s) ds

= lim
t→∞


t1−γ · (tγ a(t))2 · t−γ e2λ

 t
0 a(s) ds


= ∞.

Then by the Cauchy criteria of improper integral, Lemma A.1 and
Assumption 2, using L’Hôpital’s rule, it follows that

lim
t→∞

tγ
 t

0
a2(s)e−2λ

 t
s a(r) dr ds

= lim
t→∞

d
 t

0 a2(s)e2λ
 s
0 a(r) dr ds


/dt

d

t−γ e2λ

 t
0 a(r) dr


/dt

= lim
t→∞

(tγ a(t))/(2λ). �

Lemma A.3. Suppose that Assumption 3 holds. Then for any given
λ > 0 satisfying 2λ limt→∞(ta(t)) > 1, we have

e−2λ
 t
0 a(s) ds

= o(t−1) (A.1)

and t

0
a2(s)e−2λ

 t
s a(r) dr ds = Θ(t−1). (A.2)

Proof. For any α ∈ (1/(2λ), limt→∞(ta(t))) and
β > limt→∞(ta(t)), by Assumption 3, there exists T0 > 0 such
that αt−1

≤ a(t) ≤ βt−1 for all t ≤ T0. Then we have

e−2λ
 t
0 a(s) ds

≤ e−2λ
 T0
0 a(s) ds

· T 2λα
0 · t−2λα.

Note that 2λα > 1 and hence Eq. (A.1) follows. Similarly, we get t

0
a2(s)e−2λ

 t
s a(r) dr ds

≤

 T0

0
a2(s)e−2λ

 t
s a(r) dr ds + β2

 t

T0
s−2e−2λα

 t
s r−1 dr ds

and t

0
a2(s)e−2λ

 t
s a(r) dr ds ≥ α2

 t

T0
s−2e−2λβ

 t
s r−1 dr ds.

The item
 T0
0 a2(s)e−2λ

 t
s a(r) dr ds is dominated by o(t−1) from Eq.

(A.1). Note 2λβ > 2λα > 1, and form > 1 we have t

T0
s−2e−m

 t
s r−1 dr ds = 1/(m − 1)(t−1

− t−mTm−1
0 ) = Θ(t−1).

Then Eq. (A.2) can be obtained. �
Appendix B. Auxiliary lemmas for Theorem 4.1

Lemma B.1. Suppose that Assumption 1 holds. Apply the proto-
cols (11)–(13) to the systems (1) and (2). Then for any given λ > 0,
we have

lim
t→∞

t
 t

0

e−λ(t−s)

σ 2
ji + Rji(0)s

ds =
1

λRji(0)
. (B.1)

This lemmacanbe obtainedbyusing L’Hôpital’s rule and thedetails
are omitted here.

Lemma B.2. Suppose that Assumption 1 holds. Apply the proto-
cols (11)–(13) to the systems (1) and (2). Then for any λ > 0, we
have

lim
t→∞

tE
 t

0

e−λ(t−s)

σ 2
ji + Rji(0)s

ωji(s) ds
2

=
1

λ2R2
ji(0)

. (B.2)

Proof. It is easy to check that

E
 t

0

e−λ(t−s)

σ 2
ji + Rji(0)s

ωji(s) ds
2

= e−2λt
 t

0

 t

0

eλ(s+u)E

ωji(s)ωji(u)


σ 2
ji + Rji(0)s


σ 2
ji + Rji(0)u

 du ds

= 2e−2λt
 t

0

eλs

σ 2
ji + Rji(0)s

 s

0

ueλu

σ 2
ji + Rji(0)u

du ds. (B.3)

By limu→∞ u ueλu

σ 2
ji +Rji(0)u

du = ∞ and the Cauchy criterion of the

improper integral, we have

lim
s→∞

 s

0

ueλu

σ 2
ji + Rji(0)u

du = ∞,

which leads to

lim
s→∞

s
eλs

σ 2
ji + Rji(0)s

 s

0

ueλu

σ 2
ji + Rji(0)u

du = ∞.

Hence, by Eq. (B.3) and the Cauchy criterion of the improper
integral, using L’Hôpital’s rule twice, we have

lim
t→∞

tE
 t

0

e−λ(t−s)

σ 2
ji + Rji(0)s

ωji(s) ds
2

= lim
t→∞

d

2

 t
0

eλs

σ 2
ji +Rji(0)s

 s
0

ueλu

σ 2
ji +Rji(0)u

du ds

/dt

d

t−1e2λt


/dt

= lim
t→∞

d

2

 t
0

ueλu

σ 2
ji +Rji(0)u

du

/dt

d

eλt


2λRji(0)+ (2λσ 2

ji − Rji(0))t−1 − σ 2
ji t−2


/dt

= 1/

λ2R2

ji(0)

,

which gives (B.2). �
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