[image: image1.wmf]1

im

££

实验2：迷宫问题

 迷宫实验是取自心理学的一个古典实验。在该实验中，把一只老鼠从一个无顶大盒子的门放入，在盒中设置了许多墙，对行进方向形成了多处阻挡。盒子仅有一个出口，在出口处放置一块奶酪，吸引老鼠在迷宫中寻找道路以到达出口。对同一只老鼠重复进行上述实验，一直到老鼠从入口到出口，而不走错一步。老鼠经多次试验终于得到它学习走通迷宫的路线。

 设计一个计算机程序，对任意设定的迷宫，求出一条从入口到出口的通路，或得出没有通路的结论。

 可以利用一个二维数组maze[i][j]表示迷宫，其中
[image: image3.png]010001100011
100011011100
011000011110
110111101101
110100101111111
001101110100101
001101110100101
011110011111111
001101101111101
110001101100000
001111100011110
0100111110111160

111
111
011
100

，
[image: image2.wmf]1

jn

££

. 数组元素值为1，表示该位置是墙壁，不能通行；元素值为0，表示该位置是通路。假定从maze[1][1]出发，出口位于maze[m][n]。移动方向可以是8个方向(东，东南，南，西南，西，西北，北和东北)。

要求程序输出： ‘

(1)一条通路的二元组(i,j)数据序列， (i,j)表示通路上某一点的坐标。

(2)用一种标志(如数字8)在二维数组中标出该条通路，并在屏幕上输出二维数组.

提示：

求迷宫中一条从入口到出口的路径的算法可简单描述如下：

设定当前位置的初值为入口位置

do{若当前位置可通，

则 {将当前位置插入栈顶； //纳入路径。

 若该位置是出口位置，则结束； //求得路径存放在栈中

 否则切换当前位置的东邻方块为新的当前位置；}

否则，若栈不空且栈顶位置尚有其他方向未经探索，

 则设定新的当前位置为沿顺时针方向旋转找到的栈顶位置的下一相邻块；

 若栈不空但栈顶位置的四周均不可通，

 则{ 删去栈顶位置； //从路径中删去该通道块

 若栈不空，则重新测试新的栈顶位置

 直至找到一个可通的相邻块或出栈至栈空；}

}while(栈不空);

平面上点的结构：struct PosType{ int x; int y;}; //coordinates
栈中元素的结构：

struct SElemType{

 int ord; //通道块在路径上的序号

 struct PosType seat; //通道块在迷宫中的坐标位置

 int di; //从此通道块走向下一通道块的方向};
迷宫（包括围墙）的对应矩阵（例）：

int A[14][17]={{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1},

{1,0,1,0,0,0,1,1,0,0,0,1,1,1,1,1,1},

{1,1,0,0,0,1,1,0,1,1,1,0,0,1,1,1,1},

{1,0,1,1,0,0,0,0,1,1,1,1,0,0,1,1,1},

{1,1,1,0,1,1,1,1,0,1,1,0,1,1,0,0,1},

{1,1,1,0,1,0,0,1,0,1,1,1,1,1,1,1,1},

{1,0,0,1,1,0,1,1,1,0,1,0,0,1,0,1,1},

{1,0,0,1,1,0,1,1,1,0,1,0,0,1,0,1,1},

{1,0,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1},

{1,0,0,1,1,0,1,1,0,1,1,1,1,1,1,0,1},

{1,1,1,0,0,0,1,1,0,1,1,0,0,0,0,0,1},

{1,0,0,1,1,1,1,1,0,0,0,1,1,1,1,0,1},

{1,0,1,0,0,1,1,1,1,1,0,1,1,1,1,0,1},

{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}};
另一文件是参考程序，去掉了几个函数体(打“？”的地方)，请补上。

_1191302489.unknown

_1191302516.unknown

